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Plunging in the Dirac sea using graphene quantum dots
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The dynamics of low-energy charge carriers in a graphene quantum dot subjected to a time-dependent local
field is investigated numerically. In particular, we study a configuration where a Coulomb electric field is
provided by an ion traversing the graphene sample. A Galerkin-type numerical scheme is introduced to solve
the massless Dirac equation describing charge carriers subjected to space- and time-dependent electromagnetic
potentials and is used to evaluate the field-induced interband transitions. It is demonstrated that as the ion
goes through graphene, electron-hole pairs are generated dynamically via the adiabatic pair creation mechanism
around avoided crossings, similar to electron-positron pair generation in low-energy heavy-ion collisions.
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I. INTRODUCTION

In the last two decades, Dirac materials have received
an unprecedented amount of attention because they have
very interesting electrical, mechanical and thermal properties
[1]. Graphene in particular, a two-dimensional (2D) array
of carbon atoms arranged on a honeycomb lattice, is the
quintessential Dirac material. Close to its Dirac points at
a momentum |K±| ≈ 1.7 Å−1 ≈ 12.3 eV/vF , the dispersion
relation is linear and relativisticlike, being given by E =
vF |p| + O(|p|/|K±|), where vF ≈ 1.093 × 106 m/s is the
Fermi velocity and p is the momentum deviation from K±
[2]. In addition, the dynamics of charge carriers is described
by a massless 2D Dirac equation, as long as |p| � |K±|,
confirming the Dirac material nature of graphene [3].

It was realized early that owing to this relativisticlike quan-
tum behavior, the dynamics of charge carriers in graphene
would be similar to the one of relativistic electrons and,
thus, could be used to simulate or investigate quantum
electrodynamics (QED) processes [4,5]. The Klein paradox
[6,7], the Zitterbewegung [8], atomic collapse [9,10], the
Schwinger process [11–18], and the Breit-Wheeler process
[19] have been considered from this point of view. Therefore,
while there may exist some qualitative difference between
graphene and QED [5], this material provides a link between
condensed-matter and high-energy physics.

In this paper, electron-hole pair production in ion-
bombarded graphene is proposed as an analog to QED
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electron-positron pair production in low-energy heavy-ion
collisions (HIC), in the same spirit as these previous studies.
The configuration considered is shown in Fig. 1. As the ion
traverses the finite graphene sample (graphene quantum dot),
it interacts with charge carriers in the valence band and has a
certain probability to excite them in the conduction band, thus
generating an electron-hole pair. In the following, we argue
that under certain conditions, pair production occurs via the
same mechanism as in HIC whereby some positive-energy
states “plunge” into the negative-energy continuum (the Dirac
sea).

The dynamics of charge carriers in graphene subjected to
electromagnetic fields has gained momentum in the last few
years, with the potential of controlling the electron dynam-
ics in graphene-based devices [20–23]. Many theoretical and
experimental investigations have focused on the interaction
of graphene with a (homogeneous) laser field [24–28]. The
regime of strong fields, whereby multiphotonic effects, the
holy grail of atomic physics, start to be important and may
lead to new physical phenomena, have also been investigated
[14–18,29–32]. For inhomogeneous fields, some work has
also been performed. For example, some experiments [33] and
numerical simulations using either time-dependent density
functional theory (TDDFT) simulations [34–37], nonequilib-
rium Green functions methods [38], and molecular dynamics
[39] have investigated ion bombardment of graphene sam-
ples. The main objectives of these studies was to quantify
the amount of energy transferred from the projectile to the
target, the stopping power, and understand the formation of
defects in the atomic structure as the charge traverses the
honeycomb lattice. Another example is Ref. [40], where the
current generated by highly charged ions (with Z = 20–30,
where Z is the ion electric charge) have been estimated ex-
perimentally and using DFT calculations. The spatiotemporal
dynamics of charge carriers under local optical excitation has
been considered in Ref. [41]. Nonetheless, the dynamics of
electrons and holes subjected to localized inhomogeneous
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FIG. 1. Ion-bombarded graphene where an ion of charge Z
passes through a graphene sample and generates electron-hole pairs.

fields is not as well known as in the homogeneous case. One
of the goals of this paper is to fill this gap by investigating
electron-hole pair production from a dynamical and localized
Coulomb-type potential.

To study the main features of this dynamical and nonper-
turbative phenomenon, extensive numerical simulations are
performed to evaluate the pair production rate and the electron
density generated by the passing ion. Assuming that certain
conditions (given below) are fulfilled, the charge carriers are
modeled by a simple Dirac equation, allowing for a con-
nection with QED processes and HIC. To solve this space-
and time-dependent Dirac equation, a Galerkin-type numer-
ical scheme is introduced, similar to the ones developed in
Refs. [42–44]. Finally, we discuss the challenges for observ-
ing this phenomenon experimentally.

This paper is separated as follows. In Sec. II, the main pro-
cess for particle-hole production in graphene and its analogy
with electron-positron pair creation are presented. Section III
is devoted to the physical model for charge carriers. The
numerical method is introduced in Sec. IV while numerical
results can be found in Sec. V. We conclude in Sec. VI.
Natural units where h̄ = c = 1 are used throughout the paper.

II. PLUNGING IN THE DIRAC SEA: GRAPHENE AND HIC

In the Dirac sea interpretation, pair production is gener-
ated by an external field that induces transitions between the
negative- and positive-energy states [45,46]. In condensed-
matter systems, this corresponds to interband transitions
between the valence and conduction bands. In the second-
quantization formalism, these transitions between the negative
and the positive continua are actually responsible for the gen-
eration of electron-hole or electron-positron pairs [45].

More specifically, the mechanism considered in this paper
is adiabatic pair creation (APC) [47] (sometimes called spon-
taneous pair creation [46]), a dynamical QED process where
the external electromagnetic field potential has some specific
characteristics:

(1) time-dependent potential well that can localize the
electron (form bound states or resonances) at some given time;

FIG. 2. Single-particle spectrum of the Dirac operator for pair
production via the APC mechanism. The blue color represents the
possible free positive- and negative-energy states separated by an
energy gap �, while the small black lines are bound states. In red are
two specific states. The bottom one is shifted as the ion approaches
each other, falls into the Dirac sea, and crosses with negative-energy
states. As this occurs, it becomes unstable, its spectral width in-
creases, and transitions are possible. The top one is also shifted by
the potential but the shift is not large enough to generate transitions.

(2) supercritical for some time interval, where the positive
bound-state energies dive into the negative energy continuum;

(3) adiabatic and nonperturbative time evolution.
The single-particle state of electrons subjected to external

electromagnetic fields of this type is depicted in Fig. 2. This
figure also includes an energy gap, which is induced by the
finite size of the graphene sample (see the end of Sec. IV A 1).
The lowest-energy states of the positive-energy continuum
(valence band) are shifted toward the negative-energy states
(conduction band), or Dirac sea. When electronic states dive
into the Dirac sea, they cross with negative-energy states and
interband transitions can occur, resulting in the production
of electron-hole pairs. Because, initially, the negative-energy
states are filled (Dirac sea or valence band), the transi-
tions always occur from the negative- to the positive-energy
states. This physical interpretation is supported by the second-
quantized formulation, as shown in Sec. III.

