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Fine structure of heating in a quasiperiodically driven critical quantum system
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We study the heating dynamics of a generic one-dimensional critical system when driven quasiperiodically.
Specifically, we consider a Fibonacci drive sequence comprising the Hamiltonian of uniform conformal field the-
ory (CFT) describing such critical systems and its sine-square deformed counterpart. The asymptotic dynamics
is dictated by the Lyapunov exponent which has a fractal structure embedding Cantor lines where the exponent is
exactly zero. Away from these Cantor lines, the system typically heats up fast to infinite energy in a nonergodic
manner where the quasiparticle excitations congregate at a small number of select spatial locations resulting
in a buildup of energy at these points. Periodic dynamics with no heating for physically relevant timescales is
seen in the high-frequency regime. As we traverse the fractal region and approach the Cantor lines, the heating
slows enormously and the quasiparticles completely delocalize at stroboscopic times. Our setup allows us to tune
between fast and ultraslow heating regimes in integrable systems.
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I. INTRODUCTION

Symmetries and their associated conservation laws are
of tremendous help in solving physical systems with many
degrees of freedom. This is particularly true for interacting
quantum mechanical systems. Considering lower symmetry
systems may, however, not only bring about complications
but also allow for qualitatively new kinds of behavior. For in-
stance, the study of systems with broken translation symmetry
has brought to light the phenomena of Anderson and many-
body localization, ultimately shaking up certain foundational
beliefs of quantum statistical mechanics [1–4].

A symmetry that has long been untouched when studying
many-body quantum systems is that of time translation, lead-
ing to the conservation of energy. This negligence may be due
to the assumption that generic driven systems will eventually
heat up to infinite temperature, arguably a completely boring
state. In recent years, however, a much more nuanced picture
of driven quantum systems has emerged, including several
scenarios in which systems do not heat up or enter an ex-
ponentially long preheating phase with oscillatory dynamics.
Most studied are Floquet systems, in which time-translation
symmetry is broken to a discrete subgroup by a periodic drive.
They have been shown to avoid heating when integrable [5]
or when many-body localized [6,7], providing a curious link
between broken translation symmetry in space and (partially)
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in time. So-called time crystals even allow for the spontaneous
breaking of time-translation symmetry [8–11]. A central ques-
tion concerning the absence of heating in driven systems is
regarding its stability, that is, whether it is robust or requires
a large amount of fine tuning and can therefore never be
observed in practice.

In this work, we study heating in a system with broken
time and space translation symmetry. We uncover (i) a fractal
phase diagram with lines of vanishing heating surrounded
by regions of very slow heating and (ii) heating phases with
a particular structure of hot spots where the energy density
increase nucleates. The latter finding demonstrates that even a
heating regime can support nontrivial emergent structures as a
system is driven towards the infinite-temperature fixed point.
Our system breaks translation symmetry in space via a smooth
deformation of hopping parameters, rather than short-range
correlated disorder, and in time due to a quasiperiodic drive,
which has also been in the focus of several other recent works
that study (the absence of) heating [12–16].

Studying nonperiodically driven, disordered many-body
quantum systems is about the hardest setting that can be imag-
ined. In order to make analytical progress, we compensate for
the lack of time and space translation symmetry by allowing
ourselves access to the infinitely generated conformal sym-
metry group. Concretely, we study a driven conformal field
theory (CFT), where the time-evolution operator alternates
between a uniform (1 + 1)-dimensional CFT and one of its
nonhomogeneous versions known as sine-square deformation
(SSD) [17–22], first introduced in the context of lattice sys-
tems as an efficient way to suppress boundary effects [23–28].
This setup has been previously studied with a periodic Flo-
quet drive, where it displays a rich phase diagram with both
heating and nonheating phases [29–31]. Our quasiperiodic
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drive sequence is generated by a deterministic recursion re-
lation that does not contain any periodic pattern. Such a
protocol is inspired from quasicrystals with a quasiperiod-
icity in space, which have been intensively studied in the
past [32,33]. More precisely, here we study a protocol that
alternates between homogeneous CFT and SSD according to
the celebrated Fibonacci sequence. This results in an exactly
solvable quasiperiodically driven interacting model.

Focusing on the evolution of the total energy and the
Loschmidt echo, we show that the energy (almost) always
increases exponentially at large times while the Loschmidt
echo decays exponentially. Both quantities are controlled by
the same rate, called the Lyapunov exponent L. Thus, the sys-
tem generically and unsurprisingly heats up. However, we find
that this happens with a remarkably broad range of heating
rates, depending on the parameters of the drive. We observe
fast heating areas analogous to the Floquet setup, as well as
regions where the heating rate is very slow, with L close to
zero. Moreover, there exists a region of the parameter space
where L is exactly zero, so that the system escapes heating
even at infinite times, but this region has a Cantor set fractal
structure of zero measure. Forming a measure zero subspace,
these regions are not directly accessible. However, they are
evidenced by very slow heating neighborhoods in parameter
space which remain nonheating for all experimentally and
physically relevant timescales.

The paper is organized as follows. In Sec. II, we set up
the Fibonacci quasiperiodic drive while in Sec. III we collect
some technical details related to CFT computations that are
employed in the rest of the paper. In Sec. IV we describe
the dynamical phase diagram constructed from the Lyapunov
exponent and compare and contrast different regions therein
based on the time evolution of two observables, namely the
total energy and the Loschmidt echo. In Sec. V, we map the
unitary evolution of our setup to a classical dynamical map
known as the Fibonacci trace map and use it to prove that
the region of vanishing Lyapunov exponent (nonheating at
infinitely long times) forms a measure zero subset of the pa-
rameter space. In Sec. VI, we provide an analytical treatment
for the high-frequency regime. In Sec. VII we discuss the
quasiparticle picture and finally describe related numerics in
Sec. VIII. We provide further details on CFT computations
of the Loschmidt echo, the Fibonacci trace map, the high-
frequency expansion and a “Möbius” generalization of our
quasiperiodic drive in several Appendices.

II. SETUP OF THE FIBONACCI DRIVE

We consider a spatial deformation of a generic homoge-
neous (1 + 1)-dimensional CFT with central charge c and of
spatial extent L defined by the Hamiltonian

H[ f ] =
∫ L

0
dx f (x)T00(x), (1)

where T00(x) is the energy density of the CFT. These inho-
mogeneous conformal field theories have been studied in the
context of quantum quenches [34–38] and out-of-equilibrium
dynamics [39,40].

In terms of the Virasoro generators Ln and Ln, in the
Euclidean framework with imaginary time τ , the uniform
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FIG. 1. Top: Uniform Hamiltonian H and the SSD Hamiltonian
H̃. Bottom: Fibonacci quasiperiodic drive. The time evolution fol-
lows the relation (2). At every Fibonacci step n, the time evolution
involves Fn+1 unitary operators, comprising Fn−1 times U0 and Fn

times U1.

CFT Hamiltonian defined as H := H[1] = 2π
L (L0 + L̄0) is

obtained by taking f ≡ 1, and the so-called sine-square
deformation (SSD) is defined as H̃ := H[2 sin2 ( πx

L )] =
2π
L [L0 − 1

2 (L1 + L−1) + L̄0 − 1
2 (L̄1 + L̄−1)]. The advantage

of such sine-square deformation of the CFT is that these
theories have been widely studied in the context of dipolar
quantization [18,20]. Furthermore, because of the SL(2,C)
structure of such a deformation, the full time evolution with
the SSD Hamiltonian can be obtained analytically [41].

