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Interplay of quantum phase transition and flat band in hybrid lattices
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We establish a connection between quantum phase transitions (QPTs) and energy band theory in an extended
Dicke-Hubbard lattice, where the periodical critical curves modulated by wave number k leads to rich equi-
librium dynamics. Interestingly, the chiral-symmetry-protected flat band and the localization that it engenders
exclusively occurs in the normal phase and disappears in the superradiant phase. This originates from the QPT
induced simultaneous breaking up of the on-site resonance condition and off-site chiral symmetry of the system,
which prohibits the destructive interference for obtaining a flat band. Our work offers an approach to identify
different phases of the lattice via detecting the flat bands or simply the related localizations in a single cell, and,
in turn, to control the appearance of flat bands by QPT.
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I. INTRODUCTION

The quantum phase transition (QPT), driven by quantum
fluctuations in many-body systems, is one of the most funda-
mental and significant concepts in physics since it can offer
the important resources for quantum metrology [1–3] and
quantum sensing [4–6]. For example, the generation of many-
body entanglement through QPT enables precision metrology
to reach the Heisenberg limit [7,8]. To apply QPT theory to
modern quantum technologies, a necessary task is to deter-
mine which phase the system is in. Traditionally, one needs
to detect the order parameters based on the ground states
of the system [9], which is experimentally challenging in
lattice systems where the complexity of the ground states in-
creases exponentially with the size of the system. In addition,
the detecting precision is normally restricted by inevitable
experimental uncertainties and fabrication errors, e.g., small
perturbations. Hence, the development of a robust method to
precisely identify different phases of a quantum lattice system
in the absence of ground-state detection is highly desired.

In the past decade and on a different subject, flat bands
(corresponding to a zero group velocity and an infinite
effective mass) have been extensively studied in various
condensed-matter contexts [10–16], on account of its potential
applications in realizing the fractional quantum Hall effect
in the absence of Landau levels [17–21], engineering strong
nonlinear correlations [22], and diffraction-free transmission
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of light [23]. Recently, the flat bands have been observed
in experiments with exciton-polariton condensates [24,25],
photonic lattices [26–29], and cold-atom lattices [30]. With
an excellent and unique property, such a flat band is ro-
bust against perturbations of system parameters, which opens
up the opportunity to detect phases of matter with strong
robustness.

Here we established the connection between the flat band
and the QPT from the normal phase to the superradiant phase
in an extended Dicke-Hubbard lattice, i.e., a series of Dicke
models [31] coupled together through a set of atomless cavi-
ties. Experimentally, this extended model can be implemented
in hybrid superconducting circuits [32–38], in which a two-
level ensemble (e.g., NV center spins) is doped in every other
cavity [see Fig. 1(b)]. The superradiant QPT (a second-order
phase transition) was proposed in the single Dicke model
and occurs when increasing the atom-field coupling through
a critical point [39–51], which is associated with a sponta-
neously Z2 symmetry breaking. Extending to the periodic
lattice, however, here we find that this critical point is replaced
by the critical curves periodically modulated by wave num-
ber k. The periodical boundaries of normal and superradiant
phases intersect at some certain values of k. This predicts,
in the lattice systems, a critical region between the normal
and superradiant phases, where the first-order phase transi-
tion and unstable phases alternatively appear in the different
range of k.

The above connection allows us to identify different phases
of the system via experimentally detectable energy bands (or
the occupation localization in a single cell), and in turn, to
control the occurrence of flat bands using QPT. Specifically,
in the normal phase, a chiral-symmetry-protected flat band
appears in the spectrum of the system, which features asym-
metric band structures originated from the counter-rotating
interactions. This flat band disappears once the system enters
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FIG. 1. (a) Schematic illustration of a one-dimensional (1D) ex-
tended Dicke-Hubbard lattice, where the unit cell consists of a Dicke
model (spin ensemble collectively interacting with cavity A) coupled
to an atomless cavity B. Cavity A interacts with the spin ensemble
and cavity B with coupling strengths λ and ζ , respectively, forming
two symmetric channels of the lattice, labeled 1 and 2. (b) The
implementation of the extended Dicke-Hubbard lattice in a hybrid
superconducting circuit with capacitance coupling C and the ensem-
ble of spins in a diamond crystal.

into the superradiant phase. Physically, the superradiant QPT
makes both the excitation energy and an additional potential
of the spin ensemble interaction dependent, which breaks up
the on-site resonant condition and off-site chiral symmetry
of the lattice, respectively. Either of them can destroy the
destructive interference of the lattice and, finally, lead to the
disappearance of the flat band.

