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Effective self-similar expansion of a Bose-Einstein condensate:
Free space versus confined geometries
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We compare the exact evolution of an expanding three-dimensional Bose-Einstein condensate with that ob-
tained from the effective scaling approach introduced in D. Guéry-Odelin [Phys. Rev. A 66, 033613 (2002)]. This
approach, which consists in looking for self-similar solutions to be satisfied on average, is tested here in different
geometries and configurations. We find that, in case of almost isotropic traps, the effective scaling reproduces
with high accuracy the exact evolution dictated by the Gross-Pitaevskii equation for arbitrary values of the
interactions, in agreement with the proof-of-concept of M. Modugno, G. Pagnini, and M. A. Valle-Basagoiti
[Phys. Rev. A 97, 043604 (2018)]. Conversely, it is shown that the hypothesis of universal self-similarity breaks
down in case of strong anisotropies and trapped geometries.
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I. INTRODUCTION

Self-similarity is a remarkable property that plays a key
role for describing the dynamics of several ultracold atomic
systems. It characterizes the free expansion and the collec-
tive excitations of Bose-Einstein condensates both in the
noninteracting and the hydrodynamic regimes [1–9], the ex-
pansion of a one-dimensional Bose gas in the mean-field
Thomas-Fermi regime and in the Tonks-Girardeau regime
[10], of a superfluid Fermi gas [7,11,12], and of a thermal
cloud [13]. Recently, motivated by the experiment reported
in Ref. [14], scaling transformations have been employed for
understanding how the momentum distribution is affected by
the expansion in an interacting quantum system [15], and the
conditions for the breaking of scale invariance have also been
investigated [16].

Beside its conceptual appeal—the fact that a system
evolves maintaining the same exact shape throughout the
whole dynamics—self-similarity also implies a strong simpli-
fication in the numerical treatment, allowing for a dramatic
reduction of the mathematical complexity of the equation
governing the system: Instead of having to deal with partial
differential equations, one can obtain the evolution of the
system by solving a set of ordinary differential equations for
the time evolution of the scaling parameters that characterize
the rescaling of the coordinates.

In view of this numerical simplification, approximate self-
similar behaviors have been conjectured by several authors for
dealing with problems that otherwise would be impossible to
tackle. Effective scaling approaches have been employed as
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approximate solutions for describing the collective excitations
of a trapped Bose gas [17], the expansion of an interacting
Fermi gas [18], and of quantum degenerate Bose-Fermi mix-
tures [19]. This approach, originally proposed in Ref. [17],
consists in using a self-similar ansatz for the evolution of the
system in the hydrodynamic regime, then requiring the hydro-
dynamic equations to be satisfied on average, after integration
over the spatial coordinates.

Recently, this effective approach was tested for the case
of a freely expanding quasi-one-dimensional Bose-Einstein
condensate (BEC) by comparing the approximate solution
with the exact evolution of the system as obtained from the
solution of the Gross-Pitaevskii (GP) equation. Remarkably,
in this case it was found that the effective scaling approach
is indeed very accurate in reproducing the exact evolution for
arbitrary values of the interactions [20].

In the present paper we extend this analysis to the case of
a three-dimensional (3D) BEC [21] for which we consider the
expansion in free space and in trapped geometries (namely in
cylindrical and planar waveguides). The aim of this work to
understand in a quantitative framework how nonlinearity af-
fects self-similar dynamics, in the context of the GP equation,
for which scaling approaches have been widely employed
[1–7,9,20]. This is particularly relevant in 3D—where the
interplay between spatial anisotropies and interactions may
not be trivial—and where there are not actual proofs that
justify the usage of an effective scaling approach. Moreover,
since time-of-flight expansion is still a very relevant part of
current experiments with BECs, as, e.g., those with binary
mixtures [22,23], a quantitative assessment on the validity of
this approach may be very useful for extending such a method
to more complex configurations.

