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Strong zero-field Förster resonances in K-Rb Rydberg systems
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We study resonant dipole-dipole coupling and the associated van der Waals energy shifts in Rydberg
excited atomic rubidium and potassium and investigate Förster resonances between interspecies pair states. A
comprehensive survey over experimentally accessible pair state combinations reveals multiple candidates with
small Förster defects. We crucially identify the existence of an ultrastrong, “low” electric field K-Rb Förster
resonance with an extremely large zero-field crossover distance exceeding 100 μm between the van der Waals
regime and the resonant regime. This resonance allows for a strong interaction over a wide range of distances
and by investigating its dependence on the strength and orientation of external fields we show this to be largely
isotropic. As a result, the resonance offers a highly favorable setting for studying long-range resonant excitation
transfer and entanglement generation between atomic ensembles in a flexible geometry. The two-species K-Rb
system establishes a unique way of realizing a Rydberg single-photon optical transistor with a high input photon
rate and we specifically investigate an experimental scheme with two separate ensembles.
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I. INTRODUCTION

In recent years, ultracold Rydberg atoms have emerged as a
prominent resource for numerous quantum-enabled technolo-
gies including quantum information processing [1], quantum
simulation [2,3], quantum nonlinear optics [4], and hybrid
quantum devices [5]. Arrays of Rydberg atoms, for example,
have been used for realizing high-fidelity quantum gates [6,7]
and for generating strongly correlated phases of many-body
quantum systems [8–12], and strong photon-photon interac-
tions mediated by Rydberg atoms [13,14] have been exploited
to realize single-photon switches and transistors [15,16],
quantum memories [17], and photonic phase gates [18]. The
signature feature of ultracold Rydberg atoms is their strong
dipole-dipole interactions, which give rise to two important
mechanisms. The first is the blockade effect, where a single
Rydberg excitation from laser light forbids further excitations
within a certain distance from the first due to the energy
shift caused by the Rydberg-Rydberg interaction. In an atomic
ensemble, this leads to a single collective atomic excitation
shared among the atoms resulting in an effective two-level
“superatom” [19]. The second important mechanism is that
the long-range interaction, when resonant, can cause coherent
excitation transfer between atoms that are far apart [20–23].
The strength and range of the dipole-dipole interaction are the
most critical factors in the practical implementation of these
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two effects that underpin a vast range of experimental obser-
vations with ultracold Rydberg systems to date. Denoting by
|αi〉 and |βi〉 the initial and final states of a Rydberg atom i, the
coherent dipolar coupling between two pairs of Rydberg states
|α〉 = |αa, αb〉 and |β〉 = |βa, βb〉 in a pair of atoms a and b is
of the form U ∼ C3/R3, where R is the distance between the
two atoms (Fig. 1) and C3 is a constant that depends on the
dipole matrix elements and the orientation of the dipoles with
respect to the interatomic axis [1,24]. The energy eigenstates
of the system are determined by the relative magnitudes of
U and the energy difference between the two pair states � =
E (α) − E (β ) at infinite separation, also known as the Förster
defect [25]. In the regime where U � |�|, the dominant effect
from the state |β〉 on an initially excited state |α〉 is an energy
shift that is second order in U and has the van der Waals form
−U2/� ∼ −C6/R6. In the regime where U � |�|, the dipolar
coupling is resonant and the energy shift varies much more
slowly with distance as ∼1/R3. A Förster resonance occurs
when the Förster defect between the pair states vanishes, such
that the coupling is resonant and the energy shift has a 1/R3

scaling for arbitrary distances. In practice, an external dc or
microwave electric field is used to tune a naturally occurring
small Förster defect to zero [26,27]. Förster resonances are a
highly useful tool in ultracold Rydberg physics, as they enable
fast external control of the strength and angular variation
of Rydberg interactions [28], extend the range of Rydberg
blockade by allowing a relatively slow 1/R3 fall-off, and
can realize long-distance dipolar exchange of states between
atoms or atomic ensembles [29]. Indeed, Förster resonances
have been widely studied in the context of dipole block-
ade [30,31], excitation hopping between single atoms and
atomic ensembles [20,21], nondestructive imaging of Rydberg
atoms [23], enhanced gain of single-photon optical transistors
[15,16], and non-demolition quantum-state measurements of
Rydberg atom qubits [32].
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FIG. 1. (a) Pair state energies for two atoms a and b in Ryd-
berg bare states |αa〉, |βa〉 and |αb〉, |βb〉 with Förster defect � =
E (α) − E (β ). (b) Two Rydberg atoms with dipole moments a and
b at an interatomic separation R. The angle θ is determined by the
quantization axis ẑ and the interatomic axis r̂. |αa〉, |αb〉, |βa〉, and
|βb〉 represent sets of quantum numbers |nl jmj〉, consisting of the
principal quantum number n, the orbital angular momentum l , the
total electronic angular momentum j, and the ẑ projection of
the angular momentum m. For the case of external fields, B and E,
the field direction defines the quantization axis; otherwise, we define
ẑ directed along r̂.

Experimental and theoretical studies on quantum process-
ing and quantum optical tools based on Rydberg systems
have so far almost exclusively focused on using a single
atomic species. Advanced atom trapping in geometries such
as one-, two-, and three-dimensional arrays of traps for single
atoms [11,33] and atomic ensembles [19,34,35], however,
enable configurations of spatially separated clouds of different
species. A two-species system of rubidium and cesium (Rb-
Cs) atoms has been recently proposed as a promising approach
for qubit systems with suppressed cross talk between com-
putational and measurement qubits [32,36]. Dimer states and
dispersion coefficients in K-Rb Rydberg systems have also
been theoretically studied [37,38]. K-Rb in particular offers
the possibility to explore effects due to the bosonic (85Rb,
87Rb, 39K, 41K) and the fermionic (40K) quantum statistics of
the atoms.

In this paper, we study Förster resonances arising in the
dipole-dipole interaction between rubidium and potassium
atoms in their Rydberg states. We observe a number of near
Förster resonances with fortuitously small zero-field Förster
defects resulting in a 1/R3 scaling in energy shift for distances
up to 100 μm. Crucially, these near resonances can further be
brought to exact resonance by applying very small electric
fields (<50 mV/cm). This is significant because high-lying
Rydberg states possess giant electric polarizabilities and con-
sequently the application of even moderate electric fields can
mix many Rydberg states at small distances, compromising
their suitability for Rydberg blockade. Our investigation cov-
ers Förster resonances for pair states comprised of s and d
angular momentum states that can be excited from atomic
ground states via two-photon excitations. We provide pair
interaction potentials and angular dependencies for the most
relevant pair state, which has a strong and largely isotropic
interaction over a wide range of distances. Importantly, we
describe its potential use in a single-photon transistor that
capitalizes on the use of spatially separated rubidium and
potassium ensembles. The paper is organized as follows. In
Sec. II, we provide a brief overview of dipole-dipole interac-
tions between Rydberg states and provide general formulas for

the calculation of characteristic interaction parameters such as
interaction coefficients and crossover distances. In Sec. III,
we analyze in detail the Förster resonances for a range of
K-Rb pair states on a grid of principal quantum numbers
50 � nK, nRb � 110 for a variety of angular momentum states
and tabulate the most promising Förster resonances in this
system. In addition, we compare them to the known reso-
nances in Rb-Rb, Rb-Cs, and Cs-Cs systems. For the state
with the smallest Förster defect, we investigate in Sec. IV
the interaction potentials in the presence of external fields,
and discuss the angular dependence of the interaction. In
Sec. V, we explore benefits of the strong Förster resonances
for possible applications in photonic devices and analyze a
Rydberg single-photon optical transistor. We summarize our
results in Sec. VI.

II. DIPOLE-DIPOLE INTERACTIONS

We consider two Rydberg atoms a and b with an inter-
atomic separation R � rLR where rLR =

√
〈s1〉2 + 〈s2〉2, 〈si〉

characterizes the spatial extent of the electronic cloud for an
atom in the Rydberg state. In this regime, the electron clouds
are nonoverlapping and the two atoms interact via electro-
static interaction that can conveniently be expressed using a
multipole expansion. The dominant term in the expansion is
typically the dipole-dipole interaction [25],

Vdd(R) = 1

4πε0

a · b − 3(a · r̂)(b · r̂)

R3
, (1)

where r̂ is a unit vector along the interatomic axis and a = e ra
and b = e rb are the dipole moments of the two atoms. The
overall interaction is described by the total Hamiltonian

H = Ha ⊗ 1b + Hb ⊗ 1a + Vdd, (2)

consisting of the single-atom Hamiltonians Ha and Hb,
identity operators 1a and 1b, and the interaction operator
Vdd, the quantum mechanical equivalent to the classical
case in Eq. (1). The eigenstates and eigenvalues of the total
Hamiltonian at atomic separations R can be used to compose
potential landscapes of the interaction. The initial states |αa〉
and |αb〉 of atoms a and b form a pair state |αaαb〉 which
couples to pair combination |βaβb〉 via 〈αaαb|Vdd|βaβb〉,
see Fig. 1(a), and leads to off-diagonal terms in the full
Hamiltonian H . The main task is therefore to calculate
these off-diagonal matrix elements which is best done by
describing the dipole moments in the spherical basis defined
by a0 = az, a±1 = ∓ ax±iay√

2
[39] for atom a, and similarly for

atom b. We transform Eq. (1) to [29]

Vdd = 1

4πε0R3

⎡
⎣ (1 − 3cos2θ )

2
(2a0b0 + a+1b−1 + a−1b+1)

− 3sinθcosθ√
2

(a−1b0 − a+1b0 + a0b−1 − a0b+1)

− 3sin2θ

2
(a+1b+1 + a−1b−1)