In QED, the Coulomb field becomes supercritical when
Z ∼ 137. Ions with such high charges do not exist in nature,
so the strategy used in HIC is to collide two highly charged
ions (typically fully stripped uranium atoms with Z = 92).
As the two ions approach each other, the bound-state energies
of the combined system decrease, up to a critical distance (at
approximately Rcr ∼ 35 fm [46]) where the lower-energy state
reaches E = −mc2 and where the field becomes supercritical.
At this point, the lower bound state starts “plunging” in the
Dirac sea, i.e., it enters the negative-energy continuum. This
allows for transitions between negative- and positive-energy
states and, thus, allows for the generation of electron-positron
pairs. After the collision, the bound states return to the
positive-energy continuum. Although this pair creation mech-
anism has been predicted in the 1970s [48,49], it still eludes an
experimental observation [46,50,51], in part because the ion
“sticking” time is very short, yielding a small number of pairs.

033472-2



PLUNGING IN THE DIRAC SEA USING GRAPHENE … PHYSICAL REVIEW RESEARCH 2, 033472 (2020)

In the considered configuration (see Fig. 1), the field is
provided by an ion passing through a graphene sample. As
the ion passes, the lower-energy states of the conduction band
are pulled down and fall within the valence band, allowing
for interband transitions. This occurs when β > 1

2 , i.e., for
charges of value Z ∼ 1 [9,52,53]. Finally, as the ion gets
further, we recover the free dynamics but electron-hole pairs
have been created. This phenomenon is the dynamical analog
of the atomic collapse resonances observed experimentally
from artificial nuclei on graphene [10].

The main differences between pair creation in HIC and
electron-hole creation in ion-bombarded graphene are the
presence of the mass gap in HIC, which effectively reduces the
pair production rate because it entails higher ion charges for
the occurrence of pair production, and the absence of Coulom-
bic bound states before the ion interaction. In other words,
in graphene, the transitions occur between scattering states.
Nevertheless, the physical principle underlying electron-hole
production in ion-bombarded graphene and electron-positron
pair production are the same: they are produced via APC. To
verify if this phenomenon can be measured experimentally,
we study the spectrum of the system and perform a numerical
study where the electron-hole pair density is evaluated.

III. GRAPHENE MODEL AND OBSERVABLES

In this paper, we consider a regime where the charge trans-
fer from graphene to the ion is minimal and where the integrity
of the graphene sample is preserved. According to some
experiments [40,54] and time-dependent density functional
calculations [34,35], this occurs for ion energy of 1 keV to 2
MeV and higher, and low charge number Z ∼ 1–2. In these
conditions, the number of defects and transferred electrons
induced by the interaction of the projectile with graphene are
negligible.

Provided that these conditions are fulfilled, we choose a
theoretical description of charge carriers in terms of a mass-
less Dirac equation where the speed of light c is replaced
by the Fermi velocity vF ≈ 0.003c [3,5]. This description is
accurate as long as the energy of the charge carriers is E �
2 eV, where corrections due to the tight-binding model can
be neglected [3]. Throughout this paper, we are assuming that
these conditions are fulfilled. It will be verified a posteriori
that most electrons are generated with an energy lower than
2 eV. In addition, the interactions between electrons and the
environment (through phonon-electron and electron-electron
interactions) should be negligible. This can be controlled
to a certain extent by using a high dielectric constant sub-
strate and a very low-temperature setting, which ensures a
small electron-electron coupling constant αG ∼ e2/4πεvF �
1, where ε is the dielectric constant of the substrate. This
condition also allows us to neglect recombination of carriers
into photons, a process ∝αG which should not modify the
electron distribution significantly for the electronic densities
reached in the system. Finally, the dynamics should occur on
a timescale smaller than the thermalization time, on the order
of a few tens of femtoseconds [25]. Otherwise, the energy
distribution of the charge carriers will be simply given by a
thermal Fermi-Dirac–type distribution where the features of
the dynamics have been washed out.

Considering an interaction of graphene with a charged
particle, there is an azimuthal symmetry around the collision
point. Then, it is possible and convenient to express the Dirac
equation in polar coordinates:

i∂tψ (t, r) =
{
−ivF

[
0 ∂r + μ2

r
∂r − μ1

r 0

]
+ V (t, r)

}
ψ (t, r),

(1)

where ψ (t, r) is the two-component wave function, r
is the radial distance, V is an angle-independent scalar
potential, μ1,2 = jz ∓ 1

2 , and jz is the z angular mo-
mentum quantum number taking half-integer values ( jz =
. . . ,− 3

2 ,− 1
2 , 1

2 , 3
2 , . . . ).

As we are interested into the collision of an ion with a
graphene sample, the scalar potential represents the field of
the moving ion with velocity v and charge Z . It is chosen as

V (t, r) =
⎧⎨
⎩

− αZ
R(t ) for R(t ) > Rreg,

− αZ

2Rreg

(
3 − R2(t )

R2
reg

)
for R(t ) < Rreg,

(2)

where α ≈ 1
137 is the fine-structure constant and R(t ) :=√

(vt )2 + r2 is the distance from the charge. The singular
Coulomb potential is regularized by a spherical constant
charge distribution for R(t ) � Rreg, where Rreg is the charge
radius. The ion radius will be approximately the size of the
graphene lattice constant Rreg ∼ a ≈ 0.246 nm, similar to
Ref. [53].

The first observable considered in this paper is the electron
distribution on single-particle states (labeled by the energy Ek

and the angular momentum jz), defined as

nk jz = NvNspin〈0in|â(out)†
jz,k

â(out)
jz,k

|0in〉, (3)

where the subscript in (out) means that the mathemati-
cal object is evaluated at time t → +∞ (t → −∞) and
where â(out)†

jz,k
, â(out)

jz,k
are creation (annihilation) operators in

the electron-hole representation for the single-particle free-
electron states uk jz (r) (states in the conduction band). We
also introduced Nv = 2, the number of Dirac valleys, and
Nspin = 2, the number of physical electron spin, to account for
degeneracies.

To take into account the finite nature of the sample,
the electronic states are defined on a compact support r ∈
[0, rmax] with a boxed boundary condition, where one of the
spinor components is set to zero at r = rmax, that is,

ψ1(t, rmax) = 0 for jz > 0,

ψ2(t, rmax) = 0 for jz < 0. (4)

Physically, this corresponds to the zigzag boundary condi-
tion, which has been used numerous times to model circular
graphene quantum dots [55,56]. With these boundary condi-
tions, the free states in both conduction and valence bands are
discrete (k ∈ N) because electrons are confined. Other bound-
ary conditions could also be considered like the armchair or
the MIT bag model, but this is outside the scope of this paper,
which focuses on the dynamics of charge carriers.
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Using the Furry picture, the electron distribution generated
by the strong external field can be calculated from [45]:

nk jz = NvNspin

∑
k′

|Ujz,k,k′ (t f , ti )|2, (5)

where t f , ti are the final and initial time, respectively (outside
of this time interval, the external field is turned off). We also
defined the inner product

Ujz,k,k′ (t f , ti ) := 〈uk jz |ψk′, jz (t f )〉 (6)

=
∫ rmax

0
u†

k jz
(r)ψk′, jz (r, t f )r dr, (7)

where the time-dependent wave function ψk jz (r, t ) is a solu-
tion to the Dirac equation (1) with an initial condition given
by a negative eigenstate: ψk jz (r, ti ) = vk jz (r) at initial time ti,
where the field is turned on. Also, we are assuming a null
chemical potential (μ = 0) to simulate QED-like process, but
this could be relaxed if one is interested in other graphene
initial conditions.

The second observable considered is the spatial electron
density ρ(r), evaluated from

ρ jz (r) = NvNspin

∑
k′

∣∣∣∣∣
∑

k

Ujz,k,k′ (t f , ti )uk jz (r)

∣∣∣∣∣
2

. (8)

It can be verified that one recovers the electron distribution in
Eq. (5) by integrating the density on the domain and by using
the orthogonality of the wave function uk jz (r).

