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Real-space cluster dynamical mean-field theory: Center-focused extrapolation
on the one- and two particle-levels
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We revisit the cellular dynamical mean-field theory (CDMFT) for the single-band Hubbard model on the
square lattice at half filling, reaching real-space cluster sizes of up to 9 × 9 sites. Using benchmarks against
direct lattice diagrammatic Monte Carlo at high temperature, we show that the self-energy obtained from
a cluster center-focused extrapolation converges faster with the cluster size than the periodization schemes
previously introduced in the literature. The same benchmark also shows that the cluster spin susceptibility can
be extrapolated to the exact result at large cluster size, even though its spatial extension is larger than the cluster
size.
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I. INTRODUCTION

Even after decades of intense research, the single band
Hubbard model in finite dimensions larger than one remains
an unsolved cornerstone paradigm in theoretical solid state
physics. As a nonperturbative technique dynamical mean-field
theory (DMFT) [1–3] led to a significant leap forward as it
provided an approximation which is nowadays widely used
to treat material realistic variants of the Hubbard model [4].
In DMFT, the lattice problem is mapped to a self-consistent
auxiliary quantum impurity model, leading to a local approx-
imation of the self-energy.

Single site DMFT has led to many successes, e.g., a de-
scription of the Mott-Hubbard metal-to-insulator transition
(MIT) from a weak coupling metallic over to a strongly
correlated Fermi liquid and eventually Mott insulating state
[3,5] within a single theoretical framework. The locality of
the self-energy is however a major limitation for some of
the most interesting problems as, for example, cuprate high-
Tc superconductivity [6–9] where the pseudogap phase is
characterized by a strong node-antinode differentiation. Note,
however, that in material-realistic multiorbital models, even
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local DMFT self-energies can lead to k dependent effects in
the spectral function A(k, ω) due to orbital mixing as, e.g.,
shown in Ref. [10]. Quantum critical behavior [11–13] in low
dimensions and/or at low temperatures is another example
where the physics is dominated by nonlocal correlations be-
yond the mean-field description of spatial fluctuations within
DMFT.

In recent years, several methods have been introduced
to overcome the locality of the self-energy approximation
in DMFT, for a review on complementary efforts in the
weak coupling regime see [14]. Firstly, cluster extensions
of DMFT, in reciprocal space (DCA) [15–18], in real space
(CDMFT) [19–21], or in its first “nested” form [3,22,23]. This
transformed DMFT into a controlled method. The control
parameter is the size of the cluster, which determines also the
resolution of the approximation in momentum space. These
approaches have found extensive use, e.g., in the study of
the Hubbard model [24–41]. Secondly, several diagrammatic
extensions [42–58] have been proposed to obtain a better
resolution in momentum or a better convergence than cluster
methods.

In this paper, we focus on the real space CDMFT method
[20]. While large cluster sizes were studied in DCA up to con-
vergence and compared to exact methods like diagrammatic
Monte Carlo in some parameter regimes, e.g., Refs. [59,60],
large CDMFT clusters have not received the same attention.
The central issue is that CDMFT breaks translational invari-
ance by definition for any finite cluster. One therefore needs
to use reperiodization schemes to restore the translation sym-
metry of the lattice self-energy when approximating it from
the cluster self-energy [20]. We note in passing that such a
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reperiodization is usually performed only for the converged
result as it tends to destabilize the calculation when performed
during the self consistency loop. Several ways of reperiodiza-
tion been discussed in the literature [26,61,62].

In this work, we solve large CDMFT clusters of up to 9 × 9
sites for the half-filled Hubbard model, and benchmark their
convergence against exact results obtained with diagrammatic
Monte Carlo (DiagMC) [63–65] in its connected determinant
formulation (CDet [66] for one particle reducible quantities
and �DDMC [67–69] for one particle irreducible quantities).

