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Topological field theories emerge at low energy in strongly correlated condensed matter systems and appear
in the context of planar gravity. In particular, the study of Chern-Simons terms gives rise to the concept of
flux attachment when the gauge field is coupled to matter, yielding flux-charge composites. We investigate
the generation of flux attachment in a Bose-Einstein condensate in the presence of nonlinear synthetic
gauge potentials. In doing so, we identify the U (1) Chern-Simons gauge field as a singular density-dependent
gauge potential, which in turn can be expressed as a Berry connection. We envisage a proof-of-concept scheme
where the artificial gauge field is perturbatively induced by an effective light-matter detuning created by
interparticle interactions. At a mean field level, we recover the action of a “charged” superfluid minimally
coupled to both a background and a Chern-Simons gauge field. Remarkably, a localized density perturbation
in combination with a nonlinear gauge potential gives rise to an effective composite boson model of fractional
quantum Hall effect, displaying anyonic vortices.
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I. INTRODUCTION

Gauge invariance constitutes a conceptual cornerstone in
the modern description of fundamental interactions of Nature
[1–5]. The mathematical structure obeying the principle that
physics must not change from point to point in space and time
hides a redundancy. This translates into a descriptive freedom
of choice that must not affect the real world. Thus, only
objects that are invariant under a gauge transformation are
physical. However, this does not imply that gauge-dependent
quantities are irrelevant. This statement is beautifully illus-
trated in quantum mechanics by the Aharonov-Bohm effect
[6]. The wave function of a charged particle moving in a
region of nonvanishing vector potential, but in which the
magnetic field is zero everywhere except for at a single
point, may pick up a global phase factor, yielding measur-
able phase shifts in an interference experiment [7–12]. This
has been instrumental in adopting the concepts of fibre bun-
dles and connections [13] in the physics community. The
Aharonov-Bohm phase constitutes an example of the more
general concept of geometric (Berry) phase [14–17], which
has been particularly useful in the understanding of topolog-
ical phases of matter, an intensively studied field in the last
decade [18–26].

The recent ability to engineer artificial (also known as
synthetic) gauge potentials in a variety of setups [27] has made
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it possible to extend this exploration both to classical [28] and
quantum simulators [29]. In particular, the exquisite control
and flexibility offered by ultracold atoms, and the possibility
of tuning interactions, makes them an ideal setup for mimick-
ing intriguing phenomena [30]. Creating gauge potentials in
both optical lattices and the continuum is currently possible in
multiple ways [31,32] by, for instance, rotation of the atomic
gas [33], using time-periodic drivings [34], or light-induced
methods [35]. Notwithstanding, these are in general nondy-
namical or background gauge fields. This implies that the
gauge fields do not have an equation of motion, and thus,
are not representing gauge theories, but models with matter
coupled to gauge potentials. This is an obstacle if one aims to
emulate scenarios that require back-reaction of matter onto the
gauge field, such as the quantum simulation of gauge theories
or dynamical curved spacetimes.

Thus, great effort is currently being put in giving dynamics
to synthetic gauge potentials [36,37]. The usual top-down
approach [38–40], using the Kogut-Susskind formalism [41]
and quantum link models [42], builds on the knowledge gath-
ered from lattice gauge theories [43]. This requires some
approximations, such as truncation of the Hilbert space, but
has allowed for the first digital experimental realization of the
Schwinger model in (1+1)D [44] with trapped ions. Minimal
building blocks for an analog simulation of the same model
in atomic mixtures have also been reported recently [45],
as well as large-scale manufacturing of local constraints for
bosons in optical superlattices [46]. Higher-dimensional mod-
els, however, are still awaiting a realization, mainly because of
experimental challenges in controlling plaquette terms and the
implementation of local constraints.

However, a bottom-up approach starting from background
gauge fields could also be possible [47]. The main challenges
are identifying and incorporating the minimal ingredients for
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a gauge theory in the formalism. First efforts for delivering
back-action between the matter and gauge sectors in this
sense are the so-called density-dependent gauge potentials
[48–50]. Only very recently, the first lattice gauge theory
[51] within this approach has been put forward, relying on
inter-species density-dependent Peierls phases as carriers of
the gauge interaction. Recent experimental studies show that
such gauge potentials are within reach [52–55]. Despite this,
an issue not yet resolved is how do these density-dependent
gauge potentials fit in this classification, provided that they are
neither background fields nor do they yield a complete gauge
theory per se. More importantly, what are they useful for,
and are there any physical systems where these are present?
So far, density-dependent gauge fields have been used in the
context of pseudolinear “anyons” [48,56,57], as a mechanism
to induce frustration on a lattice [58], and in condensates with
exotic phenomenology [59–66].

In this work we study the connection between density-
dependent gauge potentials and topological field theories. In
particular, we show that the Abelian Chern-Simons gauge
field can be reinterpreted as a singular density-dependent
gauge potential. From this, it follows that a U (1) Chern-
Simons term can be engineered by means of synthetic gauge
fields with a nonlocal vortex-like kernel. We argue that this is
ensured by the so-called flux attachment constraint. Further-
more, we illustrate this idea by means of a proof-of-principle
calculation for an experimentally feasible scheme to generate
flux attachment. Starting from a microscopic Hamiltonian,
we derive a mean-field theory for a Bose-Einstein condensate
minimally coupled to a density-dependent Berry connection.
As we will see, the latter plays the role of a synthetic gauge
potential. We find that fine-tuning of the laser parameters
allows for flux attachment without the need of long-range
interactions. We recover an emergent effective description in
the form of a Chern-Simons coupled superfluid action.

