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We propose to generate localized artificial magnetic fields using two thin Raman laser beams intersected at a
narrow region of a two-leg ladder, where the frequency difference must approximately match the energy offset
between the two legs. Based on this method, we investigate the single-atom transport in a two-leg ladder with
only two rungs, which, together with the legs, enclose a localized artificial magnetic flux. Here, the atoms on
the two legs (channels) possess different onsite energies that produce another energy offset. We find that the
atom incoming from the left channel can experience from blockade to transparency via modifying the onsite
energy, tunneling strength, or magnetic flux, which can be potentially used for a quantum switcher. Furthermore,
the atom incoming from the left channel can also be perfectly routed into the right leg, when, intriguingly, the
outgoing atom in the right channel possesses a quasimomentum that can be modulated by the magnetic flux.
The result may be potentially used for the interface that controls the communication between two individual
quantum devices of cold atoms. The method can also be generalized to other artificial quantum systems, such as
superconducting quantum circuit systems, optical systems, etc.
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I. INTRODUCTION

The artificial tunability has made ultracold atoms an attrac-
tive platform for conducting research on quantum information
processing [1–4] and high-precision instruments [5–9]. Inte-
grating different cold atom systems together, one can possibly
realize the scalable quantum network, with each quantum
node being a cold atom subsystem, thus promoting the re-
cent development of atomtronic devices [10–19]. However,
reaching this destination demands the coherent manipulation
of cold atom matter waves such that different nodes can be
individually addressed for the effective communication of
quantum signals. The atomtronic device that realizes such
function is the atom switcher (router) for node-to-node(s)
connection.

The exploration of atom switcher and router can benefit
from the research on cold atom transport. It has been shown
[20–35] that the transport properties can be tuned by atom
interactions [36–39]. For example, spinless [20] and spin-
ful [21] matter wave switchers have been proposed, besides
which, there are also the studies on solitons in nonlinear
lattices [26], transport in discrete breathers [32,34] and so on.
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The researches on atomic switchers [20,21] mainly use the
principle that a weak incident wave interacts with a strong
Bose-Einstein condensate (BEC) that has to be deliberately
prepared to tune the transport properties. This, however, has
the drawback that the BEC can acquire accumulating momen-
tum from the incident wave if it comes as successive pulses.

Moreover, to practically control the signal flow in quan-
tum network, the indispensable quantum router needs to
have multiaccess channels (rather than the one-channel atom
switchers), which has been studied in the photonic system
[40–45] but lacks investigation in cold atom systems.

Recently, we have noted that the artificial effective mag-
netic field, besides inducing topological physics [46–49], can
also tune the transport properties of cold atoms, such as
resulting in the novel chiral currents [50–53]. Inspired by
this, we will explore a single-atom quantum switcher and
router controlled by the localized artificial magnetic fields that
coherently couple two individual atomic channels together,
which model is equivalent to a two-leg ladder [50] with only
two rungs. In detail, we first consider a ladder whose legs
(channels) are decoupled due to an energy offset between
them. To restore the localized interleg tunnelings, we propose
to use two thin Raman laser beams intersected at a narrow
region of the ladder, whose frequency difference must ap-
proximately match the energy offset between legs. When the
interleg tunnelings are restored, an artificial magnetic flux,
which originates from the spatial variation of the laser phases,
will also be involved along a particular loop. Based on this
method, we can create a two-leg ladder model where the artifi-
cial magnetic flux only penetrates one particular loop enclosed
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FIG. 1. (a) Experimental realization of localized effective magnetic fields using two thin Raman lasers and (b) the resulting two-leg ladder
model with only two-rungs. The double-well potential generated in the horizontal direction produce an array of ladders, where the tunneling
between adjacent legs is inhibited due to the energy offset �. To restore the tunneling, we apply two lasers respectively incoming at the angles
ϕ1 (conveniently, ϕ1 = 0 is specified here) and ϕ2, whose frequency difference ω = ω2 − ω1 is nearly resonant with �: � − ω = −2ε and
|ε| � �. The tunneling can only be restored at the intersection between the laser beams, where a time-dependent potential [see Eq. (2)] with
frequency ω is induced. Due to the spatial variation of this potential, the resulting tunneling term is complex, whose phase factor represents the
“magnetic flux” [see the sites inside the dashed rectangle, which encloses an effective magnetic flux φ]. Here, K (J) is the tunneling strength
along the x (y) axis, and εL = ε (εR = −ε) the onsite energy of the atoms on the L (R) leg.

by the two rungs (meaning interleg tunnelings present) and
legs, while, elsewhere, the two channels are decoupled due
to an energy offset between them. The transport properties
will be studied for the incident single-atom plane wave with
respect to the varying of energy offset and artificial magnetic
flux. If we only consider the atom propagation along the inci-
dent channel, the ladder performs as a one-channel switcher,
while if both channels are considered, a two-channel router
can also be realized.