IV. NUMERICAL METHOD

To evaluate the observables, we need to determine the wave
function ψk jz (r, t ). As long as αZ/v � 1, i.e., for a ratio of the
ion charge and velocity which is large enough, a perturbative
treatment for finding the wave function is not accurate: per-
turbation theory does not hold. Therefore, one should solve
the Dirac equation (1) nonperturbatively. For this purpose, we
employ a high-order Galerkin numerical scheme. The ratio-
nale for this choice is threefold: first, it can deal with the polar
coordinate singularity (in 1/r) in a straightforward way, sec-
ond, it is very efficient for the evaluation of time-independent
states uk jz (r), vk jz (r) required in the calculation, and, finally,
the order of convergence of the spatial discretization is high.

The numerical calculation proceeds in three distinct steps:
(1) the time-independent free solutions uk jz (r) and vk jz (r)
are determined, (2) the negative-energy states are evolved
according to the Dirac equation with the ion field, and (3)
the time-dependent wave function is projected onto positive-
energy state, using Eq. (6). Once the function Ujz,k,k′ is
determined, we have access to both observables.

A. Time-independent scheme: Rayleigh-Ritz method

The time-independent Dirac equation is given by

Ekφk jz (r) =
{
−ivF

[
0 ∂r + μ2

r
∂r − μ1

r 0

]
+ Vt (r)

}
φk jz (r),

(9)

where Ek is the kth eigenenergy, φk jz (r) is the kth eigenstate,
and Vt (r) = V (t, r) is the potential evaluated at some specific

time. Two numerical schemes are introduced to solve this
eigenvalue problem: one for the free case, when Vt (r) = 0 and
one for the interacting case, when Vt (r) = 0. The former is
used to initialize the time-dependent solver while the latter is
used to study the spectral characteristics of the system.

1. Free case: Vt (r) = 0

In the free case with Vt (r) = 0, the analytical solution of
Eq. (9) is well known (see Appendix A). In principle, it is
possible to interpolate the solution with the B-spline basis set
expansion given below by solving a linear system. However,
it is more convenient, for the same computational complexity,
to actually solve the eigenvalue problem.

When there is no potential, for jz > 0 (the case jz < 0 is
discussed in Appendix B), Eq. (9) can be written for the first
spinor component as(

∂2
r + 1

r
∂r − μ2

1

r2
+ E2

k

v2
F

)
u1,k jz (r) = 0, (10)

u2,k jz (r) = i
vF

Ek

(
∂r − μ1

r

)
u1,k jz (r), (11)

where we focus on the positive-energy states by setting
φk jz (r) = uk jz (r). The negative-energy solution can be cal-
culated from the positive one as u1,k jz (r) = v1,k jz (r) and
u2,k jz (r) = −v2,k jz (r). The form given in (10) and (11) is
particularly convenient because the spectrum of Eq. (10) is
bounded from below, allowing for a variational Rayleigh-Ritz
(RR) method. The latter is equivalent to minimizing the fol-
lowing energy functional obtained from Eq. (10) (here, we
dropped the index k jz for convenience):

E := λ

∫ rmax

0
r dr u∗

1(r)u1(r)

−
∫ rmax

0
r dr u∗

1(r)

(
∂2

r + 1

r
∂r − μ2

1

r2

)
u1(r), (12)

where the eigenvalue is λ = E2
k

v2
F

. This can be approximated by
expanding the solution on a polynomial basis over the domain
[0, rmax] as

u1(r) = r|μ1|
N∑

i=1

a1,iBi(r), (13)

where {a1,i}i=1,...,N are the basis coefficients, {Bi(r)}i=1,...,N

are the basis functions, and the prefactor r|μ1| was added to
facilitate the implementation of the boundary condition at
r = 0. Indeed, the behavior of the solution is given by u1(r) =
r|μ1|F (r2) [57], where the function can be Taylor expanded as
F (r2) ∼ A0 + A2r2 + · · · , implying that ∂rF (r2)|r=0 = 0.

In this work, a B-spline polynomial basis set
{b(p)

i (r)}i=1,...,Ns , where Ns is the number of B splines
and p is the order of the spline polynomial, is chosen
because B-splines b(p)

i (r) have compact support, allowing
for numerical sparse matrix linear algebra packages [58].
Also, both the Dirac and the Schrödinger equation have been
solved with high accuracy using these basis sets [42,59–
62]. The B-spline set and the basis function set are related
by {Bi(r) = b(p)

i+1(r)}i=2,...,N . The first basis function B1,1(r)
deserves a special treatment to take the boundary condition
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at r = 0 into account. This boundary condition can actually
be implemented by a suitable combination of B-spline
functions, as B1,1(r) = b(p)

1 (r) + cb(p)
2 (r). The constant c

is adjusted such that ∂rB1(r)|r=0 = 0, forcing the exact
boundary condition.

B-splines are determined by the polynomial order p and
the knot vector (see [59] for more details). In this work, an
equidistant knot vector is used where each knot is separated
by the element size h. In addition, the knot multiplicity is
chosen in agreement with the implementation of the boundary
conditions. In particular, the multiplicity is p at the end point
rmin = 0, allowing for the canceling of the derivative of the
first basis function. On the other hand, the multiplicity is p − 1
at rmax ensuring a boxed boundary condition where u1(rmax) =
0. Finally, the multiplicity is 1 at the interior points, guaran-
teeing the continuity of the solution. This yields a knot vector
given by [r1, . . . , r2p+nb−3], with knot points ordered as

rmin = r1 = · · · = rp < rp+1 < · · ·
< rp+nb−1 = · · · = r2p+nb−3 = rmax , (14)

where {rp+ j = jh} j=1,...,n−1. Here, nb is the number of break-
points, related to the number of B-spline as Ns = nb + p − 3.

An approximation of the eigenenergy and eigenvector is
found by minimizing the functional E over the coefficients of
the basis function expansion. This is performed as usual in the
RR method by reporting the basis set (13) into Eq. (12). The
latter becomes a generalized eigenvalue problem of the form

λAa = Da, (15)

where a is a vector with entries a = (a1,1, a1,2, . . . , a1,N )T

while A and D are Hermitian matrices. The entries in these
matrices essentially consist in integrals of basis functions (and
their first derivative) over the simulation domain. They are
given explicitly in Appendix C 1. Because we are using B-
splines for the basis functions, which have compact support,
the matrices A and D are sparse. The integrals over basis func-
tions are performed numerically using the Gauss-Legendre
(GL) quadrature, while the generalized eigenvalue problem
is solved using LAPACK [63]. The solution of the eigenvalue
problem then yields the first spinor component of the positive-
and negative-energy states (u1 and v1, respectively). The other
component u2 is then evaluated using Eq. (11). Therefore, the
second spinor component is given by

u2(r) = r|μ1|
N∑

i=1

a2,i∂rBi(r), (16)

where a2,i = i vF
E a1,i, which actually defines the basis function

expansion for the second spinor component. This choice of
basis expansion for u2 guarantees that the relation between the
two spinor components (11) is fulfilled everywhere on the do-
main. However, it implies that both components are expressed
using different basis functions, similar to techniques for the
Dirac equation based on kinetically balanced basis expansion
[64]. However, the latter is not required in the free and mass-
less case because the spinor components can be decoupled.

It was verified in Appendix D 1 that this numerical scheme
reproduces the eigenenergies and eigenstates of the free Dirac
operator. The latter can be solved analytically, as shown in

Appendix A. In both cases, one can note the presence of
an energy gap between positive- and negative-energy states,
given by � = 2vF j0,1/rmax. This effective gap is induced by
the finite size of the graphene sample and vanishes in the limit
rmax → ∞.