We show that if we use a center-focused extrapolation
(CFE) of converged results for increasingly large clusters to
approximate the lattice self-energy, instead of averaging over
a whole single cluster as done in previous works, we obtain a
much better approximation. The improvement of CFE with
respect to previous schemes is quantified by its excellent
agreement with the DiagMC result at moderate temperature.
We further present results at lower temperature T and larger U
than the range currently accessible with diagrammatic Monte
Carlo methods.

The paper is organized as follows. In Sec. II, we introduce
the 2D Hubbard model and present the CDMFT formalism.
We then present in Sec. III the center-focused extrapolation
technique, and benchmark it against DiagMC. In Sec. IV, we
discuss the spin-spin correlation function and finally summa-
rize our results in Sec. V.

II. MODEL AND METHOD

We study the 2D single-orbital Hubbard model on the
square lattice

H = −t
∑

<i, j>,σ

c†
i,σ c j,σ +

∑

i

U n̂i,↑n̂i,↓ − μ
∑

i,σ

n̂i,σ , (1)

where c†
i,σ (ci,σ ) denotes the creation (annihilation) opera-

tor for an electron with spin σ on site i, with the density
operator n̂i,σ = c†

i,σ ci,σ and the chemical potential μ. t and
U are nearest-neighbor hopping amplitude and onsite Hub-
bard repulsion, respectively. We study the half-filled case,
which corresponds to μ = U/2. For a single-orbital unit cell,
the electronic dispersion relation in momentum space reads
ε(k) = −2t (cos kx + cos ky).

In the following, we compute propagators of single- and
two-particle excitations in the CDMFT approximation [20].
CDMFT is a DMFT approximation on the superlattice made
of real space clusters on the original Bravais lattice [20],
where the cluster sites within the supercell play the role of or-
bitals. Hence, the Green’s functions and self-energy contains
intersites elements. They are computed using a self-consistent
auxiliary quantum impurity model, which is solved by a
continuous-time quantum Monte-Carlo solver using an inter-
action expansion [70], implemented with the TRIQS library
[71].

For the present study we consider square clusters of up to
N × N = 9 × 9 atoms (see Fig. 1 for a schematic illustration).
Technically, the equations for the Green’s functions and self-
energies are identical to those of a multiorbital (single-site)
DMFT with a density-density interaction. The local lattice
Green’s function in Matsubara frequencies is computed by

FIG. 1. Square clusters with N × N lattice sites. The left panel
shows the 3 × 3 and the right one the 4 × 4 cluster, with the central
site Rc in red.

integrating over the reduced Brillouin zone (RBZ) of the su-
perlattice:

Gloc
i j (iωn) =

∑

k∈RBZ

[(iωn + μ)δi j − ε̃i j (k) − �i j (iωn)]−1, (2)

with i, j indexing cluster sites, supercell dispersion relation
ε̃i j (k) (with k ∈ RBZ), and self-energy �i j (iωn). Here the
self-energy is obtained in every iteration from the auxiliary
impurity model �i j (iωn) = �

imp
i j (iωn). The Weiss field is then

calculated as [20]

[G0(iωn)]−1
i j = [Gloc(iωn)]−1

i j + �
imp
i j (iωn). (3)

The self-energy acquires intersite components. Hence it can
capture correlation effects up to distances of about the linear
size of the cluster.

The cluster self-energies break translational invariance for
any finite cluster size. Transformation to lattice quantities in
the Brillouin zone of the original lattice therefore requires
restoring translational invariance for the Green’s function, the
self-energy, or its cumulants [19,20,25,26,61,72–74] (see also
Appendix B).

III. CENTER-FOCUSED EXTRAPOLATION

In a very large cluster, we expect on general grounds the
Green function at the center of the cluster to converge faster
with cluster size than at the boundary. In this section, we
use this insight to improve on the reperiodization within the
CDMFT algorithm. We begin with the study of single-particle
cluster quantities and analyze the convergence of the local
and the nearest-neighbor self-energy with respect to cluster
size. In a second step, we use these converged self-energies to
approximate the lattice self-energy, and benchmark it against
exact DiagMC results.