Our paper is organized as follows. In Sec. II, we mainly
discuss how to create the theoretical model: a two-leg ladder
with only two rungs, which, together with the legs, enclose a
localized artificial magnetic flux. In Sec. III, based the theoret-
ical model, we derive the single-atom scattering coefficients
between the two atomic channels. In Sec. IV, using the scat-
tering coefficients, we discuss the single-atom switcher effect
for different parameters. In Sec. V, also using the scattering
coefficients, we demonstrate that the model can also be used
as a single-atom router. In Sec. VI, we make some discussions
in experiment. In Sec. VII, we summarize the main conclu-
sions.

II. CREATION OF THE TWO-LEG TWO-RUNG
LADDER PENETRATED BY LOCALIZED

ARTIFICIAL MAGNETIC FLUX

The creation the two-leg ladder model can be schematically
shown in Fig. 1. Concretely, we use 87Rb atoms trapped by a
standing wave in the y (z) direction with the wave length λs

(λz), but two standing waves in the x direction, which cre-
ates a double-well potential: Vs(x) = Vlx sin2 (klx + ϕ/2) +
Vx sin2 (ksx) with ki = 2π/λi (i = l, s) and λl = 2λs [50]. The

lattice depths Vlx/x and phase ϕ are properly chosen to create
an array of isolated tilted double well potentials, where each
double well realizes a single ladder. In the tight-binding limit,
the ladder Hamiltonian can be described by

Hld =
∑

l

�

2
(b†

l,Rbl,R − b†
l,Lbl,L)

−
∑

l;q=L,R

Jb†
l+1,qbl,q − J ′ ∑

l

b†
l,Lbl,R + H.c., (1)

where the bosonic annihilation (creation) operators bl,q (b†
l,q)

describes the atoms at the site l of the q leg, and J ′ (J)
characterizes the bare tunneling along the x (y) axis. However,
the tunneling J ′ is inhibited by the energy offset �, suppose
that � � J ′ is satisfied. Besides, the reduced Plank constant
has been assumed as h̄ = 1.

The generation of the localized artificial magnetic flux
is inspired by Refs. [46–49], which mainly focus on the
generation of global artificial magnetic flux. The localization
of the artificial magnetic flux can be achieved via controlling
the thickness of two thin Raman laser beams such that the
intersection of them can only cover the very four lattice
sites that will enclose the artificial magnetic flux to be
synthesized [see Fig. 1(a)]. The two laser beams are traveling
waves with quasimomentums ki = ki(cos ϕiex + sin ϕiey)
and Rabi frequencies 	i (i = 1, 2) which are employed to
illuminate the corresponding atoms. The notation ex (ey)
represents the unit vector in the x (y) direction. Both beams
are incident in the xy plane at angles ϕ1 and ϕ2 with respect
to the x axis, and couple two internal atomic energy levels
|g〉 (ground state) and |e〉 (intermediate state) through large
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detunings δi (|δi| � 	i), which results in an external potential
Ve(r) = h̄	 cos [(k1 − k2)r + ωt]|g〉〈g| with 	 = 	1	2

2δ1
.

Here, the frequency difference ω can be represented by
ω = c(k2 − k1) = δ2 − δ1 with |ω| � |δi| such that δ1 ≈ δ2.
In the tight-binding limit, the external potential corresponds
to the Hamiltonian

He(t ) = 	
∑

l=0,1;q=L,R

cos (φl,q+ωt )b†
l,qbl,q, (2)

where φl,q = ∓ kxλs
4 + lkyλs

2 and the negative (positive) sign
corresponds to q = L (q = R). The quasimomentums kx and
ky can be represented as kx = k1 cos ϕ1 − k2 cos ϕ2 and ky =
k1 sin ϕ1 − k2 sin ϕ2.

To eliminate the time-dependent Hamiltonian He(t ), we
now perform a unitary transformation

U =exp

[
−i

	

ω

∑
l=0,1; q=L,R

sin (φl,q + ωt )b†
l,qbl,q

]
, (3)

which should yield the following effective Hamiltonian, that
is,

Heff =
∑

l

�

2
(b†

l,Rbl,R − b†
l,Lbl,L)

−
∑

l 	= −1, 0, 1
q = L,R

Jb†
l+1,qbl,q −

∑
l 	=0,1

J ′b†
l,Lbl,R + H.c.

−
∑

l = −1, 0, 1
q = L,R

Jl,qb†
l+1,qbl,q −

∑
l=0,1

Klb
†
l,Rbl,L + H.c. (4)

The tunneling strengths in the second line of Eq. (4) remain
the same as in Eq. (1), which is because Eq. (3) merely acts
on the operators with l = 0, 1 and q = L,R. The new resulting
tunneling strengths Jl,q and Kl take the following forms, i.e.,

J−1,q = J exp

[
i
	

ω
sin (φ0,q+ωt )

]
, (5)

J0,q = J exp

[
i
	

ω
(sin (φ1,q+ωt ) − sin (φ0,q+ωt ))

]
, (6)

J1,q = J exp

[
−i

	

ω
sin (φ1,q+ωt )

]
, (7)

Kl = J ′ exp

[
−i

	

