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A number of problems in physics, mathematics, and philosophy involve observers in given situations which
lead to debates about whether observer-specific information should affect the probability for some outcome or
hypothesis. Our purpose is not to advocate for such observer selection effects but rather to show that any such
effects depend greatly on the assumptions made. We focus on the debate about the existence of a “doomsday
effect”—whether observer index information should cause one to favor possibilities with fewer observers, which
has been argued to have implications for models of cosmology. Our central goal is to reconcile the apparent
inconsistencies in the literature by introducing a formalism to lay bare assumptions made and address a key
issue that has not been clearly articulated in such problems: whether the observer is selected by picking from
or being in a set of worlds. In the former there generally are observer selection effects, and in the latter there
generally are not. This leads us to differentiate what we call inclusive from exclusive selection and how they
relate to the concept of a multiverse. Then we relax the assumption that all observers are equally typical and
consider the problem of Boltzmann brains, showing that typicality can play a role in solving the problem. We
then stress the need for scale-invariant questions, which causes us to analyze J. Richard Gott’s approach to the
problem. This all allows us to analyze the doomsday and universal doomsday arguments. We find that there is
no doomsday effect, absent a set of assumptions we find somewhat unreasonable. Then we use our formalism to
resolve a debate in the philosophy community called the “Sleeping Beauty problem.” Finally, we conclude with
a heuristic summary, free from equations, and point to possible future directions of this line of research.
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I. INTRODUCTION

Physicists usually shun observer-specific information—
and for good reason. Our theories are based on invariances,
such as those with respect to space and time, and should not
depend on who is testing them. Emmy Noether showed that
conservation laws are rooted in symmetries [1]. Yet we accept
boundary conditions and symmetry breaking because of the
constraints of the real world. And sometimes just being an
observer can bias our viewpoint. It took millennia for humans
to realize that we were not the center of the Universe and
that we are atypical collections of matter in being confined
to the surface of a habitable planet. Some of the apparent
coincidences which seem necessary for life to have evolved
may be due to generalizing this notion of us being atypical
[2,3]. But our purpose here is to focus on one particular type
of observer effect: that probabilities we assign to the selection
of an entity may differ if the entity is an observer because
the observer has the capacity to self-select. We will see that
changing assumptions can completely change these effects,
so, at a minimum, anyone invoking them, or decrying them,
should carefully lay out all assumptions made.
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The quintessential example is the “doomsday argument”
[4], about which there is much debate [5–11]. Suppose you
assign some prior probability p for case S, that the “world” of
which you are a part (and we will define “world” in various
ways) will persist only for a short time, with a relatively
small number of “people” ever living in that world. The other
possibility, L, is that it will persist longer, with more total
“people,” to which you assign probability 1 − p. But you
realize that in your guess for p, you have neglected to take
into account any possible observer selection effects (OSEs).
The doomsday argument says that you should adjust p upward
because the probability is small that you would just happen to
live very, very early in the life of a world, and thus you are
more likely to live in a short-lived world for which you would
be more typical. Is that right? It depends on your assumptions.

Throughout most of the paper, we will be talking about
probabilistic situations where there is a set P of “people”
(entities capable of being observers, though not always the
primary observer in the situation) from which one is selected,
and we want to know the probability that the “person” belongs
to a subset of P associated with some property, e.g., “born
before the year 2100.” A key question is whether the “person”
self-selects directly from set P (which is generally embedded
in enclosing sets such as worlds), which we call a “Be
selection” (a Be for short), or whether they are selected in
some other way, which we call a “Pick selection” (a Pick for
short). In most of our scenarios, the latter entails more than
one selection because in order to pick an element of set P one
must generally first pick an element of one of the sets that
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encloses P (e.g., to pick a nut from a set of jars, one must first
pick one of the jars). The posterior probabilities for Be and
Pick selection differ: OSEs tend to arise in the latter but not
the former.

Philosopher Nick Bostrom has written much about the
doomsday argument [6,7,9]. He, too, discusses two possible
ways an observer could be selected, often using problems
of prisoners, which make good toy models because they
entail observers confined to specific enclosing sets (cells in
cellblocks in prisons). We will assume through most of the
paper what he calls the self-sampling assumption (SSA),
which just means that you assume you are equally likely to
be any member of the set of possible observers you define in
your problem, i.e., it is an assumption of typicality. He also
considers something called the self-indication assumption
(SIA), which says you should weight the probability of your
existence by the number of people in the world in which you
exist [5,8,12]. This is essentially a kludge factor, and why it
has rightly been found to be problematic [9,11–13]. In fact,
the SIA gives the wrong answer whenever there is a selection
from an enclosing set, such as in the warden problem we
discuss in Sec. III, or when we take theories to be mutually
exclusive, as in Sec. VI. Nevertheless, we will see that the
weighting factor associated with the SIA appears naturally
with the SSA if we assume observers are Be selected rather
than Pick selected.

So there are conflicting and problematic results and appar-
ent misunderstandings in the literature, and much of this is
due to there being no universal notation. Our goal in writing
this paper is to resolve these issues. Central to doing so is
our nested-set notation, which we hope will allow authors to
make clear their assumptions on how observers are selected,
so readers can judge for themselves whether the assumptions
made, and the results they lead to, are reasonable.

The paper is structured as follows. In the next two sec-
tions, we consider the selection of observers within “worlds”
(prisoners in cellblocks), first via a Be selection and then via
a Pick selection, showing how OSEs arise in the latter. In
the following two sections, we discuss what happens if we
embed the worlds in an enclosing set E , and there is just one
Be selection on P (an inclusive selection), or an additional
Pick on set E (an exclusive selection), again with OSEs in the
latter. If we take set E to comprise “everything,” then we term
the inclusive case the inclusiverse and the exclusive case an
exclusiverse. The key difference between them is that in the
former we assume that all hypothesized things exist, and in the
latter we do not. This leads to a general principle: It is effects
of the latter which lead to OSEs. Later we discuss whether
it is possible to distinguish these two cases and relate them
to the term “multiverse,” but our purpose is to lay out how
to calculate probabilities given certain assumptions, not to
posit the nature of reality. Next we discuss spaces of theories,
typicality, and the issue of “freak” observers in cosmology
called Boltzmann brains and how our analysis can frame
that problem. Then we consider an analysis by J. Richard
Gott [14], which lets us phrase the doomsday argument in
a scale-invariant way. We are then ready to fully address
the doomsday argument and what has been called “universal
doomsday.” We show that while many sets of assumptions
lead to no doomsday effect, it is possible to come up with a

FIG. 1. Why the warden problem (with a Pick selection) leads
to an OSE and the Prisoner problem (with a Be selection) does
not: There are two cellblocks, S and L. Prisoners all simply ask
themselves, “Which cellblock am I in?” and then observe their cell
number to answer. There are more prisoners in the L cellblock to ask
the question, which cancels the rank factor that a smaller faction of
prisoners are in the first two cells in L than in S, so those in cell 2 are
equally likely to be in either cellblock. The warden first must Pick
a cellblock at random and then select a cell at random within that
cellblock. If the selected prisoner is in cell 2, then it is more likely
that the warden picked the S than the L cellblock because the number
of prisoners per cellblock did not affect the odds that she picked that
cellblock, and so the rank factor is not canceled as it was in the Be
case.

set of assumptions, however implausible, which leads to one.
Then we address a related problem in philosophy called the
“Sleeping Beauty problem.” Finally, we summarize our results
and point to future directions.

In an effort to make the paper readable to the wider
world, the summary is comprehensive of our results without
equations. We have also put details of our nested-set notation
and a table that summarizes our results into the Appendix.
And in the body of the paper, we spell out many intermediate
steps in our equations since some interested in the results here
may include those less familiar with working out such steps.

II. TO BE: PRISONER PROBLEM

Imagine you are a prisoner and have the following informa-
tion: The prison you are in has two types of cellblocks, small
(S) and large (L), which contain n̄S and n̄L cells per cellblock,
respectively. You want to estimate the probability that you are
in an S cellblock.

Before we dive into a lot of notation, let us consider a
simple numerical example, where there is one cellblock of
each type, with n̄S = 2 and n̄L = 6 (see the left side of Fig. 1).
You do not know your cell number at the outset, so you could
be in either the S or L cellblock. Now you look at your door
and learn your cell number. If it is greater than 2, then you
know you are in the L cellblock. Let us assume that it is cell
number 2, so you could be in either cellblock. What is the
probability that you are in the S cellblock? Well, there are
exactly two cells with cell number 2, one in each cellblock.
And you have no reason to favor one over the other, so you
should assign a probability of 1/2 for being in the S cellblock.
Note that this is equal to the probability of picking the S
cellblock at random. In other words, the posterior probability
for being in cellblock S, given the cell-number datum that
you could be in either cellblock, is the same as the prior
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probability of randomly picking cellblock S—there is no
observer selection effect.

Now let us formalize the problem for a general number
of prisoners and cellblocks. You assign labels NS and NL to
the number of cellblocks of each type, but all you know is
that there is at least one cellblock (since you are in one), i.e.,
N ≡ NS + NL � 1. You also know that the prison is full and
that each prisoner was assigned a random cell in the prison,
with exactly one prisoner per cell. Let the ratio of cells in L
and S cellblocks be

ρ ≡ n̄L/n̄S, (1)

which is by assumption greater than 1. The bar just indicates
we have normalized to the number of cellblocks. The total
number of prisoners in all cellblocks of type J = S or L is nJ ,
which is equal to the number of cells per cellblock of that type
times the number of cellblocks of that type:

nJ = n̄JNJ . (2)

Let us call the set of prisoners P (for “person,” the set
that will usually hold our observers) and the set of cellblocks
W (for “world,” since this problem is an analog to one
of observers in worlds). WS and WL are the subsets of W
containing all S and L cellblocks, respectively. Since there are
only two types of cellblocks, the set W is the union of them:
W = WS ∪ WL. You assign some prior probability for what
the fraction of small cellblocks P(WS ) = NS/N might be [we
assume that the probability of picking any given cellblock is
simply 1/N , and these P(WS ) and P(WL ) are fixed inputs—we
will explore varying ratios of them in Sec. IV]. Note that P
is nested within W , i.e., every element of P (a prisoner) is
associated with a particular element of W (a cellblock). The
compound set PWS contains the set of S cellblocks, and the set
of prisoners in P who are in S cellblocks (see the Appendix for
details on notation).

We will assume the SSA [7],

SSA: One should reason as if one is a random sample from the
set of all observers in one’s reference class.

This is simply assuming typicality, that the probability of
you being in a subset of a larger set is simply equal to the
fraction of observers of the reference class (which we call set
P) who are in that subset. For example, the probability to Be
in subset Px of set P is just P(Px|P) = nx/n.

You learn one datum, your cell number. Divide the datum
into two categories: d if your cell number is � n̄S , and ¬d
if it is > n̄S . The corresponding subsets of P are Pd and P¬d

(P = Pd ∪ P¬d ). If your datum is ¬d , then you know for sure
that you are in an L cellblock (because your cell number is
greater than n̄S). The case of interest is when the datum is
d , where you could still be in either type of cellblock. The
question we want to answer in the prisoner problem is

What is the posterior probability that a prisoner is in an S
cellblock, given that they match datum d?

For convenience we define the number of people matching
datum d to be m ≡ nd and the number of people matching
datum d within a cellblock type J to be mJ ≡ nd,J , where J =
L or S. All observers with cell numbers � n̄S match datum d ,

so the number of people per cellblock matching datum d is
m̄ = n̄S , and this holds for both S and L cellblocks, so

m̄ = m̄S = m̄L = n̄S. (3)

We want to calculate the probability of you being in
a cellblock type S (i.e., in subset PWS of PW ) given the
datum, d , that you are in a low cell number (i.e., in subset
PdW of PW ), which we write at the conditional probability
P(PWS|PdW ). We will calculate this using Bayes’s law, so we
need the likelihood of matching the datum given that we are
in a cellblock type S,

P(PdW |PWS ) = mS

nS
= m̄S

n̄S
= 1, (4)

and the probability [15] to Be in cellblock type S,

P(PWS ) = nS

n
= n̄SNS

n̄N
= n̄S

n̄
P(WS ), (5)

where P(WS ) is the prior probability to Pick a cellblock of type
S (which, assuming random typical selection, is equal to our
prior value for fraction of worlds, NS/N).

We need to pause here because Eq. (5), despite its simplic-
ity, is the key to most of our results. We have simply taken
the SSA at face value. Since the prisoner has an equal chance
of being in any cell, the probability to Be in the subset of
prisoners in S cellblocks is simply the fraction of prisoners in
such cellblocks, nS/n, which as we show in Eq. (5) is equal to
the prior P(WS ) weighted by the average number of prisoners
n̄S per cellblock of this type. We should at this point note the
competing assumption, the self-indication assumption [7]:

SIA: Given the fact that you exist, you should (other things
equal) favor hypotheses according to which many observers
exist over hypotheses on which few observers exist.

This does giving the weighting factor seen in Eq. (5), but
it is a kludge factor because it gives that factor regardless
of how the observer is selected, which, as we shall see, is
inappropriate whenever the first selection is from a set that
encloses the observer. (Some may take the SIA to mean that
this weighting factor should be applied where appropriate—
not in any situation where you are an observer. If so, then
a way to think of our formalism is that it shows when that
weighting factor is appropriate.) In contrast, we derived the
weighting factor in Eq. (5) simply using typicality (the SSA)
and the recognition that we are selecting the observer directly
from set P. The effect from how the observer is selected
is made transparent by our nested-set notation. There are a
number of places in the literature which simply refer to “P(S)”
and let it equal to the prior probability for picking a world type
S, when to be a prisoner requires P(PWS ) with its weighting
factor n̄S/n̄. Failing to include this factor leads to erroneous
support for a doomsday effect.

Here is another way to understand this weighting factor. If
you use the information that you are an observer in a random
cell before also applying datum d , then you are more likely
to be in an L cellblock than your prior for the fraction of L
cellblocks would suggest. For example, if P(WS ) = P(WL ) =
1/2, then there are ρ times as many observers in L cellblocks
as in S cellblocks, and so the probability of being in a
cellblock type L (before knowing d) is ρ times that of being
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in a cellblock type S. This factor of n̄S in Eq. (5) will exactly
cancel a factor of 1/n̄S in the likelihood Eq. (4). [As we shall
see in the next section, this factor is absent if there is a Pick on
the world set W . We should also note that by our formulation
of the problem we are assuming that the prisoner could be
in both types of cellblocks. We will later consider the cases
where there are mutually exclusive “universes” (Sec. V) and
hypotheses (Sec. VI A).]

So the posterior probability of you being in a cellblock type
S given datum d is given by Bayes’s law,

P(PWS|PdW ) = P(PdW |PWS )P(PWS )

P(PdW )

= P(PdW |PWS )P(PWS )∑
J P(PdW |PWJ )P(PWJ )

=
m̄S
n̄S

n̄S
n̄ P(WS )∑

J
m̄J
n̄J

n̄J
n̄ P(WJ )

= m̄S

m̄
P(WS )=P(WS ), (6)

where J = S or L,
∑

J m̄JP(WJ ) = m̄, and m̄ = m̄S = m̄L. The
right-hand side is the prior probability for picking a cellblock
of type S—i.e., the probability before we have any observer
information at all. As we noted before, the prior here to pick
a world type S, P(WS ), is a fixed value NS/N , not updated
by the datum. What is updated is our posterior probability
to be in such a world. [Note that we can also write this
more compactly using the shorthand notation described in
Appendix, see Eq. (A16).] We can express the fact that there
is no net observer selection effect by comparing the ratio of
probabilities after (RP) and before (RW ) observer information:

RP ≡ P(PWL|PdW )

P(PWS|PdW )
= P(WL )

P(WS )

RW ≡ P(WL )

P(WS )
, RP/W ≡ RP

RW
= 1. (7)

In the prisoner problem, using observer information, which
includes the effect of you being in a small cellblock, as well
as the likelihood of you being in a low-numbered cell, you
obtain the prior probability to Pick a cellblock type S. In short,
in the prisoner problem, when your datum is d , there is no net
observer selection effect (RP/W = 1).

III. TO PICK: URN AND WARDEN PROBLEMS

Now let W be a set of urns, and P a set of ping-pong balls
in them. Each urn contains either a large (n̄L) or small (n̄S)
number of consecutively numbered balls—defining subsets
WL and WS . You pick an urn at random and a ball at random
from the urn. Before picking the ball, in fact before you
actually picked an urn, you had a prior probability that the
urn you picked is of type S, P(WS ). After seeing the ball, what
is the posterior probability that the urn is type S?, i.e.,

What is the posterior probability that you pick an S urn and
then a random ball in it, given that the ball you pick matches
datum d?

Again, let us first use a numerical example to build in-
tuition. Suppose there are two urns, one S and one L, with
n̄S = 2 and n̄L = 6. You pick a random urn and then pick a
random ball from it (we shall see that this is the same as the

warden problem on the right side of Fig. 1). If the ball number
is greater than 2, then the urn you picked was the L urn. So let
us assume the same datum as before, that it is ball number 2,
which corresponds to datum d . Now, before you knew the ball
number, there was an equal chance that you picked the S or L
urn. But once you have datum d , your posterior probability of
having picked the S urn has greatly increased because all the
balls in the S urn match d , whereas that is true only of 1/3 of
the balls in the L urn. In fact, while your prior for picking the
urns was equal, your posterior probability of picking the S urn
is 3 times that of picking the L urn (3/4 vs. 1/4). Though the
setup seems the same as in Sec. II, the fact that there was an
initial selection of the urn makes all the difference.