A. Cluster quantities

Let us first concentrate on the cluster Green’s and spectral
functions. In Fig. 2, we show site-resolved single particle
spectral functions obtained from an N × N = 8 × 8 CDMFT
calculation for different values of U . Exploiting cluster sym-
metry, we show only the upper right quadrant of the 64
cluster sites, where equivalent spectra are plotted in the same
color. The violation of the translational invariance is most
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FIG. 2. Local spectral functions for βt = 12.5, N × N = 8 × 8 and different values of the interaction strength U . The shown panels present
the upper right quadrant of our cluster (see upper left panel). There is a clear trend towards insulating behavior as we traverse the cluster from
the border to the center.

pronounced for U/t = 4 (solid lines) as can be seen by com-
paring the spectra in the center at R = (0, 0) with those in
the corners at R = (3, 3). For U/t = 2, all spectra exhibit a
finite quasiparticle weight at εF , while for U/t = 12 they are
all gaped.

In Fig. 3, we show the corresponding site-dependent
value of G(R, τ = β/2). The spectra in the cluster center
are generally more correlated/insulating than those at the
edges/corners of the cluster. Given the fact that the exact
solution has a critical value of Uc = 0 at T = 0, the single
particle spectrum of the central site appears to be a better
approximation than the average over the whole cluster (dashed
line in Fig. 3).

B. Convergence of cluster quantities

We now study systematically the convergence of the onsite
and first-neighbor self-energy with cluster size, and compare

it to the exact lattice DiagMC result in the regime where it
is available. In the left panels of Fig. 4, we plot the (purely

FIG. 3. Averaged (dashed) and site dependent G(τ = β/2) as a
function of U/t with parameters identical to Fig. 2.
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FIG. 4. Matsubara frequency dependent self-energy of the central site (a) and (c) at R = (0, 0) and of the neighboring one (b) and (d) at
R = (1, 0), as obtained from CDMFT and DiagMC calculations for U/t = 4 and β t = 5 [(a) and (b)] as well as β t = 12.5 [(c) and (d)]. The
extrapolated self-energy is obtained by fitting the data with a function linear in 1/N (excluding the 2 × 2 data), see insets for the fits from the
first four Matsubara frequencies.

imaginary) onsite self-energies of the four inner-core sites of
the even clusters as a function of Matsubara frequency for
U/t = 4 and two different temperatures. In the right panels,
we plot the (purely real) nearest-neighbor self-energy cor-
responding to the intersite correlation between two of the
innermost cluster sites. The overall cluster-size dependence is
pronounced in all plots and stronger for the lower temperature.
In the insets of Fig. 4, we show the linear extrapolation of
the data at each Matsubara frequency as a function of 1/N .
A linear extrapolation is possible,1 if we neglect the smallest
cluster N × N = 2 × 2 . The extrapolated self-energies are
plotted in black. The error bar combines errors from three

1According to spin-wave theory [88] finite-size corrections scale as
1/N , which may apply to the half-filled Hubbard model dominated
by antiferromagnetic spin fluctuations.

sources: the QMC statistics in the quantum impurity solver,
the convergence of the CDMFT self-consistency loop, and the
extrapolation in 1/N .

At high temperature (βt = 5, upper panels of Fig. 4), we
compare CDMFT results to DiagMC benchmark data for
Matsubara frequencies iωn up to n = 10 (red color). For both
the onsite and nearest-neighbor self-energies, the extrapolated
CDMFT results are compatible with the DiagMC data within
error bars. For the onsite self-energy (upper left panel), the
extrapolated (and DiagMC) self-energy is quite different from
the largest considered cluster N × N = 8 × 8, especially at
the first n = 0 Matsubara frequency. For the nearest-neighbor
self-energy, the extrapolation effect extends to Matsubara fre-
quencies as high as n = 10.

At lower temperature (βt = 12.5, lower panels of Fig. 4),
which is out of reach of the DiagMC algorithm, the effects of
the extrapolation are even stronger and enhance the impact of
the correlations.
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FIG. 5. Absolute value of the self-energy at the first Matsubara
frequency �(iω1, R) as a function of real-space distance R = |R| at
βt = 5 and different values of the interaction U/t .