2. Interacting case: V (t, r) �= 0

In the presence of a potential, the two spinor components
cannot be decoupled as in the free case. For this reason, a
slightly different approach is used here, based on a direct
discretization of Eq. (9). However, the spectrum of this equa-
tion is not bounded from below, in contrast to Eq. (10). In
this case, the naive utilization of the Rayleigh-Ritz method
can lead to spectral pollution, i.e., the appearance of spuri-
ous eigenstates [65,66]. This problem can be mitigated by
using balanced basis functions [64,65] or different variational
principles [65,67]. In this work, we are using kinetically bal-
anced basis functions [68] using a similar strategy as given in
Ref. [69].

From Eq. (9), we can obtain the following RR functional:

E :=
∫ rmax

0
r dr[|φ1(r)|2 + |φ2(r)|2][E − Vt (r)]

− ivF

∫ rmax

0
r dr

[
φ∗

1 (r)
(
∂r + μ2

r

)
φ2(r)

]

− ivF

∫ rmax

0
r dr

[
φ∗

2 (r)
(
∂r − μ1

r

)
φ1(r)

]
. (17)

In the kinetical basis set approach, the basis expansion is given
by

φ1(r) = r|μ1|
N∑

i=1

a1,iBi(r), (18)

φ2(r) = r|μ1|
N∑

i=1

a2,i∂rBi(r). (19)

Reporting this basis expansion in Eq. (17) yields the general-
ized eigenvalue problem

ESa(t ) = [C + P]a(t ), (20)

where S,C, P are matrices similar to the ones in the
time-dependent case (their explicit expression is given in
Appendix C 2). The vector is also different because it
now contains both spinor components, ordered as a(t ) =
(a1,1(t ), a2,1(t ), . . . , a1,N (t ), a2,N (t ))T . This marks an impor-
tant difference with the free case, where the solution of the
eigenvalue problem yields only the first spinor component
while the second component can be calculated from Eq. (16).
In the interacting case, the solution to Eq. (20) gives both
spinor components. The free case is slightly more efficient
because the number of rows and columns of the matrices in
the eigenvalue problem is half of the interacting case.

B. Time-dependent scheme: Galerkin method

Adapting the time-independent solver to the time-
dependent case is relatively straightforward by using a
Galerkin method [44]. The basis functions expansion has the
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same form as Eqs. (18) and (19), but the coefficients become
time dependent as (for jz > 0)

ψ1(t, r) = r|μ1|
N∑

i=1

a1,i(t )B1,i(r), (21)

ψ2(t, r) = r|μ1|
N∑

i=1

a2,i(t )∂rB1,i(r). (22)

The time-dependent basis expansion is then substituted in the
Dirac equation (1). As usual, the Galerkin method is then
obtained by projecting this equation on the set of all basis
functions {(r|μ1|B1,i, 0), (0, r|μ1|∂rB1,i )}i=1,...,N , which allows
us to obtain an equation of the form

iS∂t a(t ) = [C + P(t )]a(t ), (23)

where S,C, P(t ) are matrices similar to the ones in the
time-independent case (their explicit expression is given in
Appendix C 2). The vector contains both spinor components,
ordered as a(t ) = (a1,1(t ), a2,1(t ), . . . , a1,N (t ), a2,N (t ))T . The
initial condition is fixed to the solution obtained from the
time-independent solver by setting aa,i(ti ) = aa,i, for all i ∈
[1, N] and a = 1, 2.

Equation (23) is a large system of ordinary differential
equations which yields the time dependence of the basis
coefficients. We solve this system using the implicit Crank-
Nicolson method [44] whereby each time iteration �t is
obtained by solving the following linear system of equations:[

S + i
�t

2

(
C + Pn+ 1

2
)]

an+1 =
[
S − i

�t

2

(
C + Pn+ 1

2
)]

an,

(24)

where we defined an = a(tn) and Pn+ 1
2 = P(tn + �t/2), along

with tn = ti + n�t . The linear system is solved in parallel
by using a generalized minimal residual Krylov method im-
plemented in the PETSC high-performance library [70]. This
numerical scheme has a second-order convergence in time.

It was verified that the numerical scheme reproduces the
time evolution of a free state and converges toward the exact
solution in Appendix D 2. This time evolution can be com-
puted analytically and is given in Appendix A.

V. NUMERICAL RESULTS AND DISCUSSION

This section is devoted to the numerical results obtained
from the numerical schemes described in the previous section
for the field-induced transitions in ion-bombarded graphene
quantum dots. The first set of numerical results is an analysis
of the spectrum of the Coulomb potential, to demonstrate that
the electron-hole creation proceeds via the APC mechanism
for the parameters considered subsequently. Then, the actual
dynamics of charge carriers subjected to the field of the pass-
ing ion is evaluated.

A. Spectral characteristics of the Coulomb potential and
adiabatic evolution

To determine conditions for which electron-hole pair pro-
duction occurs via the APC mechanism, we now perform a
detailed numerical analysis of the Coulomb potential spec-
trum. As shown below, the eigenstates of the system provide

TABLE I. Simulation parameters for field-induced transitions.

Parameters Value

Number of basis function (N) 1024
B-spline order (p) 4
Number of GL points 10
Domain size (rmax) 0.197 μm
Charge size (Rreg) 0.197 nm
Initial time (ti) −65.8 fs
Final time (t f ) 65.8 fs
Time increment (dt) 0.013 fs

significant details on the physical processes at play. These
results will be important in the next section, for the interpre-
tation of the more complex dynamical results.

The eigenvalues of the Coulomb potential are obtained
numerically by solving the time-independent Dirac equation
(9) using the numerical method described in Sec. IV A 2.
Two main parameters of the model are varied: the ion charge
Z and the graphene-charge distance z. The other simulation
parameters are set to values given in Table I, the same values
used for evaluating the charge carrier dynamics. For the case
where Z is varied, we fix the charge on the graphene sample
by setting z = vt = 0. The numerical results are displayed in
Fig. 3(a).

As the ion charge increases, the positive-energy states,
states of the conduction band with energies Ek > 0 for Z = 0,
are shifted toward lower energies. Remarkably, there is an
avoided crossing between the positive-energy state with the
lowest energy (PSLE) and the negative-energy state with the
highest energy (NSHE) when the ion charge reaches a critical
value Zcrit ≈ 0.36 [this is surrounded by a red diamond in
Fig. 3(a)], indicating that the Coulomb potential becomes
supercritical and that electron-hole pairs can be created. In-
deed, around this exceptional point, states involved in the
avoided crossing become resonances (they actually acquire
an imaginary part and cross in the energy imaginary plane
[71–73]), suggesting that transitions between negative- and
positive-energy states can occur via a nonperturbative tunnel-
ing process, where the transition probability in the adiabatic
regime is given by the Landau-Zener formula [74,75]. These
transitions between negative- and positive-energy states result
physically in the creation of electron-hole pairs, as will be
shown in the next section. As the ion charge is increased
further, other avoided crossings occur between different en-
ergy states. These crossings are highlighted by red circles
in Fig. 3(a) for the PSLE and by blue and green diamonds
and circles for the first and second states above PSLE, re-
spectively. Each of these crossings corresponds to different
potential tunneling and pair creation pathways.