Let us now go into the details. Obviously, if the ball’s
number is >n̄S , then you will know that it is an L urn and
that posterior probability is 0. So let us assume that the datum
d you get is that the ball’s number is �n̄S . It is tempting to say
that the situation is identical to the prisoner example and that
we learn nothing about the urn. After all, both kinds of urns
have the same number of balls with number less than n̄S . But
the situation is different because in order to pick the ball from
the urn, we first had to pick the urn. To denote that selection,
we put a Pick sign “ |” between sets (see Appendix for more on
our set notation). So to Pick any ball from any urn is P |W , and
to Pick a ball matching datum d from an S urn is Pd

|WS . Thus
what we seek is P(P |WS|Pd

|W ), the probability of picking
a ball from an S urn given that we picked a ball matching
datum d .

The probability of matching datum d given the urn is type
S is exactly the same as Eq. (4) because if it is given that you
picked an S urn, then the Pick has no effect on the likelihood,
it is “neutered” (see Appendix) and we put a slash through the
Pick sign to indicate this:

P(Pd
�W |P �WS ) = P(PdW |PWS ) = mS

nS
= m̄S

n̄S
= 1, (8)

and with m̄S = n̄S (grouping all the balls matching datum d
together), P(Pd

|W |P |WS ) = 1. However, the probability of
picking a ball from an urn of type S is not the same as Eq. (5)
because there is no weighting for the number of balls. The
probability of picking an S urn and then picking a ball from it
is same as the prior probability for picking an S urn,

P(P |WS ) = P(WS ). (9)

Because of this, there is no factor of n̄S in the numerator to
balance the 1/n̄S rank factor in the likelihood, so Bayes’s law
does not just return the prior as it did in the Be case in Eq. (6):

P(P |WS|Pd
|W ) = P(Pd

�W |P �WS )P(P |WS )∑
J P(Pd

�W |P �WJ )P(P |WJ )

=
m̄S
n̄S

P(WS )∑
J

m̄J
n̄J

P(WJ )
= P(WS )∑

J
n̄S
n̄J

P(WJ )

= P(WS )

P(WS ) + 1
ρ

P(WL )
. (10)

[For shorthand notation, see Eq. (A17).] For P(WL )/ρ small,
this goes to 1.
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The posterior probability for L given d is

P(P |WL|Pd
|W ) =

1
ρ

P(WL )

P(WS ) + 1
ρ

P(WL )
, (11)

which, for equal priors, goes to 1/ρ for P(WL )/ρ small. As in
Sec. II, the prior here is a fixed input NL/N that is unchanged
by the datum. Our posterior is the probability of the urn
that we picked to be type L. To see how data can update a
multivalued prior with Pick selection, see Secs. V and X.

The ratios for P and W become

RP | ≡ P(P |WL|Pd
|W )

P(P |WS|Pd
|W )

= 1

ρ

P(WL )

P(WS )

RW ≡ P(WL )

P(WS )
, RP |/W ≡ RP |

RW
= 1

ρ
. (12)

There is thus a very strong selection effect when one has to
first Pick the urn (RP |/W = 1/ρ).

Of course balls are not people, so it is tempting to think
that it is the nature of the elements of set P that causes the
difference with the prisoner problem. To counter that, consider
what we call the warden problem, where P is again a set
of prisoners in cellblocks W . But this time, instead of the
prisoner just being the observer within a cellblock, a warden
selects a prisoner by first picking a random cellblock and then
picking a random prisoner within the cellblock, all without
noting which type of cellblock she has picked. So the question
in the warden problem is

What is the posterior probability that a warden picks an S
cellblock and then a random prisoner in it, given that the
prisoner they pick matches datum d?

Then all follows exactly as in the urn problem, and the
posterior probability we seek is P(P |WS|Pd

|W ). The warden
has a prior probability P(WS ) for having picked a cellblock
type S, the likelihood that she gets datum d given that she
picked a cellblock type S is one (i.e., P(Pd

|W |P |WS ) = 1),
and, by Bayes’s law, her posterior probability given datum d is
given by Eq. (10), with a large selection effect, RP |/W = 1/ρ.

The reason the warden problem differs from the prisoner
problem is that the warden has to first Pick a cellblock,
whereas the prisoner is there without needing to be picked by
anyone else. See Fig. 1. (It may help your intuition to imagine
n̄L huge, say, 2000 so ρ = 1000. The prisoner problem is
unchanged since if you satisfy d , then you are still in cell 1 or
2 of your cellblock, but in the warden problem she is certain
to pick cell 1 or 2 if she picks the S cellblock but there is only
one chance in 1000 that she she will do that in the L cellblock.)

We note that if we try to use the SIA in this problem, we
will get the wrong answer. If you are a prisoner and a warden
picks your cell at random after having picked your cellblock
at random, and you learn you match datum d , then you should
conclude that you are likely in an S cellblock. But the SIA
would have you weight your prior probability to be in a given
cellblock by the number of cells, as in Eq. (5), falsely leading
you to conclude that there is no OSE, whereas typicality (the
SSA) gives you the correct unweighted prior of Eq. (9).

Just to highlight further, it is the Pick on the nesting set
W that causes a change in the posterior probability. Consider
the warden cafeteria problem, where all the prisoners are in a

cafeteria, and the warden Picks a prisoner at random. If that
prisoner is from a cell number �n̄S , then what is the probabil-
ity that they came from an S cellblock? Now the selection is
directly from set P, or equivalently, from inside of the nested
set PW , so that the posterior probability is P(PWS|PdW ), just
as in the Be case—there is no observer selection effect in the
warden cafeteria problem. A Pick directly from the observer
set is the same as a Be on that set (see Appendix). What causes
a change in the posterior probability is a Pick on a set in which
P is nested, such as W .

IV. INCLUSIVE SELECTION

However many nested sets we have, there are two possibil-
ities: Either there is just a selection on the innermost set (a Be,
unless there is a way to directly Pick from it as in the warden
cafeteria problem), which we call inclusive selection, or there
is also at least one selection on one of the enclosing sets [a
Pick in all of our examples because we do not consider any
sets enclosed by (to the left of) P], which we call exclusive
selection. The selection in the prisoner problem is inclusive
and in the warden problem it is exclusive.

Suppose we have a larger enclosing set, E , in which P
and W are nested. For the prisoner and warden problems,
this could be the set of all prisons, each of which has their
own small-to-large cellblock ratio. We can even take E to
encompass everything that we deem possible—such as a set
of universes in all possible configurations. Then we define two
possibilities for the reality:

The inclusiverse: All things we deem possible are realized.

An exclusiverse: Only some of the things we deem possible
are realized.

The key question is whether all things to which we assign
a nonzero probability actually occur (inclusive selection),
or there are some mutually exclusive possibilities (exclusive
selection). Perhaps a quantum example is useful. If one as-
sumes that quantum theory is unitary and all pieces of the
wave function with nonzero amplitude are realized, so that
Schrödinger’s cat is both alive and dead (as in the many-
worlds case), then that is inclusive selection. If one assumes
that the wave function collapses to a specific eigenvalue, so
that Schrödinger’s cat is alive or dead, not both, then that is
an exclusive selection. In the rest of this section we study
inclusive selection, though not its implications for reality.

Let us consider inclusive selection for the prisoner problem
but with a much more modest set, where E is the set of all
prisons we consider and the only selection is the self-selection
of the prisoner. If we think that there are exactly two types of
prisons, say, with all S cellblocks or all L cellblocks, then the
key to inclusiveness is that we calculate probabilities under the
assumption that both types of prisons exist—there is no Pick
on the selection of E needed. We explicitly show the sum over
subsets of E , e, so when we do the same calculation for the
exclusive case, the difference will be apparent. For simplicity
we will assume that the number of prisoners for any J = S or
L cellblock is the same across all prisons, so n̄J,e = n̄J , and
similarly we assume the number of prisoners per cellblock
matching datum d is the same, m̄J,e = m̄J . The subsets Ee
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differ only in their fractions of S and L worlds. The likelihood
for the inclusive case comes out the same as in the Be case,
Eq. (4):

P(PdW E |PWSE )

=
∑

e

P(PdW Ee|PWSEe)P(PWSEe|PWSE )

= m̄S

n̄S

∑
e

P(PWSEe|PWSE ) = m̄S

n̄S
= 1. (13)

There is no e dependence in the first term, since we assumed
that n̄S and m̄S do not depend on e. The prior to Be in cellblock
type S with inclusive selection of E is

P(PWSE ) =
∑

e

P(PWSEe|PW Ee)P(PW Ee)

=
∑

e

n̄S,e

n̄,e
P(WSEe|W Ee)

n̄,e

n̄
P(W Ee)

= n̄S

n̄

∑
e

P(WSEe|W Ee)P(W Ee) = n̄S

n̄
P(WSE ),

(14)

which is the same as Eq. (5), just the prior probability of
picking a world of type S weighted by the number of observers
per world type S. Note that a factor of 1/n̄,e and n̄,e cancel
here. Therefore, the posterior probability of you being in a
cellblock type S given datum d with an inclusive selection of
E is the same as Eq. (6),

P(PWSE |PdW E ) = P(PdW E |PWSE )P(PWSE )∑
J P(PdW E |PWJE )P(PWJE )

=
m̄S
n̄S

n̄S
n̄ P(WSE )∑

J
m̄J
n̄J

n̄J
n̄ P(WJE )

= m̄S

m̄
P(WSE )

= P(WSE ), (15)

just the prior probability of picking a world of type S, and
we again get RE

P/W = 1 as in Eq. (7). There is no net observer
selection effect for the prisoner problem in the inclusive case
(RE

P/W = 1). Generalizing, if we are considering a problem
where observers are selected only by being, and there is no
other selection—all allowed possibilities are realized, as in the
inclusiverse—then there is no OSE.

V. EXCLUSIVE SELECTION

Let us analyze the prisoner problem with exclusive se-
lection. The key difference from the inclusive case is that
we must Pick a subset Ee: Although we posit that there are
multiple possibilities Ee, only one of them is actually realized.
As we said in the previous section, if E is the set of everything
possible, and we take reality to correspond to a smaller subset,
then we live in an exclusiverse. But we will focus on a more
mundane set: For the prisoner problem, those subsets of E are
prisons.

The defining characteristic of these subsets Ee is the frac-
tion of worlds of type S they contain, which we define as y. So
the probability of picking an S world,

y ≡ P(WSEe|W Ee), (16)

and a world of type L, 1 − y = P(WLEe|W Ee), is the same for
all elements of a given Ee. That is, Ee is completely specified
by its y—in fact we will simply label these subsets by y. Again
we assume for simplicity that the number of prisoners per type
of world is independent of e: n̄J,e = n̄J and m̄J,e = m̄J . But
note that the average number of prisoners per cellblock in a
given prison, n̄,e varies from prison to prison:

n̄,e = n̄SP(WS,e) + n̄LP(WL,e)

≡ n̄y = n̄S[y + ρ(1 − y)]. (17)

The likelihood in the exclusive case is the same as in
inclusive case Eq. (13) because the Pick of subset Ee on the
first term in the sum is neutered:

P(PdW |E |PWS
|E )

=
∑

e

P(PdW �Ee|PWS
�Ee)P(PWS

|Ee|PWS
|E )

= m̄S

n̄S

∑
e

P(PWS
|Ee|PWS

|E ) = m̄S

n̄S
= 1. (18)

However, the prior is different because now we have to first
Pick a subset Ee, and there is not a n̄,e to cancel the 1/n̄,e as
there was in Eq. (14),

P(PWS
|E ) =

∑
e

P(PWS
�Ee|PW �Ee)P(PW |Ee)

=
∑

e

n̄S,e

n̄,e
P(WS

�Ee|W �Ee)P(Ee)

=
∑

y

y

y + ρ(1 − y)
P( |y). (19)

For the last line, we have assumed again n̄S,e = n̄S , relabeled
the subsets Ee by y, and used the definitions for y in Eq. (16)
and n̄,e in Eq. (17). The sum covers all values of y from 0 to 1
with nonzero P( |y), which is the probability of picking an en-
semble element of type y [it is shorthand for P(PW |Ey)—see
Eqs. (A13)–(A18)]. (Note that as with the warden problem,
the SIA gives the wrong answer here because P(Ee) should
not be weighted by n̄,e in Eq. (19) since we are first Picking
subsets of E .) Similarly, for L,

P(PdW |E |PWL
|E ) = m̄L

n̄L
,

P(PWL
|E ) = n̄L

n̄S

∑
y

1 − y

y + ρ(1 − y)
P( |y). (20)

Let us use Bayes’s law again to obtain the posterior proba-
bility of you being in a cellblock type S or L given datum d in
the exclusive case, which has the same form as the inclusive
case Eq. (15) except with Picks on E , which we obtain from
Eqs. (18)–(20):

P(PWS
|E |PdW |E )

= P(PdW |E |PWS
|E )P(PWS

|E )∑
J P(PdW |E |PWJ

|E )P(PWJ
|E )

=
∑

y
y

y+ρ(1−y) P( |y)∑
y

y+ m̄L
m̄S

(1−y)

y+ρ(1−y) P( |y)
=

∑
y

y
ρ−(ρ−1)y P( |y)∑

y
1

ρ−(ρ−1)y P( |y)
, (21)
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P(PWL
|E |PdW |E )

= P(PdW |E |PWL
|E )P(PWL

|E )∑
J P(PdW |E |PWJ

|E )P(PWJ
|E )

=
m̄L
m̄S

∑
y

1−y
y+ρ(1−y) P( |y)∑

y

y+ m̄L
m̄S

(1−y)

y+ρ(1−y) P( |y)
=

∑
y

1−y
ρ−(ρ−1)y P( |y)∑

y
1

ρ−(ρ−1)y P( |y)
, (22)

where we use m̄S = m̄L of Eq. (3) and we rewrote the denom-
inators to collect the y dependence. We are again interested in
the ratio of L to S posterior probabilities,

R
|E
P ≡ P(PWL

|E |PdW |E )

P(PWS
|E |PdW |E )

=
∑

y
1−y

ρ−(ρ−1)y P( |y)∑
y

y
ρ−(ρ−1)y P( |y)

. (23)

We want to normalize this to

R
|E
W ≡ P(WL

|E )

P(WS
|E )

=
∑

e P(WL
�Ee|W �Ee)P(W |Ee)∑

e P(WS
�Ee|W �Ee)P(W |Ee)

=
∑

y(1 − y)P( |y)∑
y yP( |y)

.

(24)

We can see immediately that if there is only one value Y for
which P( |y = Y ) is nonzero, then both R

|E
P and R

|E
W are equal

to (1 − Y )/Y and their ratio, R
|E
P/W is 1—no observer selection

effect. That is because that is really the inclusive case—while
there is a Pick on E , it is neutered, and all of the values (i.e.,
the one value) are realized. So for the exclusive case, there
needs to be more than one allowed value of y.

So let us explore different assumptions for the function
P( |y), which, to remind you, is our prior probability for
elements of E with S-world fraction y. For simplicity, let us
define the probability density,

p( |y) ≡ P( |[y, y + dy])/dy, (25)

where now y is not a set of discrete values but all real numbers
in [0,1]. We can then write the sums in Eqs. (23) and (24) as
integrals:

R
|E
P =

∫ 1
0 dy 1−y

ρ−(ρ−1)y p( |y)∫ 1
0 dy y

ρ−(ρ−1)y p( |y)
, (26)

R
|E
W =

∫ 1
0 dy(1 − y)p( |y)∫ 1

0 dy yp( |y)
. (27)

A. Near a single point

Let us first explore the case where we take y to have a
nonzero probability near a single point Y , in particular that
p( |y) is constant over the range Y − σ to Y + σ , where of
course σ is no larger than Y or 1 − Y so that the points are on
the range 0 to 1:

p( |y)near = 1

2σ
{�[y − (Y − σ )] − �[y − (Y + σ )]}. (28)

[�(x) is the step function, equal to 0 for x < 0 and 1 for x �
1.] Plugging this into Eq. (27), for the prior ratio probabilities

or picking L worlds to S worlds, we get

R
|E
W =

[
y − 1

2 y2
]Y +σ

Y −σ[
1
2 y2

]Y +σ

Y −σ

= 1 − Y

Y
, (29)

just as we obtained for a single point. (This is true because the
integrand in the numerator and denominator of R

|E
W are linear

in y.) The expression for R
|E
P is more complicated because of

the denominator of the integrands. In the limit of σ → 0, R
|E
P

is

R
|E
P � 1 − Y

Y

{
1 − 1

3
σ 2 ρ − 1

[ρ(1 − Y ) + Y ]Y (1 − Y )

}
, (30)

and thus their ratio is

R
|E
P/W � 1 − 1

3
σ 2 ρ − 1

[ρ(1 − Y ) + Y ]Y (1 − Y )
. (31)

Thus if p( |y) is nonzero within ±σ of a single point Y ,
then there is a small observer selection effect of order σ 2. In
the limit that ρ → ∞ [actually one must be careful when Y is
near 1, so really we take ρ(1 − Y ) → ∞],

R
|E
P/W → 1 − 1

3
σ 2 1

Y (1 − Y )2
. (32)

So the closer we restrict our prior to be near a single point Y ,
the less R

|E
P/W differs from 1, and this behavior is independent

of ρ.

