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Dynamics of transposable elements generates structure and symmetries in genetic sequences
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Genetic sequences are known to possess nontrivial composition together with symmetries in the frequencies
of their components. Recently, it has been shown that symmetry and structure are hierarchically intertwined in
DNA, suggesting a common origin for both features. However, the mechanism leading to this relationship is
unknown. Here we investigate a biologically motivated dynamics for the evolution of genetic sequences. We
show that a metastable (long-lived) regime emerges in which sequences have symmetry and structure interlaced
in a way that matches that of extant genomes.
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Introduction. Transposable elements (TEs) are DNA
sequences that can relocate themselves in new sites of the
genome. They were first discovered in maize by McClintock
in the mid-1940s and initially considered as parasites with
no functional roles [1]. Nowadays TEs are known to be
ubiquitous in both prokaryotes and eukaryotes genomes [2,3]
and little doubts are left of their prominent role in genome
evolution, shaping structure and function in a multitude of
ways [4,5]. As TEs constitute more than half of the sequence
in many higher eukaryotes, a fingerprint of their presence
can be quantitatively extracted from the statistical properties
of their host DNA. Indeed, TEs properties were shown to
be crucial in explaining structural global features of genome
sequences [6–11].

Recently, Albrecht-Buehler [12] suggested that TEs were
the main driving force for the emergence of the second
Chargaff parity rule. This rule states that, in each strand
of the DNA, the frequency of a short oligonucleotide w is
approximately equal to that of its symmetrically related ŵ,
obtained from w by reversing the order of the symbols and
substituting each nucleotide with its conjugated A ↔ T
and C ↔ G (e.g., w = ACT GGCT , ŵ = AGCCAGT ). It
has been first observed by Chargaff in the 1950s [13] and
since then detected across different organisms leading to
different proposals for its origin and function [14–29]. The
importance of the Albrecht-Buehler explanation is that it
shows how this symmetry naturally emerges as an asymptotic
outcome of the cumulative action of inversions/transpositions,
one of the main mechanisms of relocation of TEs. As we
will show, while the proposed mechanism nicely induces
Chargaff symmetry in the asymptotic DNA, it does it at
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the cost of trivialization of the structural properties of the
sequence: Symmetry is obtained because of the complete
randomization of the full double-stranded DNA. In view
of the ubiquity of complex structures in genomes [30–38],
this result raises the question whether symmetry can appear
without a full randomization of the sequence and in a way that
is compatible with the existence of structure. The importance
of this question is enhanced by our recent findings [39] that
Chargaff symmetry extends beyond the frequencies of short
oligonucleotides—remaining valid on scales where nontrivial
structure is present—and that a hierarchy of other symmetries
exists, nested at different structural scales. This findings
are confirmed in Fig. 1, which shows how commonly used
indicators of structures, such as recurrence-time distribution
[Fig. 1(a)] and correlation functions [Fig. 1(b)], coincide for
symmetrically related observables at different scales.

In this paper we present a biologically motivated dy-
namical process that explains the observed relation between
symmetry and structure in DNA sequences. In particu-
lar, we propose a model that mimics the action (inver-
sions/transpositions) of TEs on DNA and we analytically
describe its dynamical behavior. Using indicators to quan-
tify both symmetry and the presence of nontrivial structure
in symbolic sequences, we show that the co-occurrence of
symmetry and structure is an emergent statistical property in
sequences generated by such a model, reproducing the same
hierarchical relation detected in extant genomes.