⎤
⎦. (3)
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In the absence of external fields, we choose the quantization
axis, ẑ, to line up with the interatomic axis, r̂. Otherwise, the
external fields define the direction of the quantization axis
and thereby the angle θ , as depicted in Fig. 1(b). Numerous
Rydberg pair states can be coupled to an initial pair state
via the dipole-dipole interaction, but in practice, only a
few of the pair states are sufficiently close to each other
(small �) to interact strongly. From Eq. (3), it becomes
clear that one has to calculate the dipole matrix elements
〈αaαb|aqbq′ |βaβb〉, where q, q′ ∈ 0,±1. These all involve
products of 〈αa|aq|βa〉 and 〈αb|bq′ |βb〉, which are themselves
matrix elements of spherical tensor operators with respect
to angular-momentum states such as |αa〉 = |nα, lα, jα, mα〉.
The Wigner-Eckart theorem [39] allows one to simplify the
tensor matrix elements, resulting in

〈αa|aq|βa〉 = C jαa ,mαa
jβa 1,mβa q

〈 jαa ||era|| jβa〉√
2 jβa + 1

. (4)

Here, 〈 jαa ||era|| jβa〉 is a reduced matrix element in the fine
structure basis of atom a, ra is the internal position operator of
atom a, and C jαa ,mαa

jβa 1,mβa q are Clebsch-Gordan (CG) coefficients.
The reduced matrix element can be expressed by the radial
wave functions Rαa (r) and Rβa (r) of atoms a and b,〈

jαa

∣∣∣∣era

∣∣∣∣ jβa

〉 = (−1)(2lβa +s+ j′αa +1)

×
√(

2 jαa

)(
2 jβa

)(
2lαa + 1

)(
2lβa

)
×

∫ ∞

0
Rαa (r)erRβa (r)r2dr

×
{

jαa 1 jβa

lβa s lαa

}
︸ ︷︷ ︸

Wigner 6- j symbol

(
lαa 1 lβa

0 0 0

)
︸ ︷︷ ︸

Wigner 3- j symbol

,

and most importantly, it is completely independent of the
magnetic quantum numbers mαa , mβa , and light polarization
q, which are determined by the orientation of the two
atoms with respect to the quantization axis. The commonly
used CG coefficients describe the angular coupling of
|αa〉 and |βa〉. Only the nonzero matrix elements have to
be considered, which are those satisfying conservation of
angular momentum, mβa = mαa + q. Hence, when calculating
the matrix elements for the dipole-dipole interaction, we only
need to calculate the reduced matrix element once, since it is
identical for all terms in Eq. (3).

If we only consider a single channel k which connects two
pair states, we can express the matrix elements of the dipole-
dipole interaction as

〈α|Vdd|β〉 = C3k

R3
Sk

1/2, (5)

where we define the interaction coefficient

C3k = e2

4πε0

〈
jαa

∣∣∣∣ra

∣∣∣∣ jβa

〉〈
jαb

∣∣∣∣rb

∣∣∣∣ jβb

〉√(
2 jβa + 1

)(
2 jβb + 1

) (6)

which contains the reduced matrix element for both
atoms. This spin-independent coefficient determines the
interaction of two pair states with quantum numbers
(nαa , nαb, lαa , lαb, jαa , jαb ) ↔ (nβa , nβb, lβa , lβb, jβa , jβb ). The
angular dependence of the interaction is summarized in the

coefficient S1/2
k [32], which consists of CG coefficients that

additionally depend on the quantum numbers mαa , mαb , mβa ,
mβb , and q.

The total Hamiltonian in the pair-state basis reduces to a
standard two level Hamiltonian(

0 C3k
R3 S1/2

k
C3k
R3 S1/2

k h̄�

)
, (7)

yielding an interaction energy [32]

Uk (R) = �

2

⎛
⎝1 −

√
1 + 4C2

3kSk

h̄2�2R6

⎞
⎠, (8)

for the state that adiabatically connects to the initial pair state.
The crossover distance

Rc =
(

C2
3kSk

h̄2�2

)1/6

, (9)

where VvdW(Rc) = h̄�, defines the boundary between the
resonant 1/R3 dipole-dipole regime and the 1/R6 van der

Waals (vdW) regime with VvdW(R) = −C2
3kSk

h̄�
1

R6 . The sign of
the Förster defect � determines if the interaction is attractive
(� > 0) or repulsive (� < 0). While the angular momentum
factors Sk are species independent, we have to take into
account that for interspecies interaction the atoms are dis-
tinguishable at all times even if atoms a and b are initially
sharing the same state quantum numbers. We note that for
a single-species system with an initial pair state |αaαa〉 the
angular momentum factor is twice as large due to the equal
coupling to |βaβb〉 and |βbβa〉.

III. K-Rb FÖRSTER RESONANCES

To identify K-Rb pair states with particularly long-range
interactions, we assume that a single angular momentum
channel k is dominant; i.e., only one final pair state has to
be considered. This presupposes that all other pair states are
weakly coupled or have large Förster defects. Following the
convention in Ref. [32], we calculate Förster defects � and
coefficients C3k expressed in the fine structure basis, Eq. (6).
There are generally many possible combinations of Rydberg
levels that can be employed for a Förster process due to the
high density of Rydberg states for high n (energy spacing
between adjacent n values scales as n−3). We shall focus
our attention on initial s and d pair states, since these are
the most convenient to produce in optical schemes using
laser light. Starting with atoms in their ground state s1/2,
Laporte’s electric dipole selection rule, �l = ±1, only allows
for one-photon excitations to excited p states. For excitation
to a Rydberg state, such one-photon transitions demand laser
light in the UV spectrum for 40 � n � 150, which is not
commonly available in laboratories. Instead, a two-photon
transition can be used for the excitation into a high ns or
nd Rydberg state, via an intermediate p state. Common two-
photon excitation schemes involve combinations of infrared
and blue radiation [40,41], allowing for implementations with
readily available laser systems. Adding a second laser field
and an intermediate third atomic level additionally enables
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FIG. 2. Interaction coefficients |C3k | (a) and corresponding crossover distances Rc (b) of K-Rb pair states for their lowest Förster defects
|�| and for a range of combinations of principal quantum numbers 50 � nRb, nK � 110 for initial |nRbs1/2 nKs1/2〉 states. A large crossover
distance Rc = (C2

3kSk/(h̄2�2))1/6 characterizes states with small � and large C3k . The figure shows the maximum crossover distances that can
be obtained for a channel k by choosing the angular momentum channel with the largest Sk .

the application of coherent phenomena as electromagnetically
induced transparency (EIT) [42].

For an initial Rydberg pair state |nRb�
Rb
jRb〉 ⊗ |nK�K

jK 〉, we

identify the complementary pair state |n′
Rb�

′Rb
j′Rb〉 ⊗ |n′

K�′K
j′K 〉

that achieves the smallest Förster defect and obeys Laporte’s
rule. Once the complementary pair state that minimizes the
Förster defect is found, we calculate its interaction coefficient
C3k with respect to the initial state pair. We explore the
variation of such defect-minimized C3k coefficients on a grid
of initial principal quantum 50 � nRb, nK � 110 and present
our results for initial l = s and l = d states in the following
sections.

A. s1/2 + s1/2 channels

For initial pair states |nRbs1/2〉 ⊗ |nKs1/2〉, the investigation
can be restricted to pair states with angular momentum parts
|p1/2〉 ⊗ |p1/2〉, |p1/2〉 ⊗ |p3/2〉, |p3/2〉 ⊗ |p1/2〉, or |p3/2〉 ⊗
|p3/2〉, leading to four possible k channels. The principal
quantum numbers of these dipole allowed states are, however,
unrestricted, evoking a large number of coupled K-Rb pair
state combinations. For all combinations of initial principal
quantum numbers 50 � nRb, nK � 110, we examine the varia-
tion of defect-minimized C3k coefficients and show the results
on a grid in Fig. 2(a). We find the strongest C3k coefficients
for �n = |nRb − nK| � 5, which are visible as dark bands
of near-diagonal elements in Fig. 2(a). The strongest reso-
nances occur for combinations with small differences in the
initial principal quantum number as previously reported for
intraspecies systems, e.g., in Ref. [4]. Combined with their
small Förster defects |�|/(2π ) � 12 MHz, these states are
promising candidates for large crossover distances, meaning
a C3/R3 dependence over a wide range of interatomic separa-
tions, as follows from Eq. (9). This allows for stronger interac-
tions at larger distances. In Fig. 2(b), we present the crossover
distances corresponding to the pair combinations with the
smallest Förster defects. The quasidegenerate pair states with
the longest crossover distance emerge as dark points, and
Table I lists the three combinations with largest Rc for initial
s + s states. Additional resonances are listed in Appendix C in
Table IV. The state pair that maximizes Rc [as indicated with
an arrow in Fig. 2(b)] simultaneously displays our survey’s

minimum Förster defect of only 9 kHz. To our knowledge,
this defect is orders of magnitudes smaller than defects re-
ported for any other Rydberg system, and leads to a crossover
distance in the 100 μm-range, exceeding previously reported
values of � 20 μm for n < 90 in a Cs-Rb system [32].

B. s + d, d + s, and d + d channels

In addition to ns Rydberg states, nd states can be excited
by two-photon transitions. For experimental implementations,
d states are attractive because the dipole matrix elements for
transitions from an intermediate p3/2 state to a Rydberg nd5/2

state can be twice as large as for the respective ns1/2 states,
enabling large Rabi frequencies for lower light powers. For
interspecies systems, the excitation wavelengths are unique
to each species, which necessitates four different excitation
frequencies, independent of the choice of combinations of
s + s, d + d , or s + d state. For example, in our laboratory,
EIT schemes are implemented using wavelengths of 480 and
780 nm for 87Rb and 456 and 767 nm for 40K. As a result,
each species can be adressed individually.