C. Center-focused extrapolation (CFE) of the self-energy

After extrapolating the self-energy at the center of the
cluster, we approximate the lattice self-energy in real space by
a center-focused extrapolation (CFE) defined in the following.

For each lattice displacement R with vector elements greater
than or equal to zero, we take the large N extrapolation of the
cluster self-energy between the central site Rc (cf. Fig. 1) and
R + Rc, i.e.,

�latt(R, iωn) = �N→∞
R+Rc,Rc

(iωn), (4)

For negative displacements we infer the value by using the
rotational symmetry of the cluster. This procedure differs sub-
stantially from the conventional periodization, where averages
over the whole cluster are performed [20].

In practice, given that we solve CDMFT only up to N ×
N = 9 × 9, our strategy is two-fold. For the short distances
R, we use the extrapolated self-energy values computed in the
previous subsection. For the largest R however, where no 1/N
extrapolation is possible given the lack of data points, we use
instead the value of the largest cluster. This approximation
is justified because the self-energy in real space �(iωn, R)
decays on length scales smaller than our largest cluster. Indeed
in Fig. 5, we show �(iω1, R) for βt = 5 and different values
of the interaction U/t . Even for the largest interaction value

FIG. 6. Imaginary (left) and real (right) parts of the lattice self-energy �(k) at the first and second Matsubara frequency n = 0, 1 along a
path in the first Brillouin zone, for an inverse temperature βt = 5 and different values of the interaction U/t . We plot the lattice self-energy
obtained by conventional periodization of the 8 × 8 cluster (red), Fourier transformation of the real-space correlations relative to the central site
for the 8 × 8 cluster (blue), Fourier transformation using the extrapolated real-space self-energy (black), and the numerically exact DiagMC
data (green).
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FIG. 7. Spectral function of the lattice Green’s function, for
U/t = 4.0 and an inverse temperature βt = 5, using the 8 × 8 cu-
mulant periodization scheme, the conventional 8 × 8 periodization,
the 8 × 8 center-focused reperiodization and the center-focused ex-
trapolation (from top to bottom).

U/t = 4, we observe a decay of the absolute value of the
self-energy at the first Matsubara frequency to zero within less
than 5 lattice constants.

In Fig. 6, we compare the Fourier transform

�latt(k, iωn) =
∑

R

�N→∞
R+Rc,Rc

(iωn) e−ik·R (5)

of this estimator of the lattice self-energy (black) with the ex-
act DiagMC computation (green) for the first two Matsubara
frequencies (ωn={0,1}), at the temperature where it is available.
We further compare these to the self-energy obtained by using
the same procedure directly on the N × N = 8 × 8 results,
i.e., without the large N extrapolation (blue dashed), and to the
“standard” periodization of the N × N = 8 × 8 self-energy
(red) [20]. We find again an excellent agreement, within er-
ror bars, between the CDMFT+CFE and the exact DiagMC
results. In particular, for the largest available U , we see a
substantial improvement over the conventional self-energy
periodization, and a sizable correction of the self-energy data
obtained without extrapolation. We see in the second to lowest
panel on the right side (βt = 5, U/t = 4, n = 0) that the CFE
procedure captures even the nonmonotonous behavior of the
self-energy along the 
-X -M-
 path which is not present in
the N × N = 8 × 8 data. We remark that such fine structure in
k-space originates from cluster self-energy terms belonging to
the largest distances R whose calculation and error estimates
are most challenging.

D. Lattice spectral function of CDMFT+CFE

The single particle spectra corresponding to the self-energy
data of Fig. 6 are presented in Fig. 7. In addition, we present

here also the spectrum for the cumulant periodization scheme
applied to the N × N = 8 × 8 cluster (see Appendix B).

The qualitative differences between the CFE results and
the conventional schemes using data without extrapola-
tion are sizable and most visible around the Fermi level.
The gaps around X = (0, π ) and between M and 
 at
(π/2, π/2) are more pronounced due to the larger value
of the CFE self-energies. This shows that the CFE has a
qualitative impact on computed observables, even at high
temperature.

