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Chiral excitonic instability of two-dimensional tilted Dirac cones
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The Coulomb interaction among massless chiral particles harbors unusual emergent phenomena in solids
beyond the conventional realm of correlated electron physics. An example of such an effect is excitonic
condensation of interacting massless Dirac fermions, which drives spontaneous mass acquisition and whose exact
nature remains actively debated. Its precursor fluctuations growing prior to the condensate have been suggested
by a recent nuclear magnetic resonance study in an organic material, hosting a pair of two-dimensional (2D)
tilted Dirac cones at charge neutrality. Here, we theoretically study the excitonic transition in 2D tilted cones
to understand the electron-hole pairing instability as functions of temperature (T ), chemical potential (μ), and
in-plane magnetic field (H ). By solving a gap equation within a weak-coupling treatment and incorporating
self-energy effects due to the Coulomb interaction through a renormalization-group technique, we calculate
excitonic instability in a T -μ-H parameter space, and find that the pairing is promoted as H is increased but
suppressed as μ moves away from the charge-neutrality point. We show that these findings are explained by
enhanced or degraded Fermi-surface nesting between the Zeeman-induced pockets connecting the two tilted
cones. Furthermore, to evaluate the precursor excitonic fluctuations in relation to this diagram, we consider the
Coulomb interaction via a ladder-type approximation and calculate the nuclear spin-lattice relaxation rate, which
provides rational ways to understand otherwise puzzling experimental results in the organic material by the μ

and H dependence of the instability.
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I. INTRODUCTION

The notable electronic properties of graphene as well as
topological semimetals and insulators have been attracting
increasing attention not only because of their exotic topo-
logical nature, but also due to their unusual effects induced
by the electron-electron Coulomb interaction [1–7]. Unlike in
conventional solids, the metallic screening in these systems
is absent when the Fermi energy EF is fixed at band-crossing
points due to a vanishingly small density of states, resulting in
preservation of the long-range part of the Coulomb interaction
[1,2]. The strength of the interaction is then characterized
by a dimensionless coupling constant α = e2/4πε0εh̄v that
is proportional to the ratio of the Coulomb potential to the
electron kinetic energy, where e is the elementary charge and
ε is the relative permittivity. This notable long-range form of
the interaction causes an anomalous upward renormalization
of the Fermi velocity v by a self-energy effect, akin to what
has been commonly discussed in the relativistic Dirac and
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Weyl theories [3,4]. Indeed, its influence in solids has been
extensively analyzed for weakly interacting regimes at several
levels of approximation, first within first-order perturbative
expansions of α (� 1) [2] and later by renormalization-group
(RG) calculations [2,4,8]; their broad consensus is that a log-
arithmic correction on v grows upon decreasing the scale of
energy E towards the crossing points (E = 0), driving a non-
linear reshaping of Dirac cones, as reported in graphene [9]
and more recently in an organic material α-(BEDT-TTF)2I3

under pressure [10,11].
For strong interaction (typically α > 1), a remarkable

breakdown of the massless-fermion picture has been sug-
gested at charge neutrality in honeycomb lattice [12–25] as
well as in Weyl semimetals [26–36]; following various anal-
yses within Monte Carlo, RG, and mean-field techniques,
this breakdown is ascribed to an excitonic condensation of
electron-hole (el-h) pairs by the attractive Coulomb interac-
tion, involving occupied states in the conduction band and
empty states in the valence band near the crossing points
[3,4,37–40]. Notably, the transition lifts the degeneracy of
the conical dispersion associated with a pseudospin-1/2 de-
gree of freedom. The projection of this degree onto the
momentum is known as chirality [4,41]. Here, we focus on
this pairing instability especially in two-dimensional (2D)
nodal semimetals, and dub it as “chiral excitonic instabil-
ity” to recall its link to the chirality (which is a solid-state
equivalent of the chiral symmetry breaking in high-energy
physics [41]).
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FIG. 1. Intervalley Fermi-surface nesting relevant to chiral excitonic instability in 2D tilted Dirac cones at charge neutrality. (a), (b) Spin
splitting of tilted cones. Application of an in-plane magnetic field H removes the spin degeneracy, and generates elliptic Fermi pockets for
the spin-↑ electrons and the spin-↓ holes. (c), (d) The corresponding splitting of the tilted cones in α-(BEDT-TTF)2I3. The linear dispersion
(outer transparent cones) and the logarithmically reshaped dispersion (inner colored cones) are highlighted. The self-energy effects by the
Coulomb interaction are incorporated [11] (calculated by the RG approach using the bare coupling of α = 12.6; see Sec. II B). For clarity,
the cones for the spin-↑ electrons (left; k0) and the spin-↓ holes (right; −k0) are selectively depicted in (d). Inset of (c) and (d): Fermi
surfaces at H = 0 (c) and H �= 0 (d). The arrow represents perfect el-h Fermi-surface nesting in intervalley excitation process, with the nesting
vector of Q = 2k0.