In case of the expansion in free space, we find that the
effective scaling approach for the expansion of a spherically
symmetric condensate is rather accurate even for intermedi-
ate values of the interaction—between the noninteracting and
hydrodynamic limits where the scaling is exact—similarly to
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what found for the quasi-1D case [20]. Deviations from this
behavior are observed instead for prolate and especially oblate
condensates, signaling that the scaling approach becomes less
accurate when the expansion along certain directions is faster
than along the others, causing local variations of the density
that do not conform to the hypothesis of self-similarity. Like-
wise, self-similarity may also break down in the presence of a
residual trapping. In fact, the density profile along the trapped
directions is determined by the interplay of the confining po-
tential and the nonlinear term, and it therefore gets modified as
the system expands. In this scenario, the scaling approach can
be safely employed only in the noninteracting limit (for obvi-
ous reasons) and in the hydrodynamic limit. In the latter case,
a necessary condition is also that the evolution time should
be sufficiently short such that the initial Thomas-Fermi (TF)
profile along the trapped directions is preserved. This is con-
ceptually different from the case of the evolution in free space,
where, e.g., once a TF profile is fixed by the initial conditions
it is then maintained during the whole evolution, regardless of
the variation in the local value of the nonlinear term.

The paper is organized as follows. In Sec. II we review
the general procedure for constructing the effective scaling
approach within the hydrodynamic formulation of the GP
equation, as well as the form of the GP equation in the rescaled
coordinate system. Then, in Sec. III we apply this approach to
the case of a freely expanding condensate in 3D, considering
first the case of a spherically symmetric BEC and then the
cases of oblate and prolate geometries. In Sec. IV, as an
example of confined geometries, we examine the expansion
in a waveguide and also comment on the case of a planar one.
Final considerations are drawn in the conclusions.

II. SCALING APPROACH

Let us consider a Bose-Einstein condensate described by
a wave function ψ (x, t ) that evolves according to the GP
equation [3]

ih̄
∂

∂t
ψ =

[
− h̄2

2m
∇2 + V (x, t ) + g|ψ |2

]
ψ, (1)

with m being the particle mass, g = 4π h̄2a/m the interaction
strength (with a the s-wave scattering length), and V (x, t ) a
generic trapping potential, that may depend on time. In partic-
ular, we shall consider the case of a time-dependent harmonic
potential of the form

V (x, t ) = 1

2
m

∑
i

ω2
i (t )x2

i , (2)

and we shall focus on the expansion dynamics of the
condensate following the release of the confinement along
some direction. Equation (1) can be transformed into
a system of two coupled hydrodynamic equations by
means of a Madelung transformation, ψ (x, t ) ≡ √

n(x, t )
exp {iS(x, t )} [3],

∂t n + ∇ · (nv) = 0, (3)

m∂tv + ∇(
P + 1

2 mv2 + V + gn
) = 0, (4)

where v ≡ (h̄/m)∇S, and

P(x, t ) = − h̄2

2m

∇2√n√
n

(5)

represents the so-called quantum pressure term.

A. Exact scaling

The scaling approach consists in looking for solutions char-
acterized by a density profile that evolves self-similarly as

n(x, t ) = 1∏
j λ j (t )

n0

[
xi

λi(t )

]
, (6)

with n0(x) being fixed by the initial conditions and with all the
time dependence being contained within the scaling parame-
ters λi(t ) (here the term

∏
j λ

−1
j is just a volume normalization

factor, with i, j = 1, 2, 3 labeling the spatial directions). In
addition, the continuity Eq. (3) yields the following scaling of
the velocity field: vi(x, t ) = xiλ̇i(t )/λi(t ).

By introducing the ansatz (6) into the hydrodynamic
Eq. (4), one gets

m
λ̈i

λi
xi + ∇i

[
P + V + gn0(xi/λi(t ))∏

j λ j

]
= 0. (7)

In the noninteracting regime (g = 0) and in the so-called hy-
drodynamic regime (negligible P) the above expression can
be factorized in two terms, one depending on the spatial coor-
dinates and the other on the time coordinate alone, so that the
scaling ansatz (6) represents an exact solution.