The relevance of our findings is twofold. On the one hand,
at a practical level we theoretically describe a way to micro-
scopically engineer a term that is typically emergent, meaning
that it appears effectively as a consequence of the collec-
tive rearrangement of a quantum many-body system. On the
other hand, at a conceptual level we identify Chern-Simons
as a theory involving density-dependent gauge fields. This
is connected to well-known examples of systems that har-
bor such gauge fields [67,68], namely, topologically ordered
(TO) matter [69]. Thus, this helps to bridge the gap between
background gauge fields and gauge theories in the context of
quantum simulation, and at the same time explains why we
should expect that density-dependent gauge fields come hand
in hand with the appearance of anyons.

The outline of the paper is as follows. For the purpose
of being self-contained and self-consistent, in Sec. II we re-
view the importance and the main features of the Abelian
Chern-Simons theory, and define the notion of flux attach-
ment for this work. In Sec. III we reinterpret the concept
of flux attachment in the context of geometric phases in the
so-called flux-tube or composite particle picture. This view is
naturally related to artificial gauge fields in Sec. IV, where
we discuss a possible experimental realization. We proceed in
Sec. V to introduce our model for a flux-attached bosonic field
as a Bose-Einstein condensate subject to an effective Berry

connection which depends on interparticle interactions. Then,
in Sec. VI, we briefly analyze the direct implications of our
results. Finally, in Sec. VII we summarize our findings and
discuss their implications.

II. REVISITING THE ABELIAN CHERN-SIMONS TERM

Low-dimensional physics has sparked an increasing
amount of interest in recent years in diverse contexts, mainly
due to the integrability of some models and unusual phe-
nomena sensitive to dimensionality. The latter is related to
topological systems, and a primary example is Chern-Simons
theory [70], which has been the subject of study for the past
40 years. It has been used as a mechanism to make gauge
fields massive [71,72], as a modification of general relativity
[73–75], as an exactly solvable toy model for quantum gravity
[76], as a way to generate self-dual vortices [77–79], or as
a low-energy effective theory of the fractional quantum Hall
effect (QHE) [80–83]. More recently, there has been a revival
in the more general context of topologically ordered states
[67,68,84–86], fractional topological and Chern insulators
[87], and the theory of composite Fermi liquids [88–90]. This
has, in turn, inspired a new family of particle-vortex dualities
[91–93], which have been shown to fit in an even larger web of
dual models [94–96]. These works provide a modern and uni-
fied view of the phenomenology of Chern-Simons theory as a
multifaceted construction, encapsulating the pathway between
a “particle” face of the duality and a “vortex” counterpart via
the mechanism of flux attachment.

A. Pure Abelian Chern-Simons

We consider a U (1) gauge field Aμ = (A 0, A) in 2+1-
dimensional spacetime (μ = 0, 1, 2). We will use c = 1
unless explicitly noted otherwise, greek indices for spacetime
components, and Latin indices for space-only components.
The Abelian Chern-Simons action is given by

SCS =
∫

dt d2r LCS = κe2

4π h̄

∫
dt d2r ε μνλAμ ∂ν Aλ, (1)

where κ is a dimensionless coefficient often called the Chern-
Simons level, and ε μνλ is the Levi-Civita symbol. The
Lagrangian density LCS in Eq. (1) is local, Lorentz invariant,
and PT symmetric (although breaks separately P and T ).
After a gauge transformation of the form Aμ → Aμ + ∂μ �,
it yields boundary terms like

δLCS = κe2

4π h̄
∂μ (�ε μνλ∂ν Aλ). (2)

If boundaries can be neglected [97], then SCS defines a gauge-
invariant action. Furthermore, the fact that Lorentz indices are
contracted with the Levi-Civita pseudotensor, instead of the
usual metric gμν , signals that Eq. (1) is a topological field
theory, i.e. it is a metric independent 3-form A ∧ dA. This en-
tails that the Chern-Simons term is invariant under coordinate
transformations, and hence, the corresponding stress-energy
tensor is

Tμν = − 2√−g

δ SCS

δ gμν
= 0, (3)
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implying that the Hamiltonian associated to a Chern-Simons
term vanishes identically, namely, HCS = 0. A direct conse-
quence is that the spectrum of such a theory is given by a
number of states D at zero energy which are topologically
degenerate, meaning that when the system is put in a manifold
M of genus g, the number of states, or degeneracy, is D = κ g.
Another peculiarity is that the Euler-Lagrange equations for
the Chern-Simons action (1) yield Fμν = 0, where Fμν =
∂μA ν − ∂νAμ is the “electromagnetic” field strength tensor.
Hence, solutions are trivial, meaning Aμ is a pure gauge or
flat connection, so there are no free propagating modes for
the gauge field. Notice that this is in stark contrast to the
usual case of pure Maxwell’s electromagnetism in which the
equivalent equation is ∂ν F μν = 0, which has solutions in
the form of plane waves. Actually, in a theory of the form
S = SMaxwell + SCS [72], photons acquire a topological mass
m ph ∝ κ , so a useful interpretation is that pure Chern-Simons
Eq. (1) is a theory of electromagnetism where “photons” be-
come infinitely massive and cease to propagate. Thus, it is
clear that with the Chern-Simons Lagrangian being first-order
in derivatives, there are intriguing consequences compared to
ordinary electromagnetism, which is second-order.