For the 2D Dirac cones in general, a pair of Dirac points
(or valleys) appears in the first Brillouin zone at incommen-
surate wave number vectors ±k0, and is protected by space
and time inversion symmetries [42,43]. At charge neutrality,
chiral excitonic instability can therefore develop around these
points either within a cone (i.e., intravalley) or in a path
connecting two different cones (intervalley). The electron spin
is degenerate, and thus an applied in-plane magnetic field H
causes Zeeman splitting of the cones, which shifts the spin-↑
cone from the spin-↓ cone in each valley and generates both
electron and hole Fermi pockets. Aleiner et al. [44] have
discussed the influence of this Zeeman effect on the instability
for graphene based on a weak-coupling mean-field treatment
of gap equations, and have highlighted the importance of in-
terband el-h Fermi-surface nesting, involving spin-↑ electrons
and spin-↓ holes in the different bands. In graphene, the cones
are isotropic and vertical with their crossing points locating at
the corners of the first Brillouin zone, which leads the pockets
to have identical circular shapes in each valley. Consequently,
perfect el-h nesting is realized for both intravalley pairings and
intervalley pairings, allowing the instability to equally grow
for both cases.

On the contrary, the situation can be quite dis-
tinctive when the cones are anisotropic and/or have a
tilted axis. The quasi-2D electron system in the or-
ganic conductor α-(BEDT-TTF)2I3 [where BEDT-TTF is

bis(ethylenedithio)tetrathiafulvalene] provides a good exam-
ple of this, where extensive studies have revealed the presence
of a pair of 2D tilted Dirac cones under hydrostatic pres-
sure [10,11,45–53] that are charge neutral by 3/4 filling of
the electronic band [54–61]. In this system, the cones are
isotropic but canted towards each valley [Fig. 1(a)], which in
an in-plane H lifts the spin degeneracy and generates elliptic
Fermi pockets for the electron and hole bands near the cross-
ing points (at ±k0), where the electron pocket is relatively
shifted from the hole pocket in opposite directions at the two
valleys [Fig. 1(b)]. Then, there is poor interband el-h Fermi-
surface nesting between the spin-↑ and spin-↓ pockets for
intravalley pairings, whereas perfect el-h nesting is realized
for intervalley pairings [inset of Fig. 1(d)]. Therefore, one
would expect that chiral excitonic instability may selectively
grow for the latter process due to better nesting; in fact, this
point is supported by a recent 13C nuclear magnetic resonance
(NMR) study at low temperature (T ), which finds upon cool-
ing (besides the cone reshaping [10,62]) an anomalous upturn
in the spin-lattice relaxation rate 1/T1 that is numerically ac-
counted for by precursor spin-triplet (transverse) fluctuations
growing prior to an intervalley excitonic condensate at charge
neutrality [11] [characterized by a nesting vector Q = 2k0; see
Figs. 1(c) and 1(d)].

If nesting proves to be pivotal to the pairings, one would
expect a large impact of H variations on the instability since
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an increased H enlarges the sizes of Fermi pockets in each
valley, and may thereby provide a larger gain in condensation
energy by enhanced nesting. By contrast, a small shift of
the chemical potential μ off the neutrality point considerably
reduces el-h symmetry, and may thus weaken the pairing
instability by degraded el-h nesting. In particular, the latter
influence seems to be significant in α-(BEDT-TTF)2I3 under
pressure because previous Hall measurements reported a sign
change in low-T Hall coefficient in some samples [63], which
is ascribed by a model calculation [64] to small el-h asym-
metry and a tiny electron self-doping effect of a size of a few
ppm of the conduction band. Note that thermopower exper-
iments are in line with this suggestion [53,65]. To construct
a concrete theoretical picture within the excitonic framework,
it is therefore very important to quantitatively assess the im-
pacts of these H- and μ-variation effects on the intervalley
paring instability, and check their influence on the precursor
spin-transvers fluctuations seen by 1/T1. However, the pair-
ing instability has not yet been studied as functions of these
parameters for tilted cones, and the relation between the trans-
port and 13C-NMR data in pressurized α-(BEDT-TTF)2I3

remains largely unclear.
Here, to better understand the pairing instability in 2D

tilted cones, we extend our previous theoretical analyses at
charge neutrality in Ref. [11], and specifically investigate the
impacts of variations in μ and H on intervalley chiral exci-
tonic condensate and its associated spin fluctuations. To this
end, we use the tilted cones in pressurized α-(BEDT-TTF)2I3

as our testing model, whereas the argument is not restricted
to this material but can be extended to generic massless
cones. We assume a continuum model for the massless Dirac
fermions in this material, and consider the Coulomb inter-
action by focusing on a ladder vertex of transverse spin
susceptibility and self-energy � corrections in a RG approach
(incorporating both the momentum and frequency dependence
[66] of �). The band parameters are taken from those reported
by the previous fits to the 13C-Knight shift data [10], which
rely on high-pressure parameters analyzed by Katayama et al.
[57] based on a first-principle study of Kino et al. [54]. We
restrict our attention to the vicinity of the charge-neutrality
point, and numerically evaluate the instability via studying
a T -μ-H phase diagram using a weak-coupling mean-field
theory. In relation to this diagram, we then calculate the cor-
responding precursor spin-transverse fluctuations and check
their influence on the T dependence of 1/T1, as functions of μ

and H . We discuss these results with additionally performed
13C -1/T1 measurements in pressurized α-(BEDT-TTF)2I3,
which jointly reveals that the transport-suggested tiny μ shift
in this system can sensitively suppress the excitonic spin fluc-
tuations, in accord with the intervalley Fermi-surface nesting
scenario.