IV. SPIN-SPIN CORRELATION FUNCTION

Let us now consider the spin susceptibility of the cluster

χ (R, τ ) ≡ 〈[n̂↑(R + Rc, τ ) − n̂↓(R + Rc, τ )]

× [n̂↑(Rc, 0) − n̂↓(Rc, 0)]〉 . (6)

The computation of the full lattice susceptibility, which uses
the impurity two-particle vertex function as an input to the
lattice Bethe-Salpeter equation [3], is currently computation-
ally too demanding for large clusters. However, in the limit
of infinite cluster size, we expect the two quantities to co-
incide. In Fig. 8 (upper panel), we show the imaginary time
onsite and nearest-neighbor spin-spin correlation functions
for U/t = 4 and βt = 7.5, for different cluster sizes. For
these parameters, both components are (i) sizable, (ii) fully
dynamic (i.e., beyond static mean-field approaches), and (iii)
antiferromagnetic (as expected for the present model). We
see a quick convergence of the onsite susceptibility with N .
The nearest-neighbor component for R = 1 has a stronger
cluster dependence. In the central panel of Fig. 8, we show
the spatially resolved dynamical susceptibility χ (R, τ ) for
the 8 × 8 cluster. Remarkably, the dynamic part of the sus-
ceptibility seems to decay much faster with distance than
the static part [i.e., already χ (R = (1, 1), τ ) is barely de-
pendent on τ ]. This could indicate the presence of two
length scales, one for coherent (i.e., dynamic) and one for
nonlocal correlations that can be captured by static mean
fields. The real-space decay of the static (i.e., τ -integrated)
spin susceptibility χ (R,
 = 0) is presented on the bottom
panel of Fig. 8 and compared to that of the corresponding
self-energy at the smallest Matsubara frequency. The sus-
ceptibility data is well approximated by an Ornstein-Zernike
form A exp(−R/ξ )

√
(ξ/R) with a correlation length of ξ =

6.89. The fact that we manage to capture the exponential
decay of spin-spin correlations reaching far beyond the scale
of the clusters under consideration is indeed quite remark-
able. A similar analysis for the self-energy proves to be less
feasible, given the fact that it exhibits a much stronger ra-
dial dependence. We observe, however, that the self-energy
decays overall on smaller length scales than the susceptibil-
ity.

In order to assess the validity of these susceptibility results,
we compare it for different cluster sizes N × N = 4 × 4, 6 ×
6, 8 × 8 to the DiagMC benchmark in Fig. 9, where we plot
χ (R, i
n) as a function of Matsubara frequency for the two
displacements R = (0, 0) (left) and R = (1, 0) (right).
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FIG. 8. (Top) Spin-spin correlation function χ (R, τ ) as defined
in Eq. 6 at distances R = 0 and R = 1, for βt = 7.5, U/t = 4, and
three different cluster sizes. While the onsite component appears
to be almost cluster-size independent, the nearest-neighbor one ex-
hibits a dependence on N . (Middle) The same as the upper panel,
but for fixed cluster size N × N = 8 × 8 and various horizontal
and diagonal displacement vectors. (Bottom) Normalized static spin
susceptibility (colored) and self-energy (gray) as a function of the
real-space distance R for an N × N = 8 × 8 cluster for the same
displacement vectors as above. An exponential fit of the data is
shown in black.

As for the self-energy, we perform an extrapolation to
infinite cluster size (cf. insets of Fig. 9) and obtain excel-
lent agreement, within error bars, with the DiagMC data. We
observe a strong dependence on N only for the displacement
R = (1, 0) at the first Matsubara frequency.

Our analysis of the spin-spin susceptibility suggests that
real-space cluster approaches such as CDMFT are valid even
at temperatures and/or interaction values for which the mag-
netic correlation length exceeds the cluster size, as long as the

self-energy decay in real-space is sufficiently captured. How-
ever, we expect that the feedback of this long-range magnetic
mode onto the electronic self-energy is not correctly described
at this cluster size.