B. Effective scaling

Contrarily, when such a factorization is not possible,
one may follow a different approach by requiring the
self-similarity to be satisfied on average, as discussed in
Refs. [17–20]. First, it is convenient to transform the expres-
sion in Eq. (7) by integrating over the i th coordinate [24],

m

2

λ̈i

λi
x2

i + P + V + gn0(xi/λi(t ))∏
j λ j

− q(x, t )
∣∣
xi=0 = 0, (8)

where q(x, t ) ≡ P(x, t ) + V (x, t ) + gn0(xi/λi(t ))/
∏

j λ j .
Then we multiply Eq. (8) by n0(xi/λi(t )) and we get rid of the
coordinate dependence by integrating over the volume. This
sort of averaging procedure—that constitutes the essence of
the effective scaling approach [17,20]—yields an equation for
the scaling parameters depending only on the time variable.
Specific expressions for each case considered in this paper
will be discussed in the following sections.

C. Scaled Gross-Pitaevskii equation

The scope of this work is to test the accuracy of the effec-
tive scaling approach in reproducing the exact evolution by
quantifying the deviation of the scaling dynamics from the
exact solution of the GP equation in (1). To this end, it is
convenient to rewrite the GP equation in terms of the rescaled
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wave function, defined as [1]

ψ (x, t ) = 1√∏
j λ j (t )

φ

(
xi

λi(t )
, t

)
e

i m
2h̄

∑
j

λ̇ j (t )

λ j (t ) x2
j , (9)

with φ(x, 0) = √
n0(x). Then, plugging the above expression

for ψ (x, t ) in the Gross-Pitaevskii Eq. (1) yields

ih̄∂tφ = − h̄2

2m

∑
j

1

λ2
j

∇̃2
j φ + 1

2
m

∑
j

[
ω2

j (t ) + λ̈ j

λ j

]
x2

j φ

+ g∏
λ

|φ|2φ, (10)

where we have defined ∇̃ j = ∂/∂ (x j/λ j ). Notice that the par-
tial derivative ∂t only operates on the explicit dependence on
time in φ(·, t ), which accounts only for the deviation from the
self-similar solution. The latter can be measured by defining
the following fidelity [20]:

F (t ) ≡ |〈φ(0)|φ(t )〉|, (11)

that can take values in the range F ∈ [0, 1], the upper bound
(F = 1) corresponding to exact self-similar solutions. This
quantity provides a quantitative estimate of the accuracy of
the effective approach.

In the following, it is also useful to introduce dimensionless
units, which can be conveniently defined in terms of natural
oscillator units of a suitable frequency ω0, namely τ ≡ ω0t ,
with the spatial coordinates being expressed in units of aho ≡√

h̄/(mω0), and so on. As for the interaction strength, we
define g̃ ≡ 4πNa/aho, by including also the number of atoms
N in the definition. From now on, all the quantities will be
considered as dimensionless, unless otherwise stated.

III. EXPANSION IN FREE SPACE

Here we consider a condensate that expands in free space
after being released from a three-dimensional harmonic trap.
For the sake of simplicity, we restrict the analysis to axially
symmetric potentials, namely

V (r⊥, z) = 1
2

[
ω2

⊥(τ )r2
⊥ + ω2

z (τ )z2
]
, (12)

where ω⊥,z(τ ) ≡ 0 for τ > 0. As unit frequency we choose
the geometric average of the trapping frequencies in the three
spatial directions ω0 = 3

√
ω2

⊥(0)ωz(0), and we define the pa-
rameter α = ω⊥(0)/ωz(0) characterizing the trap anisotropy.
In this case, the self-similar ansatz for the density takes the
following form:

n(r⊥, z, τ ) = 1

λ2
⊥(τ )λz(τ )

n0

(
r⊥

λ⊥(τ )
,

z

λz(τ )

)
. (13)

The corresponding scaling equations are (see Appendix for
the derivation and the definition of the various constants)

λ̈⊥ = A1⊥(g̃)

λ3
⊥

+ A2⊥(g̃)

λ⊥λ2
z

+ B⊥(g̃)

λ3
⊥λz

, (14)

λ̈z = A1z(g̃)

λ2
⊥λz

+ A2z(g̃)

λ3
z

+ Bz(g̃)

