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Impurity-induced resonant spinon zero modes in Dirac quantum spin liquids
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Quantum spin liquids are strongly correlated phases of matter displaying a highly entangled ground state.
Because of their unconventional nature, finding experimental signatures of these states has proven to be a
remarkable challenge. Here we show that the effects of local impurities can provide strong signatures of a Dirac
quantum spin-liquid state. Focusing on a gapless Dirac quantum spin-liquid state as realized in NaYbO2, we
show that a single magnetic impurity coupled to the quantum spin-liquid state creates a resonant spinon peak at
zero frequency, coexisting with the original Dirac spinons. We explore the spatial dependence of this zero-bias
resonance and show how different zero modes stemming from several impurities interfere. We finally address
how such spinon zero-mode resonances can be experimentally probed with inelastic spectroscopy and electrically
driven paramagnetic resonance with scanning tunnel microscopy. Our results put forward impurity engineering
as a means of identifying Dirac quantum spin liquids with scanning probe techniques, highlighting the dramatic
impact of magnetic impurities in a macroscopically entangled many-body ground state.
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I. INTRODUCTION

Quantum spin liquids (QSL) [1–3] are exotic magnetic
phases of matter, characterized by strong quantum fluctuations
and frustration [4], lacking magnetic order even at zero tem-
perature [5]. The unique properties of quantum spin liquids
have attracted much research interest [6–8], in particular for
their emergent Majorana physics [9] and their long-standing
relation with unconventional superconductivity [10,11]. A va-
riety of compounds showing quantum spin-liquids physics
have been identified [12–22], including the gapless triangular
lattice Dirac quantum spin-liquid in NaYbO2 [23,24] and dif-
ferent van der Waals materials [25–28]. Interestingly, finding
gapless Dirac spin liquids in van der Waals materials would
provide a spinon version of graphene Dirac electrons, opening
the door to explore strain gauge fields in spinons [29–31],
spinon flat bands by twist engineering [32–35], and impurity-
induced spinon resonances [36,37].

Impurities have been recognized as a powerful indicator to
identify exotic electronic orders [38]. A paradigmatic exam-
ple of this is the nonmagnetic impurities in unconventional
superconductors [39], where the emergence of in-gap states is
a well-known signature of unconventional superconductivity
[40–43]. In contrast, conventional s-wave superconductors do
not show such in-gap states in the presence of nonmagnetic
impurities [44], and only magnetic impurities can give rise to
in-gap modes [45–47]. Impurities are also a simple way of
imaging the Fermi surface of metals, by measuring Friedel
oscillations with scanning probe techniques [48–50]. Other
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paradigmatic examples are carbon vacancies [36,51–56] and
hydrogen ad-atoms [57,58] in graphene, giving rise to a di-
vergent density of states [36,52] and magnetism [37,53,58].
Along this line, recent experimental advances have demon-
strated the possibility of single-atom manipulation in a variety
of systems by means of scanning probe techniques [59–73].
This motivates the question of whether single-atom manipu-
lation [74] can detect unique features of quantum spin-liquid
states.

Here we show that, by depositing individual magnetic
atoms on top of a Dirac quantum spin liquid, spinon res-
onances can be engineered. We demonstrate that the Dirac
quantum spin-liquid ground state develops resonant zero
modes, and we study the interference effects between these
spinon zero modes. Finally, we show that divergent spinon
density of states can be experimentally probed by means of
inelastic spectroscopy and electrically driven paramagnetic
resonance with scanning tunnel microscopy. Our results put
atomically controlled defect engineering as a powerful local
probe of Dirac quantum spin-liquid physics, opening up a
simple technique to identify fractionalized quantum states of
matter with real space measurements.

Our paper is organized as follows. In Sec. II, we show
that single magnetic impurities create zero-energy resonances
in a Dirac quantum spin liquid. In Sec. III, we study the
interference effects between different spinon resonances. In
Sec. IV, we elaborate how such spinon resonances can be
probed by means of scanning tunneling spectroscopy tech-
niques. Finally, in Sec. V, we summarize our conclusions.

II. SINGLE SPIN IMPURITY IN A DIRAC SPIN LIQUID

In this section, we show the emergence of resonant zero
modes in presence of a single impurity in a gapless Dirac spin
liquid. We consider two different limiting cases: (i) a periodic
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FIG. 1. (a) Sketch of a Dirac quantum spin-liquid state in the
triangular lattice, together with (b) the effective mean-field spinon
π -flux model. (c) Sketch of a magnetic moment coupled to the
triangular Dirac quantum spin liquid. The magnetic impurity (blue)
couples to the site underneath (red), creating a singlet state |↑↓〉 −
|↓↑〉 and removing the spin degree of freedom of the coupled site
from the QSL. The combination of the magnetic impurity with the
mean-field partonic transformation of Eq. (2) gives rise to an effec-
tive model featuring a π -flux lattice with a vacant site (d).

array of impurities with each impurity in a unit cell of size
n × m and (ii) a single impurity in an infinitely large system.

The spinon excitations in triangular spin liquids [Fig. 1(a)]
such as NaYbO2 are captured by the π -flux model on the
triangular lattice [Fig. 1(b)]. The elementary excitations of the
π -flux state are Dirac fermions at half-filling. A local S = 1/2
magnetic moment coupled to the quantum spin-liquid state
[Fig. 1(c)] gives rise to a vacancy in the effective spinon
model [Fig. 1(d)]. As we will see below, the existence of
the magnetic impurity creates a divergent density of states
in the spinon spectra. For the sake of completeness, we first
introduce the spinon properties of the pristine quantum spin
liquid, and we then move to study the effect of a magnetic
impurity.