B. Coupling to Matter

Let us now consider the scenario in which the Chern-
Simons gauge field is coupled to a conserved current j μ ≡
(ρ, j) representing some matter field. The total Lagrangian
density will look like L = LCS + Lint , where Lint = − j μAμ.
Hence, it is straight forward to compute the Euler-Lagrange
equations in the usual way, yielding

κe2

2π h̄
ε μνλ ∂ν Aλ = j μ, (4)

which is nothing but Hall’s law, where we identify the Hall
conductivity as σH = κe2/h, which is quantized in units
of the von-Klitzing constant. As can be seen, the equation
of motion for the gauge field is nontrivial in the presence of
matter. By taking the spacetime derivative ∂μ on both sides
we may verify that the Bianchi identity ε μνλ∂μFνλ = 0 is
fulfilled, or equivalently, that the current is indeed conserved
∂μ j μ = 0. While it is clear that Aμ is a dynamical gauge
variable, its dynamics is completely determined by the pres-
ence of a matter current j μ. We thus say that a Chern-Simons
term provides a constraint telling the “electromagnetic” field
to move whenever and however matter does. This is more
intuitively laid out when writing Eq. (4) in components and
by computing a simple example. Let us consider

B = ε i j∂ i A j = 2π h̄

κe2
ρ, (5a)

ε i jE j = ε i j (∂ j A0 − ∂ t A j ) = 2π h̄

κe2
j i, (5b)

where we have defined the “electric” and “magnetic” fields for
the gauge field Aμ. We note that in the plane, the “magnetic”
field is a pseudoscalar, while the “electric” field is a pseu-
dovector. Also, Eq. (5b) can be obtained from Eq. (5a) and
conservation of current. Namely, by taking the time derivative
of Eq. (5a) we obtain ∂ t B = 2π h̄ (κe2)−1 ∂ t ρ, which after

substitution of the conservation law, and integration over spa-
tial variables, yields Eq. (5b) with partial gauge-fixing A0 = 0,
up to an integration constant. Thus, the relevant information
is actually contained already in Eq. (5a), also known as the
flux-attachment condition. If we define the “magnetic” flux
as � = ∫

d2r B (t, r) and the “charge” as Q = ∫
d2r ρ (t, r),

then we verify that there is an explicit local equivalence
� = h (κe2)−1Q between “charge” and “magnetic” flux in
the system. A more useful interpretation is that Eq. (5a) acts
effectively both as a local constraint and as an equation of
motion for the gauge field, meaning that the density ρ dictates
locally what is the form of the vector potential A. A natural
way to support this observation is by writing the Lagrangian
density in components,

L = A0

(
κe2

4π h̄
B − ρ

)
+ κe2

4π h̄
ε i jAi E j − j iAi, (6)

and noting that the component A0 plays the role of a La-
grange multiplier enforcing the Gauss’s law Eq. (5a), which
we can compare with the more familiar one that would arise
in Maxwell’s electromagnetism, namely, ∇ · E = ρ. Hence,
if we wished to obtain the corresponding Hamiltonian for this
system, in the temporal gauge (A0 = 0), then we would find

H =
∫

d2r j · A, (7a)

G (r)|Phys〉 ≡ B (r)|Phys〉 = 2π h̄

κe2
ρ (r)|Phys〉, (7b)

which corresponds to the gauge-matter coupling in addition to
a Gauss’s law restricting the Hilbert space of the system to the
physical states |Phys〉, and such that [G, H] = 0 at any point
in space and time. Notice that the constrained Hamiltonian
Eq. (7) resembles the Hamiltonian approach to lattice gauge
theories [41,43]. Thus, we see that an Abelian Chern-Simons
matter theory can be thought of as a way to give restricted
dynamics [98] to an otherwise background gauge field. As a
last remark, it is possible to integrate out the Chern-Simons
gauge field, and rewrite the Lagrangian density in terms of
matter-only degrees of freedom. However, this does not come
for free, since this is known to yield a Hopf term [99],
which renders the Lagrangian nonlocal. We refer the reader to
Refs. [70,100] (and references therein) for further properties
of Chern-Simons theory.

III. FLUX ATTACHMENT

So far we have framed the Abelian Chern-Simons matter
theory as an unusual type of gauge theory. However, an alter-
native, and probably more physically insightful interpretation
in terms of geometric phases is possible. In 1976 Goldhaber
[101] noticed an anomalous relation of spin and statistics
[102] in charge-monopole composites. This work was revis-
ited by Wilczek [103] and reframed as a gedankenexperiment
in which a particle of charge e in the plane orbits a solenoid
(also known as a flux-tube) placed in the transverse direction
and enclosing a flux �. In this way, a rigid bound state formed
by the charged particle and the flux-tube can be seen as a
single composite particle (see Fig. 1). One could then try to
adiabatically transport one such charge + flux-tube composite
over a closed contour C around a second one. The composite
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Composite Particle Chern-Simons 
Gauge Field

x

Particle

Flux Attachment

FIG. 1. Schematic of the composite particle picture. Flux attach-
ment is a mechanism by which charged particles capture magnetic
flux quanta and become composite entities. These composites might
have different properties from the bare particles, in particular they
can be anyons.