ω
(sin (φl,L+ωt )−sin (φl,R+ωt ))

]
. (8)

To simplify the above tunneling strengths in Eqs. (5)–(8)
(see Appendix A for derivation details), we first assume ω

is nearly resonant with �, i.e., � − ω = −2ε and |ε| � �.
Then, we can discard the fast-oscillating terms in the time-
domain Fourier expansions of Jl,q and Kl . After that, we
continue to assume that the parameters fulfill the perturbative
limit: 	

ω
� 1. Finally, the tunneling strengths in Eqs. (5)–(8)

can be reduced to

Jl,q ≡ J, (9)

K0 = K exp (−iωt ), (10)

K1 = K exp (iφ) exp (−iωt ), (11)

where the interleg tunneling strength K = J ′	
ω

cos ( kxλs
4 ),

and the artificial magnetic flux φ = − 1
2 kyλs =

− 1
2 (k1 sin ϕ1 − k2 sin ϕ2)λs can be tuned via adjusting the

properties of Raman lasers (e.g., the angles, intensities, or
quasimomentums).

Having obtained the approximate tunneling strengths in
Eqs. (9)–(11), we continue to apply the unitary transformation

U ′ = exp

[
−1

2
iωt

∑
l

(b†
l,Rbl,R − b†

l,Lbl,L)

]
(12)

to Eq. (4), such that the time dependence therein can be
removed. After this transformation, we finally obtain the
Hamiltonian of the two-rung two-leg ladder penetrated by a
localized artificial magnetic flux [see Fig. 1(b)], i.e.,

H =
∑

l

εLb†
l,Lbl,L + εRb†

l,Rbl,R

−
∑

l

J (b†
l+1,Lbl,L + b†

l+1,Rbl,R) + H.c.

−
∑
l=0,1

Kb†
0,Lb0,R + K exp (iφ)b†

1,Rb1,L + H.c.. (13)

We can see that the L and R legs, with onsite energies εL = ε

and εR = −ε that produce another small energy offset, are de-
coupled except the sites on the loop that encloses the artificial
magnetic flux φ. The intraleg tunneling strength is J for both
legs, while the complex interleg tunneling strengths are K and
K exp(iφ) at l = 0 and l = 1.

III. SINGLE-ATOM TRANSPORT

A. Two-channel interaction

In the above, we have created the two-leg bosonic ladder
with only two rungs, which, together with the legs enclose an
artificial magnetic flux φ. Now we continue to investigate the
issue of single-atom transport within this model (see Fig. 2).
In particular, we concentrate on the case that the single-atom
plane wave incomes from the negative sites along the L
channel. To treat this problem, the single-atom eigenstate of
the full Hamiltonian can be given by |E〉 = ∑

l ul,Rb†
l,R|0〉 +

ul,Lb†
l,L|0〉, where the coefficients ul,μ for each single-atom

component are constrained by H |E〉 = E |E〉, i.e.,

Eul,R = εRul,R − J (ul−1,R + ul+1,R)

− δl,0Kul,L − δl,1Keiφul,L, (14)

Eul,L = εLul,L − J (ul−1,L + ul+1,L)

− δl,0Kul,R − δl,1Ke−iφul,R. (15)

Apparently, the interaction between both L and R channels is
determined by the tunneling strength K and magnetic flux φ at
l = 0, 1. Hence, the incoming atom along the L channel will
inevitably stimulate some modes in the R channel.
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FIG. 2. Scattering process of a single-atom plane wave along the
L leg of the ladder model running into the loop penetrated by an
artificial magnetic flux φ. The L and R legs are decoupled except
at the sites at l = 0 and l = 1 that enclose the artificial magnetic
flux. Away from the loop, the reflection and transmission will be
stimulated in both channels. The intraleg tunneling strength is J for
both legs. The complex interleg tunneling strengths are respectively
K and K exp(iφ) at the sites l = 0 and l = 1. The onsite energies for
the L and R legs are respectively εL = ε and εR = −ε.

B. Free modes

Now, assuming the interaction between both channels is
zero, i.e., setting K = 0 in Eqs. (14) and (15), we can obtain
the free modes in both channels as

ul,σ = eikσ l , (16)

where the energy E depends on kσ according to the relation

E = εσ − 2J cos kσ . (17)

Here, we stress that kσ can be either real or complex depend-
ing on the regime of E . In detail, for either atomic channel
σ = L or R, the free modes can be classified into three cases.

(i) The energy E belongs to the band [εσ + 2J,∞], such
that kσ must be complex and can be rewritten as kσ = π + iκσ

with κσ being real. In this case, the energy turns into a hy-
perbolic cosine, E = εσ + 2J cosh κσ [see Fig. 3(a)], and the
eigenstate becomes ul,σ = (−1)l e−κσ l , a staggered decaying
mode [see Fig. 3(b)].

(ii) The energy E is in the band (εσ − 2J, εσ + 2J ), such
that kσ is guaranteed to be real. In this case, the eigenstate
and corresponding energy will retain their original forms as
in Eqs. (16) and (17). Then,dispersive as E = εσ − 2J cos kσ

[see Fig. 3(c)], the eigenstate ul,σ = eikσ l is a transmission
mode [see Fig. 3(d)] with the group velocity vg = 2J sin kσ .