We investigate initial pair states consisting of combinations
of Rydberg ns and nd states. Compared to the s + s pair
states, the combination of s and d states leads to a larger num-
ber of allowed angular momentum channels, increasing the
likelihood of channels with minimal interaction. Altogether,
there are 12 possible k channels for s + d → p + p, p + f ,
and 38 combinations for d + d → p + p, f + p, p + f , f +
f . As was done for the s + s channels, we calculate interaction
coefficients and crossover distances for the channels with the
smallest Förster defects for the initial pair states |nRbs1/2〉 ⊗
|nKd jK〉, |nRbd jRb〉 ⊗ |nKs1/2〉, and |nRbd jRb〉 ⊗ |nKd jK〉 and we
present our findings in Fig. 3. Out of the 3 × 3600 pair
combinations with minimized Förster defect, we find 15 state
combinations with crossover distances >40 μm, mainly for
larger principal quantum numbers of n ≈ 100. Pair state com-
binations with Rc exceeding >55 μm are listed in Table I. For
the s + d , d + s, and d + d pair states, the largest Rc values
are found for �n = |nRb − nK| � 8, as, for instance, for

|Rb100s1/2〉 ⊗ |K100d5/2〉 ↔ |Rb99p3/2〉 ⊗ |K102p3/2〉 ,

with C3k = 44.1 GHz μm3 and �/(2π ) = 90 kHz.
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TABLE I. Pair states with small Förster defects � and high C3k coefficients, corresponding to Figs. 2 and 3, allowing for large Rc. For
initial s + s, d + d, s + d , and d + s pair states, we list the combinations with Rc > 55 μm. More pair combinations can be found in Table IV
in Appendix C.

Initial Final C3k (GHz μm3) |�|/2π (kHz) Rc (μm)

Rb92s1/2 Rb92p1/2 −26.6 9 166
K95s1/2 K94p1/2

Rb96s1/2 Rb95p3/2 −28.3 −115 78
K92s1/2 K92p3/2

Rb97s1/2 Rb96p1/2 −28.5 −100 73
K92s1/2 K92p1/2

Rb129s1/2 Rb129p3/2 −103.2 53 156
K132s1/2 K131p3/2

Rb82d5/2 Rb83p3/2 −52 290 59
K100d5/2 K102p3/2

Rb95s1/2 Rb95p1/2 43 290 55
K90d3/2 K91p1/2

Rb100s1/2 Rb99p3/2 44.1 90 93
K100d5/2 K102p3/2

Rb87d5/2 Rb86 f5/2 10.0 27 85
K103s1/2 K102p3/2

Rb88d3/2 Rb87 f5/2 −39 428 57
K104s1/2 K103p3/2

In contrast to a single-species system, for two species the
pair states are not energetically identical under interchange
of the atomic quantum numbers, e.g., E (Rb92s1/2 K95s1/2) �=
E (Rb95s1/2 K92s1/2). As a result, the number of pair state
energies is doubled and the probability to find pair state com-
bination with small Förster defect � increases. The quantum
defects for K and Rb, which determine the pair state energies,
obey δnl j,Rb − δnl j,K ≈ 1 for s, p, and d states. Therefore, the
pair state energies of nK-nRb resemble those of nRb(n −
1)Rb [43]. We observe in Figs. 2(a) and 3(a) dark bands
with large C3k on both sides of the diagonal. Unlike for a
single-species system [29], we do not expect a full reflec-
tion symmetry about the diagonal for the C3k coefficients.
However, due to our preselection of Förster defect minimized
pair state combinations and the similarity of the K and Rb
quantum defects, a pattern similar to the single-species Rb-Rb
scenario occurs. Large interaction coefficients cannot solely
be found for small differences �n = |n1 − n2| ≈ 5 in the
initial n numbers of the two atoms. For the d + s combination,
the largest interaction coefficients and crossover distances
appear for |nRb − nK| = 13, namely for

|Rb87d5/2K100s1/2〉 ↔ |Rb86 f5/2K102p3/2〉 ,

with C3k = 10 GHz μm3 and �/(2π ) = 27 kHz.
The variety of possible k channels for each combination

of nRb and nK allows for a large number of states with
Förster defect |�|/(2π ) < 12 MHz and interaction strengths
>1 GHz μm3, resulting in crossover distances >8 μm, which
we list in Table IV in Appendix C. This abundance of state
combinations makes it possible to access Förster resonances
at nearly zero electric field for a variety of Rydberg states.

C. Comparison with different Rydberg-species combinations

In our identification of experimentally accessible pair
states with long-range interaction, we used the Förster defect

as a first criterion to select K-Rb states out of the vastness
of possible state combinations. The subset of pair states with
both small � and large interaction coefficient C3k allowed
us to find pair states with large crossover distances in the
absence of external fields. For comparison, we calculate and
list in Table II the pair states with the smallest � for single-
species and two-species combinations of Cs, Rb, and K—the
most frequently used alkali Rydberg species. We restrict our
examination to initial pair states |nas1/2〉 ⊗ |nbs1/2〉 where
n < 100. For Cs-Cs, Rb-Cs, and Rb-Rb pair states, we find
values in agreement with the calculations in Ref. [32]. For Rb-
Rb, K-K, Cs-Cs, and Cs-K, the smallest Förster defects are in
the order of a few hundred kHz. By contrast, for the K-Rb sys-
tem, the pair state |Rb92s1/2〉 ⊗ |K95s1/2〉 ↔ |Rb92p1/2〉 ⊗
|K94p1/2〉, which we singled out in Sec. III A, stands out
with its ultrasmall Förster defect of a mere 9 kHz and a com-
paratively large interaction strength of C3k = 26.6 GHz μm3.
Interestingly, the K-Rb system gives us more choices of
pair states with small Förster defects in comparison to the
other species combinations of Table II [44]. Table II also
lists the pair states with the largest crossover distance Rc

for each species combination, where |Rb92s1/2〉 ⊗ |K95s1/2〉
reappears with a maximum of 166 μm, much larger than
values of 20 to 40 μm for all other combinations. While in
a practical situation the crossover distance will depend on
the spin-dependent angular factor Sk [Eq. (5)], and we are
only calculating the upper limit for Rc, the above discussion
promotes K-Rb as a promising system for zero-field Förster
resonances.

An alternative approach for the classification of interact-
ing pair states employs C3k coefficients as a first criterion.
Such an examination was performed for Rb-Rb pair states in
Ref. [29] in n1s and n2d Rydberg fine structure states with
30 � n1, n2 � 100, and |�|/(2π ) � 500 MHz. These criteria
are similar to the ones used in Secs. III A and III B. In
contrast to a two-species system, for two identical Rb atoms
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FIG. 3. Caluclated |C3k | coefficients and crossover distances Rc for K-Rb pair states with the smallest Förster defects |�| for principal
quantum numbers 50 � nRb, nK � 110, and different total angular momentum states. The initial pair states are d + d for panels (a) and (b),
s + d for panels (c) and (d), and d + s for panels (e) and (f). The combinations with the largest Rc are listed in Table I and in Table IV in
Appendix C.

prepared in a pair state |n1 j1〉 ⊗ |n2 j2〉 a resonant coupling
to the pair state |n2 j2〉 ⊗ |n1 j1〉 with � = 0 will always
exist. The interaction gives rise to coherent exchange of the
internal states of the atoms [45], which can be observed as
an oscillation (also called flip-flop or hopping) between the
states |n1 j1〉 ⊗ |n2 j2〉 and |n2 j2〉 ⊗ |n1 j1〉. Hence, for single-
species systems with two atoms in different initial states, it
is necessary to consider two channels with identical Förster
defect �, but generally different coefficients C3k and C′

3k , as
we show for an exemplary initial state |n1s1/2〉 ⊗ |n2d5/2〉 that

couples to |n3 p3/2〉 ⊗ |n4 p3/2〉 as

|n1s1/2〉 ⊗ |n2d5/2〉
︸ ︷︷ ︸

C3k←−→
|Δ|

|n3p3/2〉 ⊗ |n4p3/2〉 C′
3k←−→

|Δ|
|n2d5/2〉 ⊗ |n1s1/2〉
︸ ︷︷ ︸

hopping

.

(10)

The magnitude of the interaction coefficients C3k and C′
3k is

ultimately determined by the radial wave function overlap
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TABLE II. Comparison of the smallest Förster defects |�| and largest crossover distances Rc for single and two-species pair states
composed of the alkali Rydberg atoms K, Rb, and Cs initially in the s1/2 state and for n < 100. The values for all presented Rydberg species
are calculated with our code and we find agreeing values for Rb-Rb, Rb-Cs, and Cs-Cs with Ref. [32]. Additionally, in Appendix C in Table V.
We list Förster defects and interaction coefficients for the single-species K system for pair states with strong interaction and n < 100.