λ2
⊥λ2

z

, (15)

where the constants Aiν and Bν (i = 1, 2, ν =⊥, z)—which
are fixed by the initial conditions—fulfill the following sum
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FIG. 1. Behavior of the constants of the scaling equation (17) as
a function of the interaction strength g̃.

rules:∑
i=1,2

Ai⊥ + B⊥ = α2/3;
∑
i=1,2

Aiz + Bz = α−4/3. (16)

If the initial condensate is spherically symmetric, ω⊥ =
ωz ≡ ω (α = 1), then the above Eqs. (14) and (15) become
degenerate, and obviously they greatly simplify. In fact, the
system can be described in terms of a radial coordinate alone,
r ≡

√
r2
⊥ + z2 , and it is characterized by a single scaling pa-

rameter λ(τ ). The above equations simplify to

λ̈(τ ) = A(g̃)

λ3(τ )
+ B(g̃)

λ4(τ )
, (17)

where A = ∑
i=1,2 Aiν and B = Bν (any ν), see the Appendix.

Manifestly, the above formulas in Eqs. (14), (15), and (17)
interpolate between the noninteracting (λ−3 terms) and TF
(λ−4 term) regimes. The behavior of the coefficients A and
B as a function of the interaction strength g̃, see Fig. 1, indeed
guarantees that the known results [3] corresponding to the ex-
act solutions in the noninteracting (g̃ 	 1) and Thomas Fermi
limits (g̃ 
 1) are recovered. A similar behavior is displayed
by the parameters Aiν and Bν of the axially symmetric case,
see the Appendix.

In the following, we shall first analyze to which extent the
hypothesis of effective self-similarity is able to capture the
actual GP dynamics for a spherically symmetric condensate,
as a function of the interaction strength g̃, that is the only
parameter the system depends on. Then we discuss the effect
of the trap anisotropy α by extending the analysis to a generic
axially symmetric condensate.

A. Spherical condensate

The behavior of the scaling parameter λ(τ ) as a function of
time (for different values of g̃), and its final value λ f ≡ λ(τ f )
(τ f = 10) as a function of g̃ are shown in Figs. 2(a) and 2(b),
respectively. Remarkably, the final value λ f (g̃) decreases by
increasing the nonlinear coupling, and it has a slight minimum
at the crossover region between the noninteracting and hydro-
dynamic regimes. The first behavior is directly connected to
the power law in the scaling equation (17): In the TF limit
the right-hand side behaves like ∝λ−4 [9], and this implies a
slower growth of λ (>1) as compared to the ∝λ−3 behavior
of the noninteracting limit. This reflects the fact that as g̃ is
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FIG. 2. Behavior of the scaling parameter λ(τ ) (a) as a function
of time for different interaction strengths and (b) at τ f = 10 as a
function of the interaction strength. The red dots in (b) correspond
to the values of g̃ considered in (a).

increased, the density distribution gets wider and this narrows
the momentum distribution, thus reducing the contribution
of kinetic energy to the condensate expansion. As for the
nonmonotonic behavior at intermediate values of g̃, we notice
that the minimum of λ f corresponds to the minimum of the
fidelity, shown in Fig. 3. This figure shows that the accuracy
of the effective scaling can be very high, with a fidelity always
above 98%, for any value of the interaction strength (τ � 10).
This approach seems therefore quite robust, similarly to the
1D case discussed in Ref. [20].

Its reliability can also be appreciated from the behavior of
the density profiles, which are shown in Fig. 4 for different
values of g̃. Only small deviations can be seen, especially
around the minimum of fidelity (at g̃ ≡ g̃∗). It is also inter-
esting to notice that for g̃ < g̃∗ the scaling ansatz produces
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0.90

0.92

0.94

0.96

0.98

1.00

10−2 10−1 100 101 102 103 104 105 106

F

g̃

α = 0.1
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FIG. 3. Behavior of the fidelity as a function of the interaction
strength g̃, at τ f = 10, for different values of the trap anisotropy α.
The black circles correspond to the density profiles shown in Fig. 4.
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FIG. 4. Comparison of the radial density profiles of a spherical
condensate obtained from the numerical solution of the full GP
equation (solid) and from the scaling argument (dashed) for different
interaction strengths, at the final evolution time τ f = 10 (the cor-
responding fidelity is marked by the black circles in Fig. 3). The
vertical axes on the two panels are not on scale.

a slightly larger central value for the density, whereas the
opposite happens for g̃ > g̃∗.