Quantifying structure and symmetry. We consider sym-
bolic sequences s = {si}N

i=1 of length |s| = N with si ∈ A =
{A,C, G, T }. Given a subsequence a of s (a word) we denote
its corresponding reverse-complemented word as â, obtained
from a by reversing the order of the symbols and substitut-
ing each nucleotide {A,C, G, T } by its complementary one
A ↔ T and C ↔ G. We call fx(s) the percentage of the
nucleotide x in the sequence s. Finally, we denote by CG(s) :=
fC (s) + fG(s) (the so called CG content). In the following, it
will be useful to partition the full set AN into disjoint sub-
sets of fixed CG content BN (k) := {s ∈ AN |CG(s) = k/N};
AN = ∪N

k=0BN (k).
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FIG. 1. Symmetry and structure are intertwined in DNA. Re-
sults are shown for Homo sapiens chromosome 1 (symbols) and its
randomly shuffled version (dashed lines). Each curve corresponds
to one observable. Symmetrically related observables appear in the
same box in the legend. (a) Distribution P(τ ) of recurrence times
τ (measured in number of basis) between successive occurrences of
the same nucleotide. (b) Probability fXA,XB (�) that the bigrams XA

and XB appear separated by a distance �. Plotted is the normalized
cross-correlation z[XA,XB](�) = fXA,XB/( fXA fXB ) as a function of �, for
symmetrically related couples [XA, XB] (see legend). Different nested
symmetries are valid at different scales � (see Ref. [39] for further
details): for � � 150 Chargaff z[XA,XB] = z[X̂B,X̂A], for 150 � � � 1500
Chargaff and reverse symmetry z[XA,XB] = z[XB,XA], and for � � 1500
complement z[XA,XB] = z[X̂A,X̂B] and reverse symmetry.

We introduce the following simple indicators of the
presence of Chargaff symmetry and of nontrivial structure
composition of a given sequence s.

To quantify the compliance of s with Chargaff symmetry,
we average the normalized difference of the abundance be-
tween a nucleotide and its symmetric one (see [21] where a
similar measure was first introduced)

Isym(s) = 1

4

∑
x∈A

| fx(s) − fx̂(s)|
fx(s) + fx̂(s)

. (1)

Isym = 0 indicates a fully Chargaff-symmetric sequence,
Isym = 1 is obtained for a sequence for which Chargaff is
perfectly violated ( fA = fC = 0.5, fT = fG = 0), and Isym =
0.08 is obtained for a 2% variation of equal frequencies
(e.g., fA = fC = 0.23, fT = fG = 0.27). For simplicity, we
consider Isym > 0.08 to be a violation of Chargaff symmetry.

To quantify the presence of nontrivial structures in a given
symbolic sequence s we first compute the distribution P(τ ) of
distances τ between two successive occurrences of the same
nucleotide x. For random sequences, P(τ ) decays exponen-
tially as P(τ ) = fx(1 − fx )τ−1 and thus has average 1/ fx and
standard deviation

√
1 − fx/ fx (which is ≈1/ fx for small fx).

In contrast, the presence of a fat tail (standard deviation much
larger than the mean) is considered a signature of a complex

organization. We thus quantify structure as the distance of s
from random sequences by

Istr (s) = 1

4

∑
x∈A

(
1√

1 − fx(s)

στ (x)

μτ (x)
− 1

)
, (2)

where μτ ≡ 〈τ 〉 and στ ≡
√

〈τ 2〉 − 〈τ 〉2 are the mean and
standard deviation of the measured P(τ ), and

√
1 − fx is the

expected στ/μτ for nucleotide x in a random sequence. For
random sequence we thus have Istr (s) = 0, while departure
from this value mark the presence of nontrivial structure.
For simplicity, we consider Istr > 0.01 to be a signature of
structure.

Dynamics. We investigate symmetry and structure of
sequences that evolve through the following dynamics,
that maps one sequence s(t ) ∈ AN into another sequence
s(t + 1) ∈ AN by mimicking the action of TEs [12]. The
dynamics is defined composing two actions:

(i) Pick a random position j of s and a random size � � 0,
with 〈�〉 = L [51].