B. Flat prior

The simplest prior assumption is that every value of y is
equally likely,

p( |y)flat = 1. (33)

From Eq. (27) this gives equal probability of picking S and L
worlds,

R
|E
W =

[
y − 1

2 y2
]1

0[
1
2 y2

]1
0

= 1, (34)

which we also could have obtained from Eq. (29) for Y = σ =
1/2. The posterior ratio of being in L and S worlds, R

|E
P , is thus

unchanged when normalized to R
|E
W = 1, and for their ratio we

obtain,

R
|E
P/W = 1 − (ln ρ + 1)/ρ

ln ρ − 1 + 1/ρ
→ 1

ln ρ − 1
, (35)

where we take the limit of ρ → ∞ (this approximation is
good only for ρ � 100). So for a flat prior, we get an observer
selection effect which goes roughly as 1/ ln ρ, in between
the original prisoner problem, RP/W = 1 = ρ0, and warden
problem, RP |/W = ρ−1.

If the point of choosing a flat prior is to minimize the
effect of assumptions on the outcome, then it might make
more sense to use inclusive selection instead of a flat-prior
exclusive selection—to say that all values of y are realized
rather than one of them is realized with equal probability for
each. Assuming the latter leads to a small observer selection
effect while the former does not.
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C. Two separated points

To get a sense of how much the prisoner problem in the
exclusive case can approach the warden problem, it suffices
to consider a prior with nonzero probabilities at two points,
Y ± σ , where 0 < Y < 1 and 0 < σ � min (1/2,Y, 1 − Y ),
so that both points lie in the range [0,1]:

p( |y)two = 1
2 {δ(y − (Y − σ )) + δ(y − (Y + σ ))}. (36)

[δ(x) = 1 for x = 0 and is 0 otherwise.] Since the integrands
in R

|E
W are linear the σ terms cancel, and we again get R

|E
W =

(1 − Y )/Y . For R
|E
P , we obtain,

R
|E
P = 1 − Y (2 − 1/ρ) + (Y + σ )(Y − σ )(1 − 1/ρ)

Y − (Y + σ )(Y − σ )(1 − 1/ρ)
. (37)

If we assume Y = 1/2, and define k ≡ 2σ , then R
|E
W = 1 and

Eq. (37) reduces to

R
|E
P/W (Y = 1/2) = 1 − k2 + (1 + k2)/ρ

1 + k2 + (1 − k2)/ρ
. (38)

Note that 0 < k � 1. For k near 0, R
|E
P approaches 1—two

points very close together is very much like the inclusive case.
For Y = 1/2 and k = 1, i.e., when the two points are y = 0
and y = 1,

R
|E
P/W (y = 0 or 1) = 1

ρ
. (39)

In other words, the prisoner problem in the exclusive case
where the prior is that the prison is either all L cellblocks (y =
0) or all S cellblocks (y = 1) has the same observer selection
effect as the warden problem in Eq. (12). By insisting on an
either-or-Pick on the enclosing set E , we have, in essence,
turned a Be for the prisoner into a Pick on which top-level
subset she is in.

So we can go anywhere from no OSE, as in the prisoner
case, to a warden-level 1/ρ OSE simply by adjusting our prior
assumptions. In Fig. 2, we plot R

|E
P/W as a function of Y for

different values of k, which we more generally define as

k ≡
{

σ
Y Y � 1

2 ,
σ

1−Y Y � 1
2 .

(40)

For Y near 0 or 1, or k near 0, R
|E
P/W � 1 = ρ0, and the

exclusive case is like the inclusive one. The observer selection
effect is maximized for Y = 1/2 and k = 1, yielding R

|E
P/W =

ρ−1 of Eq. (39).

VI. EXCLUSIVE THEORY SELECTION AND THE
PRESUMPTUOUS PHILOSOPHER

A. Exclusive theory selection

Instead of taking E to be the top-level set, consider a set of
theories, �. This set of theories might include very different
hypotheses about reality, or they might simply specify differ-
ent enclosed subsets, such as,

�L : “All cellblocks are type L”’

�S : “All cellblocks are type S” (41)

FIG. 2. How to interpolate between the prisoner (no OSE) and
warden (1/ρ OSE) cases: For exclusive selection over an ensemble
{Ey} (y is the fraction of worlds of type S in that ensemble element)
which consists of two separated points y = Y ± σ , we plot a measure
of the OSE, R

|E
P/W (the ratio of the ratios of posteriors to priors for L

and S worlds for the exclusive Pick over ensemble E ) versus Y for
ρ = 10 (the ratio of the number of people per world of type L to that
of type S). The OSE depends on how far apart the points are, which
is characterized by k ∈ (0, 1] defined in Eq. (40). Contours top to
bottom are for k = 0, 0.25, 0.5, 0.75, and 1. There is no OSE for
k → 0 (akin to the prisoner case). The maximal OSE (minimal value
of R

|E
P/W ) is for k = 1 at Y = 1/2 (akin to the warden case), with a

value R
|E
P/W (Y = 1/2, k = 1) = 1/ρ = 0.1.

These two theories could have been encoded in E : They are
Ey=0 and Ey=1, respectively. But we tend to approach theories
differently from ensembles, notably that usually one assumes
that only one theory is true, that we have to Pick a theory
before proceeding further. This is exclusive theory selection,
and the probabilities are the same as in Sec. V. For example,
if our prior for the two theories in Eq. (41) are equal, R� =
P(�L )/P(�S ) = 1, then

RP |/� = P(PW |�L|PdW |�)

P(PW |�S|PdW |�)
= 1

ρ
, (42)

just as in Eq. (39). [This is assuming typicality (the SSA).
Again, the SIA gives the wrong answer because it does not
take into account selections on enclosing sets, here the Pick
selection on mutually exclusive theories.]

It is possible to have inclusive selection of a theory, where
one assumes multiple theories are realized. For example, one
could posit that prisons vary from country to country, so both
theories in Eq. (41) would be realized somewhere. There is
then no Pick on �, and one recovers the probabilities in the
inclusive section, where there were no observer selection ef-
fects (RP/� = 1). One can even have a seemingly fundamental
theory be part of an inclusive selection. For example, the
landscape in string theory allows different regions of the larger
universe to manifest different low energy theories with their
own fundamental constants. If one posits that one can be an
observer in any region of the landscape that has observers,
then that is inclusive theory selection.

As stated, the main point of this paper is to show that the
conclusions one draws depend on the assumptions made. If we
assume exclusive selection, such as the theories in Eq. (41)
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being mutually exclusive, then we will conclude that there
are observer selection effects, but if we assume an inclusive
case, such as half the prisons have only S cellblocks and half
have only L cellblocks, we will conclude that there are no such
effects.

B. Probing a multiverse?

Suppose we consider both possibilities about the selection
from set P through set E : that it is inclusive, as discussed
in Sec. IV, or exclusive, as discussed in Sec. V, and treat
these as competing hypotheses, �in or �ex. If we treat these
hypotheses as mutually exclusive, with a Pick on set �, then
the overall selection is exclusive. But let us focus on the rest
of the selection, from P to E , which is inclusive or exclusive.
We can then in principle use our data to alter our posterior
probabilities for each hypothesis. Suppose we define E to
be everything, so that the inclusive (exclusive) case corre-
sponds to the inclusiverse (an exclusiverse). How do these
terms relate to the term “multiverse”? If taken literally, then
multiverse simply means that there are more realities than the
one we perceive, either via something like parallel universes
or just the universe being so large that realities similar to
ours occur in some other part of it. That does not actually
imply that all possible universes are realized. A set of a few
parallel universes, which we will call a partial multiverse, is
an exclusiverse, since not everything possible is realized. If all
possibilities are realized, then to avoid ambiguity we will call
it the complete multiverse. So

The inclusiverse is the same as the complete multiverse: All
things we deem possible are realized.

An exclusiverse is the same as a universe or a partial multi-
verse: Some things we deem possible are not realized.

The question of this subsection is

Can we determine whether we live in the inclusiverse or an
exclusiverse simply by using a datum such as the date?

To get a handle on this, let us consider the prisoner problem
again, where our selection in sets PW is a Be. Let PW again
be embedded in a larger set E , which itself is considered in
the context of one of two hypotheses,

�in : “Inclusive selection on E”

�ex : “Exclusive selection on E” (43)

We need new notation to combine these hypotheses in a single
probability, with a “controlled-Pick” on E , so that there is a
Pick on E for hypothesis ex, but not for hypothesis in. For this
we put a left arrow pointing from � to the Pick on E :

P(PW |←−
E�in ) = P(PW E�in ),

P(PW |←−
E�ex) = P(PW |E�ex). (44)

Using this notation, what we want to calculate is
the posterior probability for hypotheses h = in or ex

given datum d:

Ph|d ≡ P(PW |←−−
E |�h|PdW |←−−

E |�) = Pd|hPh

Pd

= P(PdW |←−−
E ��h|PW |←−−

E ��h)P(PW |←−−
E |�h)

P(PdW |←−−
E |�)

. (45)

If we define our prior probabilities for h = in and ex to be α

and β, respectively, i.e.,

Pin ≡ P(PW |←−−
E |�in ) ≡ α, Pex ≡ P(PW |←−−

E |�ex) ≡ β,

(46)

then our posteriors are simply

Pin|d = αPd|in
αPd|in + βPd|ex

, Pex|d = βPd|ex

αPd|in + βPd|ex
. (47)

Note that we also need priors for the probabilities of the
elements of E . For simplicity, let us assume that the only
ensembles with nonzero probability are y = 0 (all L-type
cellblocks) or y = 1 (all S-type cellblocks), which we saw in
Eq. (39) gives maximal OSE for the ex case. There is of course
no OSE in the in case. For the inclusive case, let us assume
equal probabilities for y = 0 and 1:

P(E0
��in|E ��in ) = P(E1

��in|E ��in ) = 1
2 , (48)

but for the exclusive case let us allow them to vary,

P(E0
��ex|E ��ex) = q, P(E1

��ex|E ��ex) = p, (49)

where p + q = 1. Our likelihoods are then

Pd|in = m̄

n̄
= 2

ρ + 1
, Pd|ex = q

m̄

n̄0
+ p

m̄

n̄1
= p + q

ρ
. (50)

We can then plug these likelihoods into Eq. (47) to obtain the
posterior probabilities. It is clear that they depend on p (with
q = 1 − p).

For p = 1/2, so that the y = 0 and y = 1 weights in the ex
case match those of the in case in Eq. (48), we obtain posterior
probabilities,

Pin|d ≡ α′|p=1/2 = α

α + β
(ρ+1)2

4ρ

,

Pex|d ≡ β ′|p=1/2 = β

β + α
4ρ

(ρ+1)2

. (51)

Since α and β are � 0 and ρ > 1 [so that (ρ + 1)2 > 4ρ], the
denominator for α′ (β ′) is larger (smaller) than 1, and datum
d seems to decrease (increase) our credence in inclusive
(exclusive) selection on E , except in the trivial case where
α or β is zero. This would seem to argue that if E is a set
of universes (not just prisons), we could use observer data to
alter our probability that we live in the inclusiverse.

But there is a second prior in this problem, that of p (with
q = 1 − p). We chose p = 1/2 to make the probabilities for
y = 0 and y = 1 the same as those in the inclusive case.
An equally reasonable hypothesis would be to set p equal
to the value that gives the same value for datum d for each
hypothesis, so that Pd|in = Pd|ex = 2/(ρ + 1). With a little
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algebra, we see that this holds for

p = 1

ρ + 1
. (52)

For this value of p, the denominators in Eq. (47) are 1 (since
α + β = 1), and

Pin|d ≡ α′|p=1/(ρ+1) = α, Pex|d ≡ β ′|p=1/(ρ+1) = β, (53)

so for this value of p we gain no information about hypotheses
in and ex from datum d .

What happened? When we thought, due to Eq. (51), that
we had obtained information about hypotheses in and ex from
datum d , what we really learned about was the probability of
getting datum d based on two factors—whether the selection
from E was inclusive or exclusive—and the priors we had for
the elements of E in each case. To the extent that d tells us
anything about these cases, it is about a combination of these
factors. We cannot disentangle these factors here. In general,
one cannot claim that data tell us about whether we are in
the inclusiverse (the complete multiverse) or not unless one
can show that all other factors which separate the inclusiverse
from exclusiverse hypotheses are fixed.

C. Presumptuous philosopher

In the Introduction, we noted that some authors argued
against the doomsday argument by assuming the SIA: that we
should weight the probability of some situation by the number
of observers in it. As we have discussed, this is essentially
a kludge, adding the factor that we found in Be choices
without the clear-cut mathematical rationale we presented
(based on applying the SSA—typicality—properly). This is
perhaps why it has been referred to as “controversial” [11,12].

Nick Bostrom argues against the SIA with the following
problem [7,9]. A philosopher is told that theories �L and
�S have equal probabilities prior to taking into account any
observer information. This is like the problem of exclusive
theory selection we considered in Sec. VI A, except that there
is no datum d favoring S over L. The philosopher states
that there is no need to test which is right (and since this is
exclusive selection, only one is right) because, by the SIA, �L

is ρ times more likely than �S because there are ρ times as
many observers in that case.

Bostrom is right that the philosopher is being presumptu-
ous here, and this is a good argument against the SIA—that if
one is to Pick between �S and �L, there should be no effect
from there being more observers in the latter case, because we
are picking a theory. This is simply an example of what we
have found regarding the SIA—that it gives the wrong answer
when there is a selection from an enclosing set, here �. But
there is no reason to have invoked the SIA in the first place.

In short, the presumptuous philosopher has no bearing on
our results because it argues against the SIA, which we did
not use.

We note, however, that if the philosopher correctly uses the
SSA and is asked about an inclusive problem, whether she is
more likely to be in a domain of the inclusiverse governed
by theory �L or �S , she would be correct to answer that she
is more likely to be in the former due the SSA weighting by

number of observers. In that case she is not presumptuous at
all [16].

VII. TYPICALITY

All of the probabilities we have discussed thus far assume
that the selection, Be or Pick, is typical, that, for example,
if the fraction of observers in some subset Pa of P is na/n,
then the probability of selecting a person in that subset is also
na/n. Suppose we relax that assumption and allow atypical
selection, where the probability of selecting a person from
subset Pa differs from na/n—some values of a are intrinsically
more likely to be selected than others [17]. For example,
observers at CERN are not typical of Earth’s population—they
are more likely to be scientists than the population overall.
Srednicki and Hartle [18] describe an atypical selection in
their Eq. (6.1):

“P(q1|T, ξ , D0) =
∑

A

ξAP(q1@A|T, D0@A),” (54)

where q1 is a posterior result, T is a given theory, D0 is data, ξ
is a “xerographic distribution,” which is a set of copies A of q1

at different locations meeting data D0, and ξA is the probability
weight of xerographic occurrence A which is not necessarily
what we would obtain from a typical selection. We need to
translate this all into our notation.

A. Atypical notation

Let us define ξ 0 to be a typical Be, a typical selection on
the set P (embedded in set W ). We are interested in subsets Pa

of P for some property a of the people in P:

ξ 0
a ≡ P(PaW ) = n̄a

n̄
, ξ 0

a|d ≡ P(PaW |PdW ) = m̄a

m̄
. (55)

Now let us define an atypical Be using ξ to mark the atypical
selection point,

ξa ≡ P(ξ PaW ), ξa|d = P(ξ PaW |ξ PdW ), (56)

which may not simply be a ratio of numbers of elements of
set P. However, for a given atypical selection ξ on P, we will
show that we can always find a new set P̃, with number of
people per world ˜̄n, on which a typical selection ξ̃ 0,

ξ̃ 0
a ≡ P(P̃aW ) = ˜̄na

˜̄n
, ξ̃ 0

a|d = P(P̃aW |P̃dW ) = ˜̄ma

˜̄m
, (57)

gives the same answer. Here the tilde quantities are related to
their counterparts by some scaling factors κa and κa|d :

ña ≡ κana, ñaK ≡ κanaK ,

m̃a ≡ κa|d ma, m̃aK ≡ κa|d maK . (58)

We claim that the atypical Be on P, ξ , is equal to the typical
Be on P̃, ξ̃ 0,

ξa = ξ̃ 0
a , ξa|d = ξ̃ 0

a|d , (59)

if we define κa as the ratio of atypical to typical selection,

κa ≡ c
ξa

ξ 0
a

, κa|d ≡ cd
ξa|d
ξ 0

a|d
, (60)
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where constants c and cd are independent of a. We have the
freedom to vary c and cd because the overall numbers of
people in P̃ do not matter, just the ratios we are interested
in. However, they do affect the values for ˜̄n and ˜̄m:

˜̄n =
∑

a

˜̄na =
∑

a

κan̄a = cn̄
∑

a

ξa = cn̄,

˜̄m =
∑

a

˜̄ma =
∑

a

κa|d m̄a = cd m̄
∑

a

ξa|d = cd m̄, (61)

using the fact that probabilities for even atypically selected
people sum to 1. Note that we can choose to set c and cd equal
1 and have ˜̄n = n̄ and ˜̄m = m̄, but we need not do this. Now
we can show Eq. (59) does in fact hold,

ξa = 1

c
κaξ

0
a = 1

c
κa

n̄a

n̄
= ˜̄na

cn̄
= ˜̄na

˜̄n
= ξ̃ 0

a ,

ξa|d = 1

cd
κa|dξ 0

a|d = 1

cd
κa|d

m̄a

m̄
= ˜̄ma

cd m̄
= ˜̄ma

˜̄m
= ξ̃ 0

a|d , (62)

and we can write our atypical selection on P as a typical
selection on P̃ with number of elements defined by Eq. (58)
with κ defined in Eq. (60).