II. SUPERRADIANT PHASE TRANSITION
IN 1D LATTICE SYSTEM

As illustrated in Fig. 1, we consider a 1D extended Dicke-
Hubbard lattice implemented by a hybrid superconducting
circuit, with the Hamiltonian

H =
∑

nA

HDicke
nA

+
∑

nB

HCavity
nB

+ Hint, (1)

where the subscript nA (nB) denotes the lattice site of cavity A
(B). The Dicke Hamiltonian is given by HDicke

nA
= ωAa†

nA
anA +

�Jz
nA

+ λ√
N

(a†
nA

+ anA )(J+
nA

+ JnA ), where anA is the annihi-

lation operator of cavity A mode, and Jz
nA

= (1/2)
∑

N σ z
nA

,
J±

nA
= ∑

N σ±
nA

are the collective operators of N spins. The

Hamiltonian HCavity
nB = ωBa†

nB
anB describes the bare cavity B.

The nearest-neighbor cavities are coupled via an x-x interac-
tion, Hint = −ζ

∑
〈nA,nB〉(a

†
nA

+ anA )(a†
nB

+ anB ).
To explore the phase transition in this extended Dicke-

Hubbard lattice, we extend and modify the method in
Ref. [41] to the lattice systems. With the Holstein-

Primakoff transformation, i.e., J+
nA

= b†
nA

√
N − b†

nA bnA , J−
nA

=√
N − b†

nA bnA bnA , and Jz
nA

= b†
nA

bnA − N/2, here we intro-

duced the bosonic operators bnA obeying [bnA , b†
nA

] = 1. In
the thermodynamic limit N → ∞, the system Hamiltonian
in k space can be obtained by the Fourier transformation

On = 1√
N

∑
k eik·nOk (On is an arbitrary annihilation operator

and N is the number of unit cells). In the normal phase, the
Hamiltonian is given by Hnor (k) = 1/2

∑
k ψ†

norMnor (k)ψnor,

where ψnor = [akA, akB, bkA, a−kA, a−kB, b−kA]T and the su-
perscript T denote a transpose operation. The coefficient is
collected into the matrix

Mnor (k) =

⎛
⎜⎜⎜⎜⎜⎝

ωA f λ 0 f λ

f ∗ ωB 0 f ∗ 0 0
λ 0 � λ 0 0
0 f λ ωA f λ

f ∗ 0 0 f ∗ ωB 0
λ 0 0 λ 0 �

⎞
⎟⎟⎟⎟⎟⎠, (2)

where f = −ζ [1 + exp(ik)]. Here we have taken the lat-
tice constant to be identical and a periodic boundary
condition. The matrix Mnor (k) can be divided into the
on-site part Mon

nor (k) = diag{ωA, ωB,�, ωA, ωB,�} and off-
site interaction part Mint

nor (k) = Mnor (k) − Mon
nor (k). In par-

ticular, the interaction matrix Mint
nor (k) satisfies the chi-

ral symmetry with C†Mint
nor (k)C = −Mint

nor (k), where C =
diag{−1, 1, 1,−1, 1, 1}, and this symmetry is exact in the
thermodynamic limit. The Hamiltonian Hnor (k) is bilinear
in terms of bosonic operators, which can be analytically
diagonalized. To analytically diagonalize the Hamiltonian
Hnor (k), first we introduce an ancillary matrix Dnor = τzMnor,
where τz = diag{1, 1, 1,−1,−1,−1}. Second, we apply the
transformation matrix T into Hamiltonian Hnor (k), where T
simultaneously satisfies

T −1DnorT =
(

Enor (k) 0

0 −Enor (−k)

)
, (3)

and T †τzT = τz. Lastly, based on the above method and con-
sidering � = ωA = ωB = ω, the energy spectra of Hnor (k) are

Enor (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
ω2 − 2ω

√
2ζ 2(1 + cos k) + λ2,

ω,√
ω2 + 2ω

√
2ζ 2(1 + cos k) + λ2.