These first numerical results demonstrate that the potential
can become supercritical for some (low) ion charge value, ful-
filling one of the criteria of APC. However, in ion-bombarded
graphene, the charge is not sitting on the graphene sample.
To verify if avoided crossings also occur as the ion moves
away from the graphene sample, the spectrum is evaluated as a
function of the ion-graphene distance z = vt , for an ion charge
Z = 1. The results are displayed in Fig. 3(b), using the same
simulation parameters as when the ion charge is varied. These
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(a)

(b)

FIG. 3. Eigenstates as a function of (a) ion charge Z and
(b) ion-graphene distance z = vt . The states of the conduction band
(positive-energy states) have energies Ek > 0 when Z = 0 while
the states of the valence band (negative-energy states) have Ek < 0
when Z = 0. The red diamond highlights the avoided crossing of
the ground state with the first negative-energy state while red circles
are associated with avoided crossings of other negative-energy states.
The blue (green) diamonds and circles are highlighting avoided
crossings for the first (second) positive excited states with negative-
energy states.

results show again avoided crossings between positive- and
negative-energy states, highlighted by diamonds and circles
in the figure. The first avoided crossing of the PSLE occurs at
a critical time tcrit ≈ −0.11 μm/v, where v is the ion velocity,
implying that in the time interval [−tcrit, tcrit], the potential be-
comes supercritical, in agreement with the APC mechanism.
Other states also participate and have avoided crossings with
negative-energy states, allowing for other tunneling pathways.

These numerical results demonstrate that the first two
criteria of APC given in Sec. II are fulfilled by the
physical system under consideration: the potential can lo-
calize the electron by forming bound states and it can
become supercritical in some time interval. The last cri-
terion for APC is an adiabatic time evolution of the
system along some particular times where nonadiabatic
transitions occur. From adiabatic perturbation theory, a
condition for adiabaticity can be found. It is expressed

FIG. 4. Adiabatic parameters as function of ion graphene dis-
tance, for many velocities.

in terms of the adiabatic factor as [76]

Fkk′ (t ) =
∣∣∣∣ 〈φk jz |∂tVt (r)|φk′ jz 〉

[Ek (t ) − Ek′ (t )]2

∣∣∣∣ � 1, (25)

for a transition between two eigenstates k and k′. This condi-
tion is fulfilled when either the time evolution of the potential
(and eigenstates) is slow or when the energy gap between
the eigenstates is large. Both conspire to make the system
adiabatic, whereby the transition rate between eigenstates k
and k′ is negligible. As an illustration, the adiabatic param-
eter is evaluated numerically and shown in Fig. 4 for the
most important transition of our system, i.e., between PSLE
and NSHE (labeled as 0+ and 0−, respectively). This figure
shows clearly that the adiabatic parameter is F0+,0− (t ) > 1
at avoided crossings (for z ≈ −0.01 μm) while it obeys
F0+,0− (t ) � 1 far from avoided crossings. This naturally leads
to the following picture for the dynamics of interband field-
induced transitions. When the ion is far from the graphene
sample, the dynamics of charge carriers is adiabatic, no transi-
tion takes place, and the eigenstates accumulate a phase. Then,
at some critical time (or distance), there is a nonadiabatic tran-
sition where the electron-hole pair creation process proceeds
via tunneling, as anticipated from the APC mechanism. The
resulting electron distribution will be evaluated in the next
section. We note that this process is actually very similar to
field-induced electronic transitions in molecules [77].

As expected, the adiabatic parameter reaches much higher
values as the ion velocity is increased. However, the ion will
spend less time around avoided crossings, resulting in a lower
tunneling rate in the nonadiabatic transition. Therefore, the
picture based on a sequence of adiabatic evolution followed
by nonadiabatic transitions may start to fail at high enough v.

B. Field-induced interband transitions

The results presented in the last section showed that in
some regime, electron-hole pair creation proceeds via APC.
In this section, we are interested in the actual dynamics of
charge carriers and distribution when they are subjected to the
Coulomb potential of a passing ion. In short, we consider the
dynamical production of electron-hole pair in ion-bombarded
graphene quantum dots, the configuration of Fig. 1. The main
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(a)

(b)

FIG. 5. Electron distribution (a) and electron spatial density
(b) as a function of the ion velocity v. The spatial density is shown at
time t = 65.8 fs.

observables are the electron distribution and the electron den-
sity, given in Eqs. (5) and (8), respectively. They are calculated
using numerical solutions of the Dirac equation using the
Galerkin method described in Sec. IV B. The values of im-
portant simulation parameters are summarized in Table I. It
was tested empirically that converged results are obtained with
these parameters by varying the time step and the number of
basis functions. More details on the convergence of the numer-
ical scheme can be found in Appendix D. Only the first half
of all calculated eigenstates are evolved in time because the
error on higher-energy states is too large and yields inaccurate
results (see Fig. 8 and the discussion in Appendix D 1).

For every numerical result presented in this section, a sum
over angular momentum jz is performed. It was verified that
for | jz| > 1

2 , all the contributions can be neglected because
they are at least an order of magnitude below the ones for
| jz| = 1

2 .
The numerical results for the electron distribution and

density are displayed in Fig. 5 for an ion charge Z = 1 and
for different velocities. The numerical results for the electron
distribution in Fig. 5(a) demonstrate that most electrons are
created at low energies, lower than 2 eV where the Dirac
model is still a valid approximation. It was demonstrated in
numerical studies of HIC that the lower-energy electron peak
is one of the qualitative features hinting at a supercritical

TABLE II. Total number of electrons as a function of the ion
charge for v = 0.001.

Ion charge (Z) Number of electrons (n)

1 22.7
2 52.1
4 101.1

potential [43]. In addition, it was shown in the last section that
most avoided crossings occur between low-energy states, so
the main contribution of these transitions should be found at
low energies. For these reasons, the low-energy electron peak
suggests that electron-hole pairs are produced by the APC
mechanism.

Another feature of the electron distribution is that more
electrons are generated at lower velocities. As argued in the
last section, the adiabaticity of the system becomes dubious at
higher velocities. Moreover, the faster ions stay for a shorter
time in the vicinity of avoided crossings, resulting in a lower
number of generated pairs through tunneling. From these
considerations, one concludes that lower velocities are better
suited for the investigation of APC.

The spatial density at a specific final time t = 65.8 fs is
displayed in Fig. 5(b). Qualitatively, the charge distribution
is a ring centered around the ion impact point. The density
peak evolves with time to larger radial distance r (not shown
here for simplicity). As it evolves, the density is reduced by a
simple geometrical effect whereby the ring radius becomes
larger and the density covers a larger area. In short, these
results demonstrate that electrons are created in the neigh-
borhood of the impact point, when the ion is close to the
graphene sample. In the first few instants, the excitation is
(quasi)bound to the ion and localized around r = 0. When the
ion gets further from graphene, the Coulomb force is no longer
strong enough to localize the charge carrier, so the latter is
released and propagates freely in the radial direction, resulting
in a radial current. The ion velocity does not modify this
picture significantly, except for the fact that higher densities
are reached at lower velocity, as expected from the results for
the electron distribution.

The numerical results for the electron distribution and
electron spatial density as a function of the ion charge are
displayed in Fig. 6, for v = 0.001. The results for different
charges are qualitatively similar: there is a low-energy peak
in the electron distribution and the spatial distribution is a
ring propagating radially. The main quantitative difference is
that more energy states are excited for higher Z , resulting
in a higher number of charge carriers. The total number of
charge carriers, obtained by summing all energy and angular
momentum contributions as n = ∑

k jz
nk jz is given in Table II

and shows a linear increase of the production rate. This can be
attributed to the fact that for higher ion charges, more energy
states become supercritical, resulting in additional excited
tunneling pathways.

