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Particle flows around an intruder
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Particle flows injected as beams and scattered by an intruder are numerically studied. We find a crossover of
the drag force from Epstein’s law to Newton’s law, depending on the ratio of the speed to the thermal speed.
These laws can be reproduced by a simple analysis of a collision model between the intruder and particle flows.
The crossover from Epstein’s law to Stokes’ law is also found for the low-speed regime as the time evolution
of the drag force caused by beam particles. We also show the existence of turbulentlike behavior of the particle
flows behind the intruder with the aid of the second invariant of the velocity gradient tensor and the relative
mean-square displacement for the high-speed regime and a large intruder.
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I. INTRODUCTION

To know fluid flows around an intruder is a fundamental
problem [1,2]. When the Reynolds number is low, the drag
force acting on a spherical intruder obeys Stokes’ law in which
the drag is proportional to the relative speed between the
intruder and the fluid, the viscosity of the fluid, and the radius
of the intruder. On the other hand, the drag force satisfies
Newton’s law for the high Reynolds number, in which the drag
is proportional to the square of the relative speed and the cross
section of the intruder.

To understand particle flows is important in various fields
[3-12]. The perfect fluidity is a key concept to understand
quark-gluon matter [3,4]. The drag coefficient of quarks
through the quark-gluon plasma is evaluated theoretically [5].
The drag force acting on dust in the protoplanetary disks
is known to show the crossover from Epstein’s law [13], in
which the drag force is proportional to the cross section and
the relative moving speed, to Stokes’ law as the average size of
dust increases [6]. This problem is also related to the designs
of artificial satellites [7]. Atomic and molecular beams [8—10]
are widely used for nanotechnologies such as a beam epitaxy
on a thin film [11]. We believe that the drag force still satisfies
Stokes’ law for molecular flows of low Reynolds number
[14-18]. In atomic and molecular flows, Stokes’ law can be
used only for systems in the zero Knudsen number limit, i.e.,
if the mean-free path of molecules is much smaller than the
size of the intruder [19-24]. The correction to Stokes’ drag
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for rarefied gases in the low Knudsen number is theoretically
confirmed by the kinetic theory of rarefied gases [19-24]. The
drag force, however, acting on a slowly moving intruder in
a crowd of molecules for the high Knudsen number satisfies
Epstein’s law [13,25].

There are various experimental and numerical studies on
the drag force acting on an intruder in granular flows [26-39].
Note that thermal fluctuations do not play any roles for
granular particles. A variety of velocity dependencies of the
drag force are reported depending on the protocols of experi-
ments and simulations. Granular jet experiments [40,41] and
simulations [41-43] suggest that the granular jet flows can be
approximated by a perfect fluid model [41,42].

It is natural to expect that a molecular flow can create
turbulence if the corresponding Reynolds number of the flow
is sufficiently high. To verify this conjecture, the Karman
vortices behind an intruder have already been observed in
molecular dynamics (MD) simulations [18,44,45]. Neverthe-
less, there are no published papers, as far as we know, to
reproduce a fully developed turbulent flow by MD.

In this paper, we numerically study the drag force acting on
a stationary spherical intruder in particle flows by controlling
the ratio of the injected speed of the particles to the thermal
speed, which is proportional to the sound speed, in terms of
the MD. We also try to reproduce a turbulentlike behavior of
particle flows behind the intruder with the aid of the second
invariant of the velocity gradient tensor and the relative mean-
square displacement of two moving particles if the injected
speed is much larger than the thermal speed and the size of
the intruder is much larger than the molecule size.