(ii) Replace the subsequence b ≡ {si} j+�−1
i= j of size � start-

ing at position j, by its reverse complement b̂.
The couple ( j, �) parametrizes the effect of an inver-

sions/transpositions, which we denote by g( j,�) : AN → AN .
Its action has interesting properties: g( j,�) is an involution for
every ( j, �) and the total number of C and G (or, equivalently,
of A and T ) is invariant under g: CG(st ) = CG(s0) ∀t . This
implies that the dynamics is restricted to the invariant sub-
space of sequences with constant CG content BN [CG(s0)].

Asymptotic equilibrium. The dynamics can be equiva-
lently described as an ergodic Markov chain over the space
of sequences BN [CG(s0)]. The fact that g( j,�) is an involu-
tion forces the transition matrix to be bi-stochastic and thus
in the asymptotic equilibrium all sequences are equiprob-
able. This means that, for t → ∞ and irrespective of the
initial ancient DNA sequence, the evolution asymptotically
leads to sequences that can be equivalently considered gen-
erated by an independent and identically distributed (iid)
process with p(G) = p(C) = CG(s0)/2 and p(A) = p(T ) =
(1 − CG(s0))/2. Therefore, the expected value of our indi-
cators of symmetry and structure Eqs. (1) and (2) vanish
asymptotically,

lim
t→∞ Istr (s(t )) = lim

t→∞ Isym(s(t )) = 0,

for any initial sequence s(0) [52]. This shows analytically that
the TE dynamics asymptotically leads to Chargaff symmetric
sequences, in agreement with previous claims [12]. However,
this symmetric equilibrium is a (trivial) consequence of a
full randomization. Therefore our results show also that the
current explanation of the second Chargaff parity rule [12]
is not satisfactory as it is not compatible with any structure,
which is known to remain significant at distances of several
thousands of nucleotides [30–38] (see also Fig. 1). Next we
show that the same TE dynamics is rich enough by showing
that symmetric sequences with nontrivial structure are gener-
ated pre-asymptotically as long-lived metastable states of TEs
dynamics.

Symmetry and structure over time—three regimes. We now
investigate symmetry and structure of the sequences s(t ) by
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computing how our indicators Isym an Istr depend on time
t (i.e., their values after t applications of g( j,�)). We show
that Chargaff symmetry emerges much before equilibrium,
together with a complex domainlike structure.

We first investigate structural properties of sequences after
a finite number t of iterations. We define a domain of s(t ) as
a subsequence of consecutive sites that have been involved
in the same series of reverse-complement events. We then
distinguish between domains of type � and �̂, depending on
whether the number of transformations g they were involved is
even or odd, respectively. By definition, the starting sequence
is composed by a single domain of type �. After one iteration
it is split into three domains, two of type � and one of type �̂

of length �1, corresponding to the subsequence involved in the
first reverse-complement event. We now compute the average
sizes 〈��〉(t ) and 〈��̂〉(t ) of domains after t iterations. Three
regimes can be identified.

(i) For short times t , if L 
 N , the probability that the
first few iterates all involve different subsequence is very high
[53]. At each iterate, a subsequence of a domain of type � of
average size 〈�〉 = L is created, cutting a domain of type �̂.
Thus we have that in this regime:

〈��̂〉(t ) = L and 〈��〉(t ) = N/t . (3)

This regime lasts until iterates start overlapping, which
happens when N/t ≈ L and average domain sizes equalize
〈��̂〉(t ) = 〈��〉(t ) = L. This regime is thus valid for 0 < t �
tmetastable = N/L.

(ii) For t � tmetastable = N/L a typical reverse-complement
event will overlap with more than one domain. In this case all
the domains that lie fully inside the subsequence involved in
the reverse-complement event will change type (and position)
without changing length; the domains at the border are instead
split in two subdomains of different types. The randomness
of this process guarantees that the already reached balance
between the number and average length of the two domain
types � and �̂ is not broken while their common average
length decreases in time as

〈��̂〉(t ) = 〈��〉(t ) = N/t . (4)

This second regime ends after a number of iterations t ∼
tequilibrium = N when equilibrium is reached.