particle’s wave function would then pick up an Aharonov-
Bohm phase,


 −→ e i αAB 
 = e i e
h̄ � 
. (8)

The realization that the value of � defines a fractional value
for the angular momentum Lz after elimination of the gauge
potential via a singular gauge transformation, led Wilczek
to define the notion of an anyon [104,105] as a particle-flux
composite. This means that, upon exchanging two compos-
ites, the total wave function can acquire a general phase shift.
This is easily illustrated by taking the flux attachment relation
(5a), and realizing that for a point particle ρ = e δ (2)(r) the
Aharonov-Bohm phase for a full winding is 2πκ−1, so that
for an exchange the phase factor is e±i πκ−1

. The + (−) sign
denotes anticlockwise (clockwise) exchange, and the Chern-
Simons level κ can take arbitrary values.

This idea was then linked to the nonlinear σ -model [106],
used in the context of resonance-valence-bond states [107],
and finally reintroduced by Jain [108] in the context of the
fractional QHE understood as an integer QHE of compos-
ite particles, defined as electrons “dressed” with flux-tubes.
This “dressing” is what we mean by flux attachment in this
context [109]. More formally, it means performing a singular
gauge transformation to the wave function of the system.
The immediate effect of such a transformation is the intro-
duction (or removal) of a minimally coupled singular vector
potential, often referred to as the statistical gauge field (see
Appendix C for further details). In a nutshell, by attaching
flux-tubes to particles one can transform a strongly corre-
lated problem of electrons into a weakly correlated problem
of composite particles. Macroscopic descriptions [80–83] of
the fractional QHE rely on the appearance of such singular
potential as a Chern-Simons gauge field. The explicit form
of which can be derived from solving the flux attachment
condition Eq. (5a), giving rise to

A i(t, r) = ∂ i� (t, r) + h̄

κe2
ε i j

∫
d2r′ G j (r − r′) ρ (t, r′),

(9)
where � is an arbitrary gauge. Note that the Green’s function
renders A a singular pure gauge such that G (r) = ∇ϕ (r),
with ϕ being the polar angle. What we mean by this is that A is
a local, although not global, pure gauge, provided the function
ϕ = tan−1(y/x) is multivalued. This implies that ε i j∂i∂ jϕ =
2πδ(r) (see Appendix A), and hence, the Green’s function
is a vortex. In the Coulomb gauge ∇ · A = 0, and Eq. (9)

simplifies to

A (t, r) = h̄

κe2

[
ẑ ×

∫
d2r′ r − r′

|r − r′|2 ρ (t, r′)
]
. (10)

This allows for a powerful reinterpretation of the fractional
QHE as an emergent Chern-Simons matter theory at low ener-
gies, where the singular gauge potential appears in a collective
rearrangement of the planar electron gas under the influence
of a strong transverse external magnetic field. We thus see
the manifestation of two sides of the same coin, we can
describe the system as a gas of particle-flux-tube composites
or as a problem of physical particles subject to a Chern-
Simons gauge field. This unified view was crucial for the
modern interpretation of the fractional QHE in the half-filled
Landau level [88] and the recent discovery of Dirac composite
fermions [89,110].

IV. FROM CHERN-SIMONS TO ULTRACOLD GASES

As we have highlighted already, the Chern-Simons term is
a topological field theory, with a vanishing Hamiltonian, that
can be thought of as a local constraint fixing the form of the
gauge field. We call this constraint flux attachment. We further
notice that the vector potential Eq. (10) depends on density ρ

and has a vortex kernel, which for a point particle is nothing
but that of the usual Aharonov-Bohm effect.

Within this framework, an obvious question to ask is how
does such a Chern-Simons term appear in the first place?
As a matter of fact, such a contribution can be radiatively
induced in quantum electrodynamics (QED) [70] or under-
stood from pseudo-QED descriptions [111]. Yet, the above
mechanisms correspond to the effective macroscopic picture
of a condensed matter system, and they do not offer a physical
explanation of the microscopic origin of the Chern-Simons
gauge field or topological order. In fact, the Chern-Simons
term is often added “by hand” and regarded as emergent in the
low energy effective theory. That is, it appears phenomenolog-
ically as a collective rearrangement of the many-body system.

In the following we approach the question in reverse and
ask, how can we engineer a Chern-Simons term starting from
a microscopic system? The key point that allows us to do so is
precisely realizing that the information about Chern-Simons
is already contained in Eq. (10), which is ensured by flux
attachment. The main challenge is then how to induce such
a pinning of flux. We argue that this can be achieved for a
charge-neutral system by making use of artificial gauge fields
in which a carefully designed Berry connection term plays
the role of the effective Chern-Simons gauge field. Hence,
starting from a microscopic many-body Hamiltonian, we aim
to recover an Abelian Chern-Simons + matter theory in an
effective macroscopic description of such system. Notice that
so far we have not specified the form of the matter component,
so the discussion above remains completely general regardless
of the system or platform.