Recently, in Refs. [29–31], the Floquet dynamics of an in-
teracting critical field theory based on a step drive alternating
periodically between the undeformed H and the deformed
Hamiltonian H̃ was studied. Based on a classification of
Möbius transformations which encode the time evolution of
the system over one period via a conformal mapping [29],
a phase diagram comprising both heating and nonheating
phases was obtained. The heating was shown to be related to
the emergence of black hole horizons in space-time and inher-
ently nonergodic [30]. In the extreme limit of a purely random
drive, the system was shown to lead to always heat up [31].
A natural question is what happens in the intermediate case,
where the driving protocol is neither periodic nor completely
random; i.e., the case of quasiperiodic driving where the drive
is determined by a recursion relation, but for which one cannot
extract any periodic pattern. We address this question in the
present work.

A canonical choice is Fibonacci driving, where the relevant
recursion relation which determines the driving sequence is
the Fibonacci relation, defined as [12,13]

Un+2 = UnUn+1, (2)

with initial conditions U0 = e−iT̃ H̃ and U1 = e−iTH, where T
and T̃ are the periods of the stroboscopic steps with respec-
tively H and H̃. Denoting the pulse associated with H as A
and the pulse associated with H̃ as B, the first few terms in the
drive sequence are ABAABABAABAAB . . . , as illustrated in
Fig. 1. Such a drive is defined by three parameters: (T, T̃ , L).

In particular, the number of unitary operators at the step
n is given by Fn−1 for U0 and Fn for U1, where Fn is the nth
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Fibonacci number, giving Fn+1 unitary operators at the step
n. Therefore, the number of operators at the step n grows
exponentially with n; for large n, Fn scales as �n√

5
, where

� = 1+√
5

2 is the Golden ratio. For practical purposes, we also
introduce a “stroboscopic” time which counts the unitary op-
erators one by one, that we denote by N . One way to count the
evolution operators one by one is to introduce ν(N ) ∈ {0, 1},
with ν(N ) = �(N + 1)�� − �N�� − 1. If ν(N ) = 0, the uni-
tary operator which appears at step N is U0, and if ν(N ) = 1
the unitary operator at step N is U1. The main question is to
understand whether a nonheating region can still survive in
the quasiperiodic drive, or if only heating will exist as in the
random case.

III. METHODOLOGY

The full time evolution under the quasiperiodic drive is
obtained in a similar way as for the periodic case [29–31]: we
first note that in the Heisenberg picture the time evolution of
any primary field φ(x, T̃ ) = eiH̃T̃ φ(x, 0)e−iH̃T̃ amounts to a
simple conformal mapping. This can be seen by (i) rotating
to imaginary time t → τ and (ii) mapping the space-time
manifold to the complex plane with the exponential mapping
z = e

2π (τ+ix)
L , and finally (iii) using the fact that the time evo-

lution is encoded in a particular conformal transformation of
the complex plane, denoted z̃0(z). Following this procedure,
the full time evolution of the primary field φ of conformal
weight h = h̄ is given by

φ(x, τ̃ ) =
(

2π

L

)2h(
∂ z̃0

∂z

)2h(
∂ ¯̃z0

∂ z̄

)2h

φ(z̃0, ¯̃z0), (3)

with z̃0(z) given by a simple Möbius transformation

z̃0(z) =
(
1 + πτ̃

L

)
z − πτ̃

L
πτ̃
L z + (

1 − πτ̃
L

) . (4)

Similarly, the time evolution with respect to H is a simple
dilation in the complex plane, such that in Eq. (3) z̃0 → z̃1 =
e

2πτ
L z.
Consequently, the Fibonacci time evolution with the

Fibonacci quasiperiodic drive amounts to composing the con-
formal mappings z̃1(z) and z̃0(z) following the recursion
relation [see Eq. (2)]

z̃n+2(z) = z̃n ◦ z̃n+1(z). (5)

Equivalently, time evolution with the stroboscopic time N can
also be obtained via the recursion relation

z̃N (z) = z̃ν(N ) ◦ z̃N−1(z). (6)

The group properties of the invertible Möbius transformations
directly imply that z̃N is also a Möbius transformation for
any step N . We can then introduce the matrices MN with unit
determinants associated with the conformal transformations
z̃N , such that the stroboscopic time evolution amounts to a
sequential multiplication of SL(2,C) matrices with the recur-
sion relation MN = Mν(N )MN−1; and, for the Fibonacci times

n such that N = Fn+1, the relation is Mn+2 = MnMn+1, where

M0 =
(

1 + iπ T̃
L − iπ T̃

L
iπ T̃

L 1 − iπ T̃
L

)
, M1 =

(
eiπT/L 0

0 e−iπT/L

)
,

and the general matrix after N steps is denoted by

MN =
(
αN βN

γN δN

)
. (7)

To address heating in this quasiperiodic problem, we
compute the time dependent energy density, E (x, t ) =
〈ψ (t )|T00(x)|ψ (t )〉, where |ψ (t )〉 is the time evolved ground
state |G〉 under the quasiperiodic drive. We choose our initial
state |G〉 to be the ground state of the uniform CFT H with
open boundary conditions. Such a state is in general not an
eigenstate of H̃, and therefore the time evolution under the
drive is nontrivial. For the sake of clarity, we now consider
the case T = T̃ . Using boundary CFT techniques, [30,31] the
total energy E (t ) = ∫ L

0 dx E (x, t ) computed at stroboscopic
times t = NT , depends solely on the matrix MN and takes the
following explicit form:

E (t = NT ) = πc

8L

αNδN + βNγN

αNδN − βNγN
, (8)

where c is the central charge of the CFT.
Another quantity of interest is the Loschmidt echo F (t ),

which is a measure of revival or coherent evolution in the
system. It is determined by the overlap between the initial
ground state |ψ (0)〉 = |G〉 and its time evolved counterpart
|ψ (t )〉, F (t ) = |〈ψ (0)|ψ (t )〉|2, and can be easily accessed in
the context of boundary-driven CFTs [42]. For any |G〉 =
limz,z̄→0 φ(z, z̄)|0〉, where φ(z, z̄) is a primary field of the
boundary theory with conformal weights (, ̄), and |0〉 be-
ing the SL(2,C) invariant vacuum, one obtains

F (t = NT ) =
∣∣∣∣αNδN − βNγN

δ2
N

∣∣∣∣2(+̄)

. (9)

The derivation of this formula for the Floquet CFT problem
is presented in Appendix A. As we will show later, E (t )
and F (t ) are formally related and this will help provide a
clear characterization of the physics induced by quasiperiodic
driving. We note that the conformal weights (, ̄) of the
primary field generating the ground state with open boundary
conditions do not appear in the expression of the energy (8).
This is a consequence of the fact that 〈G|T (z)|G〉H evaluated
on the upper half-plane H, or equivalently on the unit disk,
vanishes because of rotational symmetry [43].