(iii) The energy E belongs to the band (−∞, εσ − 2J ),
such that k is purely imaginary and can be rewritten as kσ =
iκσ for κσ being real. In this case, the energy also turns into a
hyperbolic cosine, E = εσ − 2J cosh κσ [see Fig. 3(e)], and

(b)(a)

(c) (d)

(e) (f)

FIG. 3. Energy and eigenstates: (a) Eigenenergy Eσ = εσ +
2J cosh κσ against κσ (σ = L, R). (b) Eigenstate ul,σ = (−1)l e−κσ l

against the lattice site l at κσ = 0.4 [marked by “�” in (a)].
(c) Eigenenergy E = εσ − 2J cos kσ against the quasimomentum
kσ . (d) Real part of the eigenstate ul,σ = eikσ l against l at kσ =
π

4 [marked by “�” in (c)]. (e) Eigenenergy Eσ = εσ − 2J cosh κσ

against κσ . (f) Eigenstate ul,σ = e−κσ l against l at κσ = 0.4 marked
by “�” in (e)]. Here, εσ,± = εσ ± 2J .

the eigenstate becomes ul,σ = e−κσ l , also a decaying mode
[see Fig. 3(f)].

C. Single-atom transport

We consider the single-atom plane wave comes from the
negative lattices along the L channel, which will be scattered
into both L and R channels. In detail, we can express ul,R and
ul,L as

ul,L = (eikLl + rLLe−ikLl )θ−l + tLLeikLlθl−1, (18)

ul,R = rRLe−ikRlθ−l + tRLeikRlθl−1, (19)

where θl is the Heaviside step function, tLL (rLL) is the trans-
mitted (reflected) amplitude, and tRL (rRL) is the forward
(backward) transfer amplitude.

Then, solving Eqs. (14) and (15) by assigning l = 0, 1, we
finally obtain the scattering coefficients as

tLL = D−1(2i sin kL)[2i sin kR − ξei(kR−φ)], (20)

tRL = K

J
D−1(−2i sin kL)[1 + ei(kL−kR+φ)], (21)

rLL = ξD−1eikL [(2 cos φ − ξ )eikR + 2 cos kL], (22)

rRL = K

J
D−1(−2i sin kL)[1 + (eiφ − ξ )ei(kL+kR )], (23)

where ξ = K2

J2 represents the normalized square interleg cou-
pling strength and the denominator D reads

D = [2i sin kL − ξei(kL+φ)][2i sin kR − ξei(kR−φ)]

− ξ [1 + e−i(kL−kR+φ)][1 + ei(kL−kR+φ)]. (24)
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FIG. 4. Matching relations between transmission energy bands of channles L and R as the detuning ε changes. Here, for simplicity, we
have assumed J = 1 such that the width of transmission energy band is 2J = 2. If (a) ε < −2 or (e) ε > 2, there is no overlap between
two transmission bands. However, if (b) −2 < ε < 0 or (d) 0 < ε < 2, there is partial overlap. Furthermore, if (c) ε = 0, maximum overlap
between two bands emerges.

For the lattice site l 	= 0, 1 in Eqs. (14) and (15), the energy
of the atom fulfills the condition

E = εL − 2J cos kL = εR − 2J cos kR, (25)

which gives the constraint of kL and kR in Eqs. (20)–(23).
Noting that εL = ε and εR = −ε have been previously hy-
pothesized as treating Eq. (25), we can then determine that
the transmission bands of both channels can have no overlap,
partial overlap, or maximum overlap if |ε| > 2J, 0 < |ε| <

2J, or ε = 0, respectively. Figure 4 has shown the relative
position of the transmission energy bands of both channels
in the special case J = 1 for different ε. In the case of no
overlap [see Figs. 4(a) and 4(e)], the incoming atom, which
must be in the transmission band, will stimulate a localized
profile [kR = iκR or kR = iκR + π with κR > 0], meaning no
scattered atom in the R channel. In the case of maximum
overlap [see Fig. 4(c)], the atom incoming from the L channel
can be redirected into the R channel (kR is real). However,
in the case of partial overlap [see Figs. 4(b) and 4(d)], the
atom can either be redirected into the R channel or stimulate a
localized profile there, just depending on the detailed energy
E for the incoming atom.

IV. SWITCHING THE SINGLE ATOM

Now we only concentrate the atom propagation along the
L channel and regard the R channel as an auxiliary channel,
in which case, we explore the possibility to realize the atom
switcher, a device which can tune the blockade and trans-
parency of the incident atom. The blockade and transparency
require that no scattered atom occur in the R channel, where
a localized mode should be stimulated instead [kR = iκR or
kR = iκR + π ].