V. CONCLUSION

In this work, we have revisited the CDMFT calculations for
the single band Hubbard model on the 2D square lattice at half
filling. We performed a detailed momentum and real-space
analysis of the spectral properties for different cluster sizes
of up to 9 × 9 sites. Using a systematic benchmark with the
exact DiagMC result at the lowest temperature for which it is
obtainable, we have shown that an approximation scheme of
the lattice self-energy based on the center of the cluster is su-
perior to the conventional periodization approaches based on
averages over the cluster. In fact, the broken translational sym-
metry of the cluster Green’s function and self-energy is simply
a manifestation of the bulk-like nature of the central cluster
sites, making them the proper basis for the approximation of
the respective lattice quantities. We have further shown that
the exponential decay of spin-spin correlations is very well
captured by CDMFT calculations, even when correlations
extend far beyond the size of the cluster. Finally, CDMFT
calculations and the CFE extrapolation can be carried out
to temperatures currently inaccessible to exact diagrammatic
Monte Carlo techniques, making the CDMFT+CFE proce-
dure a powerful computational tool to access the physics of
nonlocal correlations beyond dynamical mean-field theory.
The presented algorithmic advancements may be applied to
improve material-realistic studies of correlated electron sys-
tems such as transition metal oxides [75], molecular materials
like the family of organic superconductors [76], and correlated
ad-atoms on semiconductor surfaces [77–80]. Within practical
restrictions, i.e., an upper limit for local (spin-orbital) plus
cluster degrees of freedom, CDMFT+CFE can help to explore
regimes in the phase diagram which are beyond the local limit
such as second order phase transitions (e.g., magnetic ordering
or superconducting pairing). Furthermore, for real material
studies the computation of two-particle observables (as the dy-
namic magnetic susceptibility presented in this paper) allows
for a connection with modern types of spectroscopies such as,
e.g., x-ray absorption or (non)-resonant inelastic x-ray scatter-
ing which reveal phenomena of many-body correlations much
less ambiguous than the single particle spectral function.
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FIG. 9. Spin susceptibility for R = (0, 0) (a) and R = (1, 0) (b), as obtained from the various CDMFT clusters and DiagMC for U/t = 4
and βt = 5. The extrapolation is obtained by fitting the data with a 1/N linear function, see insets for the fits from the first four Matsubara
frequencies.
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APPENDIX A: ANTIFERROMAGNETIC ORDER

In this Appendix, we consider antiferromagnetic (AFM)
ordering in our CDMFT computations.

In Fig. 10, we provide the phase boundary TN (U ) as de-
termined by the CDMFT with the criterion: AFM order for
mAFM � 0.1 and PM one for mAFM � 0.1. We consider cluster
sizes up to 8 × 8. Due to commensurability with the AFM
checkerboard symmetry, we restrict our analysis to even N
(even though odd clusters could also be easily accessed in self-
consistent cycles analogous to AFM single site DMFT). We
observe a monotonous reduction of the Néel temperature with
increasing cluster size, with a pronounced U dependence: the
reduction of TN in the strong coupling regime is significantly
stronger compared to the small U region. This reduction is

FIG. 10. Néel temperatures for a DMFT and various CDMFT
calculations with even cluster sizes N .

expected, and compatible with the exact Néel temperature of
the 2D square lattice, which is known to be TN = 0 from the
Mermin-Wagner theorem [81].

APPENDIX B: REPERIODIZED SPECTRAL FUNCTIONS

In this supplemental section, we present directly postpro-
cessed CDMFT data without extrapolation for various cluster
sizes. In order to compute momentum dependent spectral
functions in the Brillouin zone of the 2D square lattice, we
follow the cumulant periodization scheme of Ref. [26]. In-
stead of periodizing the self-energy directly, its cumulant
M(iωn) = (iωn + μ − �(iωn))−1 is periodized to obtain the
lattice Green’s function G(k, iωn) by

M(k, iωn) = 1

N

N∑

i, j=1

Mi, j (iωn) eik(Ri−R j ) , (B1)

with Ri, R j being the real-space positions of the sites i and j in
the cluster, and the origin in R = (0, 0) corresponding to the
central site for N odd and to one of the innermost sites for N
even. We note that also the application of this scheme turned
out to be problematic in some situations—which actually
motivates the present analysis to account for the real-space
anisotropies of CDMFT—but is used here as a reference since
it was shown to perform better than reperiodizations of the
self-energy or the Green’s function [26].