The organization of this paper is as follows: In the next
section, we explain our model and setup of our study. In
Sec. III, we present the results of our simulation for the drag
force acting on the intruder based on not too large systems.
In the first part, we show the crossover from Epstein’s drag
to Newtonian drag depending on the ratio of the colliding
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FIG. 1. A snapshot of the initial configuration of the system for
¢ =0.40,D =7d, and D, = 20d.

speed to the thermal speed. In the second part, we discuss how
results depend on the boundary condition on the surface of the
intruder. In Sec. IV, we illustrate the existence of a crossover
from Epstein’s drag to Stokes’ drag as time goes on. This
section consists of two parts. In the first subsection, we show
the numerical results to exhibit the crossover. In the second
subsection, we explain the mechanism of the crossover. In
Sec. V, we demonstrate the existence of a turbulentlike flow
behind the intruder in which the relative motion of two collid-
ing particles is superballistic if the size of the intruder is much
larger than the molecule size. In the first subsection, we illus-
trate the conditions to observe turbulentlike flows produced
by molecule flows. We also discuss the angle distribution of
scattered particles by the intruder. In Sec. VI, we conclude
our results. In Appendix A, we examine whether the sound
speed is applicable to characterize the drag. In Appendix B,
we briefly summarize our numerical results when the intruder
is initially put inside the beam particles under the periodic
boundary condition in the flow direction.

II. MODEL

In this section, let us explain our model and the setup
of our simulation. The system consists of two parts: one is
a fixed intruder, and another is a collection of the mobile
particles, as shown in Fig. 1. The intruder is made by one core
particle whose diameter is D.. In most cases, the intruder is
covered by N; identical particles whose diameters are d on
the surface of the core particle. We examine four sizes of
the intruders as (D./d, Ns) = (5, 144), (13,744), (28, 3364),
and (98,39204). The diameter of the intruder is given by
D = D, + 2d in this case. We also examine the case of
N, =0, i.e., D =D, in Sec. III B. Then, we find that the
results are almost independent of the boundary condition
on the surface of the intruder. The intruder is fixed at the
origin, which has an infinitely large mass. We simulate sys-
tems containing N = 30000, 101 250, 810 000, and 9 600 000
monodisperse mobile particles depending on the size of the
intruder. The mass and diameter for each molecule are m
and d, respectively. Throughout this paper, collisions between
particles are assumed to be elastic. We examine various initial
volume fractions of beam particles ranged from ¢ = 0.20 to
0.55. Before starting our simulation, the mobile particles are
thermalized with the temperature 7', and are moved with the
translational speed V. The equation of motion of the ith parti-
cle at the position r; is given by md’r;/dr*> = ) F;; with the
interparticle force F;; = ©(d — r;j)k(d — r;;)F;;, where we
have introduced r;; = |r;;|, #;j = r;;/ri;, the spring constant

TABLE I. The set of used parameters.

D./d N, N Dy/d
5 144 30000 20
13 744 101 250 30
28 3364 810000 60
98 39204 9600 000 200

k, and the step function ®(x), i.e., @(x) =1 for x > 0 and
®(x) = 0 otherwise. Initially, we confine the mobile particles
in tubes whose diameters are D, = 20d, 30d, 60d, and 200d
for D, = 5d, 13d, 28d, and 98d, respectively. Since the drag
force is known to depend on the distance from the boundary
of a container through a simulation [14] and a theory by
fluid mechanics [46], we keep the ratio of D/D ~ 2 in our
simulation. We assume that the interaction force between the
wall of the tube and the particles is identical to the interparticle
force. The used parameters are listed in Table 1.

When the mobile particles collide with the intruder, we
examine two cases for the reflection: one is the random
reflection of the angle with the temperature Ty, and another
is the simple reflection rule according to the equation of
motion. For the former condition, when the colliding parti-
cle leaves the intruder, we give the velocity to the particle,
whose magnitude is the thermal speed vr = /27 /m, and the
scattering direction of the particle is random on the surface of
the intruder. Here, we set 7, = T for simplicity for the former
condition. We also examine two cases for the systems behind
the intruder: one is a free scattering case, and another is a
confined case, where the scattered particles are still confined
in the tube. In the following, we use the time-averaged drag
force in a certain time window, where the instantaneous force
acting on the intruder is measured via F = } . F ;, where F
is the contact force acting on the intruder. In addition, we fix
the speed V = 0.10d v/k/m. We have verified that the results
of our simulation for V = 0.10d./k/m are consistent with
those of the hard-core particles. We also note that the time
increment is fixed to be Ar = 1.0 x 1073 /m/k.