B. Posterior probability

We can now write Srednicki and Hartle’s Eq. (54) in our
notation. We want the posterior probability P(PWK |PdW ) but
with an atypical Be, i.e., P(ξ PWK |ξ PdW ):

P(ξ PWK |ξ PdW ) =
∑

a

ξa|d P(PaWK |PadW )

=
(∑

a

ξa|d
m̄aK

m̄a

)
P(WK ) = ˜̄mK

˜̄m
P(WK ),

(63)

which we write as a typical Be on set P̃ defined by Eqs. (58)
and (60). This is the same expression as for a Be in Eq. (6)
with the elements from set P̃. Note that if we condition on
a subset a, the selection within that subset is typical (all
atypicality comes from nontrivial weighting of the different
subsets Pa), thus P(ξ PaWK |ξ PadW ) = P(PaWK |PadW ).

C. Atypical example

Let us see how this atypical notation works in an example
using prisoners of two types. Suppose half the cellblocks are
filled with humans (a = h) and half filled with zombies (a =
z). Humans are distributed as in the prisoner problem, n̄hL =
ρn̄hS and m̄hL = m̄hS . Zombies have the same distribution in
cells, n̄zL = ρn̄zS , but let us assume that all zombies who
can think well enough to formulate a question think they
meet datum d , i.e., m̄zL = ρm̄zS . If you think it is equally
likely that you are a human or a zombie (because half the
prisoners are humans and half zombies), and for simplicity
you assume P(WS ) = P(WL ) = 1/2, then you calculate the

typical Be posterior probabilities,

P(PWS|PdW ) = m̄S

m̄
P(WS ) = 2

3 + ρ
, (64)

P(PWL|PdW ) = m̄L

m̄
P(WL ) = 1 + ρ

3 + ρ
. (65)

Thus, unlike the prisoner problem, there is an observer se-
lection effect RP/W = (1 + ρ)/2, favoring that you are in WL,
because there are more zombies matching d in WL.

But suppose you think it is quite unlikely that you are a
zombie, say, because zombies do not usually use Bayesian
reasoning. For simplicity, you take κh|d = 1 and set κz|d to
be some very small number κ—one zombie out of every κ

thinks well enough to calculate the probabilities we have been
discussing (the ratio of chances you are a zombie to you
are a human is κ , not 1). Then you calculate the atypical
Be,

P(ξ PWS|ξ PdW ) = ˜̄mS

˜̄m
P(WS ) = 1 + κ

2 + κ (1 + ρ)
, (66)

P(ξ PWL|ξ PdW ) = ˜̄mL

˜̄m
P(WL ) = 1 + κρ

2 + κ (1 + ρ)
. (67)

There is still an observer selection effect, RP/W = (1 +
κρ)/(1 + κ ), favoring WL, but note that when κ → 0,
RP/W → 1, because there is no OSE due to the human prison-
ers. If you assume you are not a zombie, then you take κ = 0
and all probabilities spring from Ph—in fact if you are going
to do that, you might as well drop the label h and ignore the
zombies.

D. Redefine the conditional

Another way of addressing an atypical selection which
is due to different subsets a meeting the conditional with
different relative frequencies is to redefine the conditional so
the weights are the same. For example, in the case above, we
deweighted zombies by a factor κ because only that fraction
of zombies could formulate the question. So why not limit
the sets P and Pd to the subset PQ of P of people who have
formulated the Bayesian question in the first place? As we
discuss in the Appendix, adding such a conditional is not just
another label but actually redefining the set P as set [PQ]. Then
all we need to do is define set P̃ ≡ [PQ], and typical selection
on P̃ gives the probabilities for those atypical people who ask
the question.

E. Boltzmann brains

Normal observers are necessarily far from equilibrium
and experience an arrow of time of increasing entropy [19].
Fortunately, the observable Universe is in a relatively low
entropy state [20,21]. How did it get that way? Ludwig
Boltzmann argued that a low-entropy “world” could arise as
a stupendously rare fluctuation within a higher-entropy world
[13,22]. The prevailing theory of cosmology is more subtle:
that our Universe began within a patch of smooth spacetime,
which inflated for a time at an exponential rate [23] (for a
review, see Ref. [24]). Though inflation has ended here, it has
likely not stopped everywhere in the larger Universe. Further,
our observable Universe has seemingly entered another era of
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exponential expansion and seems slated to approach de Sitter
space (a spacetime with a positive cosmological constant 


and vanishing matter density) asymptotically.
If so, then the empty places greatly outnumber the places

where normal observers can live. Further, de Sitter space
is a thermal state (with a temperature which depends only
on the cosmological constant: T =

√

/12π2) [25] and thus

seems subject to worlds fluctuating into existence via stu-
pendously rare fluctuations. And one may not need such a
large fluctuation, the size of a galaxy or a planet, to create
observers; one may need only “Boltzmann brains” [26–28],
which are spontaneously formed configurations of matter that,
for a brief period, are self-aware, including ones that think
they are having the thoughts you are having now. Such events
are still extremely improbable, occurring at a rate ∼e−�S ,
where �S is the reduction in entropy that the fluctuation rep-
resents. For a brain-sized object, the timescale to form them,
τBB, will be enormous—of order e1070

. (Note that the units
do not actually matter with numbers this large—switching
from Planck times to Hubble times changes the googol-sized
exponents by only about 140.) But this is small compared to
the timescale for a Hubble volume to fluctuate into existence,
τHV of order e10122

. This is time enough to form googolplexes
of Boltzmann brains, far more than the number of normal
observers [13].

One might ask why this is a problem. We do not seem to
be Boltzmann brains. In fact, we need to assume that we are
normal observers in order to do science. And if one conditions
on the assumption that we are normal observers, then the
probability of us being a freak observer is zero, no matter
how common they are [P(freak|normal) = 0]. The problem
is that if freak observers outnumber us by a large-enough
factor, say, a googolplex, there are many, many of them that
think that they are experiencing any given moment that any
normal observer does, and it is not safe to assume that you
are a normal observer. So the problem is one of consistency:
You need to assume that your observations reflect reality to
do science, and thus it is a problem if the resulting science
says that this assumption is very likely to be false. The
problem is especially acute if there is an infinite volume of
spacetime which could spawn Boltzmann brains, and only a
finite volume containing normal observers. This possibility
led Don Page to argue that the Universe must decay rapidly,
via bubbles of vacuum decay [29], so as to avoid any infi-
nite patches of spacetime, leading him to predict a lifetime
of our Universe shorter than about 20 billion years [30].
Many papers have been written with less drastic proposed
solutions, such as having the physical “constants” vary over
time [31].

We want to know whether our analysis of typicality has any
impact on the Boltzmann brain problem. Since freak observers
may be fooled into thinking that they are normal only for
a small fraction of their “life,” we use observer moments
instead of observers. Let us assume that there are two types
of observer moments per comoving Hubble volume, normal
(n) and freak ( f ), with n̄ f = ρn̄n for some constant ρ which
now can be any nonnegative real number, and n̄ = n̄n + n̄ f is
the total number of observer moments per comoving Hubble
volume. The probability to Be a normal observer moment is
just the fraction of observer moments per comoving Hubble

volume which are normal:

P(Pn) = n̄n

n̄
= 1

1 + ρ
, (68)

which is not close to 1 unless ρ → 0. But what we really want
is the fraction of observer moments in which the observer
is self-aware and could ask a question like “Am I normal?”
in the first place. The typical freak observer moment which
superficially seems like a normal observer moment might not
pass that test. Let us assume that freak observer moments
are κ times likely as normal moments to do so. Then we are
interested in the atypical selection P(ξ Pn), which is a typical
selection on set P̃, scaled from P by κ on the freak observer
moments,

P(ξ Pn) = P(P̃n) = ˜̄nn

˜̄n
= 1

1 + κρ
. (69)

This probability can go to 1 even if ρ is large if κ is suffi-
ciently small. But if ρ is huge, as the recurrence time of de
Sitter space argues, then the probability of being in a normal
observer moment is near 1 only if there is an argument that κ

is zero.
Boddy et al. [32] make such a case. They argue that if

the theory is unitary (“many worlds”), de Sitter space is in a
stationary state. Fluctuations do occur, including ones which
correspond to Boltzmann brains, but they do not actually
correspond to self-aware freak observer moments because
nothing happens in a stationary state—there is no decoherence
corresponding to the splitting of worlds. If true, then this is
akin to setting κ = 0, since being a self-aware freak observer
moment is not only atypical, it does not happen. Obviously if
κ = 0, then P(ξ Pn) = 1 independent of how big ρ is.

How might this argument be affected by the fact that our
Universe contains matter? Well, rarely, stable matter could
play the role of an “environment” by interacting with a Boltz-
mann brain, causing decoherence. Such atypical Boltzmann
brains might thus actually be self-aware. How rare is rare?
An upper bound to the fraction κ of such atypical matter-
interacting fluctuations is the fraction of Hubble volumes
which contain even a single matter particle. Let us define the
entropy of a Hubble-volume-sized fluctuation entropy change,

S ≡ 10122, (70)

so that the fluctuation time τHV for Hubble volumes is ∼eS

and the fluctuation time for Boltzmann brains τBB is “about”
e
√
S (more accurately, ∼eS

0.57
). Then the number of freak ob-

servers is huge: n̄ f ∼ τHV/τBB ∼ eS . The number of normal
observers per comoving Hubble volume is proportional to the
volume of spacetime in which they can occur. A healthy upper
bound on n̄n is S (e.g., 1020 moments/lyr3 s × 1031 lyr3 ×
1064 yrs × 107 s/yr), so that

ρ ≡ n̄ f

n̄n
∼ eS , (71)

i.e., the number of freak observer moments is so vast that
the number of normal observer moments is irrelevant. Then
the probability of being normal vanishes: P(Pn) � 0 to a very
good approximation, yielding a seemingly serious consistency
problem. But only fraction κ of freak observers actually can
be self-aware by the argument above, where κ must be smaller
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than the fraction of Hubble volumes with any matter in them.
de Sitter space expands exponentially fast, so soon there is
fewer than one particle per Hubble volume. By the time of the
first Boltzmann brains, the fraction of Hubble volumes with a
single matter particle is

κ < e−τBB < e−e
√
S
. (72)

This is exponentially smaller than ρ is big, and κρ does go
to zero so that the relevant probability that we are normal
observers, P(ξ Pn), goes to 1. In summary, by this argument
Boltzmann brains are overwhelmingly plentiful, but those
which are atypically self-aware are very rare and thus not a
problem. That matter effects are negligible is unlikely to come
as a surprise to those already convinced by the arguments of
Ref. [32]. We do think it is interesting that there is a typicality
factor so strong that it overwhelms even an exponentially large
factor like the ratio of freak to normal observers (κρ � 1).

F. Scarce observers

Thus far we have assumed that observers in models are not
rare. In fact, we have assumed that there is one observer per
“cell.” What if we relax this assumption and assume cells are
filled only with probability pF? Hartle, Hertog, and Srednicki
show that there is a different kind of OSE called “first-person
probabilities” [33]. Consider a set of models �K . If pF is
small enough, then it is possible for there to be no observers
in some or all of them (we do not necessarily think that
assuming “scarce observers” is a reasonable hypothesis, we
are merely considering the consequences of that assumption).
First-person probabilities weight models by the probability,
p�1, that there is at least one observer in the model—one
cannot be an observer in a model if there are no observers in it.
If there are nJ observer locations (e.g., cells in a prison block
or Hubble volumes in a Universe) which contain observers
with probability pF , then the probability that there are no
observers in the model is (1 − pF )nK , and the probability that
there is at least one observer in the model is [33]

p�1
K = 1 − (1 − pF )nK . (73)

Now the inclusive probability P(P�K |P�) (i.e., multiple
theories are realized—a theoryverse) is not affected by p�1

K
because we are conditioning on there being one observer (the
“P�’), and the weighting by the number of observers in each
model, pFnK , already takes that into account. So we have

P(P�K )pF = pFnK P(�K )∑
J pFnJP(�J )

= nK

〈n〉P(�K ), (74)

where 〈n〉 = ∑
J nJP(�J ) is the average number of observer

cells per model. Models with more observer cells are favored
because it is more likely for an observer to be in such a
model, as expected from our previous results. In a cosmolog-
ical model this corresponds to volume weighting [34] where
models with greater volume for observers are favored.

What about the exclusive probability P(P |�K |P |�),
which is how one generally selects between competing mod-
els? Condition “P |�” ensures that there is at least one
observer in one of the models, but to ensure that a given
model meets that criterion, we need to weight the models by

p�1
K [33]:

P(P |�K )pF = [1 − (1 − pF )nK ]P(�K )∑
J [1 − (1 − pF )nJ ]P(�J )

. (75)

There are two interesting limits: where observers are common
or rare. First, if pFnK is large for some models and tiny
in others, then p�1

K are close to 1 for the former models,
and they have observers. Define these models that certainly
have observers by subset �obs and normalization factor N ≡∑

J∈�obs
P(�J ). Then the probability becomes

P(P |�K )common � 1

N P(�K ). (76)

Note that models either “pass” (are in �obs) or “fail” (are not
in �obs). If all models we consider pass (�obs = �), then N =
1, and we obtain the usual expression for a Pick probability.

If, on the other hand, all the pFnK are small, so there are no
models that certainly have observers (�obs = ∅), then p�1

K �
pFnK [because (1 − p)n = 1 − np + O((np)2)] and the Pick
probability becomes

P(P |�K )rare � pFnK P(�K )∑
J pFnJP(�J )

= nK

〈n〉P(�K ). (77)

This is the same as the inclusive probability! Even though
we are Picking between mutually exclusive models K , there
is nonetheless a volume weighting factor, not just a pass-fail
selection, due to it being less likely that scarce observers are
in a model with few places for them to be. So this “first-
person” effect of Hartle, Hertog, and Srednicki is somewhat
orthogonal to the observer effect we have been discussing:
Ours assumes observers in every “cell”, pF = 1, and comes
from the difference between inclusive and exclusive selection,
while theirs assumes the limit where observers are scarce,
pF � 1, and is the same for inclusive and exclusive selection
in that limit.

This “first-person” analysis can be used in the context of
freak observers. Suppose we consider two models, S and L,
which differ only in the volume of spacetime in which freak
observers occur. We could assign probability pn for “you”
to arise normally per unit volume of spacetime and p f for
a “freak” observer that thinks they are you (i.e., after any
typicality effects have been folded in). Let the volume of
spacetime where normal observers can arise be mK , and the
volume where freaks could arise be nK , which is usually much
larger. We want the case where you exist within the model
[1 − (1 − pn)mK ], and that no freak versions of you exist,
(1 − p f )nK (as we argued before, you want to rule out cases
where you might be a freak observer for self-consistency).
Let us refer to this as “1n, 0 f .” Then the ratio of exclusive
probabilities is

R f
P |� ≡ P(P1n,0 f

|�L )

P(P1n,0 f
|�S )

= [1 − (1 − pn)mL ]

[1 − (1 − pn)mS ]

(1 − p f )nL

(1 − p f )nS

P(�L )

P(�S )

= (1 − p f )nL−nS R�

→ e−p f (nL−nS )R�, (78)
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where R� ≡ P(�L )/P(�S ) and we have assumed mS = mL

(i.e., that the models do not differ in the volume of space-
time available to normal observers). The last line follows for
large n.

We can neglect nS for nS � nL. Then there are two inter-
esting limits. If p f nL is small, then freak observers are scarce,
and the “first-person” ratio RP� is only slightly smaller than
the “third-person” one:

R f
P |�

∣∣
p f nL→0 � (1 − p f nL )R�. (79)

This is a slight preference for S models over L ones, but for
p f nL � 1 the preference is negligible. The other limit of inter-
est is when both models have problems with freak observers
because p f nK is large. Then each theory is deweighted by the
factor (1 − p f )nK which goes to 0, but the factor for L falls
much faster and we have,

R f
P |�

∣∣
p f nL→1 � e−p f nL R�, (80)

strongly favoring S over L. So under the criterion of “no freaks
like me,” if there are no models without significant probability
for freak observers, then the ones which minimize the volume
for them to spawn are strongly preferred. Of course, any
model which has no freak observers would, by that criterion,
be preferred over those.

VIII. GOTT ANALYSIS

J. Richard Gott III wrote about what seems to be an entirely
different kind of observer selection effect [14]. He argued that
simply by knowing how long some finite-lifetime entity has
been observed, one can bound the probability of it lasting a
long time. For example, if you live at time t after the start of a
civilization, his argument says that simply assuming you are a
random observer implies that the probability of the civilization
lasting 40t is only 1/40 or 2.5%.