B. Pancake-and cigar-shaped condensates

In the following, we shall compare the case of oblate and
prolate geometries, with α = 0.1 and α = 10 respectively,
with the previously considered spherical case (α = 1). The
corresponding values of the fidelity after an expansion time
τ f = 10 are shown in Fig. 3. This figure shows that, in
the presence of a trap anisotropy, the assumption of a self-
similar evolution is less effective for intermediate values of
the interactions, especially for the case of oblate geometries
(the case with α = 0.1 in the figure). A qualitative argu-
ment for explaining this behavior is the following. When
a pancake-shaped condensate is released from the trap, the
initial expansion is characterized by a fast dilatation along the
axial direction, whereas the radial dynamics is much slower.
The former causes a fast local variation of the density, which
drives the radial expansion out of the self-similar regime.
This happens due to the fact that the radial dynamics soon
decouples from that of the mean-field term, contrarily to what
occurs, e.g., in the expansion of a spherical condensate. This
is confirmed by Fig. 5(a), where we plot the behavior as a
function of time of the condensate radial and axial widths,
σ⊥(τ ) ≡

√
〈r2

⊥〉τ and σz(τ ) ≡
√

〈z2〉τ , respectively. This fig-
ure shows that the value of σz(τ )/σz(0) remains very close to

1.0
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1.2

1.3

0 2 4 6 8

(a)

0 2 4 6 8 10

(b)

σ
i(
τ
)/

σ
i(
0)

τ τ

σ⊥
σz

FIG. 5. Evolution of the axial and radial widths, normalized
to the corresponding initial values, σz(τ )/σz(0) and σ⊥(τ )/σ⊥(0),
respectively. (a) Oblate geometry, α = 0.1 (pancake); (b) prolate
geometry, α = 10 (cigar). Here g̃ = 10.
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FIG. 6. Rescaled aspect ratio as a function of the interaction
strength g̃, at τ f = 10, for different values of the trap anisotropy α.
The lines represent the exact values obtained from the solution of the
rescaled GP equation (10), whereas the dotted horizontal line corre-
spond to the ideal value AR(τ f )/AR(0) ≡ 1 of an exact self-similar
expansion.

one in the rescaled coordinate system we are using, indicating
that the evolution of the condensate along the axial direction is
well reproduced by the hypothesis of self-similarity. However,
the expansion in the transverse plane is faster than what is
dictated by the self-similar approach, signaling that the latter
substantially underestimates the actual value of σ⊥(τ )/σ⊥(0).

In the opposite case of a cigar-shaped condensate, the
fidelity substantially improves (though not at the level of
the spherically symmetric case), see the curve for α = 10 in
Fig. 3. The reason for this is that here the dynamics is driven
by two of the three spatial directions, so that the breaking of
the self-similarity mostly affects one direction only, namely
the axial one. Indeed, Fig. 5(b) shows that the scaling for
the transverse width is almost exact, whereas the axial width
increases faster that what is predicted by the self-similar
expansion. This confirms that the self-similar approach un-
derestimates the expansion along the “slow” direction.

The above behavior has a direct consequence on the value
of the aspect ratio AR(τ ) ≡ σ⊥(τ )/σz(τ ), a quantity that
is typically used to characterize the condensate expansion
[3,18,19]. Consistently with the scaling approach, here it is
convenient to consider the ratio AR(τ )/AR(0). In case of an
exact self-similar expansion, the former quantity is expected
to be constant and equal to 1 in the rescaled coordinate system
we are using, AR(τ )/AR(0) ≡ 1 for any τ . The deviations from
the ideal behavior are shown in Fig. 6. We see that in the
spherical case the self-similar approach provides very accu-
rate results, whereas in case of oblate and prolate condensates
significant deviations are observed for intermediate values of
the interaction (up to 50%), as one may expect from what was
discussed previously.