A. Spinon excitations in a pristine Dirac spin liquid

We start by taking a quantum spin model in a triangular
lattice with the general form

H =
∑

i j

Jμν
i j Sμ

i Sν
j , (1)

where Jμν
i j are exchange constants between sites i, j for the

spin components μ, ν, and Sμ
i is the μ component of the spin

operator for the site i. The previous Hamiltonian describes
a purely many-body system, whose exact solution cannot
be generically found analytically. The previous model on a
triangular lattice is known to give rise to a quantum spin-
liquid state, when one considers first and second neighbor
interactions [75–77]. An approximate solution in a quantum
spin-liquid state can be obtained by performing the parton
transformation [8]

S = 1
2 f †

α σαβ fβ (2)

to the model Eq. (1). The parton transformation separates the
frozen charge degree of freedom and the free spin degree
of freedom in the quantum spin-liquid state, with f †

α and fα
being fermionic spinon operators with spin-1/2 α satisfying∑

α f †
α fα = 1. At the partonic mean-field level, and upon

the appropriate regime in the exchange couplings [76], the
above spin Hamiltonian gives rise to the π -flux state [75,78]
[Fig. 1(b)]:

H = t
∑
〈i, j〉

χi j f †
i f j, (3)

where χi j = ±1 and t are mean-field parameters. The π -flux
state hosts alternating 0, π fluxes per unit cell. The elemen-
tary excitations of the π -flux Hamiltonian are spinon Dirac
fermions. In the following, we show how the presence of a
magnetic impurity modifies the previous picture.

B. Spinon resonances with periodic impurities

We now move on to consider the effect of magnetic impu-
rities coupled to the Dirac quantum spin-liquid state. The total
Hamiltonian of the system is

H = J
∑
k∈K

sk · Sk +
∑

i j

Jμν
i j Sμ

i Sν
j , (4)

where sk are the spin operators for the different S = 1/2 ad-
atoms considered, K denotes the sites that have an impurity
ad-atom on top, and J is the antiferromagnetic exchange
coupling between the magnetic ad-atom and the site below.
Taking the limit of strongly coupled magnetic impurity J �
Jμν

i j , the different sites k will form a singlet state with the
impurity on top, effectively removing the S = 1/2 from the
quantum spin-liquid compound. As a result, the effective
Hamiltonian in this limit is

H =
∑

i j,i/∈K, j /∈K
Jμν

i j Sμ
i Sν

j , (5)

an effective triangular model where the sites hosting a
magnetic impurity above disappear from the low-energy
Hamiltonian. Using an analogous spinon replacement as be-
fore, we obtain that the effective model for the spinons
becomes

H = t
∑

〈i, j〉,i/∈K, j /∈K
χi j f †

i f j, (6)

an effective π -flux model with impurities determined by the
magnetic ad-atoms deposited. (We here approximate that the
mean-field spinon model does not have nontrivial reconstruc-
tions.) As a result, a magnetic impurity becomes equivalent
to a vacancy in the effective spinon model. We note that this
equivalence holds only for S = 1/2 impurities, as higher S
impurities would generate a free degree of freedom in each
site even in the limit J � Jμν

i j . We also note that given that
the magnetic ad-atoms on top can be moved with a scanning
tunnel microscope [59–73], this would allow us to engineer
models with an arbitrary number of vacancies in the effective
spinon model.

We now explore the spectra of this defective quantum spin-
liquid state. When considering a periodic array of impurities
in unit cells of size n × m, the Bloch Hamiltonian can be used
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FIG. 2. Spinon excitations in pristine and defective π -flux Dirac
QSL. Panel (a) shows the pristine spinon band structure of a π -flux
QSL in an 8 × 8 unit cell. Panels (b) and (c) show the spinon band
structure with a periodic array of impurities in 8 × 8 and 7 × 8
unit cells, respectively. The insets show the configurations of the
impurity. Panel (d) shows the DOS corresponding to the three cases
[(a)–(c)]. The divergent DOS at zero frequency corresponding to case
(b) indicates the existence of zero modes, in agreement with the band
structure shown in panel (b). Panel (e) shows the LDOS at zero
frequency ρ(r, ω = 0) for case (b). The zero modes are localized
around the impurities, displaying a pattern with local C6 rotational
symmetry. Panel (f) shows the DOS of the pristine QSL and for a
single impurity in an infinite QSL.

to compute the band structure and the density of states (DOS).
Compared to the band structure of the pristine π -flux state,
a flat band at zero energy arises for n even [Fig. 2(b)] and
a wiggly band near zero energy arises for n odd [Fig. 2(c)].
In both cases, the DOS at zero frequency shows a dramatic
increase [Fig. 2(d)]. The dispersive zero mode for odd n stems
from the self-interaction effects of the zero mode, which are
absence in the n even case. As expected, as n is increased,
the zero-mode band becomes flatter even for odd n due to
the decrease self-interaction between replicas. For a finite
unit cell, the DOS diverges at zero frequency only when
n is even, indicating the existence of resonant zero modes.