(iii) For t > tequilibrium = N the average lengths stabilize at
the stationary value,

〈��̂〉(t ) = 〈��〉(t ) = 1, (5)

and the sequence can be thought as a realization of the asymp-
totic equilibrium discussed above.

We now explain how structure Istr (s(t )) and symmetry
Isym(s(t )) depend on the domain sizes 〈��〉 and 〈��̂〉 and thus
on the different regimes.

Istr (s): In order to identify the contribution of the dynamics
in generating complex structural features, we consider an ini-
tial s(0) generated by an iid process [no structure, Istr (0) = 0].
With this choice, a value Istr �= 0 signals the construction,
under the action of the dynamics, of different domain types. In
particular, at tmetastable and for L � 1, the total variance σ 2

τ can
be estimated, using the law of total variance, as the sum of
two components: one that measures variability of the mean
of returns between domain types and the other measuring

FIG. 2. Temporal evolution of symmetry and structure in the
model. (a) Numerical evaluation of the average sizes of domains
of the two types 〈��〉(t ) and 〈��̂〉(t ) as a function of the number
of iterates t of TE’s dynamics. (b) Numerical evaluation of the
symmetry and structural properties of the sequence generated by
the dynamics and quantified by the indicators Istr (t ) and Isym(t ). The
filled symbols in Istr indicate that these values are statistically differ-
ent from a random sequence [p value <0.01; equivalent results are
obtained using as an alternative definition of Istr the Jensen-Shannon
divergence between the P(τ ) obtained in the model and in random
sequences]. The sequences s(t ) have length N = 105 and the size of
reverse-complement events is L = 500, thus leading to time scales
tmetastable = 102 and tequilibrium = 105. The starting sequence is fully
random with fA = 0.1, fC = 0.2, fG = 0.3, fT = 0.4.

variability of returns within each type. Accordingly Istr (t )
grows from 0 to the value Istr (tmetastable ) > 0 at the end of the
first regime. In the second regime the domain sizes decay and
Istr (t ) decreases to zero at equilibrium (at tequilibrium). In terms
of regimes we thus expect (i) Istr grows; (ii) Istr decays; (iii)
Istr = 0.

Isym(s): Each domain of type � is a subsequence of the
ancient sequence s(0). If average size of such domains at
time t is large enough, the frequencies of each nucleotide are
approximately the same as their frequency in s(0); similarly
for �̂ and ŝ(0). No constraints are imposed to the symmetry of
the ancient genome. In particular, if the original sequence is
not Chargaff symmetric Isym(s(0)) > 0 then the symmetry re-
mains broken for all t � tmetastable as quantified by Isym(s(t )) �
t
N |〈��〉(t ) − 〈��̂〉(t )|Isym(s(0)). In terms of regimes we thus
expect (i) Isym > 0; (ii) Isym = 0; (iii) Isym = 0.

Altogether, the estimations and calculations above lead to
the following predictions for the presence of symmetry and
structure as a function of time t (regimes i–iii).

(i) 0 � t � tmetastable = N/L :
Structure Istr > 0 but no symmetry Isym > 0.
(ii) tmetastable = N/L � t � tequilibrium = N :
Structure Istr > 0 and symmetry Isym = 0.
(iii) tequilibrium = N < t :
Symmetry Isym = 0 but no structure Istr = 0.
In Fig. 2 we confirm these predictions in a numerical

simulation.
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The metastable regime. The crucial feature of the TE dy-
namics discussed above is that in regime (ii) both nontrivial
structure and symmetry coexist in the generated sequences.
The time (measured in number of iterations) for which this
regime is valid is orders of magnitude larger than that of the
first regime, as the ratio tequilibrium/tmetastable = L corresponds
to the average size of transposable elements (for example,
L � 102 in Homo sapiens [46]). We thus denote such long-
lived regime as metastable and we expect it to be generically
observed, even though it does not correspond to the stable
equilibrium of our model.