VI. CONCLUSION

In this work, the local field interband transitions induced
by an ion passing through a graphene quantum dot have
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(a)

(b)

FIG. 6. Dependence of the electron distribution and spatial den-
sity with the ion charge Z .

been studied theoretically. It is argued by looking at the
spectrum and adiabatic conditions that the main process re-
sponsible for these transitions is APC, the same mechanism
proposed for electron-pair production in low-energy HIC. As
a consequence, ion-bombarded graphene could serve as a test
bed for QED physics in a more forgiving setting. Although
APC eludes an experimental verification in HIC, it could be
detected experimentally using our configuration. One possi-
bility is to measure the radial-induced current I . From the
results of Sec. V B, we can roughly estimate that I = Q/�t ≈
(2.0 mA) · F , where F is the fraction of the circle where the
current is measured and where we assumed that the number
of charges generated is n ≈ 100 while the time is estimated
as �t ≈ 10 fs. According to this order of magnitude esti-
mate, the induced current is in the several microamperes to
low milliampere range, which is realistic for an experimental
detection. A more elaborated and convincing approach would
be to probe the electron distribution [Figs. 5(a) and 6(a)] using
photoemission electron spectroscopy. However, this would
be a challenging experiment, requiring a fine tuning of the
ion spatial position and timing. More analysis is required to
determine the feasibility of such an experiment.

The theoretical investigations have been accomplished by
introducing a Galerkin-type numerical scheme to solve the

Dirac equation and by performing an extensive number of
numerical calculations. The convergence of the numerical
scheme has been demonstrated empirically. In principle, the
numerical method could be used for other field configurations,
such as the one provided by a nanotip, but it is restricted to
azimuthally symmetric external potentials. A 2D Cartesian
coordinate version of the numerical method would be possible
if this condition is not fulfilled, although in this case, other
numerical schemes could also be considered [78,79].

Throughout the paper, electron-electron interactions have
been neglected. We expect that the electron distribution would
not be modified significantly by these interactions, given that
the obtained distribution is close to the thermal Fermi-Dirac
distribution and the timescales involved. However, the effect
on the spatial density could be more important and could
induce a diffusion of the wave packet at larger times. This
important topic is left for future work, along with the effect
of different boundary conditions. Finally, the more complex
process of carrier recombination could be investigated quan-
titatively because it could be used as a probe of electron and
hole pair generation.
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APPENDIX A: FREE SOLUTION OF THE DIRAC
EQUATION

The free solution can then be found by setting V (t, r) = 0.
The Dirac equation then has the form

i∂t

[
ψ1(t, r)
ψ2(t, r)

]
= ivF

[
0 ∂r + μ2

r
∂r − μ1

r

][
ψ1(t, r)
ψ2(t, r)

]
, (A1)

where μ1 = jz − 1
2 and μ2 = jz + 1

2 . We make the following
ansatz for positive- and negative-energy solution, respec-
tively:

ψ (t, r) = u(r)e−iEt , (A2)

ψ (t, r) = v(r)eiEt . (A3)

We get the following coupled system of equations:

Eu1(r) = ivF

(
∂r + μ2

r

)
u2(r), (A4)

Eu2(r) = ivF

(
∂r − μ1

r

)
u1(r) (A5)

and

−Ev1(r) = ivF

(
∂r + μ2

r

)
v2(r), (A6)

−Ev2(r) = ivF

(
∂r − μ1

r

)
v1(r). (A7)
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These equations can be decoupled and we get
(

∂2
r + 1

r
∂r − μ2

2

r2
+ E2

v2
F

)
u2(r), (A8)

u1(r) = i
vF

E

(
∂r + μ2

r

)
u2(r), (A9)

(
∂2

r + 1

r
∂r − μ2

2

r2
+ E2

v2
F

)
v2(r), (A10)

v1(r) = −i
vF

E

(
∂r + μ2

r

)
v2(r). (A11)

The second components u2, v2 obey the Bessel equation.
Moreover, using the fact that the Bessel function derivative
is given by

∂rJm(pr) = −m
Jm(pr)

r
+ kJm−1(pr), (A12)

∂rJm(pr) = m
Jm(pr)

r
− kJm+1(pr), (A13)

and that μ1 = μ2 − 1, we get the solutions

u(r) = Nu

[ Jμ1 (pr)
−iJμ2 (pr)

]
, (A14)

v(r) = Nv

[ Jμ1 (pr)
iJμ2 (pr)

]
, (A15)

where Nu,v are normalization constants to be determined and

p :=
√

p2
x + p2

y = E/vF .

Now, boundary conditions at r = 0 and rmax are taken into
account. First, it is required that solutions are not singular at
the origin, omitting the contribution from Bessel functions
of the second kind in the solution. Second, boxed boundary
conditions are imposed by setting the first component to zero
at the end of the domain, as u1(rmax) = v1(rmax) = 0. It is not
possible to impose this condition to both spinor component
at the same time and be consistent with the Dirac equation.
Rather, the boxed boundary condition is set to one of the
component (here the first) while the other component is eval-
uated from Eq. (11). Imposing this boundary condition, the
momentum p is quantized and takes the value pk = jμ1,k/rmax,
for k ∈ N+ the principal quantum number and jμ,k the zero of
the Bessel function. For each value of k corresponds an energy
eigenstate.

The normalization constant can now be evaluated by eval-
uating the product

〈uk|uk〉 = N2
k

∫ rmax

0
r
[
J2
μ1

(pkr) + J2
μ2

(pkr)
]
dr. (A16)

This can be calculated using [82]

∫ rmax

0
rJ2

μ(pr) = r2
max

2

[
J2
μ(prmax) − Jμ−1(prmax)Jμ+1(prmax)

]
,

(A17)

yielding

Nk = 1

rmax

√
J2
μ1+1( jμ1,k )

. (A18)

Finally, it is verified that the positive and negative states are
orthogonal on the domain by evaluating the product

〈uk|vk〉 = N2
k

∫ rmax

0
r
[
J2
μ1

(pkr) − J2
μ2

(pkr)
]
dr. (A19)

Again, using Eq. (A17), it can be demonstrated that 〈uk|vk〉 =
0.

APPENDIX B: NUMERICAL SCHEME FOR jz < 0

For jz < 0, the time-independent Dirac equation is written
in a slightly different form where the spinor components are
exchanged: (

∂2
r + 1

r
∂r − μ2

2

r2
+ E2

v2
F

)
u2(r) = 0, (B1)

u1(r) = i
vF

E
R̂2u2(r). (B2)

This choice for jz < 0 (and also the form for jz > 0) guaran-
tees that singular terms of the form 1/r do not appear in the
basis expansion nor in the energy functional, facilitating the
numerical implementation. The energy functional for jz < 0
is given by

E := λ

∫ rmax

0
r dr u†

2(r)u2(r)

−
∫ rmax

0
r dr u†

2(r)

(
∂2

r + 1

r
∂r − μ2

2

r2

)
u2(r), (B3)

where the eigenvalue is again λ = E2

v2
F

. The polynomial basis
is

u2(r) = r|μ2|
N∑

i=1

a2,iB2,i(r). (B4)

Using the B-splines and substituting Eq. (B4) into Eq. (B3),
we get another generalized eigenvalue problem where the
explicit expression of the matrices is given in Appendix C 1.
The solution of the eigenvalue problem then yields the second
spinor component (u2 and v2, respectively). The other compo-
nent u1 is then

u1(r) =
N∑

i=1

a1,iB1,i(r), (B5)

where

a1,i = i
vF

E
a2,i, (B6)

B1,i(r) = R̂2r|μ2|B2,i(r) (B7)

= r|μ2|∂rB2,i(r). (B8)

APPENDIX C: EXPRESSION OF MATRICES

In this Appendix, the explicit expression of matrices ob-
tained in the discretization of the Dirac equation in cylindrical
coordinates using the basis set expansion is given.