IV. DYNAMICS OF HEATING

As in dynamical systems [44], the growth of strobo-
scopic total energy or the decay of the Loschmidt echo for
a quasiperiodic drive can be characterized by a Lyapunov ex-
ponent L defined by (see Ref. [45] for a review on Lyapunov
exponents)

L = lim
N→∞

1

N
ln Tr(MN )2. (10)

Equivalently, the corresponding exponent for the Fibonacci
time reads L = limn→∞ 1

Fn+1
ln Tr(Mn)2. As we will show, if

the Lyapunov exponent L > 0, then the system will heat, and
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FIG. 2. Phase diagram obtained from the Lyapunov exponent
[Eq. (10)] for the Fibonacci drive. The high-frequency regime around
point (a) corresponds to non-heating phases whereas the bright re-
gions, for instance around point (c), correspond to heating phases.
For clarity, only two Cantor lines where the Lyapunov exponent
is strictly zero are shown in this phase diagram. To elucidate the
fractal structure of the phase diagram, we zoom successively across
a representative horizontal cut indicated by the red dashed lines.
As we approach the Cantor points embedded in this cut, the sys-
tem starts to manifest slow heating concomitant with an increasing
stroboscopic delocalization of the quasiparticle excitations. The three
points marked (a), (b), and (c) represent these three regimes and will
be extensively discussed in the rest of the paper.

the heating rate is precisely given by L. Since the structure of
the matrix M is known, the Lyapunov exponent can be numer-
ically computed for all T, T̃ , for a sufficient large number of
iterations N .

For the Fibonacci quasiperiodic drive, the Lyapunov ex-
ponent traces the phase diagram shown in Fig. 2. Different
regions emerge, some of them correspond to a strong heating
with high Lyapunov exponent, whereas other regions display
a fractal structure and rather small values of the Lyapunov
exponent. This raises the following questions: are these two
regions heating and, if yes, are they heating the same way?
To answer these, we explicitly compute the stroboscopic evo-
lution of the total energy E (t ) and the Loschmidt echo F (t )
using Eqs. (8) and (9).

First, note that in Eq. (7) αN = δ∗
N because MN ∈ SL(2,C)

and because of the form of M0 and M1. Parametrizing
αN = RN eiφN , we obtain Tr2(MN ) = 4R2

N cos2(φN ), and the
constraint that MN has a unit determinant implies αNδN −
βNγN = 1 and αNδN + βNγN = 2|αN |2 − 1 = 2R2

N − 1. Us-
ing these relations, the stroboscopic energy E (t = NT )
defined in Eq. (8) satisfies

Tr(MN )2 =
[

16L

πc
E (NT ) + 2

]
cos2(φN ). (11)

Similarly, the Loschmidt echo, Eq. (9), can also be simplified,
and we obtain

F (t ) =
∣∣∣∣αNδN − βNγN

δ2
N

∣∣∣∣2(+̄)

=
(

2
8L
πc E (t ) + 1

)2(+̄)

.

(12)

We now establish that the Lyapunov exponent L is indeed
the heating rate in the long-time limit. From Eqs. (10) and
(11), we see that the Lyapunov exponent

L = lim
N→∞

1

N
ln

([
16L

πc
E (t ) + 2

]
cos2(φN )

)
. (13)

Since the oscillatory term limN→∞ 1
N ln[cos2(φN )] becomes

negligible at long times, we infer that for an exponential
growth of total energy the Lyapunov exponent indeed deter-
mines the heating rate at long times:

E (t ) ∼
t→∞

eLt/T ,

F (t ) ∼
t→∞

e−2(+̄)Lt/T . (14)

This gives a physical meaning for the Lyapunov exponent,
which sets the timescale after which the system will loose its
coherence as the Loschmidt echo decays exponentially to 0.
In the case of a periodic drive, the stroboscopic evolutions of
E and F show one of three distinct behaviors: (i) E grows
exponentially and F decays exponentially with time in the
heating phase, (ii) E and F oscillate with time in the nonheat-
ing phase, and (iii) E grows quadratically and F decays as a
power law with time at the transition between the heating and
nonheating regimes. The results for the quasiperiodic drive
are summarized in Fig. 3 where we show three representative
scenarios indicated by the dots [(a), (b), (c)] in Fig. 2. In
the high-frequency regime, T, T̃ � L in Fig. 3(a2), L is very
small and the total energy and the Loschmidt echo oscillate
with time akin to the periodic case, illustrating that the system
avoids heating for a very large number of drive cycles. In
Fig. 3(c2), L is large and we see standard heating, i.e., ex-
ponential growth of energy concomitant with an exponential
decay of the echo, modulo some oscillations that were not
present in the periodic drive case. However, for the case of
T, T̃ corresponding to Fig. 3(b2) where L changes sharply
[see point (b) in Fig. 2], new behavior emerges. We see that
the energy mostly fluctuates and shows very slow growth,
while the Loschmidt echo decays slowly and displays strong
revivals. A fundamental question is then to understand if there
exist regions in the phase diagram which can always avoid this
exponential growth of energy even at arbitrary long times. We
note that at the transition lines T = kL, for any k ∈ N and any
T̃ , limN→∞ z̃N = 1, and the oscillatory term cos(φN )2 ∼ 1

N2

as N goes to infinity. Therefore this term is not negligible
anymore and the energy will grow quadratically even though
Tr(MN )2 is bounded, thus the Lyapunov exponent is zero. The
Loschmidt echo is then decaying quadratically to 0 as a con-
sequence of Eq. (12). Therefore the asymptotic formula (14)
is not valid on the transition lines T = kL. We note that this
quadratic growth of the total energy was already observed in
periodic drive at T = kL [30,31], together with a logarithmic
growth of entanglement entropy. This dynamics effectively
corresponds to a single quantum quench with H̃. This can be
understood from the quasiparticle picture: if T = kL, after the
time evolution with H, the quasiparticles will go back to their
initial positions. Therefore effectively the system only evolves
with H̃, implying that all the energy of the system accumulates
at the edges of the system, and grows quadratically.

The behavior of the energy and the echo are dictated by
the stroboscopic evolution of the Möbius transformations z̃N
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(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

FIG. 3. Top: Flow of the conformal mapping z̃N when driven by the Fibonacci sequence with T = T̃ for up to N = 1000 and L = 100.
With reference to the phase diagram: (a1) T = 1, in the high-frequency regime the system escapes heating and such a flow is dense on the unit
circle. (b1) T = 55.101, in the slow heating regime, the excitation alternate between a large number of recurring regions. (c1) T = 78, as the
system strongly heats up, the excitations localize in the system and z̃N only has a few recurring points. Bottom: Stroboscopic time evolution
of the logarithm of the total energy E (t = NT ), as a function of the number of iterations N . (a2) In the non-heating high-frequency regime
the energy only oscillates, (b2) in the fractal regime the energy fluctuates and increases very slowly, and (c2) in the heating regime the energy
grows exponentially fast with minimal fluctuations. The red dashed lines correspond to the heating rates of the exponentially growing energy
at long time, given by the Lyapunov exponent (10).

given by Eq. (6). For periodic driving, the nonheating phase
is characterized by a z̃N which oscillates with N and a pe-
riodically oscillating energy [30]. In the heating phase, z̃N

converges to a stable fixed point, limn→∞ z̃N = γ1, where
γ1,2 are respectively the stable and unstable fixed points of
the one-cycle Möbius transformation. This in turn leads to
the creation of two stroboscopic horizons at spatial points
xc and L − xc determined by the unstable fixed point of the
Möbius transformation, γ2 = e2π ixc/L and γ ∗

2 = e2π i(L−xc )/L, at
which the energy accumulates at large times. For quasiperi-
odic driving the situation is more subtle. In the high-frequency
regime, z̃N traces the unit circle with increasing N . The total
energy oscillates periodically in this parameter regime [see
Fig. 3(a1)]. In regimes where the Lyapunov exponent is large,
z̃N almost converges to a fixed-point-like scenario but alter-
nates between a small set of points, cf. Fig. 3(c1), resulting
in small fluctuations of the energy. The extreme case of this
subset comprising only one point corresponds to the heating
regime of the periodic drive discussed earlier. As the value of
the Lyapunov exponent decreases and approaches parameter
zones where the fractal nature of L becomes apparent, the flow
of z̃N becomes more and more dense on the unit circle as seen
in Fig. 3(b1), leading to strong fluctuations concomitant with
a very slow growth of the total energy. It is in these regimes
that interesting slow dynamics manifests.