III. CROSSOVER FROM EPSTEIN’S LAW TO
NEWTONIAN LAW

In this section, we present the results of our simulations
for not large system sizes. This section consists of two parts.
In Sec. IIT A, we show the drag force against the translational
speed as a crossover from Epstein’s law to Newtonian law,
depending on the ratio of the colliding speed to the thermal
speed. In Sec. III B, we investigate whether the geometry of
the intruder affects the drag law.

A. Crossover of the drag force from Epstein’s law to
Newtonian law

We present the results of our simulation of the drag force
acting on the intruder against the normalized colliding speed
by the thermal speed for both the free scattering (with fixing
D/d and various ¢) and the confined cases (with fixing ¢
and various D/d) in Fig. 2. Here, the data are obtained by
the time average of the instantaneous drag force in the range
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FIG. 2. Plots of the drag force against the normalized speed V/vr
for the free scattering and the confined cases for various fractions
¢ and intruder sizes D. The dashed and dotted lines represent the
collision models (1) and (2), respectively.

between t = 400+/m/k and 800+/m/k. Because the drag force
is determined from the total force acting on the intruder by all
collisions of particles in front of the intruder, the drag force
is unchanged whether the particle flow behind the intruder
is confined or not. In this subsection, we assume that the
intruder is covered by small particles whose sizes are the
same as those of colliding particles and the reflection rule
between colliding particles and the intruder is thermal in
which reflecting particles are stochastically scattered with
satisfying the Maxwell distribution.

We note that our obtained drag forces are proportional to
(D + d)?, i.e., the collision cross section [28,47]. The drag
force is proportional to the square of the speed for V/vp > 1,
while it is proportional to vV for V/vr < 1.

The former, on the one hand, can be understood by a simple
collision model. Because each momentum change in the flow
direction for a collision is Apj = 2mV cos? @ where 6 is the
angle between the intruder and the colliding particle as shown
in Fig. 3, and the collision frequency is Q. = (7w /4)n(D +
d)?V with the number density n = 6¢/(d>) [28], the force
acting on the intruder is given by

s
F =f $in6 dOAp Q. = %nm(D+d)2V2, (1)
0

-~
colliding particle

intruder

xT

FIG. 3. Explanation of the angle 6 between the intruder and the
colliding particle. The arrow indicates the flow direction. We define
the z axis as the flow direction and the center of the intruder is set as
the origin.

FIG. 4. (a) The time evolution of the density profile att//m/k =
0 (red solid line), 10 (blue dashed line), and 30 (black dotted line).
The arrow indicates the direction of the diffusive front. (b) The
expansion wave (¢ = 0.15) for V/vr = 0.10 (open circles) and 0.32
(open squares). The corresponding solid lines represent the expan-
sion speeds V.

which agrees well with the simulation results for V 2 vt (see
Fig. 2). This is the simple Newtonian drag law for the high-
speed regime.

On the other hand, the front of the beam of mobile particles
diffuses before colliding with the intruder for V/vr < 1 as
shown in Fig. 4(a). This expansion speed of the diffusive front
is approximately given by V,, = </Vvr as shown in Fig. 4(b).
When we replace V in Eq. (1) by V,,, we obtain

T 2
F = Znm(D +dY vV, )

which agrees well with the simulation results for V < vr
as shown in Fig. 2. Here, the sound speed is another char-
acteristic speed that appears in this system. However, it is
evident that the thermal speed is superior to the sound speed
to characterize the drag force as shown in Appendix A.