(4)

Note that both the on-site resonance condition and off-site
chiral symmetry ultimately lead to a robust flat band lo-
cated at Enor (k) = ω in our model (detailed discussion is
shown below). Here the lowest excitation energy El

nor (λ, k) =√
ω2 − 2ω

√
2ζ 2(1 + cos k) + λ2 indicates that our model is

well defined when |ζ/ω| < 1/4. Beyond this regime, the
Hamiltonian does not possess normalizable eigenfunctions
and has no obvious physical meaning for all values of other
system parameters [52].

The system undergoes a superradiant phase transition when
the lowest excitation energy El

nor (λ, k) = 0 with increasing
λ [41], and thus El

nor (λ, k) = 0 provides the boundary of
the normal phase. Beyond the regime of the normal phase,
the weak excitation approximation used in the derivation of
El

nor (λ, k) is invalid, and El
nor (λ, k) becomes imaginary. Then

we should make a macroscopic displacement on the bosonic
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FIG. 2. (a) Contour plots of the lowest excitation energies El
nor (λ, k) and El

sup(λ, k). The dot-dashed curves are related to El
nor (k, λ) = 0 and

El
sup(k, λ) = 0, which are the boundaries of the normal phase (region I) and superradiant phase (region III). They intersect at points (λsc, Pn)

and (λsc, Qn ) (n = 0, ±1, ±2, . . . ), with Pn = 2nπ − 4π/3, Qn = 2nπ − 2π/3, and λsc the critical point of a single cell. This leads to a critical
region labeled by region II in that for some certain k, i.e., k ∈ [Qn, Pn+1], the lowest excitation energies become merely imaginary. (b)–(e) Band
structures of a 1D extended Dicke-Hubbard lattice. The solid (diamond) curves show the real (imaginary) part of the energy. (f) The expected
values of three pairing operators between k and −k spaces in the ground state. The considered system parameters are � = ωA = ωB = ω = 1
and ζ = 0.18ω.

modes, i.e., a†
nA

→ c†
nA

+ α, b†
nA

→ d†
nA

− β, a†
nB

→ c†
nB

+
γ , with

α = ± �

2μλ

√
N

4
(1 − μ2), (5)

β = ±
√

N

2
(1 − μ), (6)

γ = 2ζ

ωB
α, (7)

where

μ = �(ωA − 4ζ 2/ωB)

4λ2
. (8)

Similar to the procedure used in the normal phase, the dis-
placed Hamiltonian Hsup(k) = 1/2

∑
k ψ†

supMsup(k)ψsup with

ψsup = [ckA , ckB , dkA , c†
−kA

, c†
−kB

, d†
−kA

]T and

Msup(k) =

⎛
⎜⎜⎜⎜⎜⎝

ωA f ξ 0 f ξ

f ωB 0 f 0 0
ξ 0 χ + 2η ξ 0 2η

0 f ξ ωA f ξ

f 0 0 f ωB 0
ξ 0 2η ξ 0 χ + 2η

⎞
⎟⎟⎟⎟⎟⎠, (9)

where χ = �(1 + μ)/(2μ), ξ = λμ
√

2/(1 + μ), η =
�(1 − μ)(3 + μ)/[8μ(1 + μ)]. The analytical energy spectra
Esup(k) with the complicated form are shown numerically, in
which El

sup(λ, k) = 0 indicates the periodical boundary of the
superradiant phase.

To clearly show the phase transition in the present lattice
system, in Fig. 2(a) we plot the contour of the real part of
the lowest excitation energy versus spin-field coupling λ and
wave number k in the normal phase and superradiant phase,
respectively. Obviously, our model features many distinctive
characters. First of all, both the normal and superradiant
phases have the boundaries periodically modulated by wave
number k. Physically, this demonstrates that in the lattice

system, the different spreading waves decided by various k
cause a periodic modulation on critical points of the phase
transition. Second, the above two periodical boundaries in-
tersect at the critical points of a single cell, i.e., λ = λsc =√