To conclude this section, we remark that the scaling ap-
proach can be still very useful from the numerical point of
view, even when it is not able to reproduce the exact evolution.
Indeed, it allows us to replace the usual GP equation with
the one in Eq. (10), which evolves the system in a rescaled
coordinate system, thus greatly reducing the size of the com-
putational grid in case of a free expansion.

IV. CONFINED GEOMETRY: EXPANSION
IN A WAVEGUIDE

Let us now turn to the case of a condensate initially con-
fined by the same cylindrically symmetric potential in Eq. (12)
that is now allowed to expand in the presence of the radial
confinement, following the switch-off of the axial potential
[ωz(τ ) = 0 for τ > 0]. This case represents a generalization
of the quasi-1D case considered in Ref. [20], the difference
being that here the condensate profile along the radial direc-
tion is not restricted to that of the harmonic oscillator ground
state—several transverse excited states can be occupied, de-
pending on the values of g̃ and α. The 1D mean-field limit of
Ref. [20] is recovered for g̃ 	 4π

√
α, see Ref. [25].

Considering that the expansion takes place along the axial
direction, in this section we express frequencies in units of
the axial frequency, namely ωz(0) = 1, ω⊥(0) ≡ α [26]. In the
following we shall use α = 10 as an example. In the present
case, the self-similar ansatz for the density takes the same
form as in Eq. (13), with Eq. (14) being replaced by

λ̈⊥ = A1(g̃)

λ3
⊥

+ A2(g̃)

λ⊥λ2
z

+ A3(g̃)

λ3
⊥λz

− α2λ⊥, (18)

where the constants Ai and Bi are those previously defined
(modulo a straightforward rescaling, owing to the different
choice of ω0).

The behavior of the scaling parameters λz and λ⊥ as a
function of time (for different values of g̃) and as a function
of g̃ (after an expansion time τ = 10) are shown in Fig. 7, in
the left and right panels, respectively. Their behavior corre-
sponds to a contraction of the radial size, and to a dilatation
in the axial direction, as one would expect for a condensate
expanding along the waveguide. Similarly, the monotonic be-
havior of λz(τ f ) as a function of g̃—which again interpolates
between the the two limiting behaviors (noninteracting, up to
g̃ ≈ 10−2, and TF for g̃ � 103)—agrees with the naive expec-
tations. Instead, the local minimum displayed in the behavior
of λ⊥(τ f ) as a function of g̃, see Fig. 7(d), signals a failure of
the self-similarity assumption, since the radial size is expected
to decrease monotonically by increasing g̃.

Indeed, by looking at the density cuts along the axial and
radial directions in Fig. 8, it is manifestly evident that for
intermediate values of the interactions the effective scaling
approach breaks down. In these figures, the dashed profile
corresponds to the initial state—which is equivalent to the
self-similar solution in the rescaled coordinate system—and
the solid line is the solution of the scaled GP equation at τ f =
10. It is evident that for intermediate values of g̃, where the
radial scaling parameter becomes too small (see Fig. 7), the
actual density profile is characterized by a strong contraction
along the axial direction (and by a corresponding radial broad-
ening) with respect to what a perfect scaling would predict
(dashed lines in the figure). As anticipated in the introduction,
this behavior is due to the fact that self-similarity is explicitly
violated in the presence of a residual trapping. In fact, the
density profile along the trapped directions is determined by
the interplay between the confining potential and the nonlinear
term, and it therefore gets modified as the condensate ex-
pands: It cannot be maintained during the expansion along the
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waveguide [27]. In this respect, also in the case of g̃ > 104—
for which the scaling approach appears reasonably accurate,
see Figs. 7 and 8—we expect this approach to eventually break
down in the asymptotic regime of very low densities [28].