B. Effects of the boundary conditions on the intruder

In this section, let us check whether the results depend on
the boundary conditions between the intruder and the mobile
particles. Here, we refer to the intruder introduced in the
previous subsection as (i) “thermal and bumpy” because
the mobile particles reflect at random when they collide with
the intruder, and the small particles are attached on the surface
of the core particle. We examine the other three different types
of intruders: (ii) “reflective and smooth,” (iii) “reflective and
bumpy,” and (iv) “thermal and smooth.” The intruder in the
condition of (ii) “reflective and smooth” consists of only one
core particle, and the reflection between the intruder and the
mobile particles is described by a simple elastic collision rule.
The intruder in (iii) “reflective and bumpy” adopts a simple
elastic collision rule, and the intruder consists of the core
particle and the small particles on its surface as that used in
the case (i). The intruder in (iv) “thermal and smooth” adopts
the thermal scattering as used in (i), and the intruder consists
of only one core intruder. Figure 5 plots the results of the
drag forces under various boundary conditions for D/d =7
and ¢ = 0.40 in the free scattering condition. The results
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FIG. 5. Plots of the drag force against the scaled collision speed
V /vy for the free scattering case with ¢ = 0.40 and D = 7d when we
examine several reflection rules between the intruder and the mobile
particles.

clearly indicate that the choice of the boundary condition on
the intruder is not important for the drag force.

IV. CROSSOVER FROM EPSTEIN’S
LAW TO STOKES’ LAW

In this section, we present the crossover from Epstein’s
law to Stokes’ law for the low-speed regime. This section
consists of two parts. In the first subsection, we present nu-
merical results to exhibit the crossover from Epstein’s law to
Stokes’ law. In the second subsection, we explain the physical
mechanism of this crossover.

A. How can we get crossover from Epstein’s law to Stokes’ law?

In the previous section, we have reported the crossover
from Epstein’s law to Newtonian law when we control the
ratio of the colliding speed to the thermal speed V/vr.

Although Newtonian law for V/vp > 1 is expected,' Ep-
stein’s law for V/vr < 1 is alittle unexpected because Stokes’
law might be expected for slow flows. To clarify the condition
to emerge Stokes’ law, in this section, we illustrate the exis-
tence of a crossover from Epstein’s law to Stokes’ law with
the time evolution by fixing V/vr < 1.

When we focus on the region in front of the intruder, the
packing fraction of this local region changes as time goes on
[see Fig. 6(a)]. Here, we measure the local packing fraction
in the region —D/2 — 10d < z < —D/2 (see Fig. 3 for the
information of the geometry). After the early stage of the
collision process, there is a relatively long metastable state in
which the local packing fraction is almost equal to the initial
packing fraction of the beam particles. Then, ¢, decreases
with time for ¢/4/m/k 2 600. When we substitute the local
packing fraction ¢ () into Eq. (2), we can observe the
crossover from Epstein’s drag to Stokes’ drag as shown in
Fig. 6(b). Then, the drag force reaches Stokes’ law in the late
stage, which is given by

Fsy = 3mnDV, 3

where the shear viscosity 7 is estimated from the well-known
result from the Enskog theory [48,49] as

5 |mT
16d2V =

1 8 > 768
X [g0(¢)<1+§¢go(¢)> +E¢ go(d))]. 4)

n(¢) =

Here, go(¢) is the radial distribution function at contact, which
is approximately given by Carnahan and Starling formula
20(@) = (1 — ¢/2)/(1 — ¢)*, which is valid for ¢ < 0.49

'"We have confirmed that the drag law in this regime remains
Newtonian in the range of 200/m/k <t < 1500/m/k.
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FIG. 6. (a) Time evolution of the local packing fraction ¢y in front of the intruder for ¢ = 0.40, D/d = 30, and V/vr = 0.32. Two black
dots represent the points for ¢, = 0.30 and 0.10, respectively. (b) Time evolution of the force acting on the intruder. We also plot Epstein’s
law (2) (dashed line) and Stokes’ law (3) (dotted line) using the time evolution of the local packing fraction ¢... The diameter dependence of
the force for (c) ¢oc = 0.30 and (d) 0.10, respectively. Here, we have introduced the dimensionless force F* = F/(kd) and time t* =t //m/k,

respectively.
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[50]. We also confirm that the drag force is proportional to
the cross section in Epstein’s regime, while it is proportional
to D in Stokes’ regime as shown in Figs. 6(c) and 6(d). This
is also another evidence of the crossover from Epstein’s law
to Stokes’ law. We note that Stokes’ law is also observed
when we adopt the periodic boundary condition in the flow
direction, which is investigated in Appendix B.