The nature of the zero mode can be analyzed by looking
at the local density of states (LDOS) defined as ρ(r, ω) =
Im(〈r|[ω − H − i0+]−1|r〉). In particular, the LDOS at zero
frequency ρ(r, ω = 0) shows that the zero modes are local-
ized around the impurities [Fig. 2(e)], showing a pattern with
local C6 rotational symmetry. Interestingly, the zero modes are
mainly localized through sites that are odd number of bonds
straight away from the impurity. The previous calculation
relied on assuming a periodic pattern of impurities. Exper-
imentally, the simplest scenario will be depositing a single
impurity in an infinite quantum spin liquid. In the following,
we will deal with this idealized case, showing that the results
are qualitatively similar to the periodic impurity pattern con-
sidered above.

C. Spinon resonances for a single impurity
in an infinite Dirac spin liquid

We now move on to consider a single impurity coupled
to the quantum spin liquid. In the case of a single impurity
in an infinite system, translational symmetry is broken and a
Bloch Hamiltonian can not be defined. To deal with this inho-
mogeneous infinite problem, we compute exactly the spectral
function close to the impurity using a Green’s function em-
bedding method [58,79,80]. For the sake of completeness, we
now summarize the essence of the method. For a unit cell
containing the impurity, the Green’s function in this unit cell
can be written using Dyson’s equation as

G(ω) = [ω − H ′ − 
(ω)]−1, (7)

where H ′ is the Hamiltonian of the unit cell and 
(ω) is the
self-energy due to the coupling of the unit cell to the rest of
the infinite pristine system. The impurity does not influence

(ω) since it does not change the hoppings that couple the
unit cell to the rest of the system. Therefore, in the absence
of the impurity, the Green’s function of the pristine unit cell
coupled to the infinite system is

G0(ω) = [ω − H0 − 
(ω)]−1, (8)

where H0 is the Hamiltonian of the pristine unit cell. Since the
whole system is now pristine, this Green’s function can also
be computed by

G0(ω) = 1

(2π )2

∫
d2k(ω − Hk − i0+)−1, (9)

where Hk is the Bloch Hamiltonian associated to Eq. (6) on
this unit cell. Using Eq. (8), the self-energy can be computed
as 
(ω) = ω − H0 − G−1

0 (ω), and the Green’s function of the
defective unit cell can be solved with Eq. (7). The DOS is
thus ρ(ω) = − 1

π
ImG(ω), which diverges at zero frequency

for a defective unit cell [Fig. 2(f)], indicating the existence
of zero modes. As a result, a single impurity in the quantum
spin-liquid state also gives rise to a zero mode, as anticipated
from the calculations in periodic arrays of Figs. 2(b)–2(e). We
note that the embedding method presented above would allow
us to compute an arbitrary cluster of impurities coupled to the
quantum spin liquid, as we will address in the next section.

We have thus verified the existence of zero modes when
there is (i) a periodic array of impurities with one in an n × m
unit cell with n even and (ii) a single impurity in an infinite
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system. This resonant zero mode stems from the vacancy
boundary conditions in a Dirac system, which are known to
give rise to zero modes in other Dirac systems [36]. We finally
note that so far we have focused on single impurities, yet when
several impurities are put together, the different zero modes
are expected to give rise to interference effect. We address
this interference phenomenon in the next section.

III. INTERACTION BETWEEN ZERO MODES

In this section, we investigate the interaction between zero
modes by considering the case when more impurities are
present. For the sake of simplicity, we first consider inter-
ference between two and three impurity sites and observe a
large dependence of the net number of zero modes on their
relative location. We then generalize our discussion to the
thermodynamic limit when a certain density of impurities is
randomly distributed, giving rise to a sublinear increase of
DOS at zero frequency with respect to the impurity density
due to interference effects.

A. Spinon zero mode interference
between individual resonances

We first consider the case of two impurities in the Dirac
quantum spin liquid, for both a periodic array and a single
cluster of impurities in an otherwise pristine system Dirac
QSL. In the periodic case, we consider two impurities per unit
cell of size n × m with n even in order to observe interference
between zero modes, as with n odd there is no zero mode
in the single-vacancy case (see Sec. II). We find the relative
position between the impurities strongly impacts the overall
zero modes. We observe that only when the two impurities are
an even number of bonds straight away from each other will
there be two zero modes. In particular, we show in Fig. 3 the
band structure [Figs. 3(a) and 3(b)], DOS [Figs. 3(c) and 3(d)],
and LDOS [Figs. 3(e) and 3(f)] of zero modes for the cases (i)
when the two impurities are two bonds away from each other
[Figs. 3(a), 3(c), and 3(e)] and (ii) when the two impurities
are next nearest to each other [Figs. 3(b), 3(d), and 3(f)]. For
case (i), a flat band arises at zero energy in the presence of the
two impurities [Fig. 3(a)], whereas in case (ii) wiggly bands
at zero energy arise instead [Fig. 3(b)]. It is also interesting
to note that, in the periodic case, for case (i) the dispersive
bulk states remain gapless [Fig. 3(a)], whereas for case (ii)
they are gapped out [Fig. 3(b)]. In both cases, the DOS at zero
frequency diverges for periodic impurities and impurities in
an infinite system [Figs. 3(c) and 3(d)]. The LDOS at zero fre-
quency for both cases are similar to the summation of LDOS
of zero modes for the two impurities [Figs. 3(e) and 3(f)].