V. FRACTAL STRUCTURE OF HEATING

We remark that the fractal structure of L in Fig. 2 as a
function of T, T̃ is very reminiscent of the spectra of a one-
dimensional Fibonacci quasiperiodic crystal [46,47]. In this

section, we will demonstrate that the fractality of L in our Fi-
bonacci quasiperiodic drive of the CFT can indeed be related
to the spectral properties of the Fibonacci chain described by
the following tight-binding Hamiltonian:

Hmn = δm,n+1 + δm+1,n + δm,nλv(n), (15)

where v(n) is either 0 or 1 following the Fibonacci sequence,
v(n) = |ν(n − 1) − 1|.

As discussed in Appendix B, the spectrum E of this Hamil-
tonian is similar to the Cantor set for any value of λ. To see
this, we note that the transfer matrix Tn satisfies the Fibonacci
recursion relation, Tn+1 = Tn−1Tn. Since Tn ∈ SL(2,C), it sat-
isfies the trace identity [46]:

Tr(Tj+1) = Tr(Tj )Tr(Tj−1) − Tr(Tj−2). (16)

Introducing x j = 1
2 Tr(Tj ), y j = 1

2 Tr(Tj+1), and z j =
1
2 Tr(Tj+2), we see that the trace identity defines a discrete
dynamical map T called the Fibonacci trace map,

T : R3 → R3, (xi, yi, zi ) �→ (yi, zi, 2yizi − xi ). (17)

The dynamics of a point (xi, yi, zi ) are restricted to a sur-
face defined by the invariant I (x j, y j, z j ) = x2

j + y2
j + z2

j −
2x jy jz j − 1. For the Fibonacci chain, I = λ2

4 , and the corre-
sponding set of bounded orbits under the trace map T for a
positive value of the invariant is related to the spectrum E of
the quasicrystal, which forms a Cantor set of measure zero.

Based on the fact that the time evolution of the quasiperi-
odic Fibonacci drive is encoded in products of SL(2,C) ma-
trices Mn obeying the Fibonacci sequence Mn+1 = Mn−1Mn,
we expect Mn to satisfy a trace relation analogous to (16).
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FIG. 4. Flow of the Fibonnacci trace map in the high-frequency
phase, for L = 100 and T = T̃ = 1, for 500 iterations of the trace
map. In this region, the trace map (17) stays bounded within the
central part of the manifold (19) determined by the invariant (18) for
a very large number of iterations. In the other regimes, this map will
typically be unbounded, apart from a set of parameters of measure 0.

This implies that the trace of the matrix Mn encoding the time
evolution after Fn+1 iterations is completely determined by the
orbit of the trace map (17). The initial point is simply given by
(1, cos ( πT

L ), cos ( πT
L ) − π T̃

L sin ( πT
L )), and the corresponding

invariant is

I =
[
π T̃

L

]2

sin2

(
πT

L

)
. (18)

Clearly this invariant is always positive, and the associated
manifold explored by the trace map is{

(x, y, z) ∈ R3 | I (x, y, z) =
[
π T̃

L

]2

sin2

(
πT

L

)}
. (19)

This manifold is noncompact and comprises a central piece
connected to four of the eight octants of R3, as shown in
Fig. 4. As we iterate the trace map, orbits typically originate
in the central region of the manifold and escape to infinity
with a particular escape rate. As in the Fibonacci chain, a
sufficient condition for an orbit to escape to infinity is that
at some iterative step j [47]

|x j | > 1,

|x j−1| > 1, (20)

|x j−1||x j | > |x j−2|.
A particular case of a bounded orbit is the trivial fixed point

(1,1,1) of the mapping (17), which corresponds to the limits
T/L = T̃ /L = 0 for the Fibonacci drive. This fixed point acts

as a saddle point: some points in its vicinity will stay bounded
for a very large number of iterations of the trace map, whereas
some other points will be strongly repelled, i.e., their orbit will
escape quickly. This is characteristic of the high-frequency
limit T/L, T̃ /L � 1: if T > 0, (1,1,1) acts as an attractor and
the trace of the Mn stays bounded under T for a large number
of iterations, as seen in Fig. 4. The system thus avoids heating
for times which are longer than physically relevant timescales.
In the case T < 0, or equivalently taking H = −H[1], the
orbits diverge away from (1,1,1) and the system heats up only
after a few iterations of n. Consequently, due to its proximity
to the fixed point (1,1,1) of the Fibonacci trace map, we
expect a robust high-frequency expansion for the Fibonacci
quasiperiodically driven problem. A second particular case is
the family of transition lines T/L ∈ N, with arbitrary T̃ /L, for
which the initial point is (1,±1,±1), whose orbit is bounded.
Therefore at those particular lines Tr(Mn) stays bounded;
however, as discussed in the previous section the oscillatory
term in Eq. (13) is not negligible anymore and the energy
grows quadratically, as for a single quench with the Hamil-
tonian H̃ .

The case for arbitrary T/L and T̃ /L is more subtle. The
trace map discussed above helps us make the following iden-
tifications between the driven case and the one-dimensional
quasicrystal:

E = 2 cos

(
πT

L

)
,

λ = 2π T̃

L
sin

(
πT

L

)
. (21)

Note that in the Fibonacci crystal the spectrum E of the
system for any positive λ is a Cantor set. This means that, for
a given λ, any E ∈ spec(H ) ∩ [−2, 2] specifies a particular
value of T/L and T̃ /L such that Tr(Mn) stays bounded for
an infinite number of iterations of the trace map, i.e., infinite
stroboscopic and Fibonacci times. The spectrum E for a given
value of the coupling λ defines the points in the T, T̃ phase
diagram at which no heating takes place under the quasiperi-
odic driving at Fibonacci steps n, as illustrated in Fig. 6 in
Appendix B. The nonheating regime forms a Cantor set for a
fixed value of T̃ and have subdimensional line-like locus in
the parameter space. We refer to these as the nonheating lines.
This also explains the fractal structure of the phase diagram
where the Lyapunov exponents approach 0 [Eq. (17)]. Gaps
in E (λ) correspond to regions with high Lyapunov exponents
in Fig. 2, concomitant with strong heating. In this regime,
the orbits of the trace map or equivalently, Tr(Mn) diverge
super-exponentially once it leaves the bounded central zone.
A correct numerical evaluation of the Lyapunov exponent (10)
requires that we consider n for which Tr(Mn) has already
escaped, i.e., satisfies the conditions (20). To summarize, we
see that since nonheating points constitute a Cantor set of
measure zero, the quasiperiodically driven CFT will typically
heat up for arbitrary (T, T̃ , L).

VI. HIGH-FREQUENCY REGIME

The Fibonacci trace map argument shows that the sys-
tem will typically heat up infinitely for any choice of T, T̃
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and L, modulo a Cantor set which is not physically acces-
sible. Nonetheless, there exist regions in the phase diagram
where heating times are so large that for physically relevant
times the system is effectively in the nonheating regime. An
example for such a regime is the high-frequency region of
the phase diagram, T, T̃ � L. For quasiperiodic drives, de-
spite the deterministic time evolution given by Eq. (2) for
all (T, T̃ , L), it is difficult to obtain a stroboscopic effective
description. This is because the approach of the periodic drive
wherein the n-cycle drive can be recast as a composition
of n one-cycle Möbius transformations is inapplicable here.
However, an effective Hamiltonian can indeed be obtained in
the high-frequency regime, T = T̃ � L.