In detail, by investigating Eqs. (20) and (22) as well as
noting the relation in Eq. (25), we can obtain the blockade
(tLL = 0, |rLL| = 1) condition that constrains φ, ε, and ξ for
the incident atom at the definite quasimomentum kL, i.e.,

φ = π, (26)

ε = J cos kL ∓ J

2

(√
ξ + 1 + 1√

ξ + 1

)
. (27)

Similarly, the condition for transparency (|tLL| = 1, |rLL| = 0)
can also be obtained as

J cos kL − J

2

(
2 cos kL

γ
+ γ

2 cos kL

)
− ε = 0, (28)

where γ = ξ − 2 cos φ � −2 represents the resultant effect
from both φ and ξ , and | 2 cos kL

γ
| < 1 must be satisfied to

guarantee that kR corresponds to a localized mode near the
effective magnetic flux.

For simplicity, we set the intraleg tunneling J = 1, which
results in ξ = K2, and the relation in Eqs. (27) and (28) can
thus be illustrated in Fig. 5. We find in Fig. 5(a) that, to
blockade the incoming atom at a particular quasimomentum
kL, one can use a smaller ε in combination with a bigger ξ , or
vice versa. For given ξ , the blockade point kL monotonically
decreases as ε increases. In Fig. 5(b), we also see that, if
γ is given (e.g., γ = −1.6, etc.), two transparency points
may occur if ε is assigned appropriately. The detailed con-
ditions to obtain two transparency points can be obtained as
−2 < γ < 0 and

√
1 − γ < |ε| � 1 − γ

2 . Both Figs. 5(a) and
5(b) are centrally symmetric about the point (ε = 0, kL = π

2 ).
In addition, it can be verified that ε 	= 0 must hold, indicat-
ing the matching relations of the transmission energy bands
correspond to all the subfigures in Fig. 4 except Fig. 4(c).
From Fig. 5, we can conclude that the transparency and
blockade points can in principle be tuned through modifying
φ, ε, or ξ .

To further gain an intuitive picture, in Fig. 6, we have plot-
ted the transmittance TLL = |tLL|2, reflectance RLL = |rLL|2,
and forward (backward) transfer rate TRL = |tRL|2 (RRL =
|rRL|2) as the function of kL for the detailed parameters φ =
π , ξ = K2 = 4, but different ε. In such a parameter setup,
the matching relations of the transmission energy bands for
both channels are respectively no overlap [ε = −2.02, see
Fig. 4(a)], partial overlap [ε = −0.7, see Fig. 4(b)], maximum
overlap [ε = 0, see Fig. 4(c)], partial overlap [ε = 0.7, see
Fig. 4(d)], and no overlap [ε = 2.02, see Fig. 4(e)] for each
column in Fig. 6 from left to right. From the curves of TLL

and RLL in Figs. 6(a), 6(c), 6(g), and 6(i), both transparency
and blockade transitions can be observed as kL gradually
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FIG. 5. Quasimomentum kL at (a) blockade [or (b) transparency]
point depending on the onsite energy ε for different ξ = K2

J2 (or γ =
ξ − 2 cos φ) in the special case with J = 1. The values of ξ and γ

are distinguished by both the color, thickness, and line style. Here, J
is the intraleg tunneling strength for both legs, while K the interleg
tunneling strength. Besides, φ is the artificial magnetic flux, which
has taken π in (a).

increases. When ε is changed from −2.02 [see Fig. 6(a)] to
−0.7 [see Fig. 6(b)], one can see that the transparency and
blockade points shift from right to left. The same phenomenon
also occurs when ε is changed from 0.7 [see Fig. 6(g)] to 2.02
[see Fig. 6(i)]. This can be explained via Fig. 5, where we have
ξ = 4 and γ = 6 for the parameters specified here. Then, we
can see that both the transparency and blockade points become
smaller when ε increases, no matter ε < 0 or ε > 0. When
ε = 0 [see Fig. 6(e)], we see no transparency or blockade
point, which is also consistent with the previous discussion
and can be verified in Fig. 5.

In Figs. 6(b), 6(d), 6(h), and 6(j), we also note that the
transfer rate TRL can exceed 1. On one hand, this is because
TRL and TRL reveal the amplitudes of the localized mode
stimulated in R channel when kR is complex. On the other,
if kR is real, when transmission modes are stimulated in R
channel, the atom flow conservation are subject to the re-
lation T̃LL + R̃LL + T̃RL + R̃RL = 1. Here, T̃LL = TLL (T̃RL =
TRL sin kR/ sin kL) and R̃LL = RLL (R̃RL = RRL sin kR/ sin kL)
are respectively called the forward and backward atom flows
scattered into the L (R) channel. In this case, one can conclude
that TRL can be greater than 1 once kR is small enough, which
features a sufficiently small group velocity (= J sin kR) in R
channel. Similarly, RRL can in principle exceed 1 as well.
When ε = 0, we have kR = kL, and only transmission modes
are stimulated in R channel. Thus, we have TLL + RLL +
TRL + RRL = 1, in which case, TLL,RL < 1 and RLL,RL < 1
always hold [see Figs. 6(e) and 6(f)]. In particular, one finds
that TRL = 0, which can be verified by Eq. (21) under the
condition kR = kL and φ = π .