In view of a potential realization with the current state-of-
the-art experimental techniques in atomic physics, we focus
on the case of a Bose-Einstein condensate. While our protocol
is inevitably idealised and approximate, it provides a proof-
of-concept scheme. In Bose-Einstein condensates of dilute
atomic gases, the dominant interaction is typically that of
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molecular potentials, namely, hard-core repulsion as r → 0
with an attractive van der Waals tail ∼1/r6. Normally, this can
be described by a δ-function type interaction for s-wave scat-
tering, where the average interparticle distance is 0.1 μm for a
condensate of n = 1014 atoms/cm3, see, e.g., Ref. [112]. Fur-
thermore, the scattering length a, characterizing the strength
of the interaction, can in general be tuned as a function of an
external field near Feshbach resonances.

V. THE NONLINEAR GAUGE POTENTIAL

Let us consider a system consisting of N two-level bosonic
atoms where the internal states |1〉 and |2〉 are coherently
coupled by a laser beam, and the atoms interact pairwise. The
many-body Hamiltonian describing this system [31,32] in the
rotating-wave approximation is

H =
N∑

n=1

(
p2

n

2M
+ Vn + Un

)
⊗ IH\n +

N∑
n<m

Vnm ⊗ IH\{n,m},

(11)
where p ≡ −ih̄∇ is the momentum operator, Vn is an external
(e.g. confining) potential, and the identity matrices simply
provide the correct dimensionality for the Hamiltonian. The
light-matter coupling matrix is

Un = h̄

2

(
� � ∗
� −�

)
, (12)

where � = ωL − ωA is the detuning between the laser and
atomic transition frequencies which can be a function of
the atomic center-of-mass position. The Rabi frequency � =
|�| eiφ = (d12 · E0) h̄−1 characterizes the strength of the light-
matter interaction. Introducing the notation

� =
√

�2 + |�|2, cos θ = �

�
, sin θ = |�|

�
, (13)

allows us to redefine variables in terms of the mixing angle
θ ≡ tan−1(|�|/�), the generalised Rabi frequency �, and the
laser phase φ. The light-matter coupling matrix in Eq. (12)
then becomes

Un = h̄�

2

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
= h̄�

2
n · σ, (14)

where we re-expressed Un as the product of a unit vector n
characterized by angles θ and φ, and a vector of Pauli matrices
σ. In fact, this is just the spin-1/2 Berry phase problem. The
eigenstates are given by

|χ (0)
+ 〉 =

(
cos (θ/2)

eiφ sin (θ/2)

)
, |χ (0)

− 〉 =
(

sin (θ/2)

−eiφ cos (θ/2)

)
,

(15)
with corresponding eigenvalues ε

(0)
± = ±h̄�/2. One can show

that Eq. (15) forms an orthonormal set of vectors {|χ (0)
j 〉}

[113] with j = {+,−}, which will be used as the basis for
the internal Hilbert space. In the context of quantum optics
these states are commonly known as dressed states.

The interaction term in Eq. (11) has the form

Vnm = diag
[

g11, g12, g12, g22
]
K (rn − rm), (16)

where K is an arbitrary two-body interaction, which in the
limit of zero-range interactions is K (rn − rm) → δ (rn − rm)

FIG. 2. Coherently coupled Bose-Einstein condensate in 2+1
dimensions. Atoms have a two-level internal structure (lower inset)
and interact pairwise (upper inset). A laser beam with orbital angular
momentum imprints a localized density profile and effectively gen-
erates flux attachment.

with coupling constants gi j = 4π h̄2ai jM−1 [114] characteriz-
ing the strength of the interactions in terms of the scattering
lengths ai j for three different channels. The indices i, j = 1, 2
label the two internal states of the atom, see Fig. 2. In the
following, we extend the treatment of Refs. [35,60,61,65] to
include long-range interactions and nonzero detuning.

A. Mean-field approximation and expansion

Typical number densities in Bose-Einstein condensates are
ρ ∼ 1013–1015 cm−3. These dilute conditions correspond to
a weakly interacting regime. Thus, it is sensible to con-
sider a mean-field (MF) variational ansatz for the many-body
wave function as the symmetrised product of single-particle
wave functions 
 (r1, r2, . . . , rN ) = ∏N

i=1 ψ̃ (ri ), satisfying
the normalization

∫
d2r |ψ̃ (r)|2 = 1. We can define an or-

der parameter acting as a condensate wave function ψ (r) =√
N ψ̃ (r). In this limit, the energy-scales corresponding to

mean-field interparticle interactions are much smaller than
those of the light-matter coupling, meaning gi jρ j 
 h̄� with
ρ j = |ψ j |2. Then, the interparticle interaction term reads

VMF = 1

2

(
ν1 0
0 ν2

)
, (17)

where νi = ∑2
j=1 gi j

∫
d2r′ K (r − r′) ρ j (r′) acts as an effec-

tive mean-field interaction-induced detuning between atomic
levels. This enables us to treat VMF as a small perturbation
of the laser-atom coupling. We thus write the first-order per-
turbed dressed states and energies as

|χ±(r)〉 ≈ |χ (0)
± (r)〉 + |χ (1)

± (r)〉, ε± ≈ ε
(0)
± + ε

(1)
± . (18)

The unperturbed states are given by Eq. (15), while correc-
tions to the eigenstates are

|χ (1)
± (r)〉 = ± sin (θ )

4h̄�
(ν1 − ν2)|χ (0)

∓ (r)〉, (19)

033453-5



GERARD VALENTÍ-ROJAS et al. PHYSICAL REVIEW RESEARCH 2, 033453 (2020)

with eigenvalues

ε
(1)
+ = 1

2 [ν1 cos2(θ/2) + ν2 sin2(θ/2)], (20a)

ε
(1)
− = 1

2 [ν1 sin2(θ/2) + ν2 cos2(θ/2)]. (20b)

We now write the full state vector for the two-level conden-
sate as a linear combination of the perturbed dressed states,

|
 (t, r)〉 =
∑

j= (+,−)

ψ j (t, r)|χ j (r)〉, (21)

so that the dressed states are steady-state solutions and coeffi-
cients ψ j contain the temporal dependence.