�(ωA − 4ζ 2/ωB)/2, where the many-body effects of the
periodical lattice system disappear. Correspondingly, k co-
ordinates of the crossing points satisfying cos k = −1/2 are
equivalent to Pn = 2nπ − 4π/3 and Qn = 2nπ − 2π/3 (n =
0,±1,±2, . . . ) (see the Appendix), which divides the blank
and overlap zones of the critical region. Physically, the blank
zones corresponding to the lowest excitation energy being
imaginary are the unstable phases. The overlap zones indicate
that the system has an effective triple-well potential, which
allows first-order phase transitions [53–56]. Lastly, in a short
summary, the present lattice system has three parameter re-
gions, i.e., the normal phase, superradiant phase, and a critical
region, where some certain spreading waves become unstable.

III. FLAT BAND ASSOCIATED QPT

To show the interplay of the flat band and QPT, in
Figs. 2(b)–2(e), we plot the dispersion relation of a 1D ex-
tended Dicke-Hubbard lattice in the first Brillouin zone for
different spin-field couplings. In the normal phase, a flat band
locates at Enor (k) = ω [see Fig. 2(b)], which arises from the
destructive interference between two symmetric channels of
the lattice. Notice that cavity A interacts with spins and cavity
B, both with the form of x-x couplings, which formed two
symmetric channels (labeled by 1 and 2) as shown in Fig. 1(b).
The remarkable thing is that this destructive interference leads
to zero occupancy of cavity A [see Figs. 3(a) and 3(c)], which
is reminiscent of the dark states known from electromagneti-
cally induced transparency and coherent population trapping
[57,58]. To achieve perfect destructive interference, two nec-
essary conditions must be satisfied simultaneously: one is the
on-site resonance condition between spin ensemble and cavity
B, i.e., ωB = �, and the other is the chiral symmetry of the
off-site interaction matrix Mint

norm(k), i.e., {C,Mint
norm(k)} = 0.
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FIG. 3. (a), (b) The local density of states (LDOS) of cavity
modes A, B and spins for the middle band of the 1D extended
Dicke-Hubbard lattice. (c), (d) The corresponding mode profile in the
real space. The red (purple) circle and blue square denote cavity A (B)
and the spins modes, respectively. (a), (c) Normal phase (λ = 0.3ω);
(b), (d) superradiant phase (λ = 0.542ω). Other parameters are the
same as Fig. 2.

This determines that the present flat band is chiral-symmetry
protected, and thus it is robust against the system parameters
λ and ζ .

This symmetry-protected flat band persists in the whole
normal phase, but immediately disappears once the system en-
ters into the superradiant phase with increasing λ, as shown in
Figs. 2(d) and 2(e). In the superradiant phase, the spin ensem-
ble acquiring macroscopic occupation causes the excitation
energy of spins to become χ + 2η [see Eq. (9)], which closely
depends on the coupling strength λ. Then the on-site resonant
condition of the flat band is destroyed, i.e., χ + 2η 	= ωB.
Moreover, the QPT induces an interaction-dependent potential
of the spin ensemble, which is transformed into the additional
pairings of spins in the momentum space, i.e., d†

kA
d†

−kA
and

dkA d−kA terms. These pairing terms break up the chiral sym-
metry of the off-site matrix Mint

sup(k), i.e., {C,Mint
sup(k)} 	= 0.

Both of the above elements prevent the appearance of a flat
band in the superradiant phase. As shown in Figs. 2(c) and
2(d), in the critical region between the normal and superradi-
ant phases, the valid flat band appears in the special range of k,
in that different spreading waves decided by k have different
critical points.

Besides the flat band, the present energy spectrum also
features asymmetric band structures, which is distinguish-
able from the case of a normal lattice under the rotating
wave approximation. Physically, this comes from the counter-
rotating terms in spin-cavity and cavity-cavity interactions,
which induces the nonzero ground-state expectations of the
pairing operators between the k and −k space, i.e., 〈akA b−kA〉g

(〈ckA d−kA〉g, 〈dkA d−kA〉g) in the normal (superradiant) phase
[see Fig. 2(f)].