The DNA sequences in the metastable regime are charac-
terized by a symmetric domainlike structure. Domain models
have been already introduced in literature to reproduce
the complex structure generically observed in extant DNAs
[11,40–46]. In particular if the distribution of domain sizes
has a fat tail, this will lead to a long-range correlated se-
quence [11], signaled by a slow decay of P(τ ). The novelty
of our approach is twofold: First, the domainlike structure
in the metastable regime is an emergent property of the TE
dynamics (it is not imposed a priori); secondly, such complex
structure is intertwined with symmetry, that itself is an output
of the dynamics. In particular, we have shown that sequences
in the metastable regime are not only Chargaff symmetric
(Isym = 0), they reproduce the hierarchical relation between
symmetry and structure that is a distinctive feature of extant
genomes (see Fig. 3).

Different organisms. In Fig. 4 we report Isym and Istr com-
puted for genomes of different families, together with the
values obtained from our dynamics. It shows that symmetry
and structure coexist in most cases. The sequences from ani-
mals show enhanced structure while the cases of archaea and
bacteria show a moderate signature of structure, in agreement
with the temporal behavior of our model (i.e., associating
t with the age of the genomes). Note that symmetry and
structure properties are both statistical observations we made
on the full DNA sequence. Any evolutionary constraint that
pertains a small percentage of an organism genome does not
affect these statistical observations in a sensible way. As an
example, the protein-coding regions of Homo sapiens account
for 1.5% of the full sequence. On the other hand, care should
be taken when dealing with many different organisms: Exten-
sions of the model incorporating additional aspects of DNA
evolution will be required for a quantitative comparison with
the empirical data.

Conclusion. We have shown how a model that captures the
action of transposable elements (TEs) is able to reproduce the
intricate relation between symmetry and structure present in
DNA sequences. We find that symmetry and structure change
differently at different time scales (i.e., for different number
of actions of TEs). For a large (pre-asymptotic) time interval,
the sequences obtained in our model show the same non-
trivial structures and a hierarchy of symmetries (including
Chargaff) as in actual DNA sequences [see Figs. 1(b) and
3(b)]. Our mathematical model is extremely simplified and
includes the essential elements to explain the onset of symme-
try and structure. In particular, it mimics only a simple action
of TEs (reverse-complement), ignoring the fact that TEs are
classified in different families, have different properties, and
act according to different mechanisms [47–49]. We expect that

FIG. 3. Symmetry and structure in the metastable regime. Same
observables as in Fig. 1 are computed for a sequence in the
metastable regime of our dynamics. Data show that this regime is
characterized by a similar co-occurrence of symmetry and structure
as in extant genomes. Results in (a) are for a sequence of length
N = 5 × 106 initialized as in Fig. 2 and evolved using our model with
TE sizes � all equals to L = 5000 until t = 2048 � tmetastable = 1000.
Results in (b) are for a sequence of length N = 105 initialized as in
the artificial sequence reported in Ref. [39] and evolved using our
dynamic model with fixed L = 500 until t = 256 � tmetastable = 200.
The more generic initial sequence in (b) (i.e., Markov chain instead
of fully random) allows us to distinguish between the different types
of scale-dependent symmetries generated by the dynamics.

incorporating more details of the TE dynamics in our model
will refine our understanding of their role in shaping statistical
properties of DNA sequences, in particular in an evolutionary
viewpoint that would lead to refinements in the data-model
comparison presented in Fig. 4.

FIG. 4. Structure and symmetry in different organisms. Values of
Isym vs Istr for different genomes belonging to the families archaea,
bacteria, and animals [50]. Superimposed are the values of the se-
quences evolved via our model (starting in (Isym, Istr ) = (0.39, 0) and
evolving to (0,0); parameters as in Fig. 2(a).
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