B. Adiabatic approximation and effective model

We would like to compute the effective action for the
condensate. To proceed, we will rely on the adiabatic approx-
imation, meaning that when the system is prepared in a given
eigenstate |χ±(r)〉, it will remain in this state at any given
time. In view of the above, we can project the problem on the
subregion of its Hilbert space in which the system is initially
prepared. This implies that if the system is prepared in the
|χ±(r)〉 dressed state, the coefficient ψ∓ (t, r) ≈ 0 for any t .
Thus, we obtain the mean-field Hamiltonian,

HMF = p2

2M
⊗ I2 + V (r) + U (r) + VMF. (22)

After projection of the system onto one of its (±) dressed
states, the effective model becomes ih̄ ∂t ψ± = H eff

± ψ±,
where

H eff
± ≈

(
p − A±

)2

2M
+ V (r) + W∓± + ε

(0)
± + ε

(1)
± , (23)

where A± = ih̄〈χ±|∇χ±〉 ≈ A± + a± has the form of a
Berry connection term, which plays the role of a minimally
coupled synthetic vector potential. More explicitly,

A± = ih̄〈χ (0)
± |∇χ

(0)
± 〉 = ± h̄

2
[cos (θ ) − 1]∇φ (24)

corresponds to the single-particle contribution, while

a± = ih̄ [〈χ (0)
± |∇χ

(1)
± 〉 + 〈χ (1)

± |∇χ
(0)
± 〉] (25)

= ± sin2(θ )

4�

(
ν1 − ν2

)∇φ (26)

is the first-order correction induced by interactions. Similarly,
W∓± = h̄2

2M |〈χ (0)
∓ |∇χ

(0)
± 〉|2 is a synthetic geometric scalar po-

tential. It is worth noting that the many-body information in
the projected mean-field Hamiltonian Eq. (23) is contained in
the effective interaction-induced detunings νi, which in turn
are functions of the density ρi. Introducing the matter density
in the dressed state basis ρ± = |ψ±|2 [115], we can explicitly
see this dependence on interactions in

a± = ± f±(θ )

8�

[ ∫
d2r′ K(r − r′)ρ±(r′)

]
∇φ ≡ F (r) ∇φ,

(27)
which is an interaction-dependent synthetic gauge potential.
The explicit form of f is

f±(θ ) = ± sin2(θ )
[
4gcos (θ ) ± (g11 − g22)

]
, (28)

where we have defined g ≡ (g11 + g22 − 2g12)/4. Notice that
at zero detuning and for contact interactions, we recover the
results from Ref. [49].

C. Finding synthetic flux attachment

Defining the total magnetic field as B± = B± + b±, what
remains now is showing that the magnetic field associated
with Eq. (27), namely,

b± = ∇F (r) × ∇φ + F (r) ∇ × ∇φ, (29)

can represent flux attachment. It is tempting to try to find an
interaction kernel for which a simple choice of the laser phase
would yield Eq. (5a). The kernel needed would require long-
range interactions ∼1/r in addition to a vortex-like structure
(see discussion in Appendix B). However, from an implemen-
tation point of view, it would be desirable that interactions
remain short-ranged meaning that the interaction kernel be-
comes a delta function, i.e., K (r) ∼= δ (r). The latter implies
constraining light-matter coupling parameters θ , φ and �.

Let us choose a laser beam with orbital angular momentum
(e.g., Laguerre-Gaussian mode) so that φ = lϕ, where l is the
winding number and ϕ is the polar coordinate in the plane.
Assuming now a rotationally symmetric density profile ρ,
mixing angle θ , and generalised Rabi frequency �, we are
left with

b± = ± l

r

[
ρ±

(
2πrδ (2)(r)

f±(θ )

8�
+∂r

f±(θ )

8�

)

+ f±(θ )

8�
∂rρ±

]
ẑ. (30)

From Eq. (30) we see that two constraints can be identified
when comparing with Eq. (5a) at r �= 0. The first one is

l

r

(
∂r

f±(θ )

8�

)
= 2π h̄

κ
, (31)

which fixes the form of f±(θ ) (8�)−1. In addition to Eq. (31),
we also require

ρ±

(
∂r

f±(θ )

8�

)
� f±(θ )

8�
(∂rρ±). (32)

In particular, we can consider ρ± to be sufficiently slowly
varying so that its derivatives are small. This is valid for
certain localized density profiles (e.g., a Gaussian dip or a
vortex, see Fig. 3). Alternatively, this second constraint can
also be seen as an “effective range” of flux attachment. Pro-
vided conditions Eqs. (31) and (32) are satisfied, our system is
effectively described by the Hamiltonian Eq. (23) constrained
by both current conservation ∂μ j μ = 0 and flux attachment

b± ≈ ±
[2π h̄

κ
ρ± + δ (2)(r)