Smallest |�|
Species Initial s state Final state |�|/(2π ) (kHz) C3k (GHz μm3)

Rb-Rb 89,64 90p3/2 63p3/2 694 1.4
K-K 59,62 59p3/2 61p1/2 274 4.6
Cs-Cs 98,71 99p1/2 70p3/2 324 −1.8
Rb-Cs 92,63 90p3/2 63p1/2 1828 −1.5
Rb-K 92,95 92p1/2 94p1/2 9 −26.6
Cs-K 95,90 94p3/2 90p1/2 656 26.1

Largest Rc

Species Initial s state Final state Rc (μm) C3k (GHz μm3)
Rb-Rb 84,81 83p1/2 81p1/2 19.3 −15.7
K-K 82,78 81p1/2 78p1/2 34.4 −14.5
Cs-Cs 98,71 99p1/2 70p3/2 20.1 −1.8
Rb-Cs 99,96 98p3/2 96p1/2 26.2 32.1
Rb-K 92,95 92p1/2 94p1/2 166.4 −26.6
Cs-K 95,90 94p3/2 90p1/2 38.3 26.1

between the Rydberg states. The peak position of the radial
probability density and therefore the radial wave functions
scale with n2 [46]. Consequently C3k and C′

3k rapidly decrease
as �n grows and interactions are dominated by a small
number of close-lying n states with respect to the initial
principal quantum numbers [29,32]. Returning to the example
of Eq. (10), for C3k this relates to changes in n of �n1 =
|n1 − n3| and �n2 = |n2 − n4| for C3k , while C′

3k connects to
changes �n′

1 = |n3 − n2| and �n′
2 = |n4 − n1|. If the magni-

tudes of C3k and C′
3k are similar and the Förster defect � of the

pair states is small, the two atoms can exchange their internal
states as a consequence of the dipole-dipole interaction [29]
via the hopping process indicated in Eq. (10). Such reso-
nant excitation exchange with Rydberg atoms opens up the
possibility to implement spin-exchange Hamiltonians, which
are useful for quantum simulators, as well as for the study
of quantum magnetism and transport phenomena [45,47,48].
The exchange interaction, however, is inherently resonant and
as a result cannot be turned on and off with an external
field, as it is possible for Förster resonances. For blockade
experiments, the main interest lies in a shift of energy due
to the dipole-dipole interaction and state combinations with
suppressed hopping dynamics. This is achieved if one of
C3k or C′

3k is ≈0 while the other takes on a large value,
which can be realized by choosing �n1,�n2 � �n′

1,�n′
2 (or

alternatively �n′
1,�n′

2 � �n1,�n2). Altogether, this greatly
restricts the choice of Förster resonances in single-species
systems. For two-species systems (Z1 �= Z2), as K-Rb, we
are not limited to such states, as for these the Förster
defects for |Z1n1l1 j1〉 ⊗ |Z2n2l2 j2〉 ↔ |Z1n3l3 j3〉 ⊗ |Z2n4l4 j4〉
and |Z1n1l1 j1〉 ⊗ |Z2n2l2 j2〉 ↔ |Z1n4l4 j4〉 ⊗ |Z2n3l3 j3〉 are
generally of very different size and a hopping process cannot
take place. Relating this to a point (n1,Rbn2,K) on the grids of
Figs. 2 and 3, this means we do not have to take into consid-
eration the interaction connected to (n2,Rbn1,K), as it would be
the case for a single-species system. In summary, we find C3k

coefficients of similar strength to other species combinations,

as for |Rb92s1/2〉 ⊗ |K95s1/2〉 ↔ |Rb92p1/2〉 ⊗ |K94p1/2〉 we
obtain a value of C3k = 26.2 GHz μm3, which is comparable
to the strongest C3k for a zero-field Rb-Rb resonance in
Ref. [29]. However, for the K-Rb pair state, the Förster defect
is only 2π × 9 kHz compared to 2π × 3.5 MHz of the latter.
This makes the K-Rb pair state an outstanding candidate for
long-range interaction at zero field.

IV. PAIR POTENTIALS, EXTERNAL FIELDS,
AND ANGULAR DEPENDENCE FOR

|Rb92s1/2〉 ⊗ |K95s1/2〉 ↔ |Rb92p1/2〉 ⊗ |K94p1/2〉
So far, our discussion has been based on Förster defects and

the spin-independent interaction coefficients C3k and has not
taken into consideration the angular factor Sk (θ ) appearing
in Eq. (5), which depends on the magnetic quantum num-
bers, the system geometry, and externally applied electric
and magnetic fields. In the following, we extend our treat-
ment to include the magnetic quantum numbers mj in the
description and we account for Zeeman degeneracy. To gain
insights into the angular dependence of the interaction, we
focus on the coupling of the pair state |Rb92s1/2〉 ⊗ |K95s1/2〉
to |Rb92p1/2〉 ⊗ |K94p1/2〉 that emerged from our search
for candidates with long-range interaction in Sec. III. The
two pair states have a Förster defect of �/(2π ) = 9 kHz.
At the same time, the resonance is—with a separation of
more than 20 MHz—well isolated from even the closest fine
structure channels |Rb92p1/2〉 ⊗ |K94p3/2〉, |Rb92p3/2〉 ⊗
|K94p1/2〉, and |Rb92p3/2〉 ⊗ |K94p3/2〉, as presented in
Table III. For brevity, we represent the spin-dependent pair
states |Rb92s1/2mjαa

〉 ⊗ |K95s1/2mjαb
〉 and |Rb92p1/2mjβa

〉 ⊗
|K94p1/2mjβb

〉 as |s mjαa
, s mjαb

〉 and |p mjβa
, p mjβb

〉, where
we denote mj = 1/2 as ↑ and mj = −1/2 as ↓.

A. Zeeman degeneracy at θ = 0

For θ = 0, the quantization axis is directed along the
interatomic axis of the two atoms and the total spin
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TABLE III. Förster defects and C3k coefficients for the four fine-
structure k channels of |n1s1/2〉 ⊗ |n2s1/2〉 ↔ |n1 pj〉 ⊗ |(n2 − 1)pj′ 〉
for 92Rb-92Rb, 95K-95K, and 92Rb-95K. For the single-species
systems, the C3k and � are of similar magnitude for all k, which
indicates isotropic interaction characteristics. For the K-Rb case, the
supremacy of the Förster defect of a single channel leads to an overall
stronger interaction.

( j, j ′) (1/2, 1/2) (3/2, 1/2) (1/2, 3/2) (3/2, 3/2)

|�|/2π (MHz)
Rb-Rb 524 398 402 276
K-K 622 596 599 571
Rb-K 0.009 121 26 147
C3k (GHz μm3)
Rb-Rb −24.7 24.3 25.2 −24.8
K-K −29.4 29.3 29.5 −29.4
Rb-K 26.2 −26.7 −26.3 −26.6

projection along this axis, M = mαa+mαb , is conserved as a
direct consequence of the rotation invariance of the Hamil-
tonian. The dipole-dipole interaction therefore only couples
to pair states with M ′ = M, where M ′ = mβa+mβb . Hence,
a state |s ↑, s ↑〉 solely couples to the pair state |p ↑, p ↑〉,
satisfying the selection rule �M = M ′ − M = 0. At a given
atomic separation R, the two eigenstates |φ1〉 and |φ2〉 of
the coupled system are superpositions of the eigenstates
of the Hamiltonian in Eq. (2) for zero interaction (Vdd =
0), namely |s ↑, s ↑〉 and |p ↑, p ↑〉. It follows that |φi〉 =
ci,s(R) |s ↑, s ↑〉 + ci,p(R) |p ↑, p ↑〉, with the normalization
|ci,s|2 + |ci,p|2 = 1.

In Fig. 4(a), we show the pair potential for the coupling of
|Rb92s1/2 ↑〉 ⊗ |K95s1/2 ↑〉 and |Rb92p1/2 ↑〉 ⊗ |K94p1/2 ↑〉,

FIG. 4. Zero-field K-Rb pair potentials in the vicinity of the
pair states |Rb92s1/2mjRb〉 ⊗ |K95s1/2mjK〉 for initial spin states
(a) (mjRb, mjK) = (↑,↑) and (b) (mjRb, mjK) = (↑, ↓). Only the
coupling |s1/2〉 ⊗ |s1/2〉 ↔ |p1/2〉 ⊗ |p1/2〉 (incorporating mj) is in-
cluded in the calculation. The color code illustrates the overlap
| 〈s ↑, s ↑ |φi〉 |2 in panel (a) and | 〈s ↑, s ↓ |φi〉 |2 in panel (b) be-
tween the noninteracting eigenstate |αaαb〉 for Vdd = 0 and the eigen-
states |φi〉 and |ψi〉 of the interacting system.

assuming a two-level approximation. For large interatomic
separations, the coupling between the two pair states is negli-
gible, and they are separated in energy by their Förster defect
�/(2π ) = 9 kHz, as shown in Fig. 4(a). As the interaction
increases with decreasing separation, the two energy levels
repel and the corresponding eigenstates become mixtures of
|s ↑, s ↑〉 and |p ↑, p ↑〉. The levels in Fig. 4(a) are color
coded according to their |s ↑, s ↑〉 admixture, visualizing
how the lower level |φ1〉 connects adiabatically to |s ↑, s ↑〉.
Hence, for smaller distances |s ↑, s ↑〉 and |p ↑, p ↑〉 are no
longer eigenstates of the coupled system, and dependent on
the state preparation the system will oscillate between them
[29]. For even smaller distances (R � 25 μm), the 1/R3

dependence of the dipole-dipole interaction dominates and
an increased number of states with larger Förster defects
contribute to the scenario. The two-level approximation is not
valid anymore, and Eqs. (7) and (8) are no longer applicable.
The rather chaotic energy-level diagram in this “spaghetti
region” [49] can only be determined numerically and goes
beyond the scope of our investigations in Fig. 4.