1. Time-independent Dirac equation

The A and D matrices have nonzero entries when the
basis functions have a common support. Therefore, if
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supp(Bi ) ∩ supp(Bj ) = ∅ for i, j ∈ [1, N], then Ai j = Di j =
0, else, the nonzero entries are given by the following.

(i) For jz > 0:

Ai j =
∫ rmax

0
dr r2|μ1|+1B1,i(r)B1, j (r), (C1)

while

Di j =
∫ rmax

0
dr r2|μ1|+1[∂rB1,i(r)][∂rB1, j (r)]. (C2)

(ii) For jz < 0:

Ai j =
∫ rmax

0
dr r2|μ2|+1B2,i(r)B2, j (r), (C3)

while

Di j =
∫ rmax

0
dr r2|μ2|+1[∂rB2,i(r)][∂rB2, j (r)]. (C4)

An integration by parts of the functional E is required to
obtain the expressions for Di j .

2. Time-dependent Dirac equation

As for the time-independent case, the S and C matrices
have nonzero entries when the basis functions have a common
support. Therefore, if supp(Bi ) ∩ supp(Bj ) = ∅ for i, j ∈
[1, N], then Si j = Ci j = 0. In contrast to the time-dependent
case, the nonzero entries are 2 × 2 matrices. They are given
by the following.

(i) For jz > 0:

(Si j )11 =
∫ rmax

0
dr r2|μ1|+1B1,i(r)B1, j (r), (C5)

(Si j )22 =
∫ rmax

0
dr r2|μ1|+1[∂rB1,i(r)][∂rB1, j (r)], (C6)

(Si j )12 = (Si j )21 = 0, (C7)

while

(Ci j )12 = ivF

∫ rmax

0
dr r2|μ1|+1[∂rB1,i(r)][∂rB1, j (r)], (C8)

(Ci j )21 = (Ci j )
∗
12, (C9)

(Ci j )11 = (Ci j )22 = 0, (C10)

and

(Pi j )11 =
∫ rmax

0
dr r2|μ1|+1B1,i(r)B1, j (r)V (t, r), (C11)

(Pi j )22 =
∫ rmax

0
dr r2|μ1|+1[∂rB1,i(r)][∂rB1, j (r)]V (t, r),

(C12)

(Pi j )12 = (Pi j )21 = 0. (C13)

FIG. 7. Numerical error as a function of element size h and spline
order p.

(ii) For jz < 0:

(Si j )11 =
∫ rmax

0
dr r2|μ2|+1[∂rB2,i(r)][∂rB2, j (r)], (C14)

(Si j )22 =
∫ rmax

0
dr r2|μ2|+1B2,i(r)B2, j (r), (C15)

(Si j )12 = (Si j )21 = 0, (C16)

while

(Ci j )12 = −ivF

∫ rmax

0
dr r2|μ2|+1[∂rB2,i(r)][∂rB2, j (r)],

(C17)

(Ci j )21 = (Ci j )
∗
12, (C18)

(Ci j )11 = (Ci j )22 = 0, (C19)

and

(Pi j )11 =
∫ rmax

0
dr r2|μ2|+1[∂rB2,i(r)][∂rB2, j (r)]V (t, r),

(C20)

(Pi j )22 =
∫ rmax

0
dr r2|μ2|+1B2,i(r)B2, j (r)V (t, r), (C21)

(Pi j )12 = (Pi j )21 = 0. (C22)

APPENDIX D: CONVERGENCE AND
NUMERICAL ERRORS

In this Appendix, the convergence of the numerical scheme
is investigated by performing simple test cases. Both the time-
independent and time-dependent cases are considered.

TABLE III. Order of spatial convergence for different B-spline
order.

B-spline order (p) Order of convergence

2 4.66
3 7.66
5 12.60

033472-11



FILLION-GOURDEAU, LEVESQUE, AND MACLEAN PHYSICAL REVIEW RESEARCH 2, 033472 (2020)

FIG. 8. Numerical error as a function of eigenstate energies. The
number on the abscissa represents the principal quantum number.

1. Convergence of the time-independent scheme

The convergence of the time-independent scheme de-
scribed in Sec. IV A is studied by evaluating the free solution.
The solutions given by Eqs. (A14) and (A15) are known
analytically. The first test consists in verifying the spatial con-
vergence as a function of the element size h and the B-spline
order. This is accomplished by evaluating the state with the
lowest energy and by computing the numerical error, defined
as the L2 norm of the difference between the exact and the
approximate solutions ε = ‖ψappr − ψexact‖L2

.
The results are shown in Fig. 7 for the numerical error

while the order of convergence is given in Table III. The
results demonstrate that the numerical scheme converges very
rapidly as h is reduced and the B-spline order is increased. As
the computational time increases with the spline order because
the matrices becomes less sparse, there is a compromise be-
tween accuracy and efficiency. In this paper, we chose p = 4
which converges rapidly but does not induce an important
overhead.

In the second test, the accuracy of the numerical scheme is
verified as function of eigenstate energies. All the eigenstates
obtained from the numerical method are compared to the

FIG. 9. Numerical error of the time-dependent Galerkin scheme
as a function of the time step dt .

analytical solution. This is shown in Fig. 8, for many element
lengths. These results demonstrate that the error increases
with energy, up to a point where it reaches O(1). This occurs
because the period of spatial oscillations of the higher-energy
state wave functions approaches the grid resolution. Accord-
ing to these results, only the bottom half of all eigenstates are
included in calculations in this paper, allowing for accurate
solutions.

2. Convergence of the time-dependent scheme

The convergence of the time-dependent scheme is ana-
lyzed by propagating the positive-energy ground state (with
a principal quantum number k = 0) from time ti = 0 s to
t f = 6.58 × 10−12 s and by varying the time step dt . The
domain size is rmax = 1.97 μm, the number of basis function
is 40, and the spline order p = 4. The error is evaluated using
again the L2 norm of the difference between the approximate
solution and the exact solution. The analytical exact solution is
given in Eqs. (A2) and (A14). The results are shown in Fig. 9.
These results demonstrate that the numerical scheme converge
with time, with an order of convergence of 3.96.
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Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser,
Ultrafast nonequilibrium carrier dynamics in a single graphene
layer, Phys. Rev. B 83, 153410 (2011).

[26] E. Malic, T. Winzer, E. Bobkin, and A. Knorr, Microscopic
theory of absorption and ultrafast many-particle kinetics in
graphene, Phys. Rev. B 84, 205406 (2011).

[27] B. Y. Sun, Y. Zhou, and M. W. Wu, Dynamics of photoexcited
carriers in graphene, Phys. Rev. B 85, 125413 (2012).

[28] A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M.
Polini, Nonequilibrium dynamics of photoexcited electrons in
graphene: Collinear scattering, auger processes, and the impact
of screening, Phys. Rev. B 88, 035430 (2013).

[29] H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Graphene in
ultrafast and superstrong laser fields, Phys. Rev. B 91, 045439
(2015).

[30] I. Al-Naib, J. E. Sipe, and M. M. Dignam, Nonperturbative
model of harmonic generation in undoped graphene in the tera-
hertz regime, New J. Phys. 17, 113018 (2015).

[31] S. Tani, F. Blanchard, and K. Tanaka, Ultrafast Carrier Dynam-
ics in Graphene under a High Electric Field, Phys. Rev. Lett.
109, 166603 (2012).

[32] C. Heide, T. Boolakee, T. Higuchi, H. B. Weber, and P.
Hommelhoff, Interaction of carrier envelope phase-stable laser
pulses with graphene: the transition from the weak-field to the
strong-field regime, New J. Phys. 21, 045003 (2019).