The paper is organized as follows. In Sec. II, we review
the tilted Weyl model of pressurized α-(BEDT-TTF)2I3, dis-
cuss the expressions of transverse spin susceptibility (linked
to 1/T1), and comment on the treatment of the interaction
ladder vertex. The methods and approximations involved in
quantifying realistic contributions from the Coulomb interac-
tion to the self-energy � within the RG approach as well as
deriving a weak-coupling mean-field gap equation are briefly
described. Section III discusses numerical results together

with supportive experimental data of 13C -1/T1 measurements
in pressurized α-(BEDT-TTF)2I3. We provide a summary and
discuss possible relevance to generic semimetals in Sec. IV.
Details of calculations and supportive experiments are given
in the Supplemental Material [67].

II. CALCULATION

A. Continuum model for electrons in α-(BEDT-TTF)2I

The noninteracting quasi-2D electrons in the pressurized
organic conductor α-(BEDT-TTF)2I3 having valleys with a
tilted dispersion relation are described in an 8 × 8 matrix
formula (by a generalized Weyl model called the tilted Weyl
Hamiltonian) as [10,11]

H0 = h̄(w · kσ̂0 ⊗ τ̂z + vxkxσ̂x ⊗ τ̂z + vykyσ̂y ⊗ τ̂0) ⊗ ŝ0

− μ − g

2
μBH σ̂0 ⊗ τ̂0 ⊗ ŝz, (1)

where the chemical potential μ and the electron Zeeman term
are explicitly included, with the electron g factor of the size
of g = 2 [68]. The velocities w = (wx, wy) and v = (vx, vy)
describe the tilt and the anisotropy of the Dirac cone, respec-
tively. The total Hamiltonian considering the long-range part
of the Coulomb interaction is given by

Heff =
∑

k

�
†
kH0�k +

∑
q

V0(q)ρ(q)ρ(−q) (2)

in terms of an eight-component creation operator
�

†
k = c†

k,ν,s,η, the density operator ρ(q) = ∑
k

∑
ν,s,η

c†
k,ν,s,ηck+q,ν,s,η, and the Fourier transform of the Coulomb

potential V0(q) = 2πe2/ε|q|, where q and k = (kx, ky)
are 2D wave number vectors defined only around the
band-crossing points at ±k0. (We omit backscattering and
Umklapp processes such that both k and k + q are restricted
around these degeneracy points; i.e., q � 2 k0.)

Here, the index η = 1/R (−1/L) stands for the valley at k0

(−k0), and s = 1/ ↑ (−1/ ↓) corresponds to the up (down)
spin projection. The creation (annihilation) operator c†

k,ν,s,η
(ck,ν,s,η) is based on the Luttinger-Kohn (LK) representation
[69], described using the Bloch’s functions at ±k0 as the basis
of the wave functions [56,70]. The index ν =1/a (−1/b) then
denotes the two bases in the LK representation, and we use
a notation ν̄ = − ν. The corresponding orbitals in this repre-
sentation are given in Ref. [67]. The three matrices σ̂i, τ̂i, and
ŝi stand for the Pauli matrices that represent LK pseudospin
1/2, valley pseudospin 1/2, and real spin 1/2, respectively,
with the three indices taking one of the four possible values
(i, j = 0, x, y, and z). The index 0 represents a unit matrix.

Throughout this paper, we omit the T dependence of μ.
This approximation is justified as the low-T Hall measure-
ments and associated theories [63,64] find only a negligibly
small variation of μ(T ), especially in the T range of our
interest (i.e., T < 10 K).

B. Self-energy corrections

The self-energy-induced renormalization of velocity by the
long-range part of the Coulomb interaction is considered at
the level of one-loop RG calculations in leading order in 1/N
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(N � 1) as discussed previously [10,11], which is valid both
for weak and strong Coulomb interaction, where N = 4 is the
number of fermion species standing for two spin projections
and two valleys [2,4,8]. Briefly, we start from a tilted disper-
sion relation

E±(k) = h̄
(
w · k ±

√
v2

x k2
x + v2

y k2
y

)
(3)

and combine it with one-loop level RG flow equations of v =
(vx, vy) [10],

1

vx

dvx

dl
= 8

π2N

∫ 2π

0

dϕ

2π
2cos2ϕF (gϕ ),

1

vy

dvy

dl
= 8

π2N

∫ 2π

0

dϕ

2π
2sin2ϕF (gϕ ). (4)