In Fig. 4(b), we show the pair potential associated with the
antiparallel state |s ↑, s ↓〉, for which M = 0. At large atomic
separation, this state can be decomposed into equal singlet
|ψ (s)

S 〉 and triplet |ψ (s)
T 〉 (with M = 0) parts as |s ↑, s ↓〉 =

1√
2
[|ψ (s)

S 〉 + |ψ (s)
T 〉]. Upon decreasing the separation R, the

states |ψ1〉 and |ψ2〉 that adiabatically connect to |ψ (s)
T 〉

and |ψ (s)
S 〉, respectively, are split in energy as a result

of interaction between |ψ (s)
T 〉 and |ψ (p)

T 〉 = 1√
2
(|p ↑, p ↓〉 +

|p ↓, p ↑〉), which causes |ψ1〉 to shift. As a consequence of
the interaction, the energy level that adiabatically connects
with |ψ (p)

T 〉 at large distances, |ψ4〉, is also shifted. Meanwhile,
the states |ψ2〉 and |ψ3〉 that connect to (and in fact remain
equal to) |ψ (s)

S 〉 and |ψ (p)
S 〉 = 1√

2
(|p ↑, p ↓〉 − |p ↓, p ↑〉), re-

spectively, do not interact because they are the zero eigen-
vectors of the Sk matrix (for M = 0) with eigenvalue 0 [50].
This results in a flat potential curve for ψ2. Such channels are
known as Förster zeros [25] and pose a limit for experiments
that require large interaction strength for all possible angular
momentum channels, often desired in the context of fully
blockaded mesoscopic atomic ensembles [25]. The efficiency
of the blockade is predominantly determined by the energy
shift of the desired pair state, e.g., |s ↑, s ↓〉 in Fig. 4(b).
Because of the substantial overlap with the nonshifted singlet
state, | 〈s ↑ s ↓ |ψ2〉 |2 = 0.5 for all R, the dipole blockade
is suppressed. Generally, the polarization of the excitation
light and the angular distribution of the atoms can play an
important role and lead to nonzero overlap between the un-
perturbed eigenstate (Vdd = 0) and components of the coupled
system with M = 0,±1, some of which can have interaction
coefficients C3(θ ) = C3kSk (θ )1/2 that are small or even zero
due to the dependence of Sk (θ ) on M and θ . Förster zeros
mainly emerge for M = 0 channels [25]. For the presented
case, one can excite the M = 1 state, |s ↑, s ↑〉, and avoid
components in zero-interaction channels. The shift in energy,
however, is smaller than for the interacting component of the
M = 0 channel in Fig. 4(b). The crossover distance is reduced
to Rc = 67 μm, whereas for M = 0 the largest Rc of 166 μm
can be obtained with the drawback of a possible Förster zero.
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FIG. 5. Numerically calculated pair potentials dependent on
the interatomic distance using [24] for |Rb92s1/2 ↑ Rb92s1/2 ↑〉,
|K95s1/2 ↑ K95s1/2 ↑〉, and |Rb92s1/2 ↑ K95s1/2 ↑〉 at θ = 0◦ and in
the absence of external fields. C6 coefficients are calculated pertuba-
tively with Ref. [51] and C6/R6 is represented by squares. The dashed
yellow line is calculated by diagonalizing the Hamiltonian including
the two energetically closest pair states.

For scenarios involving ensemble of atoms, it is important
to not only understand the interaction between atoms in the
target states |Rb92s1/2 ↑〉 ⊗ |K95s1/2 ↑〉, but also the interplay
between the single-species states |Rb92s1/2〉 ⊗ |Rb92s1/2〉
and |K95s1/2〉 ⊗ |K95s1/2〉. In Fig. 5, we show numerically
calculated pair potentials for K-Rb, Rb-Rb, and K-K for initial
states |s ↑, s ↑〉 at θ = 0, and in the absence of external
fields. For the single-species pair states, the Förster defects
to adjacent pair states are large (Table III) compared to the
interaction energies, and the pair potentials follow a power
law scaling of C6(θ = 0)/R6, where the vdW coefficient C6(θ )
depends on the atomic energy levels and dipole matrix ele-
ments containing the angular momentum properties and can
be calculated by second-order perturbation theory.

In contrast to the single-species potentials, the K-Rb poten-
tial shows a transition from the vdW regime to the resonant
dipole-dipole regime at distances as large as ≈ 70 μm, which
is in agreement to our calculated value of 67 μm for |↑,↑〉
using a two-level approximation. The yellow line in Fig. 5
represents the results of the diagonalization under considera-
tion of the two K-Rb pair states that interact the strongest with
|Rb92s1/2↑〉 ⊗ |K95s1/2↑〉. For R > 25 μm the description is
valid, whereas for shorter distances more states have to be
taken into account. With a C6 coefficient that is approximately
200 times larger than for the single-species systems, the
interaction is distinctively stronger for K-Rb. This can be
attributed to the up to three orders of magnitude smaller �

for one of the four fine-structure channels, listed in Table III.
A maximized interaction between the two-species pair state in
combination with a minimized interaction between the single-
species states can have interesting applications, as we show in
Sec. V.

B. Tuning with external E and B fields

We finally examine a more general case where the quan-
tization axis is defined by a coaxial external electric and
magnetic field and lies at arbitrary angles θ with respect to
the interatomic axis. This can be seen as a rotation of the
interatomic axis relative to the fixed laboratory frame defining
the quantisation axis. For the zero-field case, as considered
in Sec. IV A, the pair states are Zeeman degenerate. The de-
generacy can be lifted by applying a small external magnetic
field of a few Gauss, which causes spin-dependent shifts in
energy. If laser light with suitable polarization is chosen [50],
addressing a single Zeeman pair state can be simplified and
undesirable Förster zero states can be avoided. Because of
the high density of pair states, state mixing caused by dipole-
dipole interactions can frequently occur and as such coupling
to a single well-isolated channel can only be obtained in
special geometries. Even when such configurations can be
realized, external electric fields can Stark-shift magnetic sub-
states into resonance, causing population of unwanted chan-
nels and a breakdown of the Rydberg blockade, as pointed out
in Ref. [52].

In Fig. 6 we show pair potentials in the vicinity of |αaαb〉 =
|Rb92s1/2↑〉 ⊗ |K95s1/2↑〉 for different field configurations.
Figures 6(a) and 6(b) illustrate the case where no external
E and B fields are present for two different angles (0◦ and
15◦). The states |Rb92s1/2K95s1/2〉 and |Rb92p1/2K94p1/2〉
are Zeeman degenerate for large R. Some of the Zeeman
states, |φi〉, show a weak interaction with |αaαb〉, where the
overlap is encoded in the color map of the plot. For B = 0 an
extremely weak external electric field of less than 10 mV/cm
is necessary to obtain perfect resonance for the coupling
of |Rb92s1/2K95s1/2〉 and |Rb92p1/2K94p1/2〉. However, the
Zeeman degeneracy complicates the addressing of a single-
spin state which is needed to avoid interaction-limiting Förster
zero states. In the presence of both magnetic and electric
fields, a scenario with multiple Förster resonances appears
which can result in a flattening of the pair potential caused
by compensating contributions from multiple states [29]. As
can be seen from Eq. (3), channels with different �M have
different angular dependencies and at nonzero angles all of
these channels with �M = 0,±1,±2 become dipole allowed.
It is therefore important to choose electric and magnetic fields
with care. In Figs. 6(c)–6(h), an external static magnetic field
of B = −5.5 G lifts the Zeeman degeneracy. For an additional
electric field of 20 mV/cm in Figs. 6(e) and 6(f), the states
are very well isolated in energy and beyond 10 μm all of the
states that cross zero have a vanishing overlap with |αaαb〉.
We find that for this combination of electric and magnetic
fields a near-isotropic potential is realized, as depicted in
Fig. 7 for a interatomic distance of R = 22 μm. Energy shifts
>1.0 MHz can be realized for all θ up to a distance of
≈22 μm. Moreover, the pair state shows little mixing with
other states and for all angles |〈s ↑, s↓|φi〉|2 > 0.8 is satisfied.
Numerically calculated pair potentials for several angles 0◦ �
θ � 180◦ are presented in Fig. 9 in Appendix B. A small
change of the electric field magnitude to 30 mV/cm, however,
can change the situation drastically, as shown in Figs. 6(g)
and 6(h). For θ = 15◦, there is a significant overlap between
|αaαb〉 and another pair states which is close in energy. As a
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FIG. 6. Pair potentials in the vicinity of |αaαb〉 = |Rb92s1/2 ↑〉 ⊗ |K95s1/2 ↑〉 for an increasing static electric field (left to right) and two
angles θ = 0◦ and θ = 15◦. A static magnetic field of −5.5 G (blue shaded background) lifts the Zeeman degeneracy in panels (c)–(h). The
color code depicts the overlap with |αa, αb〉. For E = 0 mV/cm [(c), (d)] and E = 20 mV/cm [(e), (f)], |αaαb〉 does not mix with other states. For
E = 20 mV/cm, the near-isotropic potential of Fig. 7 can be obtained. The energy shift is >1.2 MHz (dashed lines) for R < 22 μm. A change
to E = 30 mV/cm significantly changes the scenario [(g), (h)]. The pair states strongly mix, allowing for unwanted excitation of other states
by a laser with an arbitrary chosen linewidth of 1.2 MHz.

consequence an excitation laser with a linewidth of 1.2 MHz
could couple to more than a single Zeeman state at specific
distances, and compromising the blockade effect, as described
in Ref. [52]. Consequently, the case presented in Figs. 6(e)
and 6(f) is favorable for experimental applications, as we will
discuss in the subsequent section.

V. APPLICATION: STRONG PHOTON-PHOTON
INTERACTIONS

The small zero-field Förster defects encountered above in
the interspecies K-Rb Rydberg system present distinct advan-
tages in applications that rely on strong, long-range Rydberg
interactions, and as a specific example, we consider its use in
the context of single-photon optical transistors [4,15,16,53]
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FIG. 7. Angular dependence of the adiabatic pair potential
of |Rb92s1/2 ↑ K95s1/2 ↑〉 caused by dipole-dipole interaction for
B = −5.5 G and E = 20 mV/cm at an atomic separation of
22 μm (blue). The red curve shows the overlap with the eigenstate
state |Rb92s1/2 ↑ K95s1/2 ↑〉 for Vdd = 0, which is > 80 % for all
angles θ .

where atoms mediate strong interactions between a single-
gate photon and a stream of source photons.