Indeed, the above behavior can be inferred by looking at
the fidelity, which is shown in Fig. 9 as a function of g̃, at
different evolution times. As a reference, here we also show
the value of the fidelity at τ = τ f for the case of a shallower
radial confinement, namely α = 1. Then, by comparing the
two cases at τ = τ f = 10, for α = 1 and 10 (the black and
yellow continuous lines, respectively), it is clear that in the
former case the system is able to evolve self-similarly even for
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profiles as given by the numerical solution of the GP equation
(solid) and by the scaling approach (dashed) for different interaction
strengths and an evolution time of τ = 10. Density cuts along the
z axis at r⊥ = 0 (left) and along the r⊥ axis at z = 0 (right). For
intermediate values of g̃, the scaling solution largely overestimates
the central density and underestimates the radial width. The fidelity
corresponding to each value of g̃ considered here is marked by the
black circles in Fig. 9.

large values of g̃ (in the time range considered here), whereas
this is not the case for α = 10. The reason behind this is that
for a lower initial local density, the system takes longer to exit
the self-similar regime (for values of g̃ for which the scaling is
exact in the quasi-1D limit). Consequently, we expect the self-
similarity to also break down eventually for α = 1, though at
larger expansion times than those in the case of α = 10.

Therefore, we can conclude that the effective scaling ap-
proach to the GP equation for the waveguide expansion works
only if one of the following two conditions is satisfied: (i)
short evolution times, when the radial profile has not yet
deviated from the initial one (that is, the local density has not
decreased too much) or (ii) the system is in the 1D mean-field
limit [20,25], g̃ 	 4π

√
α, where the density profile is always

characterized by a Gaussian transverse profile (for arbitrary
times).
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V. CONCLUSIONS

We have compared the exact evolution of an expanding
3D Bose-Einstein condensate with that obtained by means of
an effective scaling approach based on the assumption of a
self-similar dynamics. This approach consists in looking for
self-similar solutions to be satisfied on average, by integrat-
ing the hydrodynamic equations over the spatial coordinates
[17–20]. Different geometries and configurations have been
considered.

In case of isotropic traps, we have found that the hypothesis
of self-similarity—which is exact in the noninteracting and
hydrodynamic limits [3]—is indeed rather accurate even for
intermediate values of the interactions. This result provides an
extension to three dimensions of the 1D proof-of-concept dis-
cussed in Ref. [20]. Conversely, we have found that significant
deviations from the exact evolution characterize the expansion
of prolate and oblate condensates. This behavior originates
from the fact that when some of the directions expand much
faster than the others, they produce local variations of the den-
sity that break the hypothesis of self-similarity. Accordingly,
we have found that self-similarity also breaks down for the
expansion in a waveguide, due to the presence of the residual
trapping. Indeed, the balance between the effect of the confin-
ing potential and that of the nonlinear term changes during the
expansion owing to the local variations of the density. This in
turn affects the density profile along the trapped directions,
thus resulting in a behavior that is not self-similar. In the
specific case of a cylindrical waveguide, we have shown that
the effective scaling approach provides reliable results only
for short evolution times, when the radial profile has not yet
deviated from the initial profile (that is, when the local density
has not decreased too much), or if the system is in the so-
called 1D mean-field limit [20,25], where the density profile
is always characterized by a Gaussian transverse profile.

We also remark that although the hypothesis of self-
similarity is justified only for certain geometries and con-
figurations, the scaling approach can still be very useful for
simulating a free expansion from the numerical point of view.
Indeed, even if the scaling is only approximate, solving the dy-
namical equations in a rescaled coordinate system can greatly
reduce the size of the computational grid. In this respect, the
above analysis suggests that it could be useful to extend the
present approach to the case of the time-of-flight expansion of
binary mixtures as employed in current experiments, see, e.g.,
Refs. [22,23]. Indeed, in some cases solving the equations for
the expansion dynamics can be computationally prohibitive
[22], which is why scaling methods could be beneficial in
this context. In addition, an effective self-similarity could be
explored also for other expansion scenarios [29], and even for
other equations. One of the more relevant examples is in the
context of quantum protocols, where scaling approaches can
also be employed, see, e.g., Refs. [30–32].
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APPENDIX: EFFECTIVE SCALING FOR THE
GP EQUATION