Here, k/|k| = (cos ϕ, sin ϕ) is measured from k0, l =
ln(/k) (with |k| = k) is a momentum scale measured
in the unit of a momentum cutoff  = 0.667 Å−1 of
the size of an inverse lattice constant [71] and circular
around the Dirac point, and F (gϕ ) is a function of the
form F (gϕ ) = (−π/2 + gϕ + arccos gϕ/

√
1 − gϕ

2)/gϕ with

gϕ = 2πe2N/(16ε

√
vx

2sin2ϕ + vy
2cos2ϕ). The bare coupling

constant of the Coulomb interaction is given by α =
e2/(4πε0εh̄

√
vx

2sin2ϕ + vy
2cos2ϕ) [10], which is approx-

imated to be α ≈ e2/4πε0εh̄v0 since the anisotropy is
negligibly small in α-(BEDT-TTF)2I3 (vx ≈ vy ≡ v0) [57].
Reflecting the RG flow, v grows logarithmically as a
function of /k, whereas w does not flow at one-
loop level. Notice that Eq. (4) considers screening effect
of the Coulomb interaction including polarization bub-
bles in the self-energy [wavy lines in Fig. S1(b) of the
Supplemental Material [67]].

To be specific, we will incorporate the RG flow of Eq. (4)
obtained from fits to the 13C-Knight shift data in pressurized
α-(BEDT-TTF)2I3 by Hirata et al. [10], using an effective
tight-binding (TB) model in Ref. [57] as a minimal start-
ing point. To adjust the initial velocity values at the cutoff
(|k| = ), a phenomenological parameter u is introduced
as v = uvTB and w = uwTB, where vTB and wTB are the
velocity values derived from the effective TB model [57].
Optimizing the two parameters ε and u by least-square fits,
we get (ε, u) ≈ (30, 0.35), which yields α = 12.6 at the
high-energy cutoff (at |k|/ = 1) using v0 = uvTB (where

vTB = 2.4 × 104 m s−1 is the corresponding velocity in the
gentle slope of the tilted cone) [57], and an effective cou-
pling of the order of unity at low energy near the crossing
points (at |k|/ � 1). (For the detail of the RG flow, see
the Supplemental Information of Ref. [11].) Notice that we
have u < 1 from the fits, which signals a reduced elec-
tronic bandwidth as has been often discussed in correlated
electron materials, and ascribed to frequency dependence of
the self-energy due to the short-range part of the Coulomb
interaction [66].

The parameters obtained in this way thus incorporate both
the logarithmic velocity flow and the bandwidth suppression.
Throughout this study, we will use these as phenomenologi-
cal but quantitative estimates of self-energy effects [i.e., the
reshaped cones in Figs. 1(c) and 1(d)].

C. Transverse excitonic spin fluctuations

We assess the influence of the Coulomb interaction on
transverse excitonic spin fluctuations in a ladder-type approx-
imation. In particular, we identify the impacts of variations
in both chemical potential μ near the crossing points and
in-plane magnetic field H on the nuclear-spin-lattice re-
laxation rate 1/T1, linked to a wave number average of
the imaginary part of the transverse dynamic spin sus-
ceptibility,

∑
Q Imχ⊥(Q, ω), where Q is a wave number

vector and ω is a frequency in megahertz region [72].
[The full expression of 1/T1 is given in Eq. (S8) of the
Supplemental Material [67].] To this end, it is sufficient
to focus on intervalley excitonic instability for even-parity,
spin-triplet (or spin-transverse) pairings as a first approx-
imation, which is shown to give major contributions in
α-(BEDT-TTF)2I3 at charge neutrality [11]. (See the Sup-
plemental Material for the corresponding order parameter
[67].) Hereafter, we will assume a pair of gapless points
placed along the kx axis at kx = 0 and kx = 2k0 for the sake
of clarity.

We use a generalized expression of χ⊥(Q, ω) that involves
the two bases in the LK representation (ν = a, b) and picks
up intervalley el-h excitation process (connecting η = R and
L with a momentum transfer 2k0 h̄). The corresponding in-
tervalley susceptibility is obtained by an analytic continuation
of

χR,L
⊥ (q, iωm) =

∑
k,ν

[
MR,L

ννν̄ν̄{ν
+(k; q, iωm)χν

+,(k; q, iωm) + ν
−(k; q, iωm)χν

−(k; q, iωm)}

+ MR,L
νν̄νν̄{ν

−(k; q, iωm)χν
+(k; q, iωm) + ν

+(k; q, iωm)χν
−(k; q, iωm)}], (5)

where εn (ωm) is the fermionic (bosonic) Matsubara
frequency, Mη,η′

ν1ν2ν3ν4
is a constant form factor as-

sociated with the tilt of the valleys, ν
±(k; q, iωm)

are vertex contributions of a ladder type, and
χν

± (k; q, iωm) are irreducible susceptibilities given

by

χν
+(k; q, iωm) = −T

∑
εn

Gνν
↑, R(k + q, iεn + iωm)

× Gν̄ν̄
↓, L(k, iεn), (6)
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χν
−(k; q, iωm) = −T

∑
εn

Gνν̄
↑, R(k + q, iεn + iωm)

× Gνν̄
↓, L(k, iεn). (7)