Figures 8(a) and 8(b) illustrate the commonly realized
operation of a Rydberg photon transistor which is based on
a single trapped ensemble of a single atomic species. A
gate photon is stored in the ensemble using an EIT scheme
connecting a ground atomic state to a Rydberg state |αa〉, a
so-called Rydberg polariton [4]. A stream of source photons
then propagates through the medium under the conditions of
EIT resonance connecting to a different Rydberg state |αb〉.
In the absence of the gate photon, transmission of the source
photons is maximum at the EIT resonance. When a gate
photon is stored, however, the EIT resonance shifts due to the
dipole-dipole interactions between |αa〉 and |αb〉 [Fig. 8(b)].
This causes the source photons to be, in principle, completely
absorbed. The shift of the EIT resonance is significant only if
the energy shift Udd due to dipole-dipole interactions exceeds
the width of the EIT transmission window UEIT = �2

c/γ ,
where �c is the Rabi frequency of the coupling transition in
the source EIT ladder scheme and γ is the natural linewidth
of intermediate state. The distance over which this condition
is fulfilled is called the photon blockade radius and the corre-
sponding volume the blockade volume.

Rydberg single-photon transistors have so far been im-
plemented only using a single atomic species. Initial experi-
mental demonstrations were achieved in Refs. [15,53] using
ultracold Rb atoms, with a Förster resonance employed in
Ref. [15]. Stark-tuned Förster resonances in Rb were later
used in Ref. [16] for enhanced contrast and gate photon
coherence. Using Förster resonances for improving the per-
formance of single-photon transistors, however, poses several
challenges for single-species systems. First, the excitation
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FIG. 8. (a) Operation of a Rydberg photonic transistor, where
a single gate photon stored in an atomic ensemble controls the
state of transmission of many source photons through the ensemble.
(b) Optical excitation schemes used in a Rydberg single-photon
transistor. A coupling laser beam with a Rabi frequency �c,g is
ramped down or up to store or retrieve a gate photon, while a second
coupling laser beam with a Rabi frequency �c,s establishes an EIT
resonance condition for the source photons, which is altered by
the presence of strong Rydberg-Rydberg interactions. (c) Spatially
separated arrangement of Rb and K atomic ensembles where the
former hosts the gate photon and the latter hosts the source photons.
Here B shows the direction of the applied magnetic field which
is taken as the quantization axis and θ is the angle between the
interatomic axis of a specific pair of atoms and B.

hopping processes shown in Eq. (10) are present and near
Förster resonances, are to the detriment for the operation of
single-photon transistors [15]. To suppress hopping, Förster
resonances must be carefully chosen with small dipolar cou-
pling strength for the alternative path, as has been done
in Refs. [16,29]. This limits the number of useful Förster
resonances and requires a compromise on the achievable
photon blockade radius. Second, large transistor input photon
rates require a small interaction between source photons,
which is difficult to realize in single-species single-ensemble

systems. For example, using the Förster resonance |αaαb〉 ↔
|βaβb〉 = |Rb84s1/2Rb81s1/2〉 ↔ |Rb83p1/2Rb81p1/2〉 shown
in Table II and assuming UEIT/2π = 1.1 MHz, one ob-
tains a photon blockade radius of 11 μm for the pair state
|Rb84s1/2, mj = 1/2〉 ⊗ |Rb81s1/2, mj = 1/2〉 at θ = 0◦ at
zero field. In comparison, the photon blockade radius for
the |Rb84s1/2, mj = 1/2〉 ⊗ |Rb84s1/2, mj = 1/2〉 pair state
is about 8 μm, so the unwanted interaction between source
photons is significant within this distance. The relatively small
photon blockade volume for the gate-source interaction means
that achieving large optical depth within the blockade volume
(ODb) for the source photons can only be achieved with high
atomic densities. Rydberg-ground state collisions at dense
atomic gases, however, cause severe decoherence and losses
and has been identified as the most critical bottleneck for
coherent operation of single-photon transistors [4,16]. Fur-
thermore, the Förster defect for the aforementioned resonance
is 2π × 3 MHz and a relatively large electric field of ≈1 V/cm
is required to bring the pair states to exact resonance. For high-
n Rydberg states, such fields can cause many dipole-allowed
molecular states to come into play at short (≈1 μm) distances
and leads to a breakdown of blockade.

Interspecies, strong, near-zero field Förster resonances
discussed in this paper can offer solutions to these
problems. First, as noted in Sec. III C, the excitation
hopping process, Eq. (10), is absent for interspecies
Förster resonances, and a wide array of such reso-
nances become suitable choices. Considering the specific
Förster resonance |αa〉 ⊗ |αb〉 ↔ |βa〉 ⊗ |βb〉 = |Rb92s1/2〉 ⊗
|K95s1/2〉 ↔ |Rb92p1/2〉 ⊗ |K94p1/2〉 discussed in detail in
Sec. IV, we note that even at zero electric field the photon
blockade volume is very large. In particular, assuming the ini-
tial state to be |Rb92s1/2, mj = 1/2〉 ⊗ |K95s1/2, mj = 1/2〉
and a typical EIT linewidth UEIT/2π = 1.1 MHz, one obtains
a photon blockade radius of rb � 22 μm over the entire angu-
lar range with a small applied field of magnitude 20 mV/cm
(Fig. 7). The corresponding blockade volume is larger than
the size of atomic ensembles typically realized in ultracold
atomic experiments, allowing for a large atomic ensemble
to fit entirely within the blockade volume to host the source
photons. As pointed out in Ref. [54], the scattering of source
photons within this volume cannot provide information about
the position of the gate photon, and as a result the coherence
of the gate photon is preserved in the scattering process.

The large photon blockade radius allows one to envisage
the arrangement shown in Fig. 8(c) for realizing a single-
photon transistor, where atomic ensembles hosting the gate
photon and the source photons are spatially isolated. Specifi-
cally, a 780-nm gate photon is stored in a dilute Rb ensemble,
whereas the 767-nm source photons propagate through a
separate cylinder-shaped ensemble of K atoms with a radius
σr = 6 μm and length σz = 40 μm, and atom number N =
5000, placed at a center-to-center distance of 17 μm from the
gate ensemble. A fully blockaded ensemble with an optical
density ODb = ρζσz ∼ 22 is realized, where λ = 767 nm
and ζ = 3λ2/2π is the on-resonance photon scattering cross
section. This, in principle, realizes a near-perfect photon
switching with a contrast of [1 − exp(−ODb)], depending on
whether a gate photon is absent or present at zero electric field,
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while keeping the coherence of the gate photon preserved
against source photon scattering. Moreover, the interaction be-
tween source photons is sufficiently small (�2π × 200 kHz at
20 μm), ensuring the correlation between two source photons
remains small at such distances. Because of the spatial separa-
tion between the two ensembles in our proposed arrangement,
short-distance molecular potential curves between K and Rb
are completely avoided.

VI. CONCLUSION

We have investigated the dipole-dipole interaction between
rubidium and potassium atoms in their Rydberg states for a
wide range of principal quantum numbers, and in particular
we considered pair states comprising angular momentum
channels that are amenable to two-photon Rydberg excita-
tions. Using large spin-independent interaction coefficients
C3k and small Förster defects as the figures of merit, we iden-
tified several strong Förster resonances with extremely small
Förster defects at zero field. This results in strong (>1 MHz)
Rydberg-Rydberg interactions for distances exceeding 25 μm
and very large crossover distances (≈100 μm). When com-
paring Förster resonances in K-Rb with other frequently used
atomic species combinations, Rb-Rb, Rb-Cs, and Cs-Cs, we
found that K-Rb has a unique range of strong Förster reso-
nances with near-zero Förster defects and large C3k . Investi-
gations of pair potentials of the Förster resonant pair states
suggest that by judiciously choosing Zeeman states for the
initial pair states and small magnitudes of the applied fields,
one can obtain strong blockade interactions over the entire
angular range.

Interspecies zero-field Förster resonances in the K-Rb sys-
tem opens up new opportunities and directions for photonic
devices that rely on strong Rydberg atom-mediated photon-
photon interactions, such as single-photon Rydberg transistors
and photonic quantum gates [55]. Our analysis suggests that
multiple, very large ensembles that are spatially separated can
be considered for such applications, which would eliminate
the strong density-dependent collisional losses while enabling
large optical depth (OD) within the blockade volume. As
pointed out in Ref. [4], realizing large ODb without incurring
losses and decoherence due to inelastic collisions between
Rydberg electrons and ground-state atoms in dense ensembles
[56] is a significant impediment in Rydberg quantum optics.
The K-Rb Förster resonances discussed here offer a solution
to this by allowing very large ensembles that are spatially
separated to be used.

Beyond Rydberg photonic devices, strong interspecies
Förster resonances have been proposed as a suitable tool for
quantum nondemolition detection of qubit states for Rydberg
atom-based quantum information processing [32]. More re-
cently, interspecies Rydberg-Rydberg interactions with two
isotopes of Rb have been employed to realize quantum gates
with minimal cross-talk [36]. Our findings suggest that the
K-Rb Förster resonances discussed in this work will be read-
ily suitable for such applications. The relatively slow 1/R3

variation of energy shifts over distances ≈100 μm near K-
Rb Förster resonances considered here can also offer useful
benefits for long-range coherent excitation transfer schemes
that involve adiabatic passage across a Rydberg state [21,57].

Finally, the use of fermionic 40K combined with the bosonic
species 87Rb paves the way to explore phenomena related to
quantum statistics and degeneracy of atoms [58].

Note added in proof. Recently, we became aware of [59]
which proposes optical networks and high-fidelity quantum
gates using spatially isolated atomic ensembles. We believe
the K-Rb resonances in this paper would be particularly
suitable for realizing this scheme.
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APPENDIX A: CALCULATION
OF INTERACTION PARAMETERS

Our PYTHON code employs functions from the Alkali Ryd-
berg Calculator (ARC) toolbox from Durham University [51].
This allows us to calculate several features of Rydberg atoms
using the framework of quantum defect theory (QDT) with the
Numerov integration method in the Coulomb approximation
for the radial part of the wave functions. We have modified
the code, where needed, to allow for interspecies pair states.
C3k and C6k interaction coefficients are calculated using radial
wave functions, dipole matrix elements, and reduced matrix
elements for a K-Rb interspecies system, as well as for
variable combinations of all alkali atoms. For the evaluation
of external fields with arbitrary directions relative to the quan-
tisation axis, we make use of the open-source Pair Interaction
tool from Stuttgart [24]. This tool is used when several pair
states have to be taken into account and the Hamiltonian has
to be diagonalized numerically.