The previous picture is dramatically different if the two
impurities were put just next to each other, in which case
no zero modes appear in the system. In this situation, the
impurity states created by each impurity give rise to a
bonding-antibonding splitting, lifting both the spinon reso-
nance from zero frequency. The dependence of the existence
of zero modes on the relative position between impurities can
be understood by starting with the spatial of the zero-mode
resonant state [Fig. 2(e)]. Let us now think in a perturbative
way, in which a second vacancy can be understood as the limit
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FIG. 3. Resonant zero modes with two impurities in the π -flux
state. Panels (a) and (b) show the band structure of the π -flux QSL
state with a periodic array of two impurities that are (a) two bonds
away from each other and (b) next-nearest neighbors to each other
in unit cells of size 8 × 8. The insets show the configurations of
the impurities. Panels (c) and (d) show the DOS of the π -flux QSL
state with periodic impurities and impurities in an infinite system.
The impurity configurations for panels (c) and (d) are shown in
panels (a) and (b), respectively. Panels (e) and (f) show the LDOS
at zero frequency ρ(r, ω = 0) of the π -flux state for cases (a) and
(b), respectively.

where a local onsite energy is ramped up to ±∞. When an
additional impurity is added to a site where the impurity zero
mode is finite, perturbation theory suggests that the zero mode
will be lifted from zero energy. In contrast, when the second
impurity is added to a site where the LDOS at zero frequency
vanishes, perturbation theory would suggest that the original
mode remains at zero. We note that the previous picture is
just perturbative and does not quantitatively account for the
true double impurity nor the number of zero modes, but it
provides a simple argument to rationalize the persistence of
zero modes.

We now move on to consider the case of three impurities
as shown in Fig. 4. We will focus on arrangements that still
give rise to zero modes. We proceed in an analogous way,
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FIG. 4. Resonant zero modes with three impurities in the π -flux
state. Panels (a) and (b) show the band structure of the π -flux QSL
state with three impurities of different configurations shown in the
insets in a unit cell of size 8 × 8. Panels (c) and (d) show the DOS
of the π -flux QSL state with periodic impurities and impurities in an
infinite system. The impurity configurations for panels (c) and (d) are
shown in panels (a) and (b), respectively. Panels (e) and (f) show the
LDOS at zero frequency ρ(r, ω = 0) of the π -flux state for cases
(a) and (b), respectively.

by showing the band structure [Figs. 4(a) and 4(b)], DOS
[Figs. 4(c) and 4(d)], and LDOS [Figs. 4(e) and 4(f)]. We
first focus on the case in which impurities are arranged in a
C3 symmetric fashion [Figs. 4(a), 4(c), and 4(e)], in a fashion
similar to the double impurity of [Figs. 3(a), 3(c), and 3(e)].
As is shown in Fig. 4(c), a zero mode appears even with three
impurities close to each other, giving rise to a zero mode
with C3 rotational symmetry. The interference of the three
impurities is again highly sensitive to their relative position.
In particular, by taking the limiting case of two impurities
next to each other and one further apart [Figs. 4(b) and 4(d)
4(f)], we observe a zero-frequency peak surrounded by two
peaks at positive and negative frequencies [Fig. 4(d)]. The two
peaks above and below zero can be understood as the bonding
and antibonding impurity resonances associated to the closest
impurities, whereas the remaining zero-frequency peak will

be be associated to the remaining impurity. This is also shown
in Fig. 4(f), where it can be seen that the zero mode is located
around the remaining impurity, with a small C6 symmetry
breaking induced by the other two impurities. These results
highlight that the interaction between zero modes created by
different impurities will give rise to nontrivial interference
effects. In particular, this will give rise to a density of zero
modes sublinear with the impurity density as we address be-
low.

B. Thermodynamic limit and zero mode quenching

We now address the emergence of zero modes in a dis-
ordered system with a varying number of impurities. In
particular, we will show how the interference of zero modes
can be observed by tracking the spinon DOS near zero fre-
quency for different impurity densities. We start by discussing
an idealized case in which there are no interference effect. If
there were no interactions between different zero modes, the
density of zero modes should increase linearly with respect to
the impurity density, assuming that each new impurity would
create a new zero mode. In this idealized case, the expected
density of states ρ0(ν, ω) at a certain impurity density ν would
fulfill

lim
ω→0

ρ0(ν, ω) = lim
ω→0

(
ρ(0, ω) + ν

ν0
ρ(ν = ν0, ω)

)
(10)

with ω near 0, ν0 being a small finite impurity concentration,
and ρ(ν, ω) being the true density of states of the system
computed exactly. In the following, we take ν0 = 0.01, and
we verify that our results remain qualitatively similar with
other small values. We now compute the density of states
ρ(ν, ω) for different impurity densities and at different en-
ergy using the kernel polynomial method (KPM) [81] and
averaging over impurity distributions. We consider random
impurity distributions with densities ν from 0.01 to 0.3, where
ν = 1 would mean vacancies in every site. We take a unit cell
of size 50 × 50 and show ρ(ν, ω)/ρ0(ν, ω), the ratio of the
computed exact DOS over the expected DOS in the absence
of interference, for different ν and ω (Fig. 5).

In the ideal case in which impurity interferences are negli-
gible, the ratio ρ(ν, ω)/ρ0(ν, ω) would be one for ω → 0, as
is observed at small ν in Fig. 5(a). This is easily rationalized
by taking into account that at small concentrations, interfer-
ence effects between impurities are statistically unlikely, and
therefore the system behaves as if each impurity is isolated.
This is also seen by inspecting the disorder average DOS for
ν = 0.01 as shown in Fig. 5(b), which resembles the result
obtained for a single impurity in an infinite system shown in
Fig. 2(d). This situation dramatically changes as the impurity
concentration increases, as can be observed for large values
of ν in Fig. 5(a). In particular, it is shown in Fig. 5(c) the
DOS for ν = 0.25, highlighting that the zero-mode peak has
become less sharp in comparison with the bulk states.