As shown in Fig. 7, we now investigate the transmittance
TLL and reflectance RLL via independently modifying the val-
ues of ε, ξ , and φ. We assign the parameters as J = 1 and
kL = π

4 . Besides, in Figs. 7(a) and 7(b), φ = π and K = 2;
in Figs. 7(c) and 7(d), φ = π and ε = −0.7; in Figs. 7(e)
and 7(f), K = 2 and ε is specified according to the blockade
condition in Eq. (27), i.e., ε = −0.6345. We can see two
(one), one (one), and one (two) blockade (transparency) points
in Figs. 7(a)–7(c), respectively as ε, ξ , and φ varies. Note that
φ = π is equivalent to φ = −π in Fig. 7(c). The number of
blockade or transparency points for ε, ξ , or φ can be exactly
predicted using Eqs. (26)–(28) (or intuitively from Fig. 5) with
other parameters determined. We find that the transfer rates
TRL and RRL [see Figs. 7(b), 7(d), and 7(f)] can also exceed 1,
the reason for which is similar to that in Fig. 6. Thus, to tune
the transport of the atom at a given quasimomentum, we can
optionally select ε, ξ , or φ as the controllable parameter.

V. ROUTING THE SINGLE ATOM

Now we investigate the phenomenon of routing the atom
from the L channel into the R one, in which case, the quasi-
momentums kL and kR are both real and thus |ε| � 2 must
hold [see Figs. 4(b)–4(d)]. Via examining Eqs. (20) and (23),
we find that when the normalized square interleg coupling
strength ξ and onsite energy ε satisfy the conditions

ξ = 2 cos φ, (29)

ε = J sin φ, (30)

the perfect routing defined by T̃LL = R̃LL = 0 will occur at

kR = φ + π

2
, (31)

kL = π

2
. (32)

Here, to guarantee that both ξ and the group velocity corre-
sponding to kR (i.e., J sin kR) are positive, there should be the
constraint −π

2 < φ < π
2 . Under the conditions in Eqs. (29)–

(32), the transfer amplitudes are tRL = rRL = K
J

i
2 cos φ

, and the

corresponding atom flows are T̃RL = R̃RL = 1
2 .

Hereafter, we still set the intraleg tunneling strength J = 1
for convenience. Figures 8(a)–8(c) have shown respectively
how ξ , ε, and kR at perfect routing [see Eqs. (29)–(31)] will
change as φ varies from −π

2 to π
2 . The perfect routing requires

that both ξ and ε be sine functions of the artificial magnetic
flux φ. Besides, the quasimomentum of the atom outgoing
from the R channel can be linearly modulated by φ, despite the
fact that the atom must income at the fixed quasimomentum
kL = π

2 through the L channel.
If ξ and ε are specified according to Eqs. (29) and (30),

how the atom flows vary with the quasimomentum kL for
different magnetic flux φ can be shown in Fig. 9, where, to
guarantee the reality of both kL and kR, we have constrained
arccos[ 1

2 (−|ε| + 2 + ε)]�kL �arccos[ 1
2 (|ε| − 2 + ε)]. We

can observe that despite the varying of φ, the perfect routing
always occurs at kL = π

2 . However, the quasimomentum kR

for the outgoing atom in the R channel will accordingly
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FIG. 6. Transmittance TLL, reflectance RLL, forward transfer rate TRL, and backward transfer rate RRL against the quasimomentum kL. Here,
the artificial magnetic flux φ = π , the intraleg tunneling strength J = 1, and the interleg tunneling strength K = 2. The onsite energy: (a) and
(b) ε = −2.02; (c) and (d) ε = −0.7; (e) and (f) ε = 0; (g) and (h) ε = 0.7; and (i) and (j) ε = 2.02. In such parameter setup, the matching
relations of the transmission energy bands of both channels: [(a) and (b)] no overlap [see Fig. 4(a)]; [(c) and (d)] partial overlap [see Fig. 4(b)];
[(e) and (f)] maximum overlap [see Fig. 4(c)]; [(g) and (h)] partial overlap [see Fig. 4(d)]; and [(i) and (j)] no overlap [see Fig. 4(e)].

change. It is also obvious that the two boundaries of the kL

axis are changed as φ varies, which is aroused by the variation
of ε.

FIG. 7. Transmittance TLL and reflectance RLL, forward transfer
rate TRL, and backward transfer rate RRL depending on the (a) onsite
energy ε, (b) normalized square interleg coupling strength ξ = K2

J2 ,
or (c) artificial magnetic flux φ/π . Here, K is the interleg coupling
strength. In all plots (a)–(c), we have chosen intraleg tunneling
strength J = 1 (making ξ = K2) and the quasimomentum at which
the atom incomes kL = π

4 . In (a) and (b), we set φ = π , and K = 2
(making ξ = 4). In (c) and (d), φ = π , and ε = −0.7. In (e) and (f),
K = 2 (making ξ = 4), and ε is assigned according to the blockade
condition [see Eq. (27)], i.e., ε = −0.6345.