B. Mechanism of the crossover

Let us discuss the reason why the time-dependent
crossover from Epstein’s to Stokes’ laws appears. The flow is
stacked around the intruder because the particles cannot move
due to the existence of the outer particles near the intruder.
These stacked particles can be regarded as a “boundary layer”
around the intruder, which prohibits mobile particles from
direct collisions with the intruder. In this case, the local shear
rate can be approximated as o =~ (V/D)sin 6, where sin 6
represents the projection parallel to the tangential direction
of the surface. This leads to that the shear stress acts on the
intruder whose magnitude in the flow direction is Y. sin @
if the viscosity 71 is well defined. Therefore, we can evaluate
the force acting on the intruder by integrating the shear stress
over the surface of the intruder, and we obtain

D\? [~
F = 2nn<§> / dO e sinh ~ nDV, 5)
0

which is the origin of Stokes’ law.

The particles, however, are not stacked near the intruder
in the early stage of the simulation. Therefore, the beam
particles can directly collide with the intruder, whose speed
is approximately given by the thermal speed. Then, we obtain
Epstein’s law as in Eq. (2).

V. TURBULENTLIKE FLOWS FOR V/vy > 1ANDD/d > 1

In Sec. III, we did not discuss what flows can be observed
for V/vr > 1. It is natural to expect turbulentlike flows can
be observed in this regime because V/vr might correspond to
the Reynolds number of the fluid flows. We also examine the
effect of D/d which has not been investigated in the previous
sections.

Let us characterize the particle flows behind the in-
truder for large V/vr. We introduce the second invariant of
the velocity gradient tensor Q = (1/2)(—SpSap + WapWap)
where S,p = (1/2)(0guy + dyutg) and Wog = (1/2)(0gue —
dyupg) [51]. Here, we adopt Einstein’s rule for o and 8 where
duplicated indices take summation over x, y, and z. Figure 7
shows the contours of Q =0 for (a) D =7d and (b) D =
100d, where the field is coarse grained with the scale 2d for
visibility [52]. The vortex-rich regions Q > 0 emerge behind
the intruder. Such domain structure becomes complicated for
large D/d. This behavior is similar to that observed in a
turbulent flow induced by an intruder [53]. In particular, a
huge number of vortex-rich domains appear for D/d > 1
(Fig. 7). This suggests that the particle flow in Fig. 7(b) is
turbulentlike.

We also characterize the vortex structure by plotting the
vorticity induced by the scattering of the intruder. Because
the twisted structure of the flow field is not observed in our

(b)

FIG. 7. (a) A contour plot of the second invariant Q = 0 for
¢ =0.40, D =7d, and V/vr = 10. The arrow indicates the flow
direction. (b) The corresponding plot for ¢ = 0.40, D = 100d, and
V/vr = 103

simulation, we focus on the flow structure in the xz plane (see
Fig. 3 for the information of the geometry). Let us introduce
the vorticity in the xz plane with |y;| < D/2 as

v,  Jvy
Wyz = -

ax a7’

6)

Figure 8 shows a typical snapshot of the vorticity field in the
xz plane for D = 100d. The positive and negative vorticity
regimes are generated in the vicinity of the intruder and
move toward the downstream. See also the movie in the
Supplemental Material [54]. These complicated structures of
vorticities are also similar to those observed in turbulent flows.

—0.0

| L.,

FIG. 8. Vorticity field behind the intruder for V/vr = 1.0 x 10°
and D/d = 100. The color represents the value of w.,/wmn.x With
®max = 1.0 x 1073 (k/m)"/?. The arrow indicates the flow direction.
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(D/d,V/vr)
(7, 10%

FIG. 9. The mean-square displacement between two particles
for D/d =7 with V/vp = 1.0 x 103 and 10.0, and D/d = 100 and
V/vr = 1.0 x 10%. The dashed and dotted lines are the guide lines
for the exponent 8 = 2.2 and 3, respectively.