Here, Ĝs, η = [Gνν ′
s, η] is a Green’s function for 2D massless

Dirac fermions with a tilted dispersion relation, which has a
matrix structure based on the LK representation. Note that the
aforementioned self-energy effects are incorporated in Ĝs, η.
The corresponding form factor Mη,η′

ν1ν2ν3ν4
and the Green’s

function Ĝs, η are defined in the Supplemental Material [67].
Using these irreducible susceptibilities in Eqs. (6) and (7), the
vertex contributions are expressed by a Bethe-Salpeter-type
equation [73–75],

ν
±(k; q, iωm) = 1 +

∑
k′

V0(k − k′)[ν
±(k′; q, iωm)

× χν
+(k′; q, iωm) + ν

∓(k′; q, iωm)

× χν
−(k′; q, iωm)]. (8)

The corresponding diagrams are given in Fig. S1 of
the Supplemental Material [67], and we will convert
the analytic continuation of the susceptibility in Eq. (5)
to the relaxation rate divided by T , 1/T1T , by tak-
ing a wave number average of its imaginary part as in
Eq. (S8) of the Supplemental Material [67].

At the level of random phase approximation, the k depen-
dence in Eq. (8) can be separated from the dependence on q
and ωm as ν

±(k; q, iωm) � �k
ν
±(q, iωm), which yields

ν
±(q, iωm) � [1 − λ(q, iωm)]−1 (9)

and a linearized weak-coupling gap equation

λ(q, iωm)�k =
∑
k′ν

V0(k − k′)�k′[χν
+(k′; q, iωm)

+ χν
−(k′; q, iωm)], (10)

where �k is a gap and λ(q, iωm) is a corresponding eigen-
value. We will numerically evaluate this self-consistent
equation in Eq. (10) at mean-field level, and use λ(0, 0) ≡ λ

to assess excitonic instability, which favors a gap opening at
the crossing points when λ = 1 is reached.

To be compatible with the RG flow in Sec. II B [cf.
Eq. (4)], we use a low-energy effective value of αeff = 1 as
our approximate constant Coulomb coupling in Eqs. (5)–(10).
This approximation is justified at low temperature (T < 10
K), where the RG flow of the coupling appears to be sat-
urated and the coupling becomes of the order of unity in
α-(BEDT-TTF)2I3 (see Ref. [11]).

Notice that we will omit intravalley el-h pairings as they
barely contribute to chiral excitonic instability even at charge
neutrality. The reason is not only due to poor intravalley
el-h nesting in tilted valleys as mentioned in Sec. I [cf.
Fig. 1(b)] [11], but also because of chiral property of massless
Dirac fermions, which suppresses backscattering processes
for the intravalley pairings but not for the intervalley pairings
[76,77]. Constructing models relying solely on intervalley
contributions thus provides a reliable starting point for dis-

cussing chiral excitonic instability of 2D tilted Dirac cones.
[A relevant chirality factor is implicitly involved in Eqs. (6)
and (7).]

Similarly, spin-singlet (spin-longitudinal) instability will
be neglected, which is shown to be suppressed upon increas-
ing in-plane magnetic field at charge neutrality (see Ref. [11]).

III. RESULTS AND DISCUSSION

Chiral excitonic instability and its impact on the spin-
lattice relaxation rate in pressurized α-(BEDT-TTF)2I3 with
small charge off-neutrality (μ �= 0) at in-plane magnetic field
H is determined by two logarithmically reshaped massless
Dirac cones for even-parity, spin-triplet (transverse), and in-
tervalley pairings. (Notice that this is a natural extension
of Ref. [11], performed at μ = 0 and small H , to a more
general case.) At a weak-coupling mean-field-level treatment
of gap equation, we find that the contribution from the two
cones to intervalley excitonic response strongly depends on
μ and H (Sec. III A). The way this contribution affects the
precursor transverse spin fluctuations is also highly dependent
on these parameters (Sec. III B). The additional experimen-
tal data of the 13C-spin-lattice relaxation rate in pressurized
α-(BEDT-TTF)2I3 show a good qualitative agreement with
this prediction, filling the gap between 13C-NMR study at
μ = 0 [11] and transport results indicating μ �= 0 [53,63–65]
in this material (Sec. III C).

A. Mean-field phase diagram for the intervalley response

To highlight the intervalley-nesting dependence in chiral
excitonic instability, we first focus on a mean-field critical
temperature TC where the gap starts to open [i.e., when λ = 1
is fulfilled in Eq. (10)], and consider its explicit dependence
on chemical potential and in-plane magnetic field. This anal-
ysis of a mean-field phase diagram helps us to understand
the impact of these parameters on the T dependence of the
relaxation rate, discussed in Sec. III B.

Given that the transverse susceptibility in Eq. (5) and the
corresponding gap equation in Eq. (10) pick up the intervalley
el-h excitations involving spin-↑ electrons and spin-↓ holes,
the shapes of the spin-split Fermi pockets induced by in-plane
magnetic field must play an important role.