In Fig. 11, we show results for the single-particle spectral
function as obtained from CDMFT for U/t = 4 and an inverse
temperature βt = 12.5 by employing (B1) and subsequent
analytical continuation with the Maximum entropy method
[82,83]. Each of the nine horizontal panels contains a mo-
mentum resolved intensity map for A(ω, k) (left) on the path

-X -M-
 in the cubic Brillouin zone and the k-integrated
local spectral function A(ω) (right). The evolution from top
(“DMFT”) to bottom (“9 × 9”) illustrates the cluster size de-
pendence of the spectrum at fixed interaction and temperature.
As function a of N , we observe an MIT transition which
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FIG. 11. Momentum resolved spectral functions along a closed
path inside the first Brillouin zone (left) and full spectral function
of the local Green’s function (right), for U/t = 4, inverse tempera-
ture βt = 12.5, and different square clusters, as obtained by using
the cumulant periodization. The dotted line corresponds to ω = 0.
While the single-site DMFT (N = 1) is clearly in the metallic phase,
the quasiparticle peak vanishes with increasing N , and N × N =
9 × 9 is already close to the insulating phase characterized by a gap
in the local spectral function.

reflects in A(ω) as a spectral weight transfer from sharp quasi-
particle excitations around the Fermi level εF to incoherent
Hubbard bands, in agreement with previous studies on smaller
cluster sizes [24,27]. However, the opening of the gap in A(ω)
is a gradual process crossing a pseudogap-like regime between
N × N = 4 × 4 and N × N = 7 × 7. This effect originates

FIG. 12. Spectral function of the local lattice Green’s function
for N × N = 7 × 7, for different inverse temperatures and fixed
U/t = 4 (top), and for different values of U and a fixed inverse
temperature βt = 12.5 (bottom).

from a momentum selective opening of the gap (see also
Ref. [84]). Closer inspection of A(ω, k) for the intermediate
regime of N × N = 5 × 5 and 6 × 6 clearly reveals the ab-
sence of a Fermi surface at the antinodal point X = (π, 0),
while the quasiparticle band crossing εF in the nodal direction
around (π/2, π/2) remains sharp.

To complement our analysis of the MIT we also study the
U and β dependencies of A(ω). Figure 12 shows A(ω) for
N × N = 7 × 7 and U/t = 4. The temperature dependence,
especially of the spectral weight at εF , indicates the presence
of a fully developed gap (in agreement with the correspond-
ing N × N = 7 × 7 momentum resolved spectrum) which is
barely closed by incoherent thermal smearing. Data without
analytical continuation are reported in the lower panel of
Fig. 13, with G(τ = β/2) = A(ω = 0).

Here our results for the MIT as a function of N , U , and
temperature are summarized. Remarkably, the slope of the Tc

FIG. 13. Weight of the imaginary time local lattice Green’s func-
tion evaluated at τ = β/2, for a fixed inverse temperature βt = 12.5
and different cluster sizes (top) and phase diagram with the Mott
transition line for different cluster sizes (bottom). For comparison,
we show also the transition lines as obtained from the local lattice
Green’s function (dashed lines). The Néel temperatures for the small-
est and largest cluster size is indicated by dotted lines.
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versus Uc transition line is inverted with respect to the single-
site DMFT already for the smallest N × N = 2 × 2 cluster,
in agreement with previous works [24]. Increasing N leads
to a simultaneous increase of Tc at fixed U and decrease of

Uc at fixed T which is consistent with previous calculations
directly in the thermodynamic limit, e.g., D
A [85,86] and
DiagMC [69,87], where the critical value shows the behavior
Uc → 0.
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