Let us study how the particles are scattered after collisions
by the intruder. We focus on the relative motion of the par-
ticles which collide with the intruder almost simultaneously
through the mean-square displacement

AX(t) = (16ri(t) — Sr; (1)) /d?, (7

with ér;(t) = r;(t 4+ t.) — ri(t.), where we only select two par-
ticles (i and j) within the interval |f; — ;| < Aty, = 10/m/k
with the collision times #; and ¢; with the intruder for ith and
Jjth particles, respectively. Note that we choose 7. in ér;(t) or
dr;(t)in Eq. (7) to be much larger time of #; and ¢;. This means
that these two particles exist sufficiently far from the intruder
at initial. We also note that we select particles whose position
in the z direction is located in —135 < z;/d < —100 at time
t =0 for D/d = 100. This is because we try to clarify how
localized particles behave as time goes on. Figure 9 shows
the superballistic behavior A2(t) ~ t# where the best fitted
values of exponent § are B =2.2 for D =7d and 8 =3.0
for D = 100d, respectively. We have checked that this result
is insensitive to the choice of Afy, in the range 1.0/m/k <
Aty < 204/m/k. The behavior for D = 100d is analogous to

0 /4 /2 3n/4 T

0

FIG. 10. The angular distribution function of the scattered parti-
cles for (a) V/vr = 1.0 x 10* (open circles), (b) 10 (open squares),
and (c) 0.10 (open triangles). The dashed and dotted lines represent
the opening angles obtained from the simulation and Eq. (8), respec-
tively. Here, the definition of the angle 6 is equivalent to that in Fig. 3.

—2.0e01

c
el
2

3]

g

o)
£
=

3]

o

o

FIG. 11. The definition of the open angle 6,. We choose the
opening angle as the direction where the volume fraction is 0.15.
The large particle represents the intruder. The arrow indicates the
flow direction.

the relative motion of two tracer particles in turbulent flows,
which is known as Richardson’s law A2(¢) ~ ¢3 [55-57]. This
suggests that the flow is in a fully turbulent state for D/d =
100.

Next, we consider the scattering angle distribution of the
mobile particles for D = 7d. The azimuthal angle is stored
when the particles reach the region |r;| = 15d. The behavior
of the angular distribution p(8) for V/vr 2 1 completely
differs from that for V/vr < 1 as shown in Fig. 10.

For V/vr > 1, the angular distribution of scattered par-
ticles has a sharp peak around the opening angle, which is
the half of the apex angle of the cone of the beam scattered
after collisions with the intruder [40,43] as shown in Fig. 11.
We also note that this opening angle can be explained by
phenomenology as in Ref. [40]. Because we use repulsive and
elastic particles, the opening angle is expressed as

D\2
0y = cos ™! |:1 - (a) j|, (8)

for D < Dy, where D; is the radius of tube of beam particles
(see Fig. 1) [40]. When we substitute D = 7d and D, = 20d
into Eq. (8), we obtain 6 = 0.50 (rad), which roughly agrees
with the simulation results (see Fig. 10). For V/vr < 1, on the
other hand, the particles are scattered in various directions, as
shown in Fig. 10.

VI. CONCLUSION

We have numerically studied the particle flows injected as
a beam and scattered by a spherical intruder. We have found
the crossover from Epstein’s law to Newton’s law, depending
on the ratio of the speed to the thermal speed V/vr. This
crossover can be explained by a simple collision model. The
crossover from Epstein’s law to Stokes’ law is also verified as
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the time evolution of the drag force acting on the intruder. The
turbulentlike behavior has also been observed for V/vr > 1
and D/d > 1, where the relative displacement between two
tracer particles is superballistic, which satisfies Richardson’s
law.