There are a number of problems with this argument, as
we shall see. The first is that Gott’s analysis did not make
use of a prior [35], which Gott then addressed [36]. This
point was echoed by Carleton Caves [37], who found that
the prior probability for a world having lifetime T needed to
obtain Gott’s result is the Jeffereys prior, which goes as 1/T .
However, as we shall see, this corresponds to a Pick selection.
The prior needed to obtain the probability Gott finds to Be
in a civilization lasting time T is not the Jeffereys prior, but a
prior that goes as 1/T 2 [38,39]. Caves argued that the analysis
was also flawed because it assumed that the observer had to
live only during the time span of the “world,” and that once
one relaxes that assumption, the effect goes away. (This is
really about what set of observer moments it is reasonable
for one to consider that the moment at hand is randomly
drawn from. For Gott’s example of the Berlin wall, one could
assert that his observation of the wall was drawn randomly
from possible moments during the existence of the wall when
he could ponder the question of the duration of its existence
rather than a random moment from his lifetime that predates
and postdates the wall. It is then a question of whether that
assumption is reasonable. It is certainly problematic in many
cases. For example, it is hard to argue that the observer
moment in which you ponder the lifetime of an architectural

construction is randomly drawn from all the moments during
its existence if you were born before it was built—for a long-
lived construction you are necessarily seeing only its earliest
moments.) But it should not be a problem in the narrow case
of interest to us: where we assign probabilities for the lifetime
of the world in which we were born—we are necessarily alive
only during the world in which we are born, and so random
observer moments in our lifetime are necessarily within the
time window of the world’s existence.

We will first explain the Gott argument in his notation and
then ours. Then we will show how to incorporate a prior,
derive results for different priors, and determine which one
gives Gott’s results. Then we show that Gott’s results do not
actually represent an OSE, and we trace the source of the
effect. Finally, we consider the exclusive case, where one
lifetime is picked.

A. Gott’s argument

Suppose we are a random intelligent observer of some
“world” of lifetime T which has existed so far for time t . We
do not know T and we want to know if knowing t tells us
anything about T , other than T � t . Gott gives a few examples
[14], but they are of two types: things on which our existence
does not depend, such as the time span for which the Berlin
wall existed, and things on which it does depend, such as the
civilization in which we were born. We will not consider the
former further, except to note that the second critique of Caves
may apply to those situations. Thus, since we assume we live
during the world, we can without loss of generality define
Gott’s quantities as

tbegin → 0 tend → T tnow → t (81)

tfuture → Tfut ≡ T − t, (82)

where we take as a precondition that t is in the range [0, T ].
This world could refer to our planet (in which case t ∼ 109

years), the era of homo sapiens (t ∼ 105 years), our civiliza-
tion (t ∼ 104 years), or civilization since Bayesian questions
like this have been asked (t ∼ 40 years). One could even try
to argue that it refers to the metastable electroweak vacuum
(t ∼ 1010). Now, going back to the original assumption, it is
not at all clear that we qualify as a random observer in any of
these “worlds,” but nevertheless let us assume that we do.

First, Gott argues each value of t in the range [0, T ] is
equally likely. This is true if there is an equal number of
observers at each time t in [0, T ] (unreasonable in most
cases—really t and T are better thought of as the current and
final tally of observers in the world) and one selects them at
random. This can be loosely written,

“P(t ) = const/T .” (83)

Further, this means that t/T is a random number between 0
and 1, so

“P(t/T ) = const.” (84)

Finally, if we sum up the probabilities for our expectation for
the remaining time left for the world, Tfut ≡ T − t , then we
obtain that it is overwhelmingly likely to be of roughly of
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order t (neither much greater nor smaller than t),

“P

(
1

39
t < Tfut < 39t

)
= 0.95,” (85)

or, focusing on the upper end and using Tfut ≡ T − t to write
this more generally,

“P(T > Kt ) = 1/K,” (86)

where K > 1. Note that for K = 40, we get the probability
of Tfut = T − t being greater than 39t is 1/40, or 2.5%,
in agreement with Eq. (85) (the upper and lower tails are
equally probable). Further, note that these are scale-invariant
probabilities: They depend on the ratio t/T independent of
whether the scale is decades or millennia.

Gott seemingly found a way to argue that our datum t not
only tells us something about our world’s eventual lifetime T
but argued that T is unlikely to be more than a few times t , no
matter the scale.

Is this right?

B. Our argument

As usual, we have a set of observers P and a set of worlds
W . As Gott does, we will for simplicity assume that the
number of observers at each time is the same. We will use
the compact notation outlined at the end of Appendix, i.e.,

P(PαWβ ) ≡ P(αβ ), P(Pα
|Wβ ) ≡ P(α |β ), (87)

where α and β can be “null,” e.g., P(T |t ) ≡ P(PWT |PtW ) and
P( |T |t |) ≡ P(P |WT |Pt

|W ). Let us then define the probability
density to Be in a world at time t (for a moment lasting dt):

p(t ) ≡ P(P[t,t+dt]W )/dt . (88)

The probability density to Be in a world of lifetime T (one
again needs a finite range [T, T + dT ]) and to Pick a world of
lifetime T are

p(T ) ≡ P(PW[T,T +dT ] )/dT, (89)

p( |T ) ≡ P(P |W[T,T +dT ] )/dT . (90)

Note that the probability density to Be in a world is weighted
as before by the total number of observers who will ever live
in the world, which by assumption is proportional to T , so

p(T ) ∼ T p( |T ). (91)

What we are going to do is start with a prior probability
density for our world having lifetime T , p( |T ), the likelihood
density of being in our world at time t given that it will
exist for time T , p(t |T ), and we will use Bayes’s theorem to
calculate the posterior probability density of our world living
time T given our datum t , p(T |t ).

The likelihood density is, as Gott said, a constant, indepen-
dent of t ,

p(t |T ) ≡ P(P[t,t+dt]W |PW[T,T +dT ] )/dt = 1

T
. (92)

Note that if we integrate this probability density over all
values of t in [0, T ], P((0 � t � T )|T ) = ∫ T

0 p(t |T )dt we get
1. This is essentially the same expression as Eq. (83) which we
used to express Gott’s words, except that here we are explicitly
writing a likelihood density conditioned on lifetime T .

The key problem with Gott’s analysis is that he jumps right
to a probability for t/T without a prior. Let us examine three
possible priors, and see which gives the results Gott found.
We need the prior probability density for Picking a world of
lifetime T , p( |T ), because it should contain all factors other
than our existence. This is parallel to what we did in the
prisoner scenario, though there we needed only probabilities
P(WS ) and P(WL ), whereas here we need a function of T over
its range. This brings up an important point: We need to define
minimum and maximum plausible values of lifetime T for
the world we are in, T− and T+ respectively. They allow us
to properly normalize our expressions, but T± play a more
subtle role, too, as we shall see. It must end up being the
case that T+ is greater than both t and T , and that T− be
smaller than T , so if we really tried to define T± without any
idea of the timescales involved, we might fail in that. And
our expectations for the timescale might change with t . For
example, today we might see T+ = 106 years as reasonable,
but if civilization somehow survives for a million years, then
that T+ will be too low. This is less of an issue for T+ because
we will be able take it to infinity in our final expressions. But
T− is trickier.

Three reasonable choices for our prior p( |T ) are constant,
∼1/T (Jeffereys), and ∼1/T 2. The normalized priors to Pick
a world of lifetime T ∈ [T−, T +] are as follows:

p( |T )
∣∣
const = 1

T+ − T−
, p( |T )

∣∣
1/T = 1

T ln (T+/T−)
,

p( |T )
∣∣
1/T 2 = 1

T 2(1/T− − 1/T+)
, (93)

which lead to corresponding probability densities to Be in
such a world [again assuming the number of observers at each
time is constant and Eq. (91)]:

p(T )
∣∣
const = T

1
2 (T 2+ − T 2− )

, p(T )
∣∣
1/T = 1

T+ − T−
,

p(T )
∣∣
1/T 2 = 1

T ln (T+/T−)
. (94)

Next we plug the likelihood density p(t |T ) in Eq. (92) and
our Be priors p(T ) in Eq. (94) into Bayes’s theorem,

p(T |t ) = p(t |T )p(T )

p(t )
. (95)

We can calculate p(t ) by integrating p(t |T )p(T )dT over T .
We need to be a little careful about the limits of integration
because we have defined T � t and T � T−, but at the mo-
ment it is ambiguous whether t is greater than T− or not. So
let us define the lower limit on T to be the maximum of the
two: tm ≡ max (t, T−). For the three different priors, we obtain
three posterior probability densities for T ∈ [tm, T+]:

p(T |t )
∣∣
const = 1

T+ − tm
→∼ const,

p(T |t )
∣∣
1/T

= 1

T ln (T+/tm)
→∼ 1

T
,

p(T |t )
∣∣
1/T 2 = 1

T 2(1/tm − 1/T+)
→ tm

T 2
, (96)
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where the right-hand side is the limit where T+ → ∞. Note
that these are the same expressions as the priors in Eq. (93)
with T− replaced by tm. In other words, the only effect of the
datum here is the trivial replacement of the lower bound on T
because it is necessarily at least equal to t . So if we quantify
the OSE by taking the ratio of the posterior to the prior,

RT ≡ p(T |t )

p( |T )
, (97)

then we obtain for the three priors,

RT

∣∣
const = T+ − T−

T+ − tm
→ 1, RT

∣∣
1/T = ln (T+/T−)

ln (T+/tm)
→ 1,

RT

∣∣
1/T 2 = 1/T− − 1/T+

1/tm − 1/T+
→ tm

T−
, (98)

where again the right-hand side is for T+ → ∞. In that limit,
the first two priors yield RT = 1 even if we include the
replacement effect of T− → tm. To evaluate the third prior,
we need to discuss the value of tm. There are three possible
values:

(i) t < T−, so tm = T−, and our lower bound on T does not
increase.

(ii) t = T−, so tm = t = T−, and our lower bound on T
does not increase.

(iii) t > T−, so tm = t , and our lower bound on T does
increase.

The first case means that prior to our using our datum t we
assumed that the minimum value of T was larger, asserting
that there is zero probability for our world to end between
now, t , and T−. The third case means that prior to taking note
of t , we thought that the lower bound on T was T−, and so
datum updates our knowledge, raising that lower bound—
yet somehow we are still confident in our prior assumed
probability density despite being wrong about its endpoint.
The second case strikes us as the most reasonable, because
we should already know that T− � t and cannot know that
T− > t , so we should assume T− = t . Nevertheless, let us
consider all three cases.

For the first two cases, t � T−, all three priors lead to
RT = 1. For t > T− and the 1/T 2 prior, RT = t/T−, which is
>1. This is an upward shift due to the fact that the posterior
probability density is nonzero over a smaller range, [t, T+],
than the prior probability density [T−, T+]. We will call this
a “boundary condition OSE.” It is not due to the number of
elements in the set of observers, P, as in OSEs we considered
previously. Rather, it is simply due to raising the lower bound
on T from T− to t .

So, given that there is only at best a boundary condition
OSE here, can we reproduce Gott’s result? We can. To com-
pare to Gott’s result, we have to integrate these functions of
T from Kt to T+ for fixed t (and assume Kt ∈ [T−, T+]). This
yields probabilities for T in the range of Kt to T+:

P(T > Kt |t )
∣∣
const = T+ − Kt

T+ − tm
→ 1,

P(T > Kt |t )
∣∣
1/T

= ln (T+/Kt )

ln (T+/tm)
→ 1,

P(T > Kt |t )
∣∣
1/T 2 = 1

K

tm
t

T+ − Kt

T+ − tm
→ 1

K

tm
t

, (99)

where we again take the limit that T+ → ∞. We see that for
the constant and Jeffereys priors, the probability of T > Kt
goes to 1. This is not surprising; if we assume the maximum
on T is much greater than Kt , then the probability that T > Kt
approaches 1, unless our prior falls very fast. For the prior
p( |T ) ∼ 1/T 2 it does fall fast enough. If t � T−, then tm = t
so that

P(T > Kt |t )
∣∣
1/T 2, t�T−

→ 1

K
, (100)

and we have obtained Gott’s expression in Eq. (86). (For t <

T−, this integrated probability is larger. We shall see what that
means shortly.)

So even though there is only a boundary-condition OSE,
we have reproduced the result of Gott, seemingly disfavoring
long-term worlds. How is that possible?

C. Why does Gott seem to find an OSE?

To answer this, consider the situation before we know
datum t and where we Pick a world at random. We know
by assumption that with probability 1, T ∈ [T−, T+] (integrate
p( |T ) from T− to T+ and we get 1). Suppose we ask what the
probability is for this world to last K times its minimum, i.e.,
for T > KT−. We simply integrate p( |T ) from KT− to T+.
This gives

P( |(T > KT−))
∣∣
1/T 2 = 1

K

T+ − KT−
T+ − T−

→ 1

K
. (101)

For fixed KT− and T+ → ∞ this gives 1/K . In other words,
the effect that Gott found has nothing to do with the datum
t but just the rapidly falling prior to which his result corre-
sponds.

Still, it is useful to define a metric which manifestly shows
that there is no OSE. For that, let us define the ratio of
probability densities integrated over T . Dividing Eqs. (99) by
(101) we see that for the 1/T 2 prior,

R∫
T

∣∣
1/T 2 ≡ P(T > Kt |t )

P( |(T > KT−))

∣∣
1/T 2 = tm

t
. (102)

For t � T−, the cases where we obtained Gott’s result, we see
that this equals 1—that the posterior probability is the same
as we obtained using the prior lower bound, and there is no
OSE of any kind. For the case t < T− this ratio is larger than 1
[note that the right-hand side cannot exceed K because if Kt <

T− then P(T > Kt |t ) = 1]. What that means is that from our
prior, we assumed that large T worlds were disfavored, but on
learning that t < T−, our expectation is less negative due to
not having reached the lower bound in the world’s lifetime,
T−.

So in the inclusive case, there is no 1/T OSE. For a fast
falling prior we can obtain Gott’s 1/K result, but it is not an
OSE either, just a manifestation of the fast-falling prior we
assumed. The only OSE that remains in any of these cases is
if we assumed a fast-falling 1/T 2 prior, thinking that worlds
with T > KT− were very unlikely, but then finding out that
t < T−, making our posterior probability less dire than our
prior.
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D. Picking hypothesis T

Suppose that instead of Being in a set of worlds of various
lifetimes T , we assert that there is precisely one world, with
one future and one lifetime T∗, and we have a set of hypotheses
�T for what T∗ is. This is an exclusive case, and we are
interested in the posterior probability density,

p( |T |t |) ≡ P(P |�[T,T +dT ]|P[t,t+dt]
|�)/dT

= p(t �| �T )p( |T )

p(t |)
. (103)

The key difference from our analysis above is that the prior
that goes into Bayes’s theorem is the Pick probability density
p( |T ) instead of the Be probability density p(T ) [and the cor-
responding denominator p(t |)]. The likelihood is not affected,
as in the warden case, because the Pick is neutered. The upshot
is that the posterior probabilities go as ∼1/T times those in
the Be case in Eq. (96),

p( |T |t |)
∣∣
const = 1

T ln (T+/tm)
→∼ 1

T
,

p( |T |t |)
∣∣
1/T = tm

T 2

T+
T+ − tm

→ tm
T 2

, (104)

which means there is an OSE for this pick-a-hypothesis-T∗:

R |T ≡ p( |T |t |)
p( |T )

→∼ 1

T
. (105)

Specifically,

R |T
∣∣
const = 1

T

T+ − T−
ln (T+/tm)

→∼ 1

T
,

R |T
∣∣
1/T = 1

T

ln (T+/T−)

1/tm − 1/T+
→∼ tm

T
. (106)

But as with RT , R |T is not an ideal metric of OSE, so we
should consider the probabilities resulting from integrating
over T :

P( |(T > Kt )|t |)
∣∣
const = ln (T+/Kt )

ln (T+/tm)
→ 1,

P( |(T > Kt )|t |)
∣∣
1/T

= 1

K

tm
t

T+ − Kt

T+ − tm
→ 1

K

tm
t

, (107)

and we obtain the same 1/K expression as Gott, now for the
1/T prior and T− = t [the expression is the same as the Gott
case, but his description of the problem seems like a Be and
thus corresponds to Eq. (100)].

As we did in the Be case, we define an OSE metric as the
ratio of integrated probability densities,

R∫ |T ≡ P( |(T > Kt )|t |)
P( |(T > KT−))

, (108)

which yields for the two priors we consider here,

R∫ |T
∣∣
const → 1, R∫ |T

∣∣
1/T → 1

K

tm
t

. (109)

What this means is that there is a true OSE in the t � T−
Pick case for the 1/T prior which manifests itself as a factor of
1/K in that ratio of the integrated posterior to prior probability
densities. In other words, the posterior probability density

falls with T faster than the prior probability density due to
an OSE, which manifests itself in R∫ |T being smaller than
one. If t < T−, then this is mitigated by the T−/t factor and is
completely erased if Kt < T−, yielding R∫ |T = 1.

For the constant prior case, there is an OSE in the ratio of
probability densities (R |T ∼ 1/T ) but it is washed out when
one integrates over T (the posterior probability density falls
faster with T than the prior probability density, but both fall
slowly enough that their integrated probabilities go to 1, hence
their ratio, R∫ |T , is also 1).

So in the exclusive case there is a real OSE but only if the
prior falls fast enough and t is not much less than T−.

IX. DOOMSDAY ARGUMENT

We are now finally ready to discuss the doomsday argu-
ment. The question is

Do observer selection effects increase the probability that our
world will be short-lived?

First, this is a very strange thing to ask. This would entail
laying out all the factors which we might use to assign a
probability for the world ending soon and separate out the
datum of what year it is. But all of the factors are intertwined.
For the purpose of the argument below, we need to make
the somewhat unreasonable assumption that we can put all
factors (e.g., our estimate for the probability of nuclear war)
other than that datum into some prior—which is somewhat
unreasonable because such a calculation usually depends on
temporal information (e.g., the survival probability per year
was surely lower in the early days of nuclear weapons than
at other times). In any case, we make this assumption for the
arguments below.