Figures 2(a) and 2(b) present schematic illustrations of the
field-induced pockets around the two valleys (near ±k0) at
charge neutrality [Fig. 2(a)] and off-neutrality [Fig. 2(b)]. The
Fermi pockets for the spin-↑ electrons (filled lines) and the
spin-↓ holes (dashed lines) are depicted.

Intervalley el-h excitations must occur between an el
pocket in one valley and a hole pocket in the other. At charge
neutrality, there is perfect nesting in the intervalley pairing
process with a momentum transfer of h̄Q = 2h̄k0 [indicated
by an arrow in Fig. 2(a)]. With increasing the field, the size of
these pockets increases, which nevertheless keeps the perfect
nesting condition intact. Consequently, the number of el-h
pairs involved in nesting increases towards higher field. For
off-neutral case, by contrast, el-h asymmetry causes unequally
sized electron pockets and hole pockets [Fig. 2(b)]. The cor-
responding intervalley nesting condition is thus worsened
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k0 -k0
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T (K)
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FIG. 2. Eigenvalues of intervalley chiral excitonic instability for 2D tilted Dirac cones at various doping and in-plane magnetic fields.
(a), (b) Illustrations of spin-split Fermi pockets in an in-plane magnetic field H for the spin-↑ electrons (solid) and the spin-↓ holes (dashed)
at charge neutrality (a) and off-neutrality (b). Perfect interband (electron-hole) nesting in the intervalley excitation process is depicted by
an arrow in (a), with the nesting vector of Q = 2k0. (c), (d) Temperature dependence of the mean-field eigenvalue λ for the even-parity,
spin-triplet (transverse) instability in the intervalley pairing (Q = 2k0). Calculated λ are shown for various in-plane magnetic field at charge
neutrality (μ = 0 K) (c) and off-neutrality (μ = 4 K) (d). The effective Coulomb coupling of αeff = 1 is used, and the self-energy corrections
are considered (see Sec. II).

compared to the neutral case, prohibiting el-h pair formation
in this process.

These considerations should naturally affect the intervalley
excitonic response since it is directly related to the number of
el-h pairs involved in the corresponding excitation process.

Figures 2(c) and 2(d) show the T dependence of the mean-
field eigenvalue λ in Eq. (10) for selected values of in-plane
magnetic field at charge neutrality (μ = 0 K) and with small
electron doping (μ = 4 K), respectively, where we have also
plotted a line corresponding to λ = 1 (dashed line). The cross-
ing points of this line with the data define TC. As shown in
Fig. 2(c), excitonic condensation (corresponding to the region
with λ > 1) is present at low temperature at charge neutrality,
whose region increases to higher temperature upon raising the
field. For off-neutrality, on the other hand, the eigenvalue is
strongly suppressed, and there is no excitonic region in the
present parameter range [Fig. 2(d)].

This situation is more clearly discernible when we look at
the critical temperature as shown in Fig. 3, where we have
plotted TC as a function of temperature, chemical potential,
and in-plane magnetic field. For given doping, the excitonic
region (colored region in Fig. 3) increases to higher tempera-
ture with raising the field, whereas at a fixed field TC decreases
upon moving away from μ = 0 by doping.

This property of TC can be directly ascribed to Fermi-
surface nesting that is enhanced towards higher field and
suppressed with doping. Indeed, at low field, the instability

grows at μ = 0 only above a threshold field value (Hc ≈
1.7 T). This is because the low-field pockets are small, and

FIG. 3. Mean-field transition temperature Tc for intervalley chiral
excitonic condensate with even-parity and spin-triplet (transverse)
pairings, plotted as functions of temperature T (in K), chemical
potential μ (in K), and in-plane magnetic field H (in T). The physical
parameters are the same as in Fig. 2. The arrow indicates the critical
field Hc, and the label bar represents Tc. Dashed lines are guides to
the eyes.
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(a) (b)

FIG. 4. Temperature dependence of the nuclear spin-lattice relaxation rate divided by temperature 1/T1T for various doping and in-plane
magnetic fields. Panel (a) shows the case with a fixed in-plane field (H = 5 T) and a range of small electron doping of μ = 0, 2, and 4 K. Panel
(b) depicts the case with fixed small doping (μ = 4 K) and different fields of H = 0 and 5 T. Inset of panel (b) shows the field dependence at
low temperature (T = 0.2 K) at charge neutrality (μ = 0 K) and off-neutrality (μ = 4 K). The physical parameters are the same as in Figs. 2
and 3.

accordingly the number of el-h pairs involved in nesting is
greatly limited. Near μ = 0 at low field, moreover, the con-
densation is highly sensitive to doping since a small change
of μ can drastically worsen nesting. By contrast, the excitonic
state is present at largely doped regions for higher field. The
reason is that the field-enlarged pockets weaken the relative
influence of el-h asymmetry at the Fermi energy, which im-
proves the nesting condition and thus allows an increased
number of el-h pairs to participate in condensation.

We note considerable sensitivity of this instability to a
shred of doping, especially near μ = 0. For instance, at 5 T,
the instability vanishes for μ � 1 K, corresponding to elec-
tron doping of just a few ppm of the conduction band. This
remarkably small size of doping is in accord with the transport
analysis in α-(BEDT-TTF)2I3, as discussed in Sec. III C.