In the high-frequency regime, we first note that commu-
tators in the Baker-Campbell-Haussdorf expansion can be
approximated as

e−iHT e−iH̃T ≈ e−iT (H+H̃+i T
2 [H,H̃]). (22)

This simplification enables the calculation of an effective
Hamiltonian H(N )

eff defined as U (N ) = e−iNTH(N )
eff , describing

the dynamics of the system at stroboscopic time step N . We
reiterate that N is the stroboscopic time and not the Fibonacci
time. As for the periodic drive [30], the SL(2,R) structure
of the SSD Hamiltonian dictates that H(N )

eff be some linear
combination of L0, L1, and L−1. Fixing this linear combina-
tion reduces to enumerating the number of times H, H̃, and
[H, H̃] appear in the time evolution operator U (N ). Using the
approach introduced in Ref. [12], we obtain

H(N )
eff = ρ(N )

N
H + σ (N )

N
H̃ + i

T

2

τ (N )

N
[H, H̃], (23)

where

σ (N ) = 2N −
N∑

m=1

(ν(m) + 1),

ρ(N ) = N − σ (N ), (24)

τ (N ) =
N∑

m=1

[
ν(m)(m − 1) −

⌊
m�

� + 1

⌋]
.

At every step N , the effective Hamiltonian is a SL(2,R)
deformation of the uniform CFT. This fN (x) deformation in
the high-frequency regime is obtained to be

ρ(N )

N
+σ (N )

N
− σ (N )

N
cos

(
2πx

L

)
+ πT

L

τ (N )

N
sin

(
2πx

L

)
.

(25)
As shown in Ref. [30], if this deformation goes to zero

at some locations, heating can occur via the accumulation
of energy at stroboscopic times at these locations. In this
regime, the quadratic Casimir of SL(2,R) is negative, c(2) =
a2 − b2 − c2 < 0, for a deformation of the form f (x) = a +
b cos ( 2πx

L ) + c sin ( 2πx
L ). In the quasiperiodic case, we find

that fN (x) (25) oscillates around the corresponding deforma-
tion for a purely periodic drive in the high-frequency regime:
f (x) = 1 − 1

2 cos( 2πx
L ) (see Fig. 7 in Appendix C). Clearly,

since the deformations remain nonzero, no heating occurs
even at very large times. This is supplemented by the fact that
in the high-frequency regime the Casimir invariant c(2)(N )

remains positive for large N as long as we stay in the high-
frequency regime (see Appendix C). This agrees with the trace
map picture as in the high-frequency phase the orbit of the
trace map stays bounded for a very large number of iterations
as it is in the vicinity of the fixed point (1,1,1).

Heating phases can also be accessed within this high-
frequency effective Hamiltonian formalism. This can be
achieved by considering H �→ −H. Substituting ρ(N ) �→
−ρ(N ) in Eq. (25) we obtain the corresponding deformation
of the effective Hamiltonian in this regime. We again see that,
with increasing N , fN (x) oscillates around that of the cor-
responding periodic drive, f (x) = − 1

2 cos ( 2πx
L ), which has

horizons at xc = L/4 and L − xc. To summarize, we have es-
tablished the existence of parameter regions where the system
avoids heating for any physically relevant timescale.

VII. QUASIPARTICLE PICTURE

In this section, we discuss the physical significance of the
fractality of the phase diagram and the associated flows of
the Möbius transformations presented in Sec. IV. As seen
earlier, in the three representative cases for the Lyapunov
exponents, the growth of energy as well as the Loschmidt
echo manifest important differences stemming from the na-
ture of the flows. We will now show that the structure of
these flows are indeed crucial to understanding the nature of
the heating. This is easily done in the quasiparticle picture,
where one can track the time evolution of spatial distribution
of the excitations. First, note that as we are dealing with a
CFT, during time evolution with the uniform Hamiltonian
H, the excitations which are ballistic trace straight lines in
space-time. Choosing T = T̃ , a quasiparticle located at x0

at t = 0 will reach ±x(T ) = x0 ± T at t = T , where the ±
corresponds to right and left movers respectively (the velocity
has been set to 1). Similarly, for a time evolution with the
SSD Hamiltonian H̃, the excitations follow null geodesics in
a curved space-time determined by the spatial inhomogeneity
[34],

±xN = L

π
arccot

(
∓ 2πT

L
+ cot

(
πxN−1

L

))
, (26)

where we denote xN := x(t = NT ). The stroboscopic posi-
tion xN of the quasiparticles for any initial position x0 can
now be obtained by concatenating the curved space geodesics
and the straight lines in a sequence fixed by the Fibonacci
drive.

We find three representative behaviors depending on the
values of T = T̃ . In the high-frequency regime where the
flow is periodic and does not have fixed points and the Lya-
punov exponent L ∼ 0, the excitations evolve periodically
in time akin to the energy for accessible timescales as seen
in Fig. 5(a1). In the opposing regime of large L, we see
that after a few cycles of the quasiperiodic drive the tra-
jectories of the excitations collapse onto a unique trajectory
independent of the choice of initial conditions, leading to
a localization effect. This trajectory alternates between a fi-
nite number of fixed points at stroboscopic times, as seen
in Fig. 5(c1). Such fixed points of the stroboscopic trajec-
tories of the quasiparticles are given by the flow of z̃n in
Fig. 3(c1). This is similar to the coherent heating phase of
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(a1) (b1) (c1)

(a2) (b2) (c2)

FIG. 5. Top: Stroboscopic quasiparticle evolution as a function of both space and time predicted by the CFT for a variety of initial
conditions. (a1) High-frequency phase, T/L = 0.01, where the quasiparticle excitations evolve ballistically in an effective curved space-time.
(b1) Fractal region, T/L = 0.55101. Beyond a transient time of approximately 400 stroboscopic steps, the quasiparticle trajectories collapse
onto a a unique trajectory independent of the initial conditions. The quasiparticles stroboscopically explore more and more regions of space
as one approaches the Cantor line. (c1) High Lyapunov region, T/L = 0.78. Here, for all initial conditions and after very few time steps the
time evolution collapses onto a single trajectory alternating between a few fixed points. Bottom: A comparison between CFT prediction for
the Loschmidt echo [Eq. (9)] for the quasiperiodically driven CFT and the analogous quantity for free fermions hopping on a lattice, given
by Eq. (27), for the three different regimes. In the high-frequency regime (a2) both completely agree. In the strongly heating (c2) regime they
agree for a large number of stroboscopic steps. In the slow-heating regime (b2), because of the fractal structure of the phase diagram, the
numerical results strongly depend on the number of lattice sites.

the periodic drive, for which the excitations at stroboscopic
times localize at two points in space, understood as hori-
zons. The energy grows exponentially with time at these
fixed points, whose positions depend on the parameters of the
drive.