Although we mainly stress that V/vr is an important con-
trol parameter to characterize the particle flows in this paper,
it is obvious that D/d is also another important parameter to
characterize the flows, particularly for turbulentlike flows. The
systematic studies for D/d-dependent flows will be one of our
future research.
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APPENDIX A: VOLUME FRACTION DEPENDENCE OF
THE SOUND SPEED

In this Appendix, we show how the sound speed depends
on the volume fraction. We also examine whether vt can be
replaced by the sound speed.

Because the volume fraction of the mobile particles is
finite, the equation of state deviates from that for the ideal
gas. Thus, the equation of state at finite density is fitted by the
Carnahan-Starling equation [50]

1 2 _ 43
£=2(¢)=—+¢+¢3 ¢, (A1)
nT (1—-¢)

X
fi tteri
A ol
R (055, 7) Eq. (AG)----- X
< L, (050,7) O e
= 10% ¢ (040,7) &
~ 2 (0.30,7) .-
=100 | (0.20,7) confined
g (¢, D/d)
(040, 7) ®
2 .- (0.40,15) m |
07 o® (0.40,30) 4
102 107! 10° 10" 10?

FIG. 12. Plots of the drag force against the dimensionless veloc-
ity characterized by the sound speed (A4) for free scattering and
confined cases for various ¢ and intruder sizes D. The dashed and
dotted lines represent the collision model (1) and (A6), respectively.

TABLE II. The set of used parameters in Appendix B.

D./d N, N D./d
5 144 30000 20
9 400 30000 40
13 784 30000 40
16 1156 30000 40
19 1600 30000 40

where p is the pressure. For the adiabatic process, the first law
of thermodynamics becomes

ap
CydT +T| —
1% + (8T>

dL?
— =0, (A2)
v N

where L? is the volume, Cy =% is the heat capacity at
constant volume. Substituting the equation of state (Al)
into Eq. (A2), the following quantity is conserved along the
streamline:

d¢’ = const.

[ /
p 2/ Z(¢") (A3)

log —— — =
®Z(9) 3 ¢

Then, the sound speed in the adiabatic process is given by
ap T

c(p) = | (8_) R AC) N
P/s m

|54 10¢ — 3¢ — 24¢3 4 37¢* — 22¢5 4 5¢°
f@) = \/ ISG )

(A4)

with

(AS5)
If we adopt the expansion speed +/c(¢)V, the drag force is
given by

F= %nm(D +dYev, (A6)

which cannot capture the simulation results for the low V/c as
shown in Fig. 12, where c/vr = 2.07 (¢ = 0.20), 3.22 (¢ =

10"
0l . B S Y
10
FSt c{) <[>
107" : : : :
0 5 10 15 20 25

D/d

FIG. 13. Plot of the drag force against the intruder diameter for
¢ = 0.40 and V/vr = 3.2 x 1072, Here, F, represents Stokes’ law
expressed in Eq. (3).
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0.30), 5.25 (¢ = 0.40), 9.21 (¢ = 0.50), and 12.7 (¢ = 0.55),
respectively.

APPENDIX B: DIAMETER OF THE INTRUDER
DEPENDENCE OF THE DRAG FORCE FOR THE
PERIODIC SYSTEMS

In the main text, we show how the drag force depends
on the diameter when the beam particles are far from the
intruder. In this Appendix, however, we investigate the di-
ameter dependence of the intruder on the drag force in the
low-speed regime when the intruder is initially located inside
stationary beam particles. In addition, we adopt the periodic

boundary condition in the flow direction to keep the packing
fraction throughout the simulations in this Appendix. The
used parameters in this Appendix are listed in Table II.

Figure 13 shows the drag force to Stokes’ drag. As the
system size increases, the drag force approaches Stokes’ law
(3). This supports that the drag for the fully confined and pe-
riodic system is described by Stokes’ law, which is consistent
with the previous studies [14]. The results in this Appendix
are suggestive. Indeed, if we adopt the periodic boundary
condition, Stokes’ law is obtained without any difficulty. In
other words, Epstein’s law reported in the main text only
appears as a transient from the initial hit of beam particles
to approaching a steady flow.
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