As it is usually stated, the question is whether the probabil-
ity that we live in a short-lived world (world type S) or a long-
lived one (world type L) is changed given the information
about the date (datum d). Clearly this is a Be selection—we
are born in this world without the need for that world to be
picked. So the zeroth-order analysis is that the case is like our
very first example, the prisoner problem, where there was no
OSE and thus no doomsday effect. The posterior probability
of being in a short-lived world is just given by Eq. (6) and
equals the prior probability of picking such a world, so that
the ratio of posterior probabilities to their priors, RP/W , is 1:

P(PWS|PdW ) = P(WS ), (110)

RP/W = 1. (111)

But we need to be careful just what our assumptions are
regarding any larger sets PW are embedded in. For example,
if we treat the world types as mutually exclusive hypotheses
for short-lived and long-lived worlds, �S and �L, then there is
a Pick at that level and there is an OSE akin to that in Eq. (10),

P(PW |�S|PdW |�) = P(�S )

P(�S ) + 1
ρ

P(�L )
, (112)

RP |/� = 1

ρ
. (113)
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Note that here we are saying that either hypothesis �S or
�L is realized but not both. This is reasonable only if one
assumes that there is only one relevant planet (the Earth)
because there are no relevant exoplanets (we are not asking
about the inhabitants of inhabitable worlds, just of the Earth),
nor copies of the Earth nor multiple futures of this one
Earth (in a partial or complete multiverse of some sort, such
as in unitary quantum mechanics). Again, there is an OSE
given these assumptions because we are saying that there are
multiple hypotheses (�S and �L), but only one of them can
be realized.

This also assumes that we are typical observers. This, too,
can depend on assumptions or on how the problem is stated.
For example, by saying that you are equally likely to be any
human throughout history fails to take into account the fact
that only a tiny fraction of humans throughout history might
have asked the doomsday question, at least as stated. For ex-
ample, humans before 1763 could not have phrased a question
in terms of Bayes’s theorem [40], and the question “Will our
civilization last until the year 2500?” will become moot in
500 years. Similarly, the question “Will our civilization last
another 100 years?” changes character as the centuries we
survive accrue, since a century becomes a smaller and smaller
fraction of the civilization’s lifetime. We need to phrase the
question in such a way that it would be just as reasonable for
a current and future inhabitant of the civilization to ask it.

We argue that the question framed by Gott is actually
best, because “Will our world last K times its present age?”
is somewhat timescale invariant. There are still issues with
assigning a starting point for the world, and a prior probability
density for a world of lifetime T , p( |T ) (e.g., neglecting
the problem of lumping all other factors into the prior in a
time-independent way), but at least it is reasonable for future
observers to ask that same question.

So, to be specific, we should ask whether the current age of
our world, t , should affect our estimate for the lifetime of the
world, T . As we discussed in Sec. VIII the selection in PW is
a Be, and there is just a boundary condition OSE: the effect
of replacing the lower bound on T , T−, with t , for t > T−.
We further argued that it is not reasonable to have chosen T−
either greater or smaller than t , and that for T− = t , the prior
and posterior probability densities are equal, so there is no
OSE at all:

p(T |t )
∣∣
T−=t = p( |T ) ⇒ RT

∣∣
T−=t = 1. (114)

We then integrate these probability densities over T to
obtain the probability of Being in a world with T > Kt given
t . As we said in Sec. VIII this goes to 1 unless the prior falls
quickly, see Eq. (99). Even in the case of such a fast falling
prior, the 1/K effect is not an OSE but just an artifact of
that prior. We quantified that by taking the ratio of integrated
probabilities in Eq. (102),

R∫
T

∣∣
T−=t

= 1, (115)

which shows that there is no OSE at all in the Be case.
Is there any somewhat reasonable set of assumptions which

leads to a doomsday effect? Yes. If we assert, as we did in
Sec. VIII D, that there is a unique lifetime for the world, T∗,
and we have hypotheses T for what that T∗ is, then there is

a Pick on the nested set, P |�, and there is an OSE given by
Eq. (105):

p( |T |t |) ∼ 1

T
p( |T ) ⇒ R |T ∼ 1

T
. (116)

But even then, if we choose a constant prior probability
density p( |T ), then the posterior probability that the world
will last K times longer than it has so far goes to 1 as in
Eq. (107). However, if we start with a 1/T prior, then the
OSE is not washed out in Eq. (107), and the OSE survives
in the ratio of integrated probabilities, Eq. (109):

R∫ |T
∣∣
1/T, T−=t → 1

K
. (117)

This is a doomsday effect. It says that given the assumptions
above, even if we include our timescale in setting the min-
imum lifetime (T− = t), integrate our probability densities
over T , and normalize to that integrated probability for the
prior, there is an OSE in the Pick case for a falling prior—that
our datum t , by itself, should cause us to reduce our posterior
probability that our world will last substantially longer than
it has.

So, in summary, there can be a doomsday effect, but to
have one requires a set of assumptions like this:

(i) All factors other than the current age of the world, t ,
can be separated out into a prior, which is a simple function of
the world’s lifetime T .

(ii) You are typical of observers throughout the lifetime of
the world, including in what question is being asked.

(iii) There is exactly one true value of the lifetime, T∗, be-
cause you consider only one world with one fixed future—so
you view the values of T to be mutually exclusive hypotheses
for the value of T∗, resulting in a Pick. It is not enough to
assume an exclusiverse; it has to a be universe with only
one manifestation of the world so that there is only one true
lifetime T∗.

(iv) The prior probability density falls as a function of T
so that the integration over T does not wash out the OSE.

Absent a set of assumptions like these, there is no dooms-
day effect. All of these strike us as somewhat unreasonable,
except the last. Thus, one can probably not argue that our
“world,” be it the era of Bayesian reasoning or of the stable
electroweak vacuum, is doomed to end soon on the basis of
datum t .

X. UNIVERSAL DOOMSDAY ARGUMENT

In addition to the doomsday argument, which concerns our
world, some authors have discussed a “universal doomsday”
argument [10,11], which says that not only does our datum
imply that our world is doomed to die sooner than our priors
for its lifetime, due to some OSE, but that all worlds are also
doomed to die out sooner due to our datum. Some authors
argue that “universal doomsday” can occur even when the
doomsday effect is not present. This cannot be. If there is
a doomsday effect due to a temporal datum, that lowered
posterior probability can affect our posterior probability for
the lifetimes of other worlds, but it should be clear that if
there is no doomsday effect, if we gain no information from
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our datum about our own world, then our posteriors for other
worlds must be unchanged as well.

What we are interested in is how the datum affects an
ensemble of worlds, E , as we consider in the inclusive and
exclusive cases of Secs. IV and V. In particular, here are the
posterior probability densities for ensembles of type y given
datum d , in the inclusive case where there is no doomsday
effect, and in the exclusive case where there can be one:

p(y|d ) ≡ P(PW E[y,y+dy]|PdW E )/dy, (118)

p( |y|d |) ≡ P(PW |E[y,y+dy]|PdW |E )/dy. (119)

We ask whether these differ from the prior probability density
for y,

p( |y) ≡ P(PW |E[y,y+dy] )/dy. (120)

Universal doomsday is the claim that it does. If the probability
distribution function for y changes, then so does our estimate
for the average fraction y of worlds of type S. Our prior
estimate is the average of y weighted by the prior p( |y),

〈y〉 ≡
∫ 1

0
y p( |y)dy. (121)

After taking our datum d into account, our posterior estimates
for that average in the inclusive and exclusive cases are
weighted by the posterior probability distribution functions
p(y|d ) and p( |y|d |), respectively,

〈y〉d ≡
∫ 1

0
y p(y|d )dy, (122)

〈y〉d | ≡
∫ 1

0
y p( |y|d |)dy. (123)

For reasons that will become clear in a moment, let us define
metrics for universal doomsday,

RUD
W ≡ 1 − 〈y〉

〈y〉 , R( | )UD
P ≡ 1 − 〈y〉d ( | )

〈y〉d ( | )
,

R( | )UD
P/W ≡ R( | )UD

P

RUD
W

, (124)

where the “ |” is there in the exclusive case but not the
inclusive case.

It turns out we have already come across these averages.
The prior average fraction 〈y〉 in Eq. (121) is equal to the prior
probability of worlds of type S:

P(WS
|E ) =

∫ 1

0
P(WS

�E |W �Ey)p(W |Ey)dy

=
∫ 1

0
y p( |y)dy = 〈y〉. (125)

Note that if we assume that N̄y/N̄ = 1, i.e., that the ensembles
differ only by fraction of worlds type S, y, not their number,
then p(WS

|E ) = p(WSE ), so that this is the prior probability
of worlds of type S in both the exclusive and inclusive cases.
What about 〈y〉d and 〈y〉d |? They turn out to be simply equal
to the posterior probabilities for being in an S world, given

datum d , in the inclusive and exclusive cases, respectively:

P(PWSE |PdW E )

=
∫ 1

0
P(PWSE |PdW Ey)p(PdW Ey|PdW E )dy

=
∫ 1

0
y p(y|d )dy = 〈y〉d , (126)

P(PWS
|E |PdW |E )

=
∫ 1

0
P(PWS

�E |PdW �Ey)p(PdW |Ey|PdW |E )dy

=
∫ 1

0
y p( |y|d |)dy = 〈y〉d | . (127)

These are just the expressions for the posterior probabilities
for worlds of type S. In fact we see that

p(y|d ) = p( |y),

p( |y|d |) = p( |y)

y + (1 − y)ρ

〈
1

y + (1 − y)ρ

〉−1

. (128)

Thus, we see that the metrics for universal doomsday are
exactly the same as for doomsday,

RUD
W = R( | )E

W , R( | )UD
P = R( | )E

P , R( | )UD
P/W = R( | )E

P/W . (129)

In the inclusive case, 〈y〉d = 〈y〉, RE
P = RE

W , and RE
P/W = 1 for

both doomsday and universal doomsday. So one cannot have
one without the other. For the exclusive case, 〈y〉d | �= 〈y〉,
and R

|E
P �= R

|E
W , but the values for these metrics and R

|E
P/W for

universal doomsday and doomsday are the same. There is a
fundamental reason for this: Any doomsday effect, from our
data on being in a world selected from ensemble E , can be
written as a universal doomsday change in our weighting of
the ensemble, i.e., taking p( |y) → p(( |)y|d ( |)). So universal
doomsday and doomsday are two different ways of expressing
the same effect or lack thereof.

XI. SLEEPING BEAUTY PROBLEM

Let us apply what we have learned to an observer thought
experiment called the Sleeping Beauty problem [41], which
has generated disagreement to the point that philosophers
have separated into two camps called “halfers” [42–44] and
“thirders” [41,45–47]:

Suppose Sleeping Beauty is put to sleep on Sunday. She is
woken on Monday, questioned, then put back to sleep, and all
her memories of that day are deleted. A fair coin is flipped.
If it lands tails, then she is also woken on Tuesday and again
questioned, put back to sleep, and her memory deleted. If it
lands heads, then she is not woken on Tuesday. In either case
she awakes on Wednesday after the experiment concludes.
Beauty is aware of all of the above. She is asked each time
she is woken for the probability that the coin flip results in
“heads.”

So-called halfers argue that she should answer “1/2” (each
time) because it is a fair coin and she learns nothing from
being awakened, and the question is the same as “what is
the probability you are in a heads world?” (i.e., a world
where the coin landed heads). So-called thirders argue that
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she should say “1/3” because there is one observer moment
associated with a head flip, which we will call Mon-H , and
there are two associated with tails, Mon-T and Tue-T , and the
question is effectively the same as “What is the probability
you are in a heads observer moment?” There are a number
of other papers advocating one side or the other, but none of
them specify whether the situation corresponds to inclusive or
exclusive selection, which we will see is key. A number of
authors assume the SIA, which as we have pointed out is an
unfortunate kludge that leads to the presumptuous philosopher
problem. All authors seem to argue that if Beauty learns that it
is Monday, her estimate for “heads” should go up. As we will
see, that is not always true. There are also arguments about
what wagers she should be willing to accept and whether that
reasoning should affect her probability estimate, which we
address at the end of the section.

For our formalism, we need two sets. We need a set of
worlds, W = {WH ,WT }, in which the coin came up H or
T . For a fair coin, the probability of picking each world is
the same: P(WH ) = P(WT ) = 1/2. Nested inside W is the
set, P, of Sleeping Beauty observer moments, P = PMon,H ∪
PMon,T ∪ PTue,T = {Mon-H, Mon-T, Tue-T }, where the first
element belongs to PH (which is nested in WH ) and the other
two to PT (nested in WT ). If Beauty does not know the day,
then all three of these observer moments are indistinguishable
to her.

First, let us look at Beauty’s viewpoint within the inclusive
case. The probability that she should assign for the coin com-
ing up heads within the world associated with her observer
moment is given by the Be probability for a heads observer
moment,

P(PWH |PW ) = P(PH ) = n,H

n
= 1

3
. (130)

That is, in the inclusive case “she” is in all three observer
moments, only one of which is a heads observer moment.

If she learns the day is Monday, then the set of observer
moments is [PMon] instead of P, and her probability for
“heads” increases because “she” could be in only two Monday
observer moments:

P([PMon]WH | [PMon]W ) = [nMon],H
[nMon]

= 1

2
. (131)

Thus, in the inclusive case, learning that it is Monday does
increase her probability estimate that the coin came up heads,
and both of these probabilities correspond to those of the
thirder camp.

Next, let us look at Beauty’s viewpoint with exclusive
selection. If she does not know the day, then her probability
estimate is the same as that of an outside observer, such as the
coin flipper, where a single world (coin flip) result is Picked
first:

P(P |WH |P |W ) = P(WH ) = 1
2 . (132)

In other words, if she assumes there is one world, it has a
1/2 chance of being an H world, and her being awake in an
observer moment and not knowing the day brings her no new
information. This is the halfer point of view.

Now suppose she learns it is a Monday. One might think
that this information should increase her credence in “heads.”

And in fact, if you were to Pick a single recording of a random
day in the experiment (Mon-H in an H world, Mon-T or
Tue-T in a T world), and the recording turned out to be from
a Monday, you should increase your credence that the coin
came up heads, as the halfer camp claims,

P(“Record Picked= Mon-H”|“Mon”)

= P(P |WH | PMon
|W )

= P(PMon
�W |P �WH )P(WH )

P(PMon
|W |P |W )

= P(WH )∑
F={H,T } P(PMon,F |P,F )P(WF )

1/2

1/2 + 1/4
= 2

3
, (133)

but that is not what Beauty does. Instead, if the coin comes up
tails, then she experiences both Mon-T and Tue-T , so the fact
that one of them is on a Monday adds no new information. In
our formalism, the way to see this is that the set of observer
moments is [PMon] instead of P, and her estimate for the
probability of heads is just

P([PMon] |WH | [PMon] |W ) = P(WH ) = 1
2 . (134)

So if Beauty assumes exclusive selection, learning that it is
Monday does not increase her credence that she is in an H
world because she is sure to experience a Monday whatever
the coin flip. (The reader might note that if Beauty learns that
it is a Tuesday, then she should assign zero probability to H ,
but that fact does not affect her probability for H in the case
where she learns it is Monday because in a tails world “she”
experiences both days.) This is good, because if she knows
it is a Monday, then the amnesia drug is irrelevant, it is the
same situation if you ask anyone what the odds a fair coin will
come up heads, and there had better be no difference between
inclusive and exclusive selection: They both conclude that the
probability of heads is 1/2, as they do in Eqs. (131) and (134).

Now, it is interesting to consider what happens if we run
the experiment multiple times, once a week for w weeks. We
will assume she does not know the day, so the amnesia drug
does matter. If Beauty knows the week, then she can treat each
of the w experiments like a copy of the original experiment,
and she should come to the thirder (halfer) probability in the
inclusive (exclusive) case. If she does not know the week,
then the inclusive probability is unchanged, but something
interesting happens in the exclusive case: We get the result
Nick Bostrom calls a “hybrid model” [48].

In this exclusive situation, there is one fixed set of coin
flips F = {F1, F2, . . . , Fw} which actually occurs. The set of
worlds can be broken into 2w subsets specifying exactly one
flip, such as WF1 , where the coin in week 1 came up heads
for F1 = H1 and tails for F1 = T1, and we do not specify what
happened in the other weeks. We can also break W down into
subsets with the flips in multiple weeks specified, including
the 2w subsets where they are all specified: WF1F2...Fw

. There is
a third way to partition the set W , by the total number of heads,
h, in set F , Wh. If w = 1, then we have P(P |WH1 ) = 1/2
because she is in either WH1 or WT1 with equal probability. But,
if w > 1, although she reasons she can experience exactly one
sequence of coin flips, e.g., {H1, T2}, then she also reasons that
in that world she should lump observer moment Mon1-H1 with
Mon2-T2 and Tue2-T2, since she has no way to tell them apart.
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So for sequences with half the flips heads, h = w/2, she will
come up with a probability of 1/3 for the coin having been
heads in a given observer moment. For a sequence with a total
of h heads out of w flips, the probability of her being in a heads
observer moment is h/[h + 2(w − h)]. Thus she just needs to
weight this probability by the probability that the sequence
that occurs has h heads, P(Wh), which is 1

2w (wh ):

P
((

P1
|WH1

) ∨ · · · (Pw
|WHw

)∣∣P |W
)

=
w∑

h=0

P
((

P1
|WH1

) ∨ · · · (Pw
|WHw

)∣∣P |Wh
)
P(Wh)

=
w∑

h=0

h

h + 2(w − h)

1

2w

(
w

h

)
. (135)

For w = 1, this is 1/2, for w = 2 it is 5/12, which is midway
between 1/2 and 1/3, and for w = 10, the probability of
heads drops to about 0.35. For larger and larger w, P(Wh)
is approximately a narrower and narrower Gaussian centered
on h = w/2, and the probability for Beauty’s heads observer
moments gets closer and closer to 1/3. In other words, exclu-
sive selection with a large number of indistinguishable trials
becomes indistinguishable from inclusive selection.