The above results offer a robust method to identify different
phases of a quantum lattice system by detecting its energy
bands. Normally, the flat band can induce periodical popu-
lation localization, which provides an auxiliary method for
identifying QPT via only probing the occupation of sites in
a single cell. In Fig. 3, we numerically calculate the local den-
sity of states (LDOS), ρn(E ) = ∑

lk |〈χn|φ jk〉|2δ(E − Ejk ),
where the subscript n differentiates three physical modes,
i.e., cavity modes A, B, and spins. |χn〉 is the basis state
corresponding to the occupation of mode n. The sum

∑
jk

runs over various energy bands in the first Brillouin zone, and
Ejk is the eigenvalue related to eigenstate |φ jk〉. Figures 3(a)
and 3(b) show the LDOS of cavity modes A, B and the spin
mode with respect to the middle band in the normal phase
and superradiant phase, respectively. In the normal phase, the
LDOS of cavity A at the flat band is zero; in other words, there
is no particle occupied in site A. But for cavity B and spins, the
LDOSs have regular Gaussian-like peaks. In such a regime,
both cavity B and spins are localized at the flat band E = ω,
while cavity A remains completely dark in that the destructive
interference between two channels cancels the net occupa-
tions in cavity mode A [see Fig. 3(c)]. Nevertheless, in the
superradiant phase, the destructive interference is destroyed,
causing the disappearance of flat-band localization. As shown
in Figs. 3(b) and 3(d), the cavities A, B, and spin modes are
all occupied. Therefore, in principle, the different phases of
the quantum lattice system can be identified by detecting the
localization effects of a single cell.

IV. 2D EXTENDED DICKE-HUBBARD LATTICE

Now we will extend our results to the case of a 2D extended
Dicke-Hubbard lattice, where the established connection be-
tween the flat band and QPT in the 1D model is still held.
As an example, we consider the 2D extended Dicke-Hubbard
lattice with a honeycomb structure, as shown in Fig. 4(a). We
assume the lattice constant |a| = √

3/3 and thus the basis vec-
tors read a1 = (1, 0) and a2 = (1/2,

√
3/2). Different from

1D lattice, here every cavity mode has three nearest neighbors,
and thus the interaction between two nearest-neighbor cavities
reads

H2D
int = − ζ

∑
i

[(
a†

A,ri
+ aA,ri

)(
a†

B,ri+e1
+ aB,ri+e1

)]
− ζ

∑
i

[(
a†

A,ri
+ aA,ri

)(
a†

B,ri+e2
+ aB,ri+e2

)]
− ζ

∑
i

[(
a†

A,ri
+ aA,ri

)(
a†

B,ri+e3
+ aB,ri+e3

)]
, (10)

with e1 = (0,
√

3/3), e2 = (−1/2,−√
3/6), e3 =

(1/2,−√
3/6). Here the sum

∑
i runs over all unit cells,

aA,ri (aB,ri ) is the annihilation operator for cavity mode A
(cavity mode B), and ri is the position vector in the ith unit
cell. Then the total Hamiltonian is

H2D =
∑

nA

HDicke
nA

+
∑

nB

HCavity
nB

+ H2D
int . (11)

We apply the same Holstein-Primakoff representation and
displacement process as before (see more details in

033463-4



INTERPLAY OF QUANTUM PHASE TRANSITION AND … PHYSICAL REVIEW RESEARCH 2, 033463 (2020)

FIG. 4. (a) Schematic illustration of a 2D extended Dicke-Hubbard lattice with a honeycomb structure. (b) The normal phase boundary
E 2Dl

nor (k, λ) = 0 (bottom branch) and superradiant phase boundary E 2Dl
sup (k, λ) = 0 (upper branch) intersect at the plane λ = λsc in the 3D

critical region labeled II. The normal and superradiant phases are labeled I and III, respectively. (c) The top view of (b) projected into the
plane λ = λsc, and the yellow-dotted curves are the analytical intersection curves satisfying f (kx, ky ) = 0. (d), (e) Energy structure of a 2D
extended Dicke-Hubbard lattice in the normal phase λ = 0.34ω and superradiant phase λ = 0.58ω, respectively. In the normal phase, the flat
band localizes at E = ω, but all energy bands become dispersive in the superradiant phase. Here we consider � = ωA = ωB = ω = 1 and
ζ = 0.12ω.