It is finally worth noting that for larger impurity concentra-
tions, the spinon ground state may suffer a reconstruction in
a real experiment and lose its Dirac nature, and therefore im-
purity interference effects are better experimentally explored
at low impurity densities. This brings up the question on
how such zero-energy resonances in the spinon spectra can
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FIG. 5. (a) Ratio of the computed DOS over the expected DOS
in the absence of interference effects ρ(ν, ω)/ρ0(ν, ω) for different
impurity density ν in the π -flux state. The sublinear increase of such
ratio with respect to ν at ω = 0 indicates the existence of interference
effects between different zero modes. Panel (b) shows the DOS
for the π -flux state at impurity density ν = 0.01, a low impurity
concentration showing negligible interference. Panel (c) shows the
DOS for the π -flux state at impurity density ν = 0.25, showing a
broader peak stemming from the interference and quenching between
vacancy states.

be experimentally detected, which is addressed in the next
section.

IV. EXPERIMENTAL DETECTION
OF SPINON ZERO MODES

We now consider the potential experimental signatures of
these spinon zero modes. In particular, scanning tunnel spec-
troscopic techniques have been demonstrated to be very well
suited to detect quantum spin excitations [74], as demon-
strated in a variety of experiments showing atomic-scale
magnons [82], quantum critical transitions [83], and quantum
transitions in nanomagnets [72]. In particular, two different
techniques can be used to probe magnetic excitations with
scanning tunnel microscopy (STM): Inelastic spectroscopy
[61,70,84] and electrically driven paramagnetic resonance
[85–94]. Inelastic resonance experiments rely on measuring
current versus voltage between the tip and the sample and
identifying steps in the differential conductance dI/dV . These
steps are associated with inelastic processes in which an elec-
tron tunnels creating an excitation, namely a phonon [95] or
spin excitation [82]. In particular, neglecting phonon contri-
butions at small biases, inelastic steps will appear as peaks in
the d2I/dV 2 and are proportional to the spectral function of
spin excitations [82]

d2I/dV 2 ∼ 〈�|S+
i δ(ω − H + E�)S−

i |�〉 (11)

QSL

(a) (b)

(c)

STM

substrate

magnetic 
impurity

FIG. 6. (a) Sketch of the experimental setup to measure the res-
onant Dirac spinons close to the impurity by means of inelastic
spectroscopy or electrically driven paramagnetic resonance. Panels
(b) and (c) show the local spin structure factor S(ri, ω), computed on
the site near the impurity: (b) a single impurity in an infinite system
and (c) a single impurity in a large finite system (with 100 × 100
sites). It is observed that a zero-bias peak appears, which is asso-
ciated with the original divergent spinon density of states at zero
frequency.

where |�〉 is the many-body ground state and E� is the
many-body ground-state energy. The quantity in Eq. (11) is
proportional to the so-called spin structure factor S (ri, ω),
which can be understood as the magnon density of states
in a ferromagnet, or the S = 1 excitations in a generic
spin system. In the particular case of a quantum spin-liquid
state, S = 1 involves creating two-spinon excitations, and
as a result provides information about the two-spinon spec-
tral function. Furthermore, besides inelastic spectroscopy, the
spin structure factor can be accessed by electrically driven
paramagnetic resonance with STM [91]. This technique has
been further demonstrated to allow for measuring spin excita-
tions with a resolution not limited by temperature [85,91,92],
turning it into a well-suited technique to probe the low-energy
scales expected in quantum spin-liquid systems.

In the partonic spinon language, the spin structure factor
will be proportional to the density-density response func-
tion of the spinons. We will compare our results between
a single impurity coupled to an infinite and otherwise pris-
tine QSL computed with the embedding method [Fig. 6(b)]
and a single impurity in a finite large system computed
with the KPM [81] [Fig. 6(c)]. It is important to note
that, in the following and for the sake of simplicity,
we will be neglecting gauge fluctuations. Within this ap-
proximation, the spin structure factor becomes S (ri, ω) ∼∑

n,n′
fn− fn′

ω+εn−εn′+iηψ∗
n (ri )ψn′ (ri )ψn(ri )ψ∗

n′ (ri ), where ψn is the
nth spinon eigenstates with energy εn, and fn is the
Fermi-Dirac distribution. It is now convenient to rewrite
S (ri, ω) in terms of the local spectral function ρ(ri, ri, ω) =
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∑
n ψ∗

n (ri )ψn(ri )δ(ω − En), so that the spin structure factor
becomes

S (ri, ω) ∼
∫

dω1dω2
ρ(ri, ri, ω1)ρ(ri, ri, ω2)

ω + ω1 − ω2 + iη

× [ f (ω1) − f (ω2)]. (12)

The local spin structure factor is computed for the site near the
impurity [Fig. 6(b)], where the Green’s function is computed
using the embedding method introduced in Sec. II. Alterna-
tively, we also show the spin structure factor computed for a
finite quantum spin-liquid system with 10 000 sites [Fig. 6(c)]
using the KPM [81]. In both instances, it is observed a zero-
bias peak, which is associated to the divergent density of states
of the spinon excitations.