Let us consider what happens if we ask Beauty to wager
on whether the coin will come up heads or tails. Can she
distinguish whether she is in a reality that corresponds to
the inclusive or exclusive case? The answer is no, because
they lead to the same result, though for seemingly different
reasons. Suppose she is offered x:1 odds that the coin landed
heads. We will consider the cases where she bets at every
awakening, or only on Mondays. First, consider how Beauty
would see the situation on Wednesday, after the experiment
is over. Whether she is in the inclusive or exclusive case, she
calculates that she has a 1/2 chance of being in a world where
the coin came up heads and she won x on Monday and a 1/2
chance of being in a world where the coin came up tails and
she lost 1 on both Monday and Tuesday, so she calculates her
average winnings to be

� = 1
2 (x − 2). (136)

Thus, she will break even (� = 0) if she is given 2:1 odds.
If the betting occurs only on Mondays, then, whether she
is in the inclusive or exclusive case, she calculates that she
has a 1/2 chance of being in a world where the coin came
up heads and she won x on Monday and a 1/2 chance of
being in a world where the coin came up tails and she lost
1 on Monday. Thus Beauty after the experiment calculates her
average winnings on Mondays to be

�Mon = 1
2 (x − 1), (137)

and she will break even (�Mon = 0) on Monday bets if she is
given even money, 1:1 odds.

How can her winnings be the same for the inclusive or
exclusive case when her credence for heads differs for them
(if she does not know the day)? If she assumes she is in the
exclusive case, then her reasoning during the experiment is
exactly the same as afterward. She has a 1/2 chance of being
in a world where the coin comes up heads and she wins x on
Monday and a 1/2 chance of being in a world where the coin

comes up tails and she loses 1 on both Monday and Tuesday.
Thus she calculates her winnings for betting each day [on
Mondays] to be Eq. (136) [Eq. (137)]. The exclusive case and
Wednesday results are the same because they both refer to
head and tail worlds.

If she assumes she is in an inclusive case, then “she” is in
all three of the observer moments, {Mon-H, Mon-T, Tue-T },
and so if she bets in each, her winnings per observer moment
are

�moment = 1
3 (x − 2). (138)

If she bets only on the two Monday moments, then her
winnings per observer moment are

�moment
Mon = 1

2 (x − 1). (139)

But to compare apples to apples, we need to know what she
thinks the winnings per world will be, which just changes the
normalization factor for Eq. (138) by the number of observer
moments per world, which is 3/2: � = 3

2�moment = 1
2 (x − 2).

For the Monday case, the number of observer moments and
worlds is the same, so �Mon = �moment

Mon = 1
2 (x − 1), and we

again get Eqs. (136)–(137).
So an inclusive Beauty calculates the same winnings per

world as an exclusive Beauty. Inclusive Beauty needs 2:1
odds to break even because she wins in only one observer
moment of three. Exclusive Beauty needs 2:1 odds to break
even because although she has a 1/2 probability of a heads
world picked out by the coin flip, whenever she is in a tails
world she loses twice. What this means is that there is no
practical difference between the inclusive and exclusive cases
in this thought experiment and no way to tell them apart.

The question, “What credence do you assign to heads?”
has answer “1/3” if Beauty sees herself as being in all three
observer moments and “1/2” if she sees herself as living in
an H world or a T world. So, in the end, the only difference
between inclusive Beauty (thirder position) and exclusive
Beauty (halfer position) is that the former sees “herself” in all
three observer moments with equal probability and the latter
sees “herself” in one of two worlds with equal probability.
For the halfer, the person in Mon-T and Tue-T is the same, a
temporal continuation of one being, but not the same person
as Mon-H because they are mutually exclusive timelines. For
the thirder, all three observer moments correspond to the same
person, an inclusive viewpoint. Neither of these is inherently
right or wrong; it is a matter of how we define “self”— we
do not give an answer about which camp is “right” because
they are each right given a reasonable set of assumptions. We
can analyze the problem with either definition, but there is no
physical difference between them, as shown by the identical
betting odds for the halfer and thirder viewpoints.

Note that one can rephrase the single-run Sleeping Beauty
problem as several equivalent problems, such as the sailor’s
child problem [49], but the answer is the same: For the
inclusive case the probability is 1/3, and for the exclusive case
it is 1/2, and there is no way to tell them apart with betting.

Finally, it is possible to construct a similar Gedanken-
experiment where betting can distinguish between inclusive
and exclusive cases. Motivated by Nick Bostrom’s incubator
problem [7], Scott Aaronson suggests the following scenario
[16]: If a fair coin comes up heads, then Beauty H-One is
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cloned into existence; if tails, then Beauties T-One and T-Two
are cloned into existence. If you find yourself to be one of
these people, then what odds would you need to bet that the
coin comes up heads? One needs to be extra careful when
observers are created like this. In the exclusive case, if H ,
then you are H-One and you win x; if T , then you are either
T-One or T-Two, and you lose 1, so x = 1, you are willing to
take 1:1 odds. For the inclusive case, you need to specify your
assumptions about personhood. H-One wins x, and T-One and
T-Two each lose 1, but which of them are “you”? Here are
three possibilities:

(i) You are exactly one of the three. You have 1/3 chance
of winning x and 2/3 chance of losing 1, so x = 2, you need
2:1 odds.

(ii) You are one person each world. If heads, then you are
H-One; if tails, then you are one of T-One or T-Two. You have
1/2 chance of winning x and 1/2 chance of losing 1, so x = 1,
you need 1:1 odds.

(iii) You are all three. You have 1/3 chance of winning x
and 2/3 chance of losing 1, so x = 2, you need 2:1 odds.

So with the first and the third assumptions, the inclusive
case differs from the exclusive one, whereas it does not for
the second assumption. As we have stressed throughout this
work, carefully specifying assumptions is crucial.

XII. HEURISTIC SUMMARY AND FUTURE DIRECTIONS

We fully recognize that some readers interested in the topic
of observer selection effects are not used to as much math as
we used. To that end, we provide a heuristic summary of our
main results. We end by pointing to some directions in which
this line of research may proceed.

Our central goal was to study the claim that there is a
doomsday effect—that by taking into account one’s temporal
location in a world that datum leads one to conclude that the
world will end sooner than one otherwise would have thought.
Along the way, we built the tools needed to investigate that
claim, laid out arguments about when the doomsday effect
holds, and discussed related issues, such as the problems in
cosmology due to Boltzmann brains.

Throughout the paper, we discussed probabilities of se-
lecting “people” from some set P. Usually the people were
the observers in the problem. The key distinguishing element
about whether there is an OSE or not is if the selection is a
Pick or a Be—whether one first picks a “world” that the person
belongs to or whether no such picking is needed because the
person just is in the world.

In Sec. II, we explored the latter via the prisoner problem.
If you are a prisoner in a cell, then no one has to select that
cell, cellblock, or prison for you to experience an observer
moment there. You just are there. As a result, you are more
likely to Be in a cellblock type L, which has more prisoners
than a cellblock of type S, and that effect exactly cancels the
effect of learning rank information d , which would otherwise
favor you in being in a cellblock type S (see the left half of
Fig. 1).

Contrast that to Sec. III, where we considered the warden
problem, where a warden has to pick a cellblock before
selecting a prisoner. This is the way things usually work when
not selecting observers: When the entity being selected is in an

enclosing set, such as a prisoner in a cell within a cellblock, to
select them one has to pick the outer set, such as the cellblock,
first. The effect of this Pick is to nullify the counteracting
effect, seen in the Be case, due to the number of prisoners.
The result is that the rank information d does tell you that if
you are picked by the warden, you are more likely to be in a
cellblock type S (see the right half of Fig. 1).

Actually, to be more precise, the issue is whether there
is any selection beyond the one needed on the innermost
(leftmost, in our notation) set and not whether that selection
is a Be or Pick. If the selection on the leftmost set is the only
one, then we call it inclusive selection. If there is a selection
on one or more of the enclosing sets, then we call it exclusive
selection. In most of the inclusive cases we considered the
selection of the innermost set was a Be. This is unsurprising,
because in order to physically select elements of a set within
some set of “worlds,” one usually must pick the “world” (urn,
cellblock, or civilization) first. (We did give a counterexample,
the warden cafeteria problem, where the warden directly picks
a prisoner in the cafeteria, circumventing the enclosing set W
(the prisoners are still labeled by the “world” that they belong
to, just not constrained to be selected via that world). And
it is also possible to have a Be selection on a set other than
the leftmost set by making P an enclosing set for some other
set which the observer picks from, and then the situation will
necessarily be exclusive.)

We then explored the concepts of inclusive and exclusive
selection by extending our analysis of the prisoner problem
to the largest physical enclosing set in the problem, which
we call E . For our problem, this corresponds to a set of
prisons containing various fractions of S and L cellblocks.
In the inclusive case (Sec. IV), the only selection is on the
leftmost set (a Be selection of set P). We then considered
exclusive selection (Sec. V), where there is selection on E in
addition to the Be selection on P. As in the prisoner problem,
we found that there is no OSE in the inclusive case. In the
exclusive case, there is an OSE, but its magnitude depends
on our prior assumptions. One can find effects which range
from nearly no OSE to an OSE as large as in the warden
case (see Fig. 2). The larger the differential between the
choices one picks from, the larger the OSE. We can generalize
E to comprise “everything,” a set of all possible universes.
Inclusive selection then corresponds to the inclusiverse, which
we also later called the complete multiverse, which simply
means that we assume all possibilities are realized. Exclusive
selection corresponds to an exclusiverse, where only some
possibilities are realized.

Next, in Sec. VI, we added an enclosing set of theories,
�. We tend to view theories and hypotheses as mutually
exclusive: One must pick one and then analyze the resulting
scenario. But that Pick introduces an OSE because now the
selection is exclusive, so one should be careful not to promote
coexisting possibilities to hypotheses, such as “I am in an
S cellblock.” Instead, one should say that there are multiple
physical cellblocks, and we are in one of them with some
probability for being in an S cellblock. If we really want
to have coexisting hypotheses, then we would need to have
inclusive selection on �, a “theoryverse” if you will. That is
not as unreasonable as it seems. For example, the string land-
scape predicts multiple coexisting theories. Another avenue

033464-22



HOW TO SELECT OBSERVERS PHYSICAL REVIEW RESEARCH 2, 033464 (2020)

we took in this set-of-theories analysis was to ask if we can
probe whether we live in the inclusiverse or an exclusiverse.
It is not generally possible, because it is usually impossible
to disentangle other effects. We also briefly discussed the
presumptuous philosopher problem. It is not a problem for
us because we do not make use of something called the self-
indication assumption and argue against its use. (We noted
in several places that if we use the SIA—where a weighting
factor for observers is put in by hand instead of it arising
naturally out of typicality and keeping track of how observers
are selected—then we get the wrong answer when there is
exclusive selection. The presumptuous philosopher problem
is an example of this.)

Thus far, we had assumed that whatever selection was
done, was “typical,” that is, corresponding to what one would
get by random selection of a given subset of entities from a
set. We relaxed that assumption and found that any atypical
selection can be made typical by a simple redefinition of the
relevant sets. This allowed us to address the question of Boltz-
mann brains, which are hypothetical freak observer moments
which arise from very rare fluctuations. They are a problem
in a stupendously large universe where it is possible for them
to dominate normal observers, which are confined to a small
subset of the spacetime. This is a consistency problem because
we must assume that we are not freak observers for us to argue
that we have a correct understanding of the world, so that
understanding is inconsistent if it predicts that we are freak
observers. We examined an argument by Boddy et al. [32] that
there are no self-aware freak observers because at late times
the Universe will be an empty exponentially expanding de Sit-
ter space with no decoherence to split into “many worlds.” We
argued that there could be decoherence effects from diluted
matter, but an upper bound on the typicality of that is so small
that it counters the huge number of future freak observers such
that, by this argument, there are essentially no self-aware freak
observers. We also used the analysis of Hartle, Hertog, and
Srednicki to demonstrate a “first-person probability” effect
which is somewhat orthogonal to ours—that when models
with observers are scarce, models with more places for them
to be are favored, even with exclusive selection. Conversely, if
all viable models allow potentially many freak observers, then
those with fewer places for those freak observers to fluctuate
into existence are favored.

We then considered the analysis of J. Richard Gott III in
Sec. VIII, which seems to constitute a different kind of OSE.
He argued that one can bound the probability of a world
lasting time T using an observer’s time t since the start of
the world; this is strange because the selection seems to be
inclusive: just the Be selection of the observer. One problem
is that his original treatment did not include a prior, which is
essential. We showed that one needs a fast falling (∼1/T 2)
prior to reproduce his results. Then there is an effect, but it
is not an OSE, rather just an artifact of the fast-falling prior.
However, if we consider a scenario with a Pick selection of a
unique lifetime for the world, and the prior falls with T , then
there is an OSE.

All of this prepared us to address, in Sec. IX, the doomsday
question, “Do observer selection effects increase the prob-
ability that our world will be short-lived?” The answer is
“probably not.” One must first write the question in a scale-

invariant way, by which we mean that it makes just as much
sense to ask at any timescale during the world. A question that
could work is “Will our world last K times its present age?,”
which naturally leads to using the formalism we developed in
Sec. VIII for the Gott analysis. There are scenarios where it
is reasonable for the selection there to be exclusive, and it is
possible to conclude that there is a doomsday effect but only
under a set of assumptions akin to those listed at the end of
Sec. IX.

Several papers have argued for a universal doomsday ef-
fect, which says that our data imply that worlds on average
are probably more short-lived than we would have estimated
without our data. We showed that universal doomsday and
doomsday are inextricably linked because if our expectation
for the fraction of short-lived worlds changes as a result of our
data, so does our expectation for the lifetime of our world and
vice versa. So the assumptions needed for a universal dooms-
day effect are the same as those needed for a doomsday effect.

We then applied our formalism to a somewhat different
scenario called the Sleeping Beauty problem. Beauty is
woken once or twice during an experiment, depending on
a coin flip, and her memory of each awakening is deleted.
What probability should she assign to the coin having come
up “heads”? This would seem to be trivial but has led to
philosophers dividing into two camps, “halfers,” who would
assign probability 1/2, and “thirders,” who would assign
probability 1/3. It turns out that they are both right. The
problem is that the question is insufficiently clearly posed
and each answer is right, given a particular question. If
Beauty views “herself” as occupying the three equally likely
observer-moments, the inclusive case, then she agrees with
the thirders. If, on the other hand, she views “herself” as
being in one of two possible timelines—in the one waking
session of the “heads world” or the two waking sessions of
the “tails world”—then she will agree with the halfers. These
are both reasonable ways of interpreting who “she” is. They
might also be interpreted as implying whether the world is
a multiverse (in the inclusive case) or not (in the exclusive
case), though this is an extrapolation—all she is really doing
is assuming one or the other definition of self. Anyway, the
two cases are physically indistinguishable. For example, we
showed that both cases lead to precisely the same betting
outcomes, though Beauty arrives at the same correct odds of
winning in each case for different reasons. We also discussed
multiple trials, and the creation of observers, which may help
extend the formalism of the paper to more general problems.

So we have explored multiple ways in which it matters how
observers are selected. The key factor is whether the selection
is inclusive or exclusive. There can be an OSE in the latter case
but not the former, at least for the problems we considered.
Inclusive selection means that all events considered actually
occur, though you may not experience them, such as prisoners
being in an S and an L cellblock. Exclusive selection means
assigning nonzero probabilities to some events which do not
occur, such as picking an S or L cellblock. So

Observer selection effects arise from assuming that there are
some possibilities which are not realized.

Among other things, to have a doomsday effect requires
such an exclusive selection, which we wrote as, “There is
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exactly one true value of the lifetime, T∗, because you consider
only one world with one fixed future.” It is thus crucial
that one carefully lays out all of one’s assumptions, because
whether there is an OSE or not depends on them.

Finally, we lay out some possible future directions for this
work.

A simple direction to go in is to relax some of the assump-
tions we made, such as ρ being constant across the ensemble
of possibilities or that the subsets are nonoverlapping (see
Appendix) to generalize our results.

Almost all of our analysis was classical. It would be
interesting to explore further the quantum context. One con-
sequence is clear: If quantum theory corresponds to some-
thing like the many-worlds interpretation, then we are in
a multiverse with inclusive selection of events. If there is
“wave-function collapse,” so that there is only one reality,
then there is an exclusive selection. But a comprehensive
evaluation of our discussion in the quantum context may
turn up interesting results. For example, what of quantum
observers, which comprise superpositions of observer states?

Another avenue of inquiry is how to analyze a theoryverse,
such as the string landscape. Is it reasonable to assume the
inclusive case? In other words, should we sum probabilities of
“observers like us” from different parts of the string landscape
which contain observers similar to us despite operating with
different physical laws? If so, then it is not the probability of a
given vacuum in the landscape that matters but that probability
times its effective number of observer moments.