VI. DISCUSSIONS

In experiment, the quasimomentum of the incident 87Rb
atoms can be generated via phase imprinting method [54],
Bragg scattering, or simply acceleration of the matter-wave
probe in an external potential. The localization magnetic flux
is achieved by two laser beams whose intersection only covers
four lattice sites that encloses the magnetic flux inside the
ladder. The interleg tunneling strength, magnetic flux, and
onsite energy can be tuned via modifying the properties of
the lasers, e.g., the intensity, angles, and quasimomentums.
In measurement, the motion of the atoms can be recorded by
absorption imaging [55] for further analysis.

We now analyze the noise robustness of the single-atom
device we have proposed here. First, to minimize the noise
from the atom number fluctuation, we expect the ideal single-
atom state to be generated such that the process of many-body
combination that disturbs the atom number can be neglected.
Second, we have hypothesized that the atoms are assumed in

FIG. 8. (a) Normalized square interleg coupling strength ξ ,
(b) onsite energy ε, and (c) quasimomentum kR in the R channel
against the artificial magnetic flux φ/π in the condition of perfect
routing. Here, we have assumed J = 1 for simplicity.
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FIG. 9. Atom flows T̃LL, R̃LL, T̃RL, and R̃RL, and the correspond-
ing quasimomentum in the R channel kR against the quasimomentum
of the incoming atom kL for the artificial magnetic flux φ/π taking
[(a) and (b)] −0.25, [(c) and (d)] 0, and [(e) and (f)] 0.25, respec-
tively. In all plots (a)–(f), we have chosen the intraleg tunneling
strength J = 1 and the interleg tunneling strength K = √

2 cos φ

such that the normalized square interleg coupling strength ξ =
2 cos φ, and furthermore, the onsite energy ε = J sin φ; to guar-
antee that both kL and kR are real, the range of kL is chosen as
arccos [ 1

2 (−|ε| + 2 + ε)] � kL � arccos [ 1
2 (|ε| − 2 + ε)].

the internal ground state. Thus, to avoid excitation to higher
internal energy levels, the noise power spectrum from the
control laser beam should be negligibly small at the frequency
comparable to the energy level spacing. Moreover, to inhibit
tunneling between legs, the laser noise should also be negli-
gibly small at the frequency comparable to the energy offset
between the two legs. For the ordinary cold atom experiment
implemented at the room temperature, the thermal noise in
the laser beam is too low to render significant excitation in the
energy scale of atomic energy spacings or the energy offset
between the ladder legs (∼ laser light frequency). Thus the
intrinsic instability of the laser devices should be a limiting
source of noise.

We now go deep on why many-body interactions are
not involved in our present study. One reason is that we
mainly focus on single-atom transport, for which, the many-
body interactions are generally ineffective. Moreover, as a
quantum-level phenomenon, the single-atom transport may be
employed to devise more accurate atomic devices than the
mean-field version with a large number of atoms. In the mean-
field regime with many-body interactions, the typical method
to control the incident atomic wave is to use a strong mean-
field BEC (meaning a large number of atoms) [20,21]. In this
method, the BEC that is used to control weak-incident-wave
transport can in principle acquire accumulating momentum
from incident atoms. Thus, after a series of pulses of incident
waves, the strong BEC will go to an unpredictable state. This
drawback should be specially studied in the future, otherwise

it may prevent this mean-field method with many-body inter-
actions from practical use.

VII. CONCLUSIONS

In conclusion, we have proposed to generate localized
artificial magnetic fields using two thin Raman laser beams
intersected at a narrow region. Based on this method, we
have demonstrated how to create the two-leg ladder with only
two rungs, which together with the legs, enclose an artificial
magnetic flux. Here, the atoms on the two legs possess op-
posite onsite energies that produce an energy offset. Within
this model, we have explicitly investigated the single-atom
transport problem. We find that the atom incoming from the
left leg can experience from blockade to transparency via
modifying the onsite energy, tunneling strength, or magnetic
flux, which can be potentially used for a quantum switcher.
Furthermore, the atom incoming from the left leg can also
be perfectly routed into the right leg, when, intriguingly, the
outgoing atom in the R channel possesses a quasimomentum
that can be modulated by the magnetic flux. The result may be
potentially used for the interface that controls the communica-
tion between two individual quantum devices of cold atoms.

The method can also be generalized to other artificial
quantum systems, such as superconducting quantum circuit
system, optical system, etc. For example, the lattice site of
the ladder can be replaced with the superconducting transmon
qubit circuit [56], which, in the case of weak nonlinearity
and low excitation, can be modelled as photonic bosons [57].
In this implementation, the real tunneling strength can be
realized via pure capacitance, while the complex tunneling
strength can be achieved via the tunable coupler [58]. The
noise source can be device imperfection [59] or thermal
photons. The suppression of noise relies on advanced fabrica-
tion technology and ultralow working temperature. Also, the
bosonic modes can be represented by optical resonator waveg-
uides as in Ref. [60], where how to create artificial magnetic
flux has also been discussed. And thus the generalization to
optical system is also feasible.