Here we derive the equations for the scaling parameters
that characterize the approximate self-similar solutions of the
Gross-Pitaevskii equation. For an axially symmetric system,
Eq. (8) consists of two equations, which take the following
form (r̃⊥ ≡ r⊥/λ⊥, z̃ ≡ z/λz):

1

2
(λ̈⊥ + α2/3λ⊥)λ⊥r̃2

⊥ + g̃
n0(r̃⊥, z̃) − n0(0, z)

λ2
⊥λz

+ P(r̃⊥, z̃; τ ) − K⊥
⊥ (z̃)

λ2
⊥

− K⊥
z (z̃)

λ2
z

= 0, (A1)

1

2
(λ̈z + α−4/3λz )λzz̃

2 + g̃
n0(r̃⊥, z) − n0(r̃⊥, 0)

λ2
⊥λz

+P(r̃⊥, z̃; τ ) − Kz
⊥(r̃⊥)

λ2
⊥

− Kz
z (r̃⊥)

λ2
z

= 0, (A2)

with

P(r̃⊥, z̃; τ ) = − 1

2λ2
⊥(τ )

√
n0

(
∂2

∂ r̃2
⊥

+ 2

r̃⊥

∂

∂ r̃⊥

)√
n0

− 1

2λ2
z (τ )

√
n0

∂2

∂ z̃2

√
n0 ≡ P⊥(r̃⊥, z̃)

+ Pz(r̃⊥, z̃), (A3)

K⊥
ν (z̃) ≡ λ2

νPν (0, z̃), Kz
ν (r̃⊥) ≡ λ2

νPν (r̃⊥, 0), where ν =⊥, z
(all the K’s being independent of time). Then, we multiply
Eqs. (A1) and (A2) by n0 and we integrate over the volume
to get rid of the spatial dependence. This yields Eqs. (14) and
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(15), where

A1ν (g̃) = 2(Dν
⊥ − Ek⊥)/σ 2

ν , (A4)

A2⊥(g̃) = 2
(
Dν

z − Ekz
)/

σ 2
ν , (A5)

B⊥(g̃) = 2g̃
(
n̄ν

2 − n̄2
)/

σ 2
ν , (A6)

with σ 2
⊥ = 〈r2

⊥〉0, σ 2
z = 〈z2〉0, Ekν = − 1

2 〈∇2
ν 〉0,

n̄2 =
∫

n2
0(r⊥, z)dV, (A7)

n̄⊥
2 =

∫
n0(0, z)n0(r⊥, z)dV, (A8)

n̄z
2 =

∫
n0(r⊥, 0)n0(r⊥, z)dV, (A9)

Dν ′
ν =

∫
n0(r⊥, z)Kν ′

ν (z)dV, (A10)

and dV = 2πr⊥dr⊥dz. An example of the behavior of the
scaling parameters Aiν and Bν as a function of g̃, is shown
in Fig. 10, for α = 10.

In case of spherical symmetry, the above expressions
simplify to

A(g̃) = 2
(
D0 − E0

k

)/
σ 2

r , (A11)

B(g̃) = 2
[
g̃n0(0) − 2E0

int

]/
σ 2

r , (A12)

with (here dV = 4πr2dr)

σ 2
r =

∫
n0(r)r2dV ≡ 〈r2〉0, (A13)

E0
k = 1

2

∫
[∇r

√
n0(r)]2dV ≡ −1

2

〈∇2
r

〉
0, (A14)

E0
int = g̃

2

∫
n2

0(r)dV. (A15)

Finally, we mention that the sum rules fulfilled by
the constants A and B can be obtained as discussed
in Ref. [20], via the stationary GP equation. For
example, in the spherically symmetric case we have
[−(1/2)∇2 + (1/2)r2 + g̃|ψ0|2]ψ0 = μψ0 that, by left-
multiplying by ψ0 = √

n0, yields μ = P(r, 0) + (1/2)r2 +
g̃n0. Then, by plugging the latter expression back into the
GP equantio and integrating over the volume, one can easily
obtain the sum rule A + B = 1. Similarly, one can obtain the
corresponding sum rules for the parameters Aiν and Bν .
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