B. Spin-lattice relaxation rate 1/T1

The nuclear spin-lattice relaxation rate 1/T1 allows us
to study slow spin dynamics at the Fermi energy. In this
section, we investigate how doping and in-plane magnetic
field alter the nature of precursor excitonic spin fluctuations
in α-(BEDT-TTF)2I3 near charge neutrality, particularly in
view of the above nesting condition in relation to the phase
diagram.

For the charge-neutral Dirac cones, the low-energy ex-
citations and fluctuations can be decoupled into two parts
by means of NMR. The first part is intravalley contribution
around each crossing point (at ±k0), which is probed by the
uniform component (Q = 0) of the electron spin susceptibility
(or the Knight shift). The second part is intervalley contri-
bution, which appears in the Q ≈ 2k0 response of the local
spin susceptibility. The relaxation rate 1/T1 picks up a sum of
these two contributions as it is proportional to a Q average of

Imχ⊥(Q, ω) [cf. Eq. (S8) [67]]. In α-(BEDT-TTF)2I3, Hirata
et al. [10,11] revealed at charge neutrality that the Q = 0 part
is almost exclusively suppressed upon cooling by the logarith-
mic velocity renormalization in Eq. (4) [cf. the reshaped cones
in Figs. 1(c) and 1(d)], such that 1/T1 becomes considerably
sensitive to the Q ≈ 2k0 part at low temperature. This makes
the relaxation rate appealing to the study of chiral excitonic
fluctuations near charge neutrality, in particular for intervalley
pairings.

Here, for later comparisons with supportive experiments
(Sec. III C), we discuss two representative cases, one at a
fixed field and a range of small doping [Fig. 4(a)], and the
other at fixed small doping and for different magnetic fields
[Fig. 4(b)]. For visualization, the rate divided by temperature,
1/T1T , will be used.

The first case is presented in Fig. 4(a), where the tem-
perature dependence of 1/T1T is shown for various small
electron doping (μ = 0, 2, and 4 K) at 5 T, which corre-
sponds to the intervalley excitonic response of the eigenvalues
studied in Figs. 2(c) and 2(d) (upward triangles). At charge
neutrality (μ = 0 K), the curve shows a clear upturn with
decreasing temperature due to intervalley (Q = 2k0) spin
fluctuations by the ladder vertex (8) growing as a precur-
sor to the condensation [11]. A small increase of μ rapidly
suppresses the fluctuations, and at μ = 4 K flattens 1/T1T
at low temperature due to worsened intervalley nesting by
doping, as discussed in Sec. III A [cf. Figs. 2(a) and 2(b)].
Notice that the levelling-off of 1/T1T at low temperature
(for μ = 4 K) is a universal characteristic of interband el-
h excitations near charge neutrality, which appears when
chiral excitonic instability is absent irrespective of the size
of small doping (see discussions in Ref. [11] for charge-
neutral valleys, and Fig. S3 in Ref. [67] for off-neutral
valleys).
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FIG. 5. Temperature dependence of 1/T1T in α-(BEDT-TTF)2I3 measured by 13C-NMR experiments in three samples (1–3) at 2.3 GPa
for various in-plane magnetic fields. Panel (a) shows the data in sample 1 (2) at a magnetic field of H = 5.2 T (6 T) applied parallel to the
crystalline ab plane (2 replotted from Ref. [11]). Panel (b) depicts the corresponding results in sample 3, measured at H = 8, 14.8, and 23.5 T
(for experimental details, see Ref. [67]).

In Fig. 4(b), we present 1/T1T for the second case, fixed
small doping (μ = 4 K) and different magnetic fields of H =
0 and 5 T, corresponding to the response described by the
eigenvalue in Fig. 2(d) (squares and upward triangles). The
precursor excitonic spin fluctuations do not grow due to large
el-h asymmetry and poor intervalley nesting at this doping
compared to the relatively small size of H [cf. Fig. 2(b)].
This is in accord with the phase diagram (Fig. 3) where these
parameter regions locate far away from the excitonic dome
region.

The little field dependence at off-neutrality is contrasted to
the neutral case as depicted in the inset of Fig. 4(b), where we
have plotted 1/T1T at low temperature (T = 0.2 K) against
field for μ = 0 and 4 K. The relaxation rate shows a sizeable
(moderate) increase with raising the field at charge neutrality
(off-neutrality) as a direct consequence of larger (weaker)
elevation of the low-T eigenvalue towards higher field in
Fig. 2(c) [Fig. 2(d)]. The larger field dependence for smaller
doping in the relaxation rate agrees with the intervalley-
nesting picture because better nesting near charge neutrality
provides stronger instability and, therefore, larger precursor
fluctuations as the pocket sizes are enlarged upon increasing
the field.