[33] G. Compagnini, F. Giannazzo, S. Sonde, V. Raineri, and E.
Rimini, Ion irradiation and defect formation in single layer
graphene, Carbon 47, 3201 (2009).

[34] O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, A. Tolvanen,
K. Nordlund, and J. Keinonen, Effects of ion bombardment on
a two-dimensional target: Atomistic simulations of graphene
irradiation, Phys. Rev. B 81, 153401 (2010).

[35] S. Bubin, B. Wang, S. Pantelides, and K. Varga, Simulation of
high-energy ion collisions with graphene fragments, Phys. Rev.
B 85, 235435 (2012).

[36] S. Zhao, W. Kang, J. Xue, X. Zhang, and P. Zhang, Comparison
of electronic energy loss in graphene and bn sheet by means
of time-dependent density functional theory, J. Phys.: Condens.
Matter 27, 025401 (2015).

[37] A. Ojanperä, A. V. Krasheninnikov, and M. Puska, Electronic
stopping power from first-principles calculations with account
for core electron excitations and projectile ionization, Phys.
Rev. B 89, 035120 (2014).

[38] K. Balzer, N. Schlünzen, and M. Bonitz, Stopping dynamics of
ions passing through correlated honeycomb clusters, Phys. Rev.
B 94, 245118 (2016).

[39] E. P. Bellido and J. M. Seminario, Molecular dynamics simula-
tions of ion-bombarded graphene, J. Phys. Chem. C 116, 4044
(2012).

[40] E. Gruber, R. A. Wilhelm, R. Pétuya, V. Smejkal, R. Kozubek,
A. Hierzenberger, B. C. Bayer, I. Aldazabal, A. K. Kazansky,
F. Libisch et al., Ultrafast electronic response of graphene to
a strong and localized electric field, Nat. Commun. 7, 13948
(2016).

[41] R. Jago, R. Perea-Causin, S. Brem, and E. Malic, Spatio-
temporal dynamics in graphene, Nanoscale 11, 10017 (2019).

[42] Y. V. Vanne and A. Saenz, Numerical treatment of diatomic
two-electron molecules using a B-spline based CI method, J.
Phys. B: At., Mol. Opt. Phys. 37, 4101 (2004).

[43] I. A. Maltsev, V. M. Shabaev, I. I. Tupitsyn, A. I. Bondarev,
Y. S. Kozhedub, G. Plunien, and T. Stöhlker, Electron-positron
pair creation in low-energy collisions of heavy bare nuclei,
Phys. Rev. A 91, 032708 (2015).

[44] F. Fillion-Gourdeau, E. Lorin, and A. Bandrauk,
Galerkin method for unsplit 3-d dirac equation using
atomically/kinetically balanced b-spline basis, J. Comput.
Phys. 307, 122 (2016).

[45] W. Greiner, B. Muller, and J. Rafelski, Quantum Electrodynam-
ics of Strong Fields (Springer, Berlin, 1985).

[46] J. Rafelski, J. Kirsch, B. Müller, J. Reinhardt, and W. Greiner,
Probing qed vacuum with heavy ions, in New Horizons in
Fundamental Physics, edited by S. Schramm and M. Schäfer
(Springer, Cham, 2017), pp. 211–251.

[47] P. Pickl and D. Dürr, Adiabatic pair creation in heavy-ion and
laser fields, Europhys. Lett. 81, 40001 (2008).

033472-13

https://doi.org/10.1126/science.1234320
https://doi.org/10.1103/PhysRevD.78.096009
https://doi.org/10.1103/PhysRevB.81.165431
https://doi.org/10.1134/S0021364012090135
https://doi.org/10.1103/PhysRevLett.102.106802
https://doi.org/10.1103/PhysRevD.87.125011
https://doi.org/10.1103/PhysRevB.92.035401
https://doi.org/10.1103/PhysRevD.86.125022
https://doi.org/10.1103/PhysRevD.93.116006
https://doi.org/10.1103/PhysRevLett.124.110403
https://doi.org/10.1364/JOSAB.35.003021
https://doi.org/10.1364/JOSAB.35.000958
https://doi.org/10.1038/nature23900
https://doi.org/10.1103/PhysRevLett.121.207401
https://doi.org/10.1103/PhysRevB.84.205445
https://doi.org/10.1103/PhysRevB.83.153410
https://doi.org/10.1103/PhysRevB.84.205406
https://doi.org/10.1103/PhysRevB.85.125413
https://doi.org/10.1103/PhysRevB.88.035430
https://doi.org/10.1103/PhysRevB.91.045439
https://doi.org/10.1088/1367-2630/17/11/113018
https://doi.org/10.1103/PhysRevLett.109.166603
https://doi.org/10.1088/1367-2630/ab13ce
https://doi.org/10.1016/j.carbon.2009.07.033
https://doi.org/10.1103/PhysRevB.81.153401
https://doi.org/10.1103/PhysRevB.85.235435
https://doi.org/10.1088/0953-8984/27/2/025401
https://doi.org/10.1103/PhysRevB.89.035120
https://doi.org/10.1103/PhysRevB.94.245118
https://doi.org/10.1021/jp208049t
https://doi.org/10.1038/ncomms13948
https://doi.org/10.1039/C9NR01714C
https://doi.org/10.1088/0953-4075/37/20/005
https://doi.org/10.1103/PhysRevA.91.032708
https://doi.org/10.1016/j.jcp.2015.11.024
https://doi.org/10.1209/0295-5075/81/40001


FILLION-GOURDEAU, LEVESQUE, AND MACLEAN PHYSICAL REVIEW RESEARCH 2, 033472 (2020)

[48] S. Gershtein and Y. Zeldovich, Positron production during the
mutual approach of heavy nuclei and the polarization of the
vacuum, Zh. Eksp. Teor. Fiz. 57, 654 (1969) [Sov. Phys.–JETP
30, 358 (1970)].

[49] B. Muller, Positron creation in superheavy quasi-molecules,
Annu. Rev. Nucl. Sci. 26, 351 (1976).

[50] I. Ahmad, S. M. Austin, B. B. Back, R. R. Betts, F. P. Calaprice,
K. C. Chan, A. Chishti, P. Chowdhury, C. Conner, R. W.
Dunford, J. D. Fox, S. J. Freedman, M. Freer, S. B. Gazes,
A. L. Hallin, T. Happ, D. Henderson, N. I. Kaloskamis, E.
Kashy, W. Kutschera et al. (APEX Collaboration), Search for
Narrow Sum-Energy Lines in Electron-Positron Pair Emission
From Heavy-Ion Collisions Near the Coulomb Barrier, Phys.
Rev. Lett. 75, 2658 (1995).

[51] R. Ruffini, G. Vereshchagin, and S.-S. Xue, Electron–positron
pairs in physics and astrophysics: From heavy nuclei to black
holes, Phys. Rep. 487, 1 (2010).

[52] V. M. Pereira, J. Nilsson, and A. H. Castro Neto, Coulomb
Impurity Problem in Graphene, Phys. Rev. Lett. 99, 166802
(2007).

[53] O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Supercritical
coulomb center and excitonic instability in graphene, Phys. Rev.
B 80, 165429 (2009).

[54] J. Buchheim, R. M. Wyss, I. Shorubalko, and H. G. Park, Under-
standing the interaction between energetic ions and freestanding
graphene towards practical 2d perforation, Nanoscale 8, 8345
(2016).

[55] B. Wunsch, T. Stauber, and F. Guinea, Electron-electron inter-
actions and charging effects in graphene quantum dots, Phys.
Rev. B 77, 035316 (2008).
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