2π l f±(θ )

8κ�
ρ± + O (∂rρ±)

]
ẑ,

(33)
where the last term indicates corrections depending on the
density profile. In the same vein, the single-particle magnetic
field will be

B± = ± h̄

2

[
− l

r
sin (θ ) ∂rθ + (

cos (θ ) − 1
)
δ (2)(r)

]
ẑ. (34)
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FIG. 3. Depiction of synthetic flux attachment. A localized den-
sity profile of the condensate on the x-y plane (upper), and the
corresponding vortex shape of the vector potential a± (lower). Colour
coding on the contour plot depicts a radial decay as ∼1/r for the
vector potential on top of the modulation by matter density. Flux
attachment ensures that the density profile is proportional to the
synthetic magnetic field.

The Aharonov-Bohm contribution to the magnetic fields
yields a nonzero magnetic field at r = 0, i.e., that of an
infinitely thin solenoid. Provided that magnetic fields in
Eqs. (33) and (34) have a single component, they are effec-
tively pseudoscalar fields, as expected.

D. Recovering the Chern-Simons term

We can incorporate the interacting contribution of the
synthetic magnetic field through a Lagrange multiplier, and
compute the effective Lagrangian density for the condensate.
Considering b± = b± ẑ, the effective description is given by

L eff
± ≈ − κ

2π h̄
a0 b± + ih̄ ψ∗

±Dt ψ± − h̄2

2M
|D ψ±|2

− g

2
(ψ∗

±ψ±)2 −
(

V ± h̄�

2
+ W∓±

)
ψ∗

±ψ±, (35)

where the field a0 is added as the Lagrange multiplier field
that introduces the constraint. Here, the condensate mini-
mally couples to gauge fields through the gauge covariant
derivative Dμ ≡ ∂μ − ih̄−1Aμ. We have already seen that the
preservation over time of the flux-attachment condition has a
counterpart in terms of an “electric” field and a current. This
condition can also be incorporated into the Lagrangian using
the conservation of the latter. The first term becomes nothing
but the Chern-Simons term. Let us drop the dressed state
subindex ± and take the time derivative of the flux attachment
condition Eq. (5a), giving rise to

∂ t b = 2π h̄

κ
∂ t ρ = −2π h̄

κ
∂ i j i, (36)

where in the last step we have used the continuity equation
∂μ j μ = 0. After reordering and expressing the magnetic field

in terms of the vector potential, we realize that

−∂ i ε
i j∂ t a j = 2π h̄

κ
∂ i j i

‖, (37)

where we have used the Helmholtz decomposition of the
current in parallel ‖ and transverse ⊥ components, meaning
that j i = j i

‖ + j i
⊥. Since j i

⊥ = −ε i j∂ j χ⊥, where χ⊥ is an un-
specified function, we trivially observe that ∂ i ε

i j∂ j χ⊥ = 0,
and thus, ∂ i j i = ∂ i j i

‖ . Integration of Eq. (37) yields

ε i j

(
2π h̄

κ
∂ j χ⊥ − ∂ t a j

)
= 2π h̄

κ
j i
‖. (38)

Upon identification of a0 = 2π h̄κ−1χ⊥, we conclude that

ε i j F j 0 = ε i j E j = 2π h̄

κ
j i
‖, (39)

where Fμν is the synthetic electromagnetic field strength
tensor, and E is the synthetic electric field. Including this con-
straint in the Lagrangian formalism yields the Chern-Simons
term, so that the effective action is

S eff
± =

∫
dt d2r

[
− κ

4π h̄
ε μνλ aμ ∂ν aλ + ih̄ ψ∗

±Dt ψ±

− h̄2

2M
|D ψ±|2 − g

2
(ψ∗

±ψ±)2

−
(

V ± h̄�

2
+ W∓±

)
ψ∗

±ψ±

]
. (40)

Alternatively, we can argue that the flux attachment con-
dition by itself yields the Chern-Simons term evaluated in
the Coulomb gauge [81,116], meaning that the vector poten-
tial has only a transverse ⊥ component. However, the usual
covariant form of the Chern-Simons term incorporates also
its parallel component. Reversing the usual Faddeev-Popov
gauge fixing procedure [117] reintroduces the full gauge
phase space. An additional remark is that the procedure de-
scribed in this section is similar to that found in the Schwinger
model when eliminating the gauge field using the correspond-
ing Gauss’s law, which yields an integration constant that is
used to define the so-called θ angle [118].