Sec. II), and perform a 2D Fourier transformation aA,k =
1√
N

∑
i aA,ri e

−ik·r, aB,k = 1√
N

∑
i aB,ri e

−ik·r. Then we obtain
the 6 × 6 coefficient matrix with the same form with Eq. (2)
in the normal phase and Eq. (9) in the superradiant phase, but

with f replaced by

f 2D = −ζ [1 + exp(ik · a1) + exp(ik · a2)], (12)

where k = (kx, ky). Diagonalizing the coefficient matrix, we
can obtain the eigenvalues of the system in the normal phase,

E2Dl
nor (k, λ) =

√√√√
ω2 − 2ω

√
ζ 2

[
3 + 2cos (kx ) + 4cos

(
kx

2

)
cos

(√
3ky

2

)]
+ λ2, (13)

E2Dm
nor (k, λ) = ω, (14)

E2Dh
nor (k, λ) =

√√√√
ω2 + 2ω

√
ζ 2

[
3 + 2cos (kx ) + 4cos

(
kx

2

)
cos

(√
3ky

2

)]
+ λ2, (15)

where we have taken ωA = ωB = � = ω. The eigenvalues
of the system in the superradiant phase are E2Dl

sup (k, λ),
E2Dm

sup (k, λ), and E2Dh
sup (k, λ), which have the complicated form

so, in the following, we show its numerical form.
As shown in Fig. 4(b), the 2D extended Dicke-Hubbard

lattice has a similar QPT property as the case of 1D shown in
Fig. 2(a). Specifically, there are three parameter regions, i.e.,
the normal phase, critical phase, and superradiant phase, with
increasing λ in the 3D parameter space in terms of λ, kx, and
ky. Now the boundaries of the normal and superradiant phases,
i.e., E2Dl

nor (k, λ) = 0 and E2Dl
sup (k, λ) = 0, overlap at the plane

λ = λsc. The overlapped curves satisfy f (kx, ky) = cos (kx ) +

2cos (kx/2)cos (
√

3ky/2) + 1 = 0, which is obtained by plug-
ging λ = λsc into the surface diagram, E2Dl

nor (k, λ) = 0. This
result is clearly demonstrated in Fig. 4(c), where the analyti-
cal overlapped curves [yellow-dotted curves corresponding to
f (kx, ky) = 0] are very consistent with the numerical results.

To show the connection between the flat band and QPT
in the present 2D model, in Figs. 4(d) and 4(e), we plot the
band structure of the system in the normal and superradiant
phases, respectively. It is clearly shown that the energy spec-
tra own three doubly degenerated bands, and there is a flat
band exhibiting at E = ω in the normal phase. Physically,
the chiral symmetry of the system and the initial resonant
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condition still exist in the 2D extended Dicke-Hubbard lattice,
which allows the flat band to persist in the normal phase. But
in the superradiant phase, the macroscopic excitations intro-
duce interaction-dependent excitation energy and additional
potential of spin ensemble, breaking up the on-site resonance
condition and off-site chiral symmetry of the lattice, respec-
tively, which makes all of the energy bands dispersive. This
result shows a good agreement with the 1D extended Dicke-
Hubbard lattice.

V. DISCUSSIONS AND CONCLUSIONS

Regarding experimental implementations, while we have
considered here a hybrid superconducting circuit with the
ensembles of spins in diamond crystal coupled to the transmis-
sion line resonators (forming the Dicke model) [59–64], our
proposal is not limited to this particular architecture and could
be implemented or adapted in a variety of platforms, e.g.,
atomic [65,66], molecular [67], and ferromagnetic [68–71]
systems coupled to superconducting cavities. For our specific
design, considering an ensemble with N ∼ 1012 spins and
the single spin coupling λ0 ∼ 10 Hz, an enhanced collective
coupling λ ≈ √

Nλ0 ∼ 10 MHz [59–64] allows our model
to reach an ultrastrong-coupling regime, which demonstrates
that the critical coupling of QPT can be readily realized
with state-of-the-art technology. To experimentally detect the
band structure, one of the most generally used techniques
is photoluminescence [24,25]. The emission of the sample
can be collected through a high numerical aperture objective,
dispersed in a spectrometer and detected by a CCD camera on
which the energy structure of either the real or the momentum
space can be directly imaged. Alternatively, as reported in
Ref. [72], a loop antenna mounted on a scanning system con-
nected to a vectorial network analyzer can be used to collect
the signal, both spectrally and spatially resolved, and further
allows one to obtain the local density of states.