C. Comparison with experiments in α-(BEDT-TTF)2I3

To assess the qualitative validity of these calculations, we
have additionally performed 13C-NMR experiments in pres-
surized α-(BEDT-TTF)2I3 and have measured the spin-lattice
relaxation rate (experimental details are given in Ref. [67]).
Figures 5(a) and 5(b) present the temperature dependence of
1/T1T in in-plane magnetic fields, measured for three repre-
sentative samples (labeled 1–3). As shown in Fig. 5(a), 1/T1T

in sample 1 (along with 2 replotted from Ref. [11]) decreases
upon cooling and shows an abrupt upturn at low tempera-
ture (for H = 5.2 to 6 T). This can be well understood by
the precursor intervalley (Q = 2k0) spin fluctuations growing
prior to chiral excitonic condensate at charge neutrality, as
discussed in Sec. III B [cf. Fig. 4(a) for μ = 0 K]. For sample
3 in Fig. 5(b), by contrast, 1/T1T exhibits no upturn but a
levelling-off-like behavior at below 10 K. Moreover, we find
this low-T flattening to have little field dependence in a range
from H = 8 to 23.5 T. These features are in accord with the
above-mentioned expectation for interband el-h excitations in
2D cones when the instability is suppressed by a small shift
of chemical potential of a size of just a few Kelvin (submilli-
electronvolt) off the charge-neutrality point [cf. Fig. 4(b)].

The contrasting observations for samples 1 (2) and 3 in
Fig. 5 draw a qualitative parallel with the results in Fig. 4,
testifying the validity of our calculations based on ladder-
type approximation. They further lend support for the idea
that intervalley chiral excitonic instability in this system is
highly sensitive to a small variation of μ around the crossing
points, such that the precursor fluctuations are absent in a
relatively doped sample (3) but present in less-doped ones
(1 and 2). Moreover, the remarkably small doping considered
above quantitatively agrees with what has been suggested
by transport experiments in out-of-plane magnetic fields
[53,63,65,78] and a relevant calculation within a linear-
response theory [64]. It also does not conflict with more
recent magnetotransport studies in an in-plane magnetic field
[51,79].

These results suggest that there is a possible underlying
instability towards intervalley-excitonic ground state, which
may be able to be observed in strong in-plane magnetic field
at very low temperature if and only if the chemical potential
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is finely tuned to the crossing points. On the other hand, the
fact that μ in this organic material is confined that close to the
crossing points (in a submillielectronvolt range) is contrasted
with monolayer graphene—which usually suffers from corru-
gated structures (called ripples) and potential inhomogeneity
(known as charge puddles) [80] that make fine tuning of μ

difficult near the crossing points—and recommends this sys-
tem as an ideal testing ground for the study of chiral excitonic
instability. A quantitative elaboration of the above results in
Figs. 4 and 5 would be challenging and is delegated to future
work, but may be achieved by considering frequency depen-
dence of the self-energy beyond present phenomenological
level (see Sec. II B) or dealing with omitted contributions
from its imaginary part. Incorporating higher-order fluctua-
tions in interaction vertex may be also helpful, which are
at the moment neglected in Eq. (9). Apart from excitonic
pairing, one notes that so-far neglected spin-orbit interaction
may also prefer gap opening at very low temperature and turn
the system into a topological insulator [81,82]. Considering
a subtle balance of these different mechanisms would be of
particular interest, which may bridge the studies of correlated
and topological materials at large.

IV. CONCLUSION

In this paper, we have investigated excitonic instability
of the continuum model for the pressurized organic conduc-
tor α-(BEDT-TTF)2I3, hosting two massless charge-neutral
cones with a tilted dispersion relation. In particular, we have
focused on the way a small charge off-neutrality and an in-
plane magnetic field affect the intervalley pairing instability,
and analyzed how they impact on the transverse spin dynamics
relevant to the precursor excitonic fluctuations. Considering
the Coulomb interaction within realistic self-energy schemes
using a renormalization-group approach, we have calculated
the transverse spin susceptibility based on a ladder-type ap-
proximation coupled with a weak-coupling gap equation. We

have found that electron-hole pairings are suppressed by a
tiny doping due to degraded intervalley Fermi-surface nesting
between the Zeeman-induced electron and hole pockets at
the different cones, whereas they are stabilized by in-plane
magnetic field because of enhanced nesting. Combined with
additionally performed 13C-NMR experiments under pres-
sure, we have shown that these nesting conditions directly
affect precursor excitonic spin dynamics probed by the spin-
lattice relaxation rate, such that the spin fluctuations are
sensitively suppressed as intervalley nesting is worsened upon
doping. The presence of this tiny doping is in quantitative
agreement with the earlier transport predictions in this system
[53,63–65]. All these results lend good support to the notion
that chiral excitonic instability and its precursor fluctuations
provide a decent frame to understand excitations and dynam-
ics near the crossing points in massless Dirac cones.

The characteristic instability of massless cones discussed
here is directly linked to chiral property of the Hamiltonian,
which is ubiquitous in various Dirac-Weyl semimetals for any
dimension, pseudospin and symmetry [3,4,76]. Our frame-
work to understand excitonic pairings and relevant precursor
dynamics in titled Dirac cones may thus offer a generic plat-
form for understanding excitonic instability in widespread
topological materials
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