APPENDIX B: ADDITIONAL PAIR POTENTIALS FOR THE
PAIR STATE |Rb92s1/2 ↑〉 ⊗ |K95s1/2 ↑〉

In Fig. 9 we show an extension of Figs. 6(e) and 6(f) for
angles between 0 degrees and 190 degrees. All pair potentials
show an overlap >80% with the eigenstate |Rb92s1/2 ↑〉 ⊗
|K95s1/2 ↑〉, and nearly no mixing with other states within the
specified energy range. In addition, energy shifts >1.0 MHz
can be obtained up to an interatomic distance of ≈22 μm for
all angles. These pair potentials confirm that for the particular
combination of electric and magnetic fields, the interaction
potential is near-isotropic.

APPENDIX C: TABLES WITH A SELECTION OF K-K AND
K-RB PAIR STATE COMBINATIONS

In this Appendix, we list pair state combinations with small
Förster defects for the two-species K-Rb system in Table
IV, and for the single-species system K-K in Table V. The
pair combinations in Table IV correspond to the dark points
in Figs. 2 and 3. A complete set of all pair combinations
and the corresponding state quantum numbers, Förster defects
and interaction coefficients can be found in the Supplemental
Material [60].
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FIG. 9. Pair potentials in the vicinity of |αaαb〉 = |Rb92s1/2 ↑〉 ⊗ |K95s1/2 ↑〉 for static fields of Bz = −5.5 G and Ez = 20 mV/cm for angles
θ between 0◦ and 190◦. For all angles, the shift in energy is >1.2 MHz (horizontal dashed lines) for R � 22 μm, resulting in a near-isotopic
potential. The color code depicts the overlap with |Rb92s1/2 ↑〉 ⊗ |K95s1/2 ↑〉. Also see Fig. 6 in Sec. IV.
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TABLE IV. A selection of K-Rb pair states with Förster defects |�|/(2π ) < 12 MHz and |C3k | > 1 GHz μm3 for principal quantum
numbers 50 � n � 110. Rc is calculated using the strongest coefficient Sk [Eq. (5)], e.g., see Refs. [32,50]. For a complete set of all pair
combinations of Figs. 2 and 3 and corresponding C3k and �, see the Supplemental Material [60].

Rb initial Rb final K initial K final �/2π (MHz) C3k (GHz μm3) Rc (μm)

ss → pp
52s1/2 52p3/2 53s1/2 52p1/2 1.85 2.37 12.2
56s1/2 56p3/2 57s1/2 56p3/2 −11.71 −3.25 8.1
59s1/2 59p3/2 85s1/2 83p3/2 −4.40 1.21 8.1
60s1/2 59p3/2 57s1/2 57p3/2 −7.50 −3.95 10.1
61s1/2 61p3/2 88s1/2 86p1/2 6.46 −1.4 6.7
66s1/2 66p1/2 68s1/2 67p1/2 2.50 −6.69 15.3
69s1/2 69p1/2 71s1/2 70p3/2 9.88 8.01 10.5
70s1/2 70p1/2 72s1/2 71p3/2 −7.08 8.56 12.0
71s1/2 70p1/2 67s1/2 67p1/2 −7.41 −7.76 11.2
72s1/2 72p1/2 105s1/2 103p1/2 −0.20 2.89 26.8
74s1/2 73p1/2 70s1/2 70p3/2 7.67 9.23 11.9
75s1/2 74p1/2 71s1/2 71p3/2 −7.37 9.78 12.3
85s1/2 85p3/2 87s1/2 86p1/2 7.82 18.56 15.0
86s1/2 86p3/2 88s1/2 87p1/2 1.71 19.47 25.2
87s1/2 87p3/2 89s1/2 88p1/2 −3.85 20.41 19.6
88s1/2 87p3/2 84s1/2 84p1/2 8.78 19.70 14.7
88s1/2 88p3/2 90s1/2 89p3/2 −8.90 21.38 15.0
90s1/2 89p3/2 86s1/2 86p1/2 −2.97 21.66 21.8
92s1/2 92p1/2 95s1/2 94p1/2 0.01 −26.61 166.4
93s1/2 93p3/2 95s1/2 94p3/2 −2.50 −26.90 27.5
96s1/2 95p3/2 92s1/2 92p3/2 −0.11 −28.32 78.4
97s1/2 96p1/2 92s1/2 92p1/2 −0.10 −28.53 72.6
97s1/2 97p1/2 100s1/2 99p3/2 −0.63 33.12 42.1
102s1/2 101p1/2 97s1/2 97p3/2 1.59 31.15 31.5
103s1/2 102p1/2 98s1/2 98p3/2 −2.38 36.62 27.9
dd → pp, pf, ff
53d3/2 54p1/2 63d3/2 65p1/2 −9.38 −9.24 9.9
59d3/2 60p1/2 55d3/2 55 f5/2 −3.65 9.46 14.3
59d3/2 58 f5/2 76d3/2 75 f5/2 6.94 −7.13 12.1
60d3/2 59 f5/2 65d3/2 66p1/2 −1.85 11.66 19.3
61d3/2 59 f5/2 56d3/2 58p1/2 −0.91 4.53 18.8
62d5/2 60 f5/2 57d5/2 59p3/2 6.30 −1.22 9.9
71d5/2 70 f5/2 77d5/2 78p3/2 1.26 −5.88 28.4
72d3/2 74p1/2 73d3/2 72 f5/2 4.56 7.59 12.4
81d3/2 82p1/2 76d3/2 76 f5/2 0.82 34.41 36.3
82d5/2 83p3/2 100d5/2 102p3/2 0.29 −51.54 59.0
83d3/2 81 f5/2 60d3/2 60 f5/2 −0.35 −10.66 37.3
91d3/2 90 f5/2 99d3/2 100p1/2 1.71 62.91 34.7
92d5/2 91 f5/2 100d5/2 101p3/2 0.54 −16.72 53.3
99d5/2 97 f5/2 92d5/2 94p3/2 −0.79 −8.46 37.5
102d3/2 100 f5/2 74d3/2 74 f5/2 −1.06 −24.78 34.1
103d5/2 105p3/2 104d5/2 103 f5/2 0.28 −8.05 52.4
103d3/2 104p1/2 97d3/2 97 f5/2 0.72 91.16 52.4
104d3/2 105p1/2 98d3/2 98 f5/2 −1.90 94.88 38.5
sd → pp, pf
57s1/2 55d5/2 56p1/2 57p3/2 2.06 3.99 13.71
60s1/2 56d3/2 60p1/2 57p1/2 1.28 6.4 17.94
60s1/2 66d3/2 60p3/2 65 f5/2 2.6 4.02 14.56
60s1/2 81d3/2 59p1/2 84p1/2 3.05 1.7 8.63
61s1/2 59d3/2 60p1/2 61p1/2 2.69 5.62 13.42
67s1/2 74d5/2 67p3/2 73 f5/2 0.73 1.71 15.83
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TABLE IV. (Continued.)

Rb initial Rb final K initial K final �/2π (MHz) C3k (GHz μm3) Rc (μm)