Finally, while we discussed atypical observers, and the
problem of Boltzmann brains, there is perhaps more to learn
from studying what one might call “freak observers,” any ob-
server who happens to experience freakish conditions. There
are many metrics for “number of observers” in addressing the
problem of Boltzmann brains, and it would be useful to see
if our results shed any light on them. Also, in a multiverse
there are otherwise normal observers who happen to experi-
ence statistical fluctuations of many standard deviations who
draw erroneous conclusions. How do we treat such observers,
especially with the recognition that it is not impossible in a
multiverse that we are one of them?
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APPENDIX: NOTATION

Consider two sets, A and B. We will write AB to mean the
compound set that consists of set B, and of set A that is nested
in B, by which we mean that every element of A is associated
with exactly one element of B. If, for example, A is a set of
nuts and B is a set of jars, then AB is a set of jars with nuts in
them. Formally, every element Ai ∈ A has a secondary label
j which corresponds to a specific element Bj ∈ B. So Ai, j is
an element of A which is associated with (or, usually, “in”)
an element Bj of B, and A, j denotes all elements in A which
correspond to a given Bj . But we do not usually refer to labels
for individual elements. Instead, we focus on subsets. Let us
define subsets Aa and Bb of sets A and B by properties a and

b, such as the subset of all nuts which are peanuts or cashews
or the subset of large or small jars. We will assume that these
subsets are nonoverlapping and form a complete basis, i.e.,

A =
⋃

a

Aa, Aa �= ∅, Aa ∩ Aa′ �=a = ∅, (A1)

and the same for B and Bb (in our example above, all the nuts
are peanuts or cashews and all the jars large or small). Further,
we can define Aa,b to be the subset of A whose elements all
belong to Aa and correspond to some element in subset Bb,
e.g., all cashews in small jars, Ac,S , are in the set of cashews
Ac and are “in” a small jar (they correspond to an element in
BS). Note that the set A is the union of all its nonoverlapping
subsets: A = ⋃

a,b Aa,b. Further, the subset A,b is the union of
all subsets corresponding to label b, independent of a, i.e.,
A,b = ⋃

a Aa,b. For example, A,S is the set of all nuts in small
jars, which is the union of peanuts in small jars (Ap,S) and
cashews in small jars (Ac,S).

Let us define the number of elements of A, Aa, A,b, and
Aa,b, to be n, na, n,b, and na,b, and the number of elements of
B and Bb to be N and Nb. Note that since A is the union of
nonoverlapping subsets Aa,b, we have n = ∑

a na = ∑
b n,b =∑

a,b na,b, and since B is the union of the nonoverlapping
subsets Bb, we have N = ∑

b Nb. We also define the number
of elements in a subset normalized by the number of elements
in its next enclosing set with an overbar:

n̄ ≡ n

N
=

∑
b

n̄,b
Nb

N
, (A2)

n̄a ≡ na

N
=

∑
b

n̄a,b
Nb

N
, (A3)

n̄,b ≡ n,b

Nb
, (A4)

n̄a,b ≡ na,b

Nb
. (A5)

[Note that all Nb �= 0 by definition, see Eq. (A1).] For exam-
ple, n̄c,S = nc,S/NS is the average number of cashews per small
jar, which is the number of cashews in small jars divided by
the number of small jars, and n̄c is the average number of
cashews per jar, which is the sum of the average number of
cashews in each type of jar weighted by the fraction of jars
that are of that type: n̄c = ∑L,S

J n̄c,J (NJ/N ) (J is summed over
S and L).

In most of the problems we consider, the leftmost set will
be P, a set of people, and the set it is nested in, W , is a set of
worlds of some kind. The main subset of the leftmost set we
will be interested in is “d ,” those people matching datum d .
Since we will often contrast the number of people, n, with the
number of people matching datum d , nd , and that is the only
subset we need to worry about, we drop the comma before
nesting subset label b, and define m:

nb ≡ n,b, m ≡ nd , mb ≡ nd,b. (A6)

We are interested in the probability of selecting an element
of some set that belongs to a subset of that set. We will assume
that the selection is random and the same for each element,
so that the probability of selection is equal to the fraction of
elements in the subset (if this is not the case, we can always
make it so by weighting the number of elements of the subsets
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by some scaling factors—see Sec. VII on typicality). Let us
define P(Aa) to mean “the probability that a randomly selected
element of set A belongs to subset Aa.” Note that P(A) = 1,
since an element selected from A belongs to A by definition.
So P(Aa) = P(Aa|A) because the conditional A just means that
“an element was randomly selected from A,” which is already
part of the definition of Aa. With these assumptions,

P(Aa) = P(Aa|A) = na

n
= n̄a

n̄
, P(Bb) = Nb

N
. (A7)

Note that we can thus replace (Nb/N ) in Eqs. (A2) and (A3)
with P(Bb). For example, if A is the set of cards in a deck, then
P(Aclubs) = 1/4 and P(Aaces) = 1/13.

So long as we are selecting from one set only, there is no
ambiguity. But if we are selecting from compound set AB with
set A nested in set B, there are two possibilities: Either we first
select an element of Bj of B, and then an element Ai, j which
corresponds to (is “in”) element Bj , which we call to Pick,
or we directly select the element Ai, despite being nested in
set B, which we define as to Be. One has to pick a nut from
a jar: Select a jar Bj and then select a nut from within the
jar. But if the elements of A are themselves observers, say,
prisoners in specific cellblocks, then there is another way to
select: You can be a prisoner in a cellblock without having
to perform a cellblock selection—you are just there. (It is
possible to Pick directly from set A even if it is nested in B
if the correspondence between Ai, j and Bj is not really to be
“in” it. For example, set B could correspond to a label, S or
L, we place on each nut, and we toss them all together and
randomly select one. No jar selection is needed to do that,
yet the nesting is preserved by the labeling. We mention this
briefly in Sec. III with the warden cafeteria problem.)

Be probabilities are simple, just the fraction of elements in
the inner set meeting the criteria:

P(AB) = P(A) = n

n
= 1,

P(ABb) = P(A,b) = n,b

n
= n̄,b

n̄
P(Bb),

P(AaB) = P(Aa) = na

n
= n̄a

n̄
,

P(AaBb) = P(Aa,b) = na,b

n
= n̄a,b

n̄
P(Bb). (A8)

Pick probabilities are weighted by the selection that first
must be made on set B. We use a superscripted vertical bar
| to indicate a Pick from the set immediately to its right. It
is akin to a conditional within the statement, e.g., “Aa

|Bb”
means “we pick an element of type b from set B and then
from the elements of A corresponding to that element of B
we select an element of A that is in subset Aa.” This is the
same as saying “we picked an element in Aa from A given that
we picked an element of Bb from B.” If there are no subset
labels indicated to the left of a Pick, then the situation is as
if we are ignoring that set. So P(A |Bb) = P(Bb) because after
we pick an element type b from B with probability P(Bb), it
is certain that the element we pick from A is from subset A
(which is just the whole set A). (We assume that there is some
such element of A, i.e., Aa,b �= ∅.) If there are subsets specified
to the left of the Pick, such as in P(Aa

|Bb), then we can

write it as a product of conditional probabilities defined below,
P(Aa

|Bb|A |B) = P(Aa
�Bb|A �Bb)P(A |Bb). Note that we have

put a slash through the Picks in the first term of the right-
hand side. We will call such Picks neutered because we are
conditioning on the fact that an element was chosen from
subset Bb, and thus no action is needed before selecting the
element from A. Thus, the probability with a neutered Pick is
the same as for a Be, e.g.,

P(Aa
�Bb|A �Bb) = P(AaBb|ABb) = n̄a,b

n̄,b
. (A9)

For example, the probability of picking a small jar and then
picking a cashew given that one picked a small jar, is the same
as picking a cashew given that one picked a small jar. So the
Pick probabilities are

P(A |B) = 1

P(A |Bb) = P(Bb),

P(Aa
|B) =

∑
b

P(Aa
|Bb) =

∑
b

n̄a,b

n̄,b
P(Bb),

P(Aa
|Bb) = P(Aa

�Bb|A �Bb)P(A |Bb) = n̄a,b

n̄,b
P(Bb). (A10)

The astute reader may wonder why the selection on the
leftmost set differs from the selection of the sets to its right.
Actually, it does not, and we could put a “ |” to the left of every
leftmost set. But our notation assumes that there is a selection
on the leftmost set. So really “ |” means a selection done on
a set other than the leftmost set. [Note that one can have a
set to the left of an observer, and then one needs to insert a
selection “ |” to the left of the observers set, e.g., C |P, where
C are cards and P are observers, and although that observer is
Be selected (i.e., just is), this is exclusive selection since there
is a selection other than on the innermost set.]

Let us explore conditional probabilities, such as the ones
we employed above, where there is one set of selections given
another. Here are the nontrivial possibilities (keeping in mind
that P(AaB|ABb) = P(AaBb|ABb), etc.):

(i) P(AaB|ABb): the probability that we select an element
of type a from A nested in B given that we select an element
of A that corresponds to an element of B of type b.

(ii) P(ABb|AaB): the probability that we select an element
of A that corresponds to an element of B of type b given that
we select an element of type a from A nested in B.

(iii) P(Aa
|B|A |Bb): the probability that we select an ele-

ment of B and then select an element type a from A which
is associated with that element of B given that we select
an element of B of type b and then select an element of A
associated with that element of B.

(iv) P(A |Bb|Aa
|B): the probability that we select an ele-

ment of B of type b and then select an element of A associated
with that element of B given that we select an element of B
and then select an element type a from A which is associated
with that element of B.

For example, P(A |BS|Ac
|B) is the probability to pick a

small jar and then pick a nut from that jar given that we
pick some jar and then pick a cashew from it. There are
actually only three nontrivial possibilities because the first
and the third are equal since the selection in the third is
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neutered:

P(AaB|ABb) = P(Aa
�B|A �Bb) = P(Aa,b)

P(A,b)
= n̄a,b

n̄,b
,

P(ABb|AaB) = P(Aa,b)

P(Aa)
= n̄a,b

n̄a
P(Bb),

P(A |Bb|Aa
|B) = P(Aa

|Bb)

P(Aa
|B)

=
n̄a,b

n̄,b
P(Bb)∑

b′
n̄a,b′
n̄,b′ P(Bb′ )

. (A11)

In Eq. (A10) we showed that P(Aa
|Bb) is not in general

equal to P(Bb), because the selection of an element of type
a adds a nontrivial weighting factor. That is because there is
an implied conditional A |B: We take it as a given that we
pick some element of B and then some element associated
with that element from the whole set A, i.e., P(Aa

|Bb) means
P(Aa

|Bb|A |B). But sometimes we want to redefine the set
A we select from so that it is some subset of qualifying
elements. For example, if our jars contain peanuts, cashews,
and pebbles, but our selection process ensures that only nuts
are picked, then we are really concerned with the subset Anut

of cashews and peanuts. To help clarify such situations, we
write redefined sets with square brackets [Are]. This new set
then has subsets [Are]a,b, and we can write the number of

elements in these as [nre] and [nre]a,b, and so on. Now set [Are]
acts like A did in Eq. (A10),

P([Are] |B) = 1,

P([Are] |Bb) = P([Are] |Bb|[Are] |B) = P(Bb),

P([Are]a
|B) = P([Are]a

|B|[Are] |B)

=
∑

b

[n̄re]a,b

[n̄re],b
P(Bb),

P([Are]a
|Bb) = P([Are]a

|Bb|[Are] |B)

= [n̄re]a,b

[n̄re],b
P(Bb), (A12)

since one selects some element of [Are] with certainty.
Now, one might object that there is a lot of redundant

information in the above notation, namely the set labels A and
B. We think it is important to retain those labels if there is
any confusion about which sets are considered, which subset
labels correspond to which set, and which sets have a Pick on
them—an issue if there are more than two nested sets. But if
there are only two nested sets which are the same throughout
some calculation, and the subscript labels are unique to a set,
we can use a compact notation by omitting the set names while

TABLE I. Summary of our major results using compact notation where the list of sets provides a key for the location of the Picks.
Worlds J = S or L. For three or more sets we use a double-Pick mark to avoid ambiguity. For “probing a multiverse” h = in or ex (it is
probably advisable not to use compact notation for four sets with controlled-Picks). The weighted averages are 〈 f (y)〉 ≡ ∫ 1

0 f (y) p( |y)dy,

〈 f (y)〉d (|) ≡ ∫ 1
0 f (y) p((|)y|d (|) )dy. For the Gott case we take tm = t .

Section Description Sets Input Output Result

II & IX Be selection Pd
|WJ P(S) = n̄S

n̄ P( |S) P(S|d ) = P( |S) RP/W = 1

III Pick selection Pd
|WJ P( |S) P( |S|d |) = P( |S)

P( |S)+ 1
ρ P( |L)

RP |/W = 1
ρ

IV Inclusive selection Pd
||WJ

|Ey P(S) = n̄S
n̄ P( ||S) P(S|d ) = P( ||S) = 〈y〉 RE

P/W = 1

V Exclusive selection Pd
||WJ

|Ey P(S |) = 〈 y
ρ−(ρ−1)y

〉
P(S ||d |) = 〈 y

ρ−(ρ−1)y

〉〈
1

ρ−(ρ−1)y

〉−1
R

|E
P/W ∈ [

1
ρ
, 1

]
VI.A & IX Excl. theory selection PdW |�J P( |S) P( |S|d |) = P( |S)

P( |S)+ 1
ρ P( |L)

RP |/� = 1
ρ

VI.B Probing a multiverse PdW ||←−−
Ey

|�h Ph = P( ||←−|h ), Ph|d = P( ||←−|h| d ||←−| ) Prior-dependent
p = P( ||1 �| || �ex)

VII.E Atypical freak pbservers ξ Pn P(n) = 1
1+ρ

P(ξ n) = 1
1+κρ

Need κρ � 1

VII.F Rare observers P |�J p�1
J = 1 − (1 − pF )nJ P( |J )rare = P(J )pF = nJ

〈n〉 P( |J ) Rare-Pick = Be

VII.F Rare freak observers P0f
|�J P(0f || |J ) = (1 − pf )nJ R f

P |� = (1 − pf )nL−nS R� R f
P |/� → e−p f nL

VIII & IX Incl. Gott & Pt
|WT p( |T ) ∼ 1

T 2 ⇒ p(T ) ∼ 1
T p(T |t ) → t

T 2 RT → 1

No doomsday P((T > Kt )|t ) → 1
K R∫

T → 1

VIII & IX Excl. Gott & Pt
|WT p( |T ) ∼ 1

T p( |T |t |) → t
T 2 R |T → t

T

doomsday P( |(T > Kt )|t |) → 1
K R∫ |T → 1

K

X Incl. universal doomsday Pd
||WJ

|Ey p( |y) ⇒ 〈y〉 〈y〉d = P(S|d ) = 〈y〉 (same as Sec. IV) RUD
P/W = RE

P/W

X Excl. universal doomsday Pd
||WJ

|Ey p( |y) ⇒ 〈y〉 〈y〉d | = P(S ||d |) = (same as Sec. V) R
|UD
P/W = R

|E
P/W

XI Beauty thirder/incl. PDay
|Wflip Three observer moments P(H ) = 1

3 Need 2:1 odds

XI Beauty halfer/excl. PDay
|Wflip Two observer timelines P( |H ) = 1

2 Need 2:1 odds

XI Mon. Beauty thirder/incl. [PMon] |Wflip Two observer moments P(H ) = 1
2 Need 1:1 odds

XI Mon. Beauty halfer/excl. [PMon] |Wflip Two observer timelines P( |H ) = 1
2 Need 1:1 odds
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preserving the order of any subscript labels and selection bars:

P(αβ ) ≡ P(AαBβ ), P(α |β ) ≡ P(Aα
|Bβ ), (A13)

where α and β can be “null,” e.g., P(b|a) ≡ P(ABb|AaB) and
P( |b|a |) ≡ P(A |Bb|Aa

|B). For example, in compact notation,
using Eq. (A8)–(A10),

P(b) ≡ P(ABb) = n̄,b

n̄
P(Bb) = n̄,b

n̄
P( |b), (A14)

and Bayes’s law with a Pick is

P( |b|a |) = P(a || |b)P( |b)

P(a |)
. (A15)

We use the more verbose notation in most of the main text for
clarity. Here are the terse versions: The posterior probability
for a Be, Eq. (6), becomes

P(S|d ) = P(d|S)P(S)

P(d )
= P( |S), (A16)

and the posterior probability for a Pick, Eq. (10), becomes

P( |S|d |) = P(d �| �S)P( |S)

P(d |)
= P( |S)

P( |S) + 1
ρ

P( |L)
. (A17)

We can use our compact formalism for three or more nested
sets, but there is then an ambiguity about the location of the
Pick. Does P( |c) mean P(A |BCc) or P(AB |Cc)? To avoid this
ambiguity, we use a double-Pick mark (and if needed a triple-
Pick mark) on inner sets, so P( ||c) ≡ P(A |BCc) and P( |c) ≡
P(AB |Cc). For example, the probabilities in Sec. V using sets
Pd

||WS
|Ey are

P(d |) ≡ P(PdW |E ), P(S |) ≡ P(PWS
|E ),

P( |y) ≡ P(PW |Ey) = P(Ey),

P( ||S) ≡ P(P |WSE ) = P(WSE ). (A18)

We conclude with Table I, which summarizes our main
results in compact notation.
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