We have investigated the quantum critical and energy-
band properties of an extended Dicke-Hubbard lattice and

established the connection between the flat band and the su-
perradiant phase transition. Comparing to the single Dicke
model, the extended Dicke-Hubbard lattice features rich equi-
librium dynamics dependent on the wave number k, including
the periodical boundaries of phases, and a critical region be-
tween the normal and superradiant phases. More importantly,
we found that the symmetry-protected flat band and the pop-
ulation localization are observed exclusively in the normal
phase of the system, which offers a robust method to detect
the phase of the system, as well as manipulate the flat band
of the lattice with QPT. Our work could inspire further explo-
ration regarding the interactions between quantum properties
associating with QPT (e.g., quantum entanglement, quantum
chaos [41,42]), the dynamical phase transitions [43,44,46],
and energy-band theory in the lattice systems.
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APPENDIX: DERIVATION OF THE INTERSECTIONS
IN THE CRITICAL REGION

In this section, we first derive the critical point of QPT in
the single unit cell. The Hamiltonian in the ith unit cell is

Hi = ωAa†
iA

aiA + �Jz
iA

+ λ√
N

(
a†

iA
+ aiA

)(
J+

iA
+ J−

iA

)
+ ωBa†

iB
aiB − ζ

(
a†

iA
+ aiA

)(
a†

iB
+ aiB

)
, (A1)

FIG. 5. (a)–(c) Plots of the normal phase boundary El
nor (k, λ) = 0 (lower solid curves) and superradiant phase boundary El

sup(k, λ) = 0
(upper dash-dotted curves) for ζ (1) = 0.10ω, ζ (2) = 0.18ω, ζ (3) = 0.22ω, respectively. They intersect at the middle straight lines λ = λ(i)

sc ,
where λ(i)

sc = √
�(ωA − 4ζ (i)2/ωB )/2 (i = 1, 2, 3) are the critical points of QPT occurring in a single cell. Here, Pn = 2nπ − 4π/3, Qn =

2nπ − 2π/3 are the x coordinates of the crossing points, and � = ωA = ωB = 1 are considered.
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where the third term describes N spins that collectively inter-
act with the single cavity mode with the coupling λ, and the
last term is the interaction between nearest-neighbor cavities.
Using the method proposed in Ref. [41], in a single unit cell
we can obtain the critical point as

λsc =
√

�(ωA − 4ζ 2/ωB)

2
. (A2)

Different from the normal Dicke model, the interaction be-
tween nearest-neighbor cavities introduces a shift towards
smaller spin-field couplings for the critical point in a single
unit cell.

Based on the above critical point of a single cell, let us
derive the coordinates of the crossing points in the criti-
cal region of the lattice system, i.e., (Pn, λsc) and (Qn, λsc)
shown in Fig. 5. Physically, when the periodical boundaries

of the normal and superradiant phases, i.e., El
nor (k, λ) = 0 and

El
sup(k, λ) = 0, intersect at the special values of k, our lattice

system undergoes a phase transition from the normal phase
directly to the superradiant phase with increasing λ, which is
same as the case of a single cell. Therefore, the λ coordinates
of the crossing points should be λsc and, in other words, the
curves El

nor (k, λ) = 0, El
sup(k, λ) = 0 and the straight line λ =

λsc should touch at the same point, which is clearly demon-
strated in Fig. 5. Therefore, by plugging λ = λsc into the
curves El

nor (k, λ) = 0 [Eq. (4)] or El
sup(k, λ) = 0 [Eq. (15)],

we can obtain the k coordinates of the crossing points sat-
isfying cos k = −1/2. Lastly, in the critical region of the
lattice system, the normal and superradiant phase boundaries
intersect at (Pn, λsc) and (Qn, λsc), with Pn = 2nπ − 4π/3 and
Qn = 2nπ − 2π/3 (n = 0,±1,±2, . . . ).
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