However, in the fractal region of the phase diagram for
the quasiperiodic drive, Fig. 5(b1), the situation is more com-
plex. As before, the propagation of the excitations depends
on the initial conditions up to a transient time t0, and the
total energy in the system does not increase significantly.
After this transient period, the excitations all follow the same
trajectory independently of their initial position and localize,
but the principal difference with the high Lyapunov case is
the manifestation of a large number of recurring points at
stroboscopic times; see Fig. 5(b1). As one approaches a point
in the Cantor set where L = 0 the flow diagram Fig. 5(b1)
is densely filled. Here, we expect this transient time t0 → ∞
concomitant with very slow increase of the energy. This slow
dynamical evolution can be understood by noting that at the
Cantor points the trace map remains bounded for all times.
Since Tr(Mn)2 also remains bounded, the energy given by
(11) cannot diverge at Fibonacci steps. To summarize, we see
that by tuning the parameters of the drive T and T̃ we can
encounter regions with fast heating, with a localization of the
excitations, as well as regions with very slow heating, where
excitations remain delocalized for large times, as opposed to
a purely random drive.

VIII. NUMERICAL RESULTS

In this section we present numerical results on the free
fermion chain for the Loschmidt echo. The quasiperiodic
drive is induced by the two Hamiltonians given by

H = 1

2

L−1∑
i=1

c†
i ci+1 + H.c.,

H̃ =
L−1∑
i=1

sin2

(
π i

L

)
c†

i ci+1 + H.c., (27)

where ci and c†
i are fermionic operators satisfying the

usual anticommutation rules. Then, following the strategy of
Ref. [29], one can get the stroboscopic time evolution under
the quasiperiodic drive, starting from the ground state with
open boundary conditions, |G〉. The Loschmidt echo can then
be computed numerically, F (NT ) = |〈G|U (NT )|G〉|2, and
we compare it to the CFT prediction, given by Eq. (9).

The explicit comparison is shown in Fig. 5. In the high-
frequency domain, Fig. 5(a2), as well as in the high Lyapunov
region, Fig. 5(c2), the agreement between the CFT pre-
dictions and the free fermion numerics is remarkable for
a large number of steps. In the fractal region, character-
ized by low Lyapunov exponent, the agreement is less
striking, as observed in Fig. 5(b2). Indeed in this region
the Loschmidt echo scales very differently depending on
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the size of the system, making the explicit comparison with
the CFT more complicated, even though the overall scaling of
the Loschmidt echo is correctly captured by the CFT. This
strong dependence on the system size in the fractal region
of the phase diagram can be explained by the strong de-
pendence of the Lyapunov exponent with T . Changing the
size of the system L while keeping T/L fixed has the effect
of redefining T . On the lattice such a redefinition can lead
to non-negligible changes in the Lyapunov exponent in the
fractal region, changing the scaling of the Loschmidt echo.

The CFT and the free fermion chain are in good agree-
ment for the total energy E (t = NT ) in the high-frequency
regime, as the energy only oscillates and does not grow ex-
ponentially. However as long as the system starts to heat
up, the description of the CFT might deviate at long times
because it describes the low energy sector of the free fermion
chain.

IX. DISCUSSION AND CONCLUSIONS

We studied the dynamics of quasiperiodically driven CFTs
wherein the unitary evolution operator consists of undeformed
and sine-square-deformed unitaries repeating quasiperiodi-
cally according to the Fibonacci recurrence relation. While,
on the one hand, it is known that the periodically driven coun-
terpart of the current setup has a rich phase diagram exhibiting
both heating and nonheating phases, the completely random
driving generically heats the system up. Therefore our work
embodies a natural middle ground between these periodically
and randomly driven scenarios. Naively, it seems that such
quasiperiodically driven CFTs also generically heat up except
for isolated lines in the parameter space of the model, as can
be seen from the infinite time expectation value of the energy
density as well as the positivity of the Lyapunov exponent.
We find that the infinite time observables miss rather rich dy-
namical phenomena which can be used to distinguish different
regions in the parameter space. More precisely, by tuning T/L
and T̃ /L, one can go between very slow and fast heating. We
distinguish between three distinct scenarios:

(1) The nonheating high-frequency regime where the sys-
tem displays periodic dynamics with no heating for physically
relevant timescales.

(2) The fast heating regimes with large Lyapunov expo-
nents where one sees the indefinite build up of energy at a
finite number of points. These points correspond to a small
number of fixed points under the flow generated by conformal
transformation obtained from the quasiperiodic unitary oper-
ator.

(3) The so-called fractal regime, which exists in the neigh-
borhood the nonheating lines (along which the Lyapunov
exponent vanishes) in the parameter space. In the neighbor-
hood of these nonheating lines, the dynamics are much slower
as compared with the fast-heating regime and in fact the
system remains nonheating for experimentally accessible as
well as physically relevant timescales.

Our analysis leverages the analytic power of CFT on the
one hand and certain rich mathematical structures which have
been historically used to analyze quasicrystals on the other.
Therefore such a model is one of the few solvable examples
of a driven quantum many-body system where one can tune

between regimes with different heating rates. Another feature
of our setup is that it does not inherently rely on interactions
or on disorder.

It is worth mentioning that the fractal structure is not
contingent on the particular choice of deformation, and we
expect such features to survive more generic deformations
[39]. In Appendix D we propose a first generalization of those
results to generic Möbius deformations of the Hamiltonian
density. However the choice of sine-square deformation and
its inherent SL(2,C) structure makes the connection with
one-dimensional quasicrystals more natural.

There are several rich and interesting directions to pursue.
These may involve generalizing the sine-square deformation
to other possible kinds of deformations, studying other diag-
nostics of heating and thermalization within our setup, and
understanding operator scrambling and chaos in driven CFTs,
to name a few.

Note added. Recently, we learned about Ref. [48], which
discusses similar results regarding Fibonacci quasiperiodi-
cally driven CFTs. We thank the authors for sending us their
manuscript before posting it online.
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APPENDIX A: LOSCHMIDT ECHO

In this section we derive the expression for the Loschmidt
echo F (t ) during the quasiperiodic drive,

F (t ) = |〈ψ (0)|ψ (t )〉|2. (A1)

Let us first compute the Loschmidt echo in the setup consid-
ered in Ref. [41] of a single quench with the SSD Hamiltonian
at t = 0, starting from a generic excited state |�〉 of H. The
Loschmidt echo is then

F (t ) = |〈�|e−iH̃t |�〉|2. (A2)

The state |�〉 can always be written as an in-state generated by
a primary field φ(z, z̄) of conformal weights (, ̄) acting on
the SL(2,C) invariant vacuum |0〉 at τ → −∞, which corre-
sponds to inserting the field at the origin of the complex plane
after applying the exponential mapping in the z coordinates,

|�〉 = lim
z,z̄→0

φ(z, z̄)|0〉. (A3)

The computation then reduces to

〈�|e−H̃τ |�〉 = lim
z1,z̄1→0

lim
z2,z̄2→0

z−2
2 z̄−2̄

2 〈0|φ(
z−1

2 , z̄−1
2

)
e−H̃τ

× φ(z1, z̄1)|0〉.
We now insert the identity I = eH̃τ e−H̃τ , and use the fact that
|0〉 is an eigenstate of H̃, as L0|0〉 = L±1|0〉 = 0, therefore
e−H̃τ acting on |0〉 gives a phase irrelevant for the Loschmidt
echo. By going to the z̃0(z) coordinates, explicitly given by
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(4), we obtain

〈�|e−H̃τ |�〉 = lim
z1,z̄1→0

lim
z2,z̄2→0

(
∂ z̃0

∂z

∣∣∣∣
z1

)(
∂ ¯̃z0

∂ z̄

∣∣∣∣
z̄1

)̄

× z−2
2 z̄−2̄

2 〈0|φ(
z−1

2 , z̄−1
2

)
φ(z̃0(z1), ˜̄z0(z̄1))|0〉.