The previous result highlights that the spinon zero-mode
resonances will appear as a divergent peak at small biases.
In a similar fashion, the different arrangements between
magnetic impurities will give rise to spectra resembling a
self-convolution of the spinon density of states. This fea-
ture may allow us to distinguish Dirac spin-liquid states
from another generic kind of magnetically ordered state, as
resonant-like zero-bias peak for S = 1/2 will not appear for
a generically coupled magnetic state. We finally note that
the previous picture relies on assuming that the tunneling
signal stems solely from spin-flip processes, and neglects or-
bital or Kondo-like transitions that can be present in the real
setup.

V. CONCLUSION

We have shown that individual magnetic S = 1/2 impuri-
ties coupled to a Dirac quantum spin-liquid state, as realized
in NaYbO2, give rise to a divergent spinon density of states
at zero frequency. The emergence of such zero modes is
associated with the low-energy Dirac nature of the spinon
excitations and as a result provides a simple spectroscopic
signature distinguishing Dirac spin liquids from generic gap-
less Dirac liquids with a finite Fermi surface. We have shown
that such spinon zero modes give rise to a zero frequency
divergence in the spin structure factor that can be measured
by means of inelastic spectroscopy and electrically driven
paramagnetic resonance with scanning tunnel microscopy.
Interestingly, although the emergence of zero-bias peaks in in-
elastic spectroscopy due to a magnetic impurity is commonly
associated with Kondo physics, the phenomena presented re-
lies on single-particle spinon physics and it is therefore not
related with a spinon-induced Kondo state. Our results put
forward impurity engineering by scanning probe techniques
as a simple method to probe quantum spin-liquid physics by a
local real space measurement.
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13, 1130 (2017).

[27] Y. Chen, W. Ruan, M. Wu, S. Tang, H. Ryu, H.-Z. Tsai, R. Lee,
S. Kahn, F. Liou, C. Jia, O. R. Albertini, H. Xiong, T. Jia, Z. Liu,

033466-7

https://doi.org/10.1126/science.1163196
https://doi.org/10.1038/nature08917
https://doi.org/10.1146/annurev-conmatphys-031115-011319
https://doi.org/10.1038/nphys3322
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1103/PhysRevX.6.041007
https://doi.org/10.1038/nature11659
https://doi.org/10.1126/science.aab2120
https://doi.org/10.1088/0034-4885/74/5/056501
https://doi.org/10.1103/PhysRevX.9.031047
https://doi.org/10.1103/RevModPhys.88.041002
https://doi.org/10.1038/s42254-019-0038-2
https://doi.org/10.1103/PhysRevLett.91.107001
https://doi.org/10.1038/nphys1134
https://doi.org/10.1103/PhysRevB.77.104413
https://doi.org/10.1103/PhysRevLett.112.177201
https://doi.org/10.1103/PhysRevLett.98.107204
https://doi.org/10.1103/PhysRevB.100.144432
https://doi.org/10.1038/s41567-019-0594-5
https://doi.org/10.1073/pnas.1706769114
https://doi.org/10.1038/nphys4212


GUANGZE CHEN AND J. L. LADO PHYSICAL REVIEW RESEARCH 2, 033466 (2020)

J. A. Sobota, A. Y. Liu, J. E. Moore, Z.-X. Shen, S. G. Louie,
S.-K. Mo, and M. F. Crommie, Nat. Phys. 16, 218 (2020).

[28] A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li, M. B.
Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle, S.
Bhattacharjee, D. L. Kovrizhin, R. Moessner, D. A. Tennant,
D. G. Mandrus, and S. E. Nagler, Nat. Mater. 15, 733 (2016).

[29] F. de Juan, J. L. Mañes, and M. A. H. Vozmediano, Phys. Rev.
B 87, 165131 (2013).

[30] F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30
(2009).

[31] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F.
Guinea, A. H. C. Neto, and M. F. Crommie, Science 329, 544
(2010).

[32] E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z.
Barticevic, Phys. Rev. B 82, 121407(R) (2010).

[33] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. USA
108, 12233 (2011).

[34] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[35] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E.
Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature (London)
556, 80 (2018).

[36] V. M. Pereira, F. Guinea, J. M. B. Lopes dos Santos, N. M. R.
Peres, and A. H. Castro Neto, Phys. Rev. Lett. 96, 036801
(2006).

[37] H. Gonzalez-Herrero, J. M. Gomez-Rodriguez, P. Mallet, M.
Moaied, J. J. Palacios, C. Salgado, M. M. Ugeda, J.-Y. Veuillen,
F. Yndurain, and I. Brihuega, Science 352, 437 (2016).

[38] H. Alloul, J. Bobroff, M. Gabay, and P. J. Hirschfeld, Rev. Mod.
Phys. 81, 45 (2009).

[39] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).
[40] R. Balian and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).
[41] D. F. Agterberg, Phys. Rev. B 60, R749(R) (1999).
[42] K. Maki and S. Haas, Phys. Rev. B 62, R11969(R) (2000).
[43] B. Zinkl, M. H. Fischer, and M. Sigrist, Phys. Rev. B 100,

014519 (2019).
[44] P. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
[45] A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys. 78,

373 (2006).
[46] H. Shiba, Prog. Theor. Phys. 40, 435 (1968).
[47] A. I. Rusinov, Sov. J. Exp. Theor. Phys. Lett. 9, 85 (1969).
[48] P. T. Sprunger, L. Petersen, E. W. Plummer, E. Lægsgaard, and

F. Besenbacher, Science 275, 1764 (1997).
[49] L. Petersen, P. T. Sprunger, P. Hofmann, E. Lægsgaard,

B. G. Briner, M. Doering, H.-P. Rust, A. M. Bradshaw, F.
Besenbacher, and E. W. Plummer, Phys. Rev. B 57, R6858(R)
(1998).