69s1/2 64d5/2 69p3/2 65p3/2 4.49 10.49 15.62
69s1/2 77d3/2 69p1/2 76 f5/2 9.34 7.51 10.95
70s1/2 65d3/2 70p3/2 66p3/2 10.93 3.72 8.08
72s1/2 71d3/2 71p3/2 73p3/2 1.08 3.72 17.5
73s1/2 68d3/2 73p3/2 69p1/2 7.29 13.99 13.95
74s1/2 57d3/2 73p3/2 57 f5/2 2.94 8.67 18.06
74s1/2 69d3/2 74p3/2 70p1/2 7.78 14.82 13.91
74s1/2 82d5/2 74p3/2 81 f5/2 1.99 2.6 13.03
75s1/2 74d3/2 74p3/2 76p1/2 8.69 13.99 13.15
76s1/2 75d3/2 75p3/2 77p1/2 3.48 14.78 18.17
77s1/2 108d5/2 77p1/2 108p3/2 0.15 3.55 31.81
81s1/2 90d5/2 81p3/2 89 f5/2 3.09 3.79 12.75
86s1/2 51d3/2 89p1/2 50 f5/2 0.02 0.13 22.91
87s1/2 82d5/2 87p1/2 83p3/2 5.2 28.32 19.37
87s1/2 82d5/2 87p1/2 83p3/2 5.2 28.32 19.37
88s1/2 83d5/2 88p1/2 84p3/2 0.76 29.71 37.32
88s1/2 83d5/2 88p1/2 84p3/2 0.76 29.71 37.32
89s1/2 84d3/2 89p1/2 85p3/2 4.07 10.38 14.78
90s1/2 85d3/2 90p1/2 86p3/2 9.06 10.88 11.5
93s1/2 92d5/2 92p1/2 94p3/2 6.45 31.52 18.68
94s1/2 93d5/2 93p1/2 95p3/2 2.21 32.93 27.08
94s1/2 88d5/2 94p3/2 89p3/2 2.23 37.66 30.19
94s1/2 89d3/2 94p1/2 90p1/2 4.31 41.12 22.25
94s1/2 105d3/2 94p3/2 104 f5/2 12.98 26.38 15.96
95s1/2 94d3/2 94p1/2 96p3/2 0.17 11.47 43.86
95s1/2 90d3/2 95p1/2 91p1/2 0.29 42.97 55.36
95s1/2 107d3/2 95p1/2 106 f5/2 0.47 28.47 46.26
95s1/2 89d3/2 95p3/2 90p3/2 1.64 13.12 23.16
96s1/2 91d3/2 96p1/2 92p1/2 3.38 44.89 24.83
96s1/2 96d5/2 95p3/2 98p3/2 18.72 37.34 14.82
97s1/2 92d3/2 97p1/2 93p1/2 6.75 46.88 20.02
98s1/2 98d5/2 97p3/2 100p3/2 8.66 40.63 19.72
98s1/2 93d3/2 98p1/2 94p1/2 9.83 48.92 17.91
98s1/2 92d3/2 98p3/2 93p1/2 10.35 47.12 18.6
99s1/2 99d5/2 98p3/2 101p3/2 4.2 42.35 25.44
99s1/2 93d3/2 99p3/2 94p1/2 5.53 49.16 23.25
99s1/2 98d3/2 98p1/2 100p1/2 8.19 43.17 18.26
100s1/2 100d5/2 99p3/2 102p3/2 0.09 44.12 92.48
100s1/2 94d3/2 100p3/2 95p1/2 1.09 51.28 40.48
100s1/2 99d3/2 99p1/2 101p1/2 5.02 44.99 21.79
101s1/2 100d3/2 100p1/2 102p1/2 2.09 46.86 29.56
101s1/2 101d3/2 100p3/2 103p3/2 2.49 15.32 21.21
101s1/2 95d3/2 101p3/2 96p1/2 2.99 53.46 29.36
102s1/2 101d3/2 101p1/2 103p1/2 0.61 48.79 45.27
102s1/2 96d3/2 102p3/2 97p1/2 6.74 55.71 22.7
103s1/2 102d3/2 102p1/2 104p1/2 3.1 50.79 26.64
103s1/2 103d3/2 102p3/2 105p1/2 8.91 52.73 20.3
104s1/2 104d3/2 103p3/2 106p1/2 5.4 54.85 24.3
104s1/2 103d3/2 103p1/2 105p1/2 5.4 52.84 22.44
105s1/2 82d5/2 104p3/2 82 f5/2 0.54 9.94 31.48
105s1/2 105d3/2 104p3/2 107p1/2 2.15 57.04 33.46
106s1/2 106d3/2 105p3/2 108p1/2 0.86 59.29 46.08
107s1/2 107d3/2 106p3/2 109p1/2 3.64 61.6 28.81
108s1/2 107d3/2 107p1/2 109p1/2 12.92 61.68 17.67
110s1/2 86d3/2 109p3/2 86 f5/2 1.34 45.04 40.66
ds → pp, fp
52d3/2 60s1/2 53p1/2 60p1/2 11.793 −6.21 8.47
52d5/2 62s1/2 51 f7/2 61p3/2 0.539 −4.76 26.04
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TABLE IV. (Continued.)

Rb initial Rb final K initial K final �/2π (MHz) C3k (GHz μm3) Rc (μm)

57d3/2 51s1/2 55 f5/2 51p1/2 3.503 2.49 10.51
57d5/2 68s1/2 56 f7/2 67p1/2 9.146 6.92 10.73
58d3/2 52s1/2 56 f5/2 52p3/2 5.757 −2.68 9.77
58d3/2 68s1/2 59p3/2 68p3/2 2.651 3.2 12.32
61d3/2 57s1/2 63p3/2 56p3/2 0.406 1.26 16.89
64d3/2 75s1/2 65p3/2 75p3/2 4.016 4.78 12.26
64d3/2 85s1/2 66p1/2 83p3/2 4.605 −1.51 7.73
65d3/2 61s1/2 67p1/2 60p3/2 2.917 5.38 13.77
65d3/2 76s1/2 66p3/2 76p1/2 6.925 −5.09 9.76
66d5/2 85s1/2 64 f7/2 86p3/2 2.221 1.15 10.1
67d3/2 60s1/2 65 f5/2 60p3/2 3.088 −4.87 14.67
70d3/2 82s1/2 71p3/2 82p3/2 6.715 6.89 11.67
71d3/2 82s1/2 72p1/2 82p3/2 2.037 22.21 24.89
71d3/2 83s1/2 72p3/2 83p1/2 5.291 −7.29 12.04
72d3/2 67s1/2 74p3/2 66p3/2 1.274 2.48 14.46
72d3/2 83s1/2 73p1/2 83p1/2 2.753 −23.51 21.44
72d5/2 84s1/2 73p3/2 84p1/2 8.461 −23.04 15.37
74d5/2 69s1/2 76p3/2 68p1/2 2.276 −8.37 16.99
76d3/2 68s1/2 74 f5/2 68p3/2 1.871 −8.19 20.61
76d3/2 90s1/2 75 f5/2 89p3/2 5.491 −21.47 19.85
77d3/2 90s1/2 78p3/2 90p1/2 4.093 −10.15 14.64
78d3/2 90s1/2 79p1/2 90p3/2 11.745 32.52 15.76
78d5/2 91s1/2 79p3/2 91p1/2 4.49 −31.93 21.17
79d3/2 91s1/2 80p1/2 91p1/2 5.394 −34.26 19.43
80d5/2 95s1/2 79 f7/2 94p1/2 2.92 27.48 24.86
81d3/2 96s1/2 80 f5/2 95p1/2 0.434 27.78 47.1
82d3/2 97s1/2 81 f5/2 96p3/2 1.739 −29.21 32.27
83d5/2 74s1/2 81 f7/2 74p1/2 1.601 12.11 23.11
83d3/2 77s1/2 85p3/2 76p3/2 1.208 4.43 17.85
84d3/2 97s1/2 85p1/2 97p3/2 1.023 44.04 39.34
84d5/2 98s1/2 85p3/2 98p1/2 2.107 −43.17 30.12
85d3/2 76s1/2 83 f5/2 76p3/2 1.239 −12.97 27.56
87d5/2 103s1/2 86 f5/2 102p3/2 0.027 9.97 85.14
88d3/2 104s1/2 87 f5/2 103p3/2 0.428 −38.88 56.63
89d3/2 104s1/2 90p3/2 104p1/2 2.546 −18.28 20.86
90d3/2 104s1/2 91p1/2 104p3/2 8.088 58.38 21.69
90d5/2 105s1/2 91p3/2 105p1/2 0.664 −57.15 48.59
91d3/2 105s1/2 92p1/2 105p3/2 4.749 60.88 26.27
91d5/2 106s1/2 92p3/2 106p1/2 13.531 −59.58 18.04
91d5/2 108s1/2 90 f7/2 107p1/2 9.242 46.39 20.16
92d3/2 106s1/2 93p1/2 106p1/2 1.107 −63.68 40.5
93d3/2 107s1/2 94p1/2 107p1/2 10.237 −66.34 19.56
93d3/2 109s1/2 94p3/2 109p3/2 5.092 21.91 18.82
93d5/2 110s1/2 92 f5/2 109p3/2 2.305 13.05 21.23
94d3/2 84s1/2 92 f5/2 84p3/2 0.876 −19.59 35.5
94d3/2 87s1/2 96p3/2 86p3/2 0.986 7.36 22.61
95d5/2 88s1/2 97p3/2 87p3/2 5.76 23.17 18.73
97d3/2 68s1/2 100p1/2 67p3/2 4.506 −3.42 10.23
100d3/2 93s1/2 102p1/2 92p3/2 1.761 31.11 29.23
101d3/2 90s1/2 99 f5/2 90p1/2 4.28 26.23 21.55
102d3/2 95s1/2 104p1/2 94p1/2 2.67 −33.7 24.43
103d3/2 68s1/2 100 f5/2 68p3/2 0.232 3.2 30.21
103d3/2 68s1/2 100 f5/2 68p3/2 0.232 3.2 30.21
103d3/2 92s1/2 101 f5/2 92p3/2 0.65 −28.46 44.41
105d3/2 97s1/2 107p3/2 96p3/2 0.776 11.53 28.45
106d5/2 98s1/2 108p3/2 97p3/2 2.873 36.14 27.39
107d3/2 99s1/2 109p3/2 98p1/2 0.305 −12.44 37.25
109d5/2 97s1/2 107 f7/2 97p1/2 5.169 36.87 22.67
110d3/2 98s1/2 108 f5/2 98p1/2 1.111 37.18 37.95
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TABLE V. A selection of K-K pair states with Förster defects |�|/(2π ) < 12 MHz and |C3k | > 1 GHz μm3 for principal quantum numbers
50 � n � 100. Values for Rb-Rb, Rb-Cs, and Cs-Cs can be found in Tables II, III, and IV of Ref. [32]. We find an interaction strength of
2.3 MHz at R = 19 μm for n < 90 which is very similar to the 2 MHz at R = 20 μcm reported for Rb-Cs.

K initial K final K initial K final �/2π (MHz) C3k (GHz μm3) Rc (μm)

56s1/2 56p1/2 59s1/2 58p1/2 10.21 −3.70 8.8
59s1/2 59p3/2 62s1/2 61p1/2 −0.27 4.55 32.1
62s1/2 62p3/2 65s1/2 64p3/2 −7.22 −5.59 12.9
64s1/2 64p3/2 95s1/2 93p3/2 10.80 1.90 7.9
66s1/2 66p3/2 98s1/2 96p1/2 −1.69 −2.17 13.7
78s1/2 78p1/2 82s1/2 81p1/2 −0.47 −14.49 38.6
81s1/2 81p1/2 85s1/2 84p3/2 4.34 16.94 19.8
82s1/2 82p3/2 86s1/2 85p1/2 −1.29 17.65 30.1
83s1/2 83p3/2 87s1/2 86p1/2 −10.23 18.53 15.4
85s1/2 85p3/2 89s1/2 88p3/2 5.50 −20.48 21.7
86s1/2 86p3/2 90s1/2 89p3/2 −2.19 −21.46 30.0
87s1/2 87p3/2 91s1/2 90p3/2 −9.19 −22.48 18.9
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