Furthermore, our proposed device can also be extended to
multiple channels, that is, regarding the lader as a building cell
and duplicating the ladder along the rung direction. We expect
the outgoing atom along each channel can be artificially tuned
if we independently modify the effective magnetic flux in each
individual loop. The detailed research on this topic remains an
open problem.
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APPENDIX: TUNNELING STRENGTHS SIMPLIFICATION

The tunneling strengths that need to be simplified [see
Eqs. (5)–(8)] are

J−1,q = J exp

[
i
	

ω
sin (φ0,q+ωt )

]
,

J0,q = J exp

[
i
	

ω
(sin (φ1,q+ωt ) − sin (φ0,q+ωt ))

]
,

J1,q = J exp

[
−i

	

ω
sin (φ1,q+ωt )

]
,

Kl = J ′ exp

[
−i

	

ω
(sin (φl,L+ωt ) − sin (φl,R+ωt ))

]
. (A1)

Noting φl,q = ∓ kxλs
4 + lkyλs

2 , with the negative (positive) sign
corresponding to q = L (q = R), and using the equations of
trigonometric functions, we can transform the above expres-
sions into

J−1,q = J exp

[
i
	

ω
sin

(
ωt ∓ kxλs

4

)]
,

J0,q = J exp

[
i
2	

ω
cos

(
kyλs

4

)
sin

(
ωt ∓ kxλs

4
+ kyλs

4

)]
,

J1,q = J exp

[
−i

	

ω
sin

(
ωt ∓ kxλs

4
+ kyλs

2

)]
, (A2)

K0 = J ′ exp

[
i
2	

ω
cos

(
kxλs

4

)
sin (ωt )

]
,

K1 = J ′ exp

[
−i

2	

ω
cos

(
kxλs

4

)
sin

(
ωt + kyλs

2

)]
.

To expand the above expressions into the Fourier series with
respect to t , we can use the equation

exp (ix sin θ ) =
∞∑

N=−∞
JN (x) exp (iθ ), (A3)

where JN (x) represents the N th Bessel function of the first
kind. Then, for the tunneling strengths, we shall obtain

J−1,q = J
∞∑

N=−∞
JN

(
	

ω

)
exp

[
iN

(
ωt ∓ kxλs

4

)]
,

J0,q = J
∞∑

N=−∞
JN

(
2	

ω
cos

(
kyλs

4

))
eiN (ωt∓ kxλs

4 + kyλs
4 ),

J1,q = J
∞∑

N=−∞
JN

(
−	

ω

)
exp

[
iN

(
ωt ∓ kxλs

4
+ kyλs

2

)]
,

K0 = J ′
∞∑

N=−∞
JN

(
−2	

ω
cos

(
kxλs

4

))
exp (iNωt ),

K1 = J ′
∞∑

N=−∞
JN

(
−2	

ω
cos

(
kxλs

4

))
eiN

(
ωt+ kyλs

2

)
. (A4)

To further simplify the tunneling strengths, we return to the
following effective Hamiltonian [see Eq. (4)]

Heff =
∑

l

�

2
(b†

l,Rbl,R − b†
l,Lbl,L)

−
∑

l 	= −1, 0, 1
q = L,R

Jb†
l+1,qbl,q −

∑
l 	=0,1

J ′b†
l,Lbl,R + H.c.

−
∑

l = −1, 0, 1
q = L,R

Jl,qb†
l+1,qbl,q −

∑
l=0,1

Klb
†
l,Rbl,L + H.c.

(A5)

We note that on the same leg, the onsite energies are identical,
and thus in the Fourier expansions of Jl,q, the fast-oscillating
terms correspond to N 	= 0, which should be neglected. Also,
we note that the energy offset between legs is �. We as-
sume � − ω = −2ε with |ε| � �, such that in the Fourier
expansions of Kl , the fast-oscillating terms to be neglected
in Eq. (A5) correspond to N 	= −1. Therefore, the tunneling
strengths Jl,q and Kl can be reduced to

J−1,q = JJ0

(
	

ω

)
,

J0,q = JJ0

(
2	

ω
cos

(
kyλs

4

))
,

J1,q = JJ0

(
−	

ω

)
, (A6)

K0 = J ′J−1

(
−2	

ω
cos

(
kxλs

4

))
exp (−iωt ),

K1 = J ′J−1

(
−2	

ω
cos

(
kxλs

4

))
e−i

(
ωt+ kyλs

2

)
.

Furthermore, we consider the perturbative limit 	
ω

� 1, which
can finally give the equations as

Jl,q ≡ J,

K0 = K exp (−iωt ), (A7)

K1 = K exp [−i(ωt − φ)],

with K = J ′ 	
ω

cos ( kxλs
4 ) and φ = − kyλs

2 . Here, we have used
the fact that J0(x) ≈ 1 and J−1(x) ≈ − x

2 in the limit x � 1.
Until now, we have obtained the simplified tunneling strengths
Jl,q, K0, and K1.
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