[50] A. Weismann, M. Wenderoth, S. Lounis, P. Zahn, N. Quaas,
R. G. Ulbrich, P. H. Dederichs, and S. Blugel, Science 323,
1190 (2009).

[51] E. J. Duplock, M. Scheffler, and P. J. D. Lindan, Phys. Rev. Lett.
92, 225502 (2004).

[52] O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).
[53] O. V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007).
[54] J. J. Palacios, J. Fernández-Rossier, and L. Brey, Phys. Rev. B

77, 195428 (2008).
[55] P. O. Lehtinen, A. S. Foster, Y. Ma, A. V. Krasheninnikov, and

R. M. Nieminen, Phys. Rev. Lett. 93, 187202 (2004).

[56] A. Lopez-Bezanilla and J. L. Lado, Phys. Rev. Mater. 3, 084003
(2019).

[57] D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein,
Phys. Rev. B 77, 035427 (2008).

[58] N. A. García-Martínez, J. L. Lado, D. Jacob, and J. Fernández-
Rossier, Phys. Rev. B 96, 024403 (2017).

[59] C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P.
Lutz, B. A. Jones, and A. J. Heinrich, Science 317, 1199
(2007).

[60] A. F. Otte, M. Ternes, K. von Bergmann, S. Loth, H. Brune,
C. P. Lutz, C. F. Hirjibehedin, and A. J. Heinrich, Nat. Phys. 4,
847 (2008).

[61] S. Loth, K. von Bergmann, M. Ternes, A. F. Otte, C. P. Lutz,
and A. J. Heinrich, Nat. Phys. 6, 340 (2010).

[62] A. F. Otte, M. Ternes, S. Loth, C. P. Lutz, C. F.
Hirjibehedin, and A. J. Heinrich, Phys. Rev. Lett. 103, 107203
(2009).

[63] S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J.
Heinrich, Science 335, 196 (2012).

[64] C. F. Hirjibehedin, C. P. Lutz, and A. J. Heinrich, Science 312,
1021 (2006).

[65] E. Liebhaber, S. A. González, R. Baba, G. Reecht, B. W.
Heinrich, S. Rohlf, K. Rossnagel, F. von Oppen, and K. J.
Franke, Nano Lett. 20, 339 (2019).

[66] L. Farinacci, G. Ahmadi, G. Reecht, M. Ruby, N. Bogdanoff, O.
Peters, B. W. Heinrich, F. von Oppen, and K. J. Franke, Phys.
Rev. Lett. 121, 196803 (2018).

[67] S. Kezilebieke, R. Žitko, M. Dvorak, T. Ojanen, and P. Liljeroth,
Nano Lett. 19, 4614 (2019).

[68] L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G.
Meyer, Science 324, 1428 (2009).

[69] R. Drost, T. Ojanen, A. Harju, and P. Liljeroth, Nat. Phys. 13,
668 (2017).

[70] A. J. Heinrich, J. A. Gupta, C. P. Lutz, and D. M. Eigler, Science
306, 466 (2004).

[71] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl, and A. J.
Heinrich, Science 319, 1066 (2008).

[72] K. Yang, Y. Bae, W. Paul, F. D. Natterer, P. Willke, J. L. Lado,
A. Ferrón, T. Choi, J. Fernández-Rossier, A. J. Heinrich, and
C. P. Lutz, Phys. Rev. Lett. 119, 227206 (2017).

[73] F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R.
Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte, Nat.
Nanotechnol. 11, 926 (2016).

[74] D.-J. Choi, N. Lorente, J. Wiebe, K. von Bergmann, A. F. Otte,
and A. J. Heinrich, Rev. Mod. Phys. 91, 041001 (2019).

[75] S. Hu, W. Zhu, S. Eggert, and Y.-C. He, Phys. Rev. Lett. 123,
207203 (2019).

[76] J. Iaconis, C. Liu, G. B. Halász, and L. Balents, SciPost Phys.
4, 003 (2018).

[77] Z. Zhu, P. A. Maksimov, S. R. White, and A. L. Chernyshev,
Phys. Rev. Lett. 120, 207203 (2018).

[78] Y. Iqbal, W.-J. Hu, R. Thomale, D. Poilblanc, and F. Becca,
Phys. Rev. B 93, 144411 (2016).

[79] D. Jacob and G. Kotliar, Phys. Rev. B 82, 085423 (2010).
[80] J. L. Lado and J. Fernández-Rossier, 2D Mater. 3, 025001

(2016).
[81] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod.