VI. CONSEQUENCES OF FLUX ATTACHMENT

Equation (40) provides a mean-field description of the
laser-coupled Bose-Einstein condensate. More generally, this
emergent effective description is that of an interacting charged
superfluid minimally coupled to an internal (dynamical)
Chern-Simons gauge field a μ and an external (background)
gauge field Aμ. This is known as the Zhang-Hansson-
Kivelson (ZHK) model [81,82] and provides a bosonic
macroscopic description of the fractional QHE in the spirit
of a Ginzburg-Landau theory. In the absence of the external
field A the system reduces to the so-called Jackiw-Pi model
[77–79], which can be analytically solved in the self-dual
static limit, yielding multi-vortex solutions. Taubes’ theorem
[119] guarantees that vortex solutions also exist for the ZHK
model giving rise to the Chern-Simons (flux-attached) vor-
tices [120] whose explicit form can also be computed, where
these are akin to the well-known Abrikosov-Nielsen-Olesen

033453-7



GERARD VALENTÍ-ROJAS et al. PHYSICAL REVIEW RESEARCH 2, 033453 (2020)

vortices in type II superconductors if the dynamical gauge
field were Maxwell-like. A key feature of these Chern-Simons
vortices is their composite nature, i.e., they are dyonic ob-
jects that play the role of Laughlin’s (anyonic) quasiparticles
carrying both electric charge and magnetic flux. These and
other features follow from the effective model Eq. (40) and
they are discussed in detail in the seminal work of Zhang
[121]. We highlight some of them in what follows, where it is
worth identifying electric current in the charged superfluid as
matter flow in our system, and charge density corresponding
to matter number density.

a. Quantization of the transverse flow. The immediate
consequence of flux attachment is that the “atomic Hall
conductivity” σH must be quantized because of topological
arguments, i.e., index theorems. This would appear in the
form of clear plateaus in the Hall response, so a transport
measurement is typically needed as a probe. We can imagine
the creation of a tilt in the condensate in such a way that
a matter current is generated [122]. Then, the atomic trans-
verse response is parametrised by j = σH ∇⊥V , where V is
an external (i.e. tilting) potential. The Chern-Simons level κ

plays the role of the Landau level filling fraction ν ≡ σH/σ0,
where σ0 = (2π h̄)−1. For Laughlin-like fractions, one expects
κ ≡ ν = 1/m for m ∈ Z.

b. Vortex exchange and statistics. As we highlighted in
Sec. III, assuming the density profiles correspond to Chern-
Simons vortices, the Aharonov-Bohm phase associated to
interchanging two such composites can alter the statistics of
the object. Thus, vortices are found to have fractional statis-
tics parameter γ = ± (2π p + π

m ), where p, m ∈ Z. Protocols
for probing nonconventional statistics include a mechanical
exchange of two anyonic vortices, or time-of-flight measure-
ments [123,124].

c. Flux-vortex quantization. We can decompose the order
parameter ψ± in amplitude and phase,

ψ± = √
ρ± e iS, (41)

and use the relation for the current,

j = h̄

2Mi

[
ψ∗

±(D ψ±) − ψ±(D ψ±)∗
] = ρ±vs, (42)

to define the superfluid velocity as

vs = h̄

M

[
∇S − 1

h̄
A

]
, (43)

where we recall that A = A + a. We can now consider the
flux generated by A to be �. Then, if we integrate the circu-
lation around a vortex, we obtain

ω =
∮
C

dr · vs = h̄

M
2πn − 1

M
�, (44)

where n ∈ Z is the winding number, and � defines a “mag-
netic” flux. The first term on the right-hand side is the usual
quantization of circulation for neutral superfluids in units of
h/M [125]. Now, imposing that at large distances circulation
must vanish with lim r→∞ ω = 0, then yields

0 = nh

M
− �

M
�⇒ � = n �0, (45)

where �0 ≡ h defines the “magnetic” flux quantum. This
is nothing but London’s flux quantization for Abrikosov-
Nielsen-Olesen vortices in superconductors. However, it
follows from the flux attachment relation Eq. (5a) that not only
“magnetic” flux is quantized, but also “charge,” meaning

N =
∫

d2r ρ± ≈ κ

2π h̄
� = κ n, (46)

which will correspond to a fractional quantization condition
when the Chern-Simons level acts like a filling fraction, in
close analogy to the fractional electric charge quantization
found for Laughlin quasiparticles [126]. It is worth noting that
in our case the Noether charge corresponds to the number
of particles N . Alternatively, Eq. (46) can be regarded as
the vortex number over the number of flux quanta attached.
Extracting topological charges in ultracold gases is currently
possible by means of transport measurements [127,128],
quantized circular dichroism [129], Berry curvature recon-
struction [130], or variants of quantum state tomography
[131]. Other recent theoretical proposals involve measurement
of the center-of-mass motion [132].

d. Incompressibility and gapped spectrum. We note that
the interacting terms of the effective action Eq. (40) can be
rewritten as a conventional Higgs potential of the generic form

V (ψ±) ∼ (1 − |ψ±|2)2. (47)

We now see that, as it happens in superconductors, there will
be an Anderson-Higgs mechanism, and an associated Meiss-
ner effect, which is responsible for the incompressibility of the
state at certain filling fractions [121,133]. This would also gap
the usual phonon-roton spectrum in superfluids, analogously
to the case in superconductors in which the “Higgsed” phonon
branch is promoted to the plasma frequency [134]. In this
case the gapped excitation is a topologically trivial cyclotron
mode, while a magneto-roton branch corresponds to the topo-
logical vortices of the theory. Once again we refer the reader
to Zhang [121] for a thorough discussion and derivation of
these and other properties of the ZHK model, such as that of
off-diagonal long-range order and Laughlin’s wave function.

VII. CONCLUSIONS

We have investigated whether minimally coupling a gauge
potential that is a function of matter density is enough to
obtain a gauge theory. By reinterpreting several key aspects
of the notion of flux attachment, we found that an Abelian
Chern-Simons theory can be expressed in this way. In fact, it
is a topological gauge theory. We should note that this already
allows