(A4)

Finally, 〈0|φ(z−1
2 , z̄−1

2 )φ(z̃0(z1), ˜̄z0(z̄1))|0〉 is a simple two-
point function in the z̃ coordinates, leading to

〈�|e−H̃τ |�〉 = lim
z1,z̄1→0

lim
z2,z̄2→0

(
∂ z̃0

∂z

∣∣∣∣
z1

)(
∂ ¯̃z0

∂ z̄

∣∣∣∣
z̄1

)̄

× z−2
2∣∣z−1

2 − z̃0(z1)
∣∣2

z̄−2̄
2∣∣z̄−1

2 − ¯̃z0(z̄1)
∣∣2̄

. (A5)

The limits can then be taken, giving the same result indepen-
dently of their order,

lim
z1,z2→0

z−2
2∣∣z−1

2 − z̃0(z1)
∣∣2

= lim
z2→0

z−2
2∣∣z−1

2 − α
∣∣2

= 1. (A6)

Therefore only the derivative terms contribute, whose limit
gives

lim
z1→0

∂ z̃0

∂z

∣∣∣∣
z1

= 1(
1 − πτ

L

)2 . (A7)

The same steps apply for the antiholomorphic part. Therefore
the final result for a single quench with the SSD Hamiltonian
H̃ after analytic continuation to real times τ → it is

F (t ) = 1(
1 + π2t2

L2

)2(+̄)
, (A8)

leading to an quadratic decay of the Loschmidt echo dur-
ing the quench. In the case of a periodic drive, one simply
needs to replace z̃0(z) by z̃n(z) = z̃0 ◦ · · · ◦ z̃0(z), which can be
expressed explicitly in terms of the normal form of the one-
cycle transformation to obtain that the Loschmidt echo decays
exponentially in the heating phase, similarly to Fig. 5(c),
quadratically at the phase transition, and oscillates in time
in the nonheating phase, leading to periodic revivals in the
system, similarly to Fig. 5(a). In case of the quasiperiodic
drive, writing the transformation after n steps z̃n(z) = αnz+βn

γnz+δn
,

we obtain that the Loschmidt echo is simply

F (t ) =
∣∣∣∣αnδn − βnγn

δ2
n

∣∣∣∣2(+̄)

. (A9)

APPENDIX B: FIBONACCI TRACE MAP

The quasiperiodicity induced by a Fibonacci sequence has
already been studied in the context of one-dimensional qua-
sicrystal literature [46,49,50]. In this section we focus on the
Fibonacci trace map approach to finding the spectrum of such
a Hamiltonian. The tight-binding Hamiltonian describing the
quasiperiodic Fibonacci chain is [51]

Hmn = δm,n+1 + δm+1,n + δm,nλv(n), (B1)

FIG. 6. Lyapunov exponent as a function of the spectrum E and
the parameter λ, using the correspondence (21). This figure exactly
reproduces the figure for the spectrum E (λ) of the Fibonacci qua-
sicrystal, which can be found in Ref. [56]. Here, regions of nonzero
Lyapunov exponent are dense for λ > 0 and correspond to gaps in
the spectrum. The spectrum itself consists in regions of 0 Lyapunov
exponent, of measure zero.

where v(n) = |ν(n − 1) − 1|. The one-dimensional Fibonacci
quasicrystal is described by the Schrödinger equation

ψn−1 + ψn+1 + v(n)ψn = Eψn. (B2)

The Schrödinger equation can be rewritten using transfer ma-
trices as[

ψn+1

ψn

]
= T (n)

[
ψn

ψn−1

]
=

[E − v(n) −1
1 0

][
ψn

ψn−1

]
. (B3)

This can be iterated, such that finding the eigenvectors ψn

amounts to finding the product of n matrices T (n). We now
define Tj = T (Fj ) · · · T (1). Then it is straightforward to show
that for Tj ∈ SL(2,C) the following recursion holds: Tj+1 =
Tj−1Tj . This relation can be rewritten in terms of the trace of
the matrices:

Tr(Tj+1) = Tr(Tj )Tr(Tj−1) − Tr(Tj−2). (B4)

Therefore, writing x j = 1
2 Tr(Tj ), the Fibonacci trace map re-

duces to

x j+1 = 2x jx j−1 − x j−2. (B5)

We also introduce y j = 1
2 Tr(Tj+1) and z j = 1

2 Tr(Tj+2). One
can then define a discrete dynamical map T :

T : R3 → R3, (xi, yi, zi ) �→ (yi, zi, 2yizi − xi ). (B6)

This mapping has been introduced in the quasicrystal litera-
ture as the Fibonacci trace map. The mathematical structure
of such a mapping has been studied in, e.g., Refs. [47,49,51–
54]. One crucial property of the Fibonacci trace map is that it
admits an invariant I (x j, y j, z j ):

I (x j, y j, z j ) = x2
j + y2

j + z2
j − 2x jy jz j − 1, (B7)
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which is the same for any j ∈ N. Then it is natural to consider
the cubic level surfaces SV = {(x, y, z) ∈ R3 | I (x, y, z) = V }.
The surface SV has different topologies depending on the sign
of V . The manifold is noncompact for V > 0. At V = 0 the
middle part of the manifold is compact and touches the other
four noncompact components at a single point. For V < 0 the
middle part is completely detached from the four noncompact
components. In the case of the Fibonacci quasicrystal, the
invariant is always positive and given by V = λ2

4 � 0. One can
then study the set of bounded orbits under infinite iterations
of the Fibonacci trace map, starting from the initial point
(1, E

2 , E−λ
2 ). In order to make the connection between the

orbits of the Fibonacci trace map and the spectrum E of the Fi-
bonacci Hamiltonian, the following theorem has been proved
in Ref. [51]:

Theorem 1. An energy E ∈ R belongs to the spectrum of
the discrete Fibonacci Hamiltonian if and only if the positive
semiorbit of the point (1, E

2 , E−λ
2 ) under iterates of the trace

map T is bounded.
Therefore finding the set of bounded orbit under the Fi-

bonacci trace map is completely sufficient to determine the
spectrum of the Fibonacci Hamiltonian. The following theo-
rem enables us to conclude that the spectrum of the Fibonacci
quasicrystal is a fractal set similar to a Cantor set. It was
first proved for λ � 4 in Ref. [51], and then for any λ > 0
in Ref. [55]:

Theorem 2. The set of bounded orbits is a Cantor set for
λ > 0.

The spectrum E of (B1) has therefore a fractal structure
similar to the Cantor set, and is of measure 0. The spectrum
can be observed as a function of λ on Fig. 6.