Phys. 78, 275 (2006).
[82] A. Spinelli, B. Bryant, F. Delgado, J. Fernández-Rossier, and

A. F. Otte, Nat. Mater. 13, 782 (2014).

033466-8

https://doi.org/10.1038/s41567-019-0744-9
https://doi.org/10.1038/nmat4604
https://doi.org/10.1103/PhysRevB.87.165131
https://doi.org/10.1038/nphys1420
https://doi.org/10.1126/science.1191700
https://doi.org/10.1103/PhysRevB.82.121407
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26154
https://doi.org/10.1103/PhysRevLett.96.036801
https://doi.org/10.1126/science.aad8038
https://doi.org/10.1103/RevModPhys.81.45
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1103/PhysRev.131.1553
https://doi.org/10.1103/PhysRevB.60.R749
https://doi.org/10.1103/PhysRevB.62.R11969
https://doi.org/10.1103/PhysRevB.100.014519
https://doi.org/10.1016/0022-3697(59)90036-8
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1143/PTP.40.435
https://doi.org/10.1126/science.275.5307.1764
https://doi.org/10.1103/PhysRevB.57.R6858
https://doi.org/10.1126/science.1168738
https://doi.org/10.1103/PhysRevLett.92.225502
https://doi.org/10.1088/0034-4885/73/5/056501
https://doi.org/10.1103/PhysRevB.75.125408
https://doi.org/10.1103/PhysRevB.77.195428
https://doi.org/10.1103/PhysRevLett.93.187202
https://doi.org/10.1103/PhysRevMaterials.3.084003
https://doi.org/10.1103/PhysRevB.77.035427
https://doi.org/10.1103/PhysRevB.96.024403
https://doi.org/10.1126/science.1146110
https://doi.org/10.1038/nphys1072
https://doi.org/10.1038/nphys1616
https://doi.org/10.1103/PhysRevLett.103.107203
https://doi.org/10.1126/science.1214131
https://doi.org/10.1126/science.1125398
https://doi.org/10.1021/acs.nanolett.9b03988
https://doi.org/10.1103/PhysRevLett.121.196803
https://doi.org/10.1021/acs.nanolett.9b01583
https://doi.org/10.1126/science.1172273
https://doi.org/10.1038/nphys4080
https://doi.org/10.1126/science.1101077
https://doi.org/10.1126/science.1150288
https://doi.org/10.1103/PhysRevLett.119.227206
https://doi.org/10.1038/nnano.2016.131
https://doi.org/10.1103/RevModPhys.91.041001
https://doi.org/10.1103/PhysRevLett.123.207203
https://doi.org/10.21468/SciPostPhys.4.1.003
https://doi.org/10.1103/PhysRevLett.120.207203
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevB.82.085423
https://doi.org/10.1088/2053-1583/3/2/025001
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1038/nmat4018


IMPURITY-INDUCED RESONANT SPINON ZERO MODES … PHYSICAL REVIEW RESEARCH 2, 033466 (2020)

[83] R. Toskovic, R. van den Berg, A. Spinelli, I. S. Eliens, B. van
den Toorn, B. Bryant, J.-S. Caux, and A. F. Otte, Nat. Phys. 12,
656 (2016).

[84] J. Fernández-Rossier, Phys. Rev. Lett. 102, 256802 (2009).
[85] F. D. Natterer, K. Yang, W. Paul, P. Willke, T. Choi, T. Greber,

A. J. Heinrich, and C. P. Lutz, Nature (London) 543, 226 (2017).
[86] Y. Bae, K. Yang, P. Willke, T. Choi, A. J. Heinrich, and C. P.

Lutz, Sci. Adv. 4, eaau4159 (2018).
[87] P. Willke, W. Paul, F. D. Natterer, K. Yang, Y. Bae, T. Choi, J.

Fernández-Rossier, A. J. Heinrich, and C. P. Lutz, Sci. Adv. 4,
eaaq1543 (2018).

[88] P. Willke, K. Yang, Y. Bae, A. J. Heinrich, and C. P. Lutz, Nat.
Phys. 15, 1005 (2019).

[89] P. Willke, A. Singha, X. Zhang, T. Esat, C. P. Lutz, A. J.
Heinrich, and T. Choi, Nano Lett. 19, 8201 (2019).

[90] T. S. Seifert, S. Kovarik, C. Nistor, L. Persichetti, S.
Stepanow, and P. Gambardella, Phys. Rev. Res. 2, 013032
(2020).

[91] S. Baumann, W. Paul, T. Choi, C. P. Lutz, A. Ardavan, and A. J.
Heinrich, Science 350, 417 (2015).

[92] P. Willke, Y. Bae, K. Yang, J. L. Lado, A. Ferrón, T. Choi, A.
Ardavan, J. Fernández-Rossier, A. J. Heinrich, and C. P. Lutz,
Science 362, 336 (2018).

[93] J. L. Lado, A. Ferrón, and J. Fernández-Rossier, Phys. Rev. B
96, 205420 (2017).

[94] A. Ferrón, S. A. Rodríguez, S. S. Gómez, J. L. Lado,
and J. Fernández-Rossier, Phys. Rev. Res. 1, 033185
(2019).

[95] L. Vitali, M. A. Schneider, K. Kern, L. Wirtz, and A. Rubio,
Phys. Rev. B 69, 121414(R) (2004).

033466-9

https://doi.org/10.1038/nphys3722
https://doi.org/10.1103/PhysRevLett.102.256802
https://doi.org/10.1038/nature21371
https://doi.org/10.1126/sciadv.aau4159
https://doi.org/10.1126/sciadv.aaq1543
https://doi.org/10.1038/s41567-019-0573-x
https://doi.org/10.1021/acs.nanolett.9b03559
https://doi.org/10.1103/PhysRevResearch.2.013032
https://doi.org/10.1126/science.aac8703
https://doi.org/10.1126/science.aat7047
https://doi.org/10.1103/PhysRevB.96.205420
https://doi.org/10.1103/PhysRevResearch.1.033185
https://doi.org/10.1103/PhysRevB.69.121414