APPENDIX C: HIGH-FREQUENCY EXPANSION

In this section we give some details of the derivation
of the effective stroboscopic Hamiltonian in the high-
frequency approximation, mostly relying on the strategy
of Ref. [12]. Consider the quasiperiodic drive defined by
Eq. (2). In this case, at the step n, there are Fn+1 uni-
tary operators, corresponding to either the SSD evolution
for time T̃ or uniform evolution for time T . Assuming
that T = T̃ � L, one can then make the approximation
that

e−iTHe−iT H̃ = e−iT (H+H̃+i T
2 [H,H̃]). (C1)

Then, as we conside more unitary operators, we will still
only keep the first-order commutators. Therefore at step n,
there will be Fn+1 unitary operators, among which there will
be Fn times e−iHT and Fn−1 times e−iH̃T , using that Fn+1 =
Fn + Fn−1. Generalizing this strategy to any stroboscopic step
N and not only to N = Fn+1, one needs to introduce the
binary function ν(N ) ∈ {0, 1} defined in the main text. If
ν(N ) ∈ {0, 1} is 1, the unitary e−iHT appears at step N , and
if 1 − ν(N ) ∈ {0, 1} is 1, the unitary e−iH̃T appears at step
N . Therefore the number of unitary operators appearing up to
the step N is given by ρ(N ) and σ (N ) defined in Eq. (24).
The final step consists in counting how many commutators
[H, H̃] and [H̃,H] appear, given by τ (N ) in Eq. (24). This
leads to the following form of effective Hamiltonian, defined

0 20 40 60 80 100

0.5

1.0

1.5

2.0

FIG. 7. Effective deformation fN (x) given by (C4), for L = 100,
T
L = 0.01, N ∈ {1, 20}. The orange curve corresponds to the effective
deformation of the periodic drive, f (x) = 1 − 1

2 cos ( 2πx
L ).

as UN =−iNTH(N )
eff :

H(N )
eff = ρ(N )

N
H + σ (N )

N
H̃ + i

T

2

τ (N )

N
[H, H̃]. (C2)

Using the fact that the commutator is [H, H̃] =
−( 2π

L )
2 1

2 (L1 − L−1), the stroboscopic Hamiltonian can
be rewritten as

H(N )
eff = 2π

L

[(
ρ(N )

N
+ σ (N )

N

)
L0

+
(

− σ (N )

2N
− i

π

2

T

L

τ (N )

N

)
L1

+
(

− σ (N )

2N
+ i

π

2

T

L

τ (N )

N

)
L−1

]
. (C3)

Note that this Hamiltonian is still a linear combination
of the generators of SL(2,R). It can then be written in the
form Heff = ∫ L

0 dx fN (x)T00(x), with the effective deformation
given by

fN (x) = ρ(N )

N
+ σ (N )

N
− σ (N )

N
cos

(
2πx

L

)
+ πT

L

τ (N )

N
sin

(
2πx

L

)
. (C4)

The effective deformation fN (x) is explicitly plotted for sev-
eral values of N on Fig. 7.

We are also interested in the late time behavior of the
coefficients ρ σ and τ . At the step N = Fn+1, the coefficients
are found to scale as

ρ(N ) ∼ �n

√
5
,

σ (N ) ∼ �n−1

√
5

, (C5)

τ (N ) ∼ ε
�n+1

√
5

,
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FIG. 8. Möbius phase diagrams obtained from the Lyapunov exponent given by Eq. (10) for the Fibonacci quasiperiodic drive between H
and HMöb(θ ) defined by Eq. (D1) for (a) θ = 0.3, (b) θ = 0.55, (c) θ = 0.7.

where ε ∈ [− 1
�

, 1 − 1
�

]. Therefore one can find that the
quadratic Casimir invariant of SL(2,R) will scale as

c(2)(N ) = 1

N2

[
[ρ(N ) + σ (N )]2 − σ (N )2 −

(
πT

L

)2

τ (N )2

]
∼ �2n

5N2

(
1 + 2�−1 −

(
πT

L

)2

ε2�2

)
. (C6)

To check whether or not this invariant could take negative
values, we look at the lower bound |εmin| = 1

�
, to conclude

that the quadratic Casimir is negative at long times if

T

L
�

√
1 + 2�−1

π
≈ 0.47. (C7)

Therefore the Casimir invariant at long times has to be pos-
itive in the approximation T � L, meaning that within this
approximation heating should not occur at long times. From
the Fibonacci trace map point of view, heating would actually
occur when the orbit escapes, but that will happen after times
which are not physically relevant, and not captured by this
first-order expansion.

APPENDIX D: MÖBIUS QUASIPERIODIC DRIVE

In this section we propose to study a whole family of
Fibonacci quasiperiodic drives alternating between the uni-
form Hamiltonian H and the so-called Möbius Hamiltonian
HMöb(θ ), introduced initially as a regularization of the SSD
Hamiltonian, and defined as

HMöb(θ ) = L0 − tanh(2θ )

2
(L1 + L−1) + L0

− tanh(2θ )

2
(L1 + L−1). (D1)

This Hamiltonian interpolates between the uniform Hamil-
tonian, H = HMöb(0), and the SSD Hamiltonian, H̃ =
limθ→∞ HMöb(θ ). It can be seen as a deformed Hamiltonian
of the form of Eq. (1), with f (x) = 1 − tanh(2θ ) cos ( 2πx

L ).
Just as for the SSD Hamiltonian, the time evolution with the

Möbius is encoded in a conformal transformation which is
a Möbius transformation. Such a transformation is explicitly
given by [41]

z̃θ (z) = [(1 − λ) cosh(2θ ) − (λ + 1)]z + (λ − 1) sinh(2θ )

(1 − λ) sinh(2θ )z + [(λ − 1) cosh(2θ ) − (λ + 1)]
,

(D2)

where λ = e
2πτ̃

L cosh(2θ ) . In the limit θ → ∞, this Möbius transfor-
mation reduces to Eq. (4). In particular, it can be normalized
by multiplying the associated matrix by a factor of 1

2λ−1/2.
In the case of finite θ , the dynamics with such a Hamilto-

nian is periodic with period L cosh(2θ ), and the associated
quadratic invariant c(2)(θ ) = 1 − tanh(2θ )2 is strictly pos-
itive, implying that the spectrum of such Hamiltonian is
discrete and scales as [L cosh(2θ )]−1. In the limit θ →
∞ the period tends to infinity, the invariant goes to
0, and the spectrum is continuous, corresponding to the
SSD limit.

We can then study the dynamics of the Fibonacci quasiperi-
odic drive alternating quasiperiodically between H and
HMöb(θ ) using the same strategy as presented in Sec. III,
replacing Eq. (4) by Eq. (D2), and understand if the features
present in the case of the SSD quasiperiodic drive still survive
in this case. The resulting phase diagrams for a few choices
of θ are shown in Fig. 8. We observe that the phase dia-
grams are periodic both in T/L as well as T̃ /L directions,
in contrast with the SSD quasiperiodic drive which is only
periodic in the T/L directions, as the periodicity induced
by the SSD Hamiltonian is infinite, which is recovered by
taking the limit θ → ∞. These phase diagrams also display
an emergent fractal structure where the Lyapunov exponent
takes arbitrary small values. The Möbius deformations remain
within the SL(2,C) subalgebra of the Virasoro algebra for
arbitrary θ , and further study is needed to determine whether
such a fractal structure can be obtained for any general spa-
tial deformation f (x) of the Hamiltonian density, for which
we cannot rely on the Fibonacci trace map, inherent to the
SL(2,C) structure of the problem. We also note that one can
compute the invariant of the Fibonacci trace map associated,
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which is

I = sin2

(
πT

L

)
sin2

(
π T̃

L
sech(2θ )

)
sinh(2θ )2. (D3)

It is straightforward to verifiy that in the SSD limit one re-
covers the invariant (18). Once again the invariant is positive

for any choice of driving parameters, and therefore the set
of bounded orbits under the Fibonacci trace map still forms
a fractal set, which will get denser as θ → 0. We note that
the explicit mapping to the Fibonacci quasicrystal, given by
Eq. (21) for the SSD quasiperiodic drive, cannot be explicitly
found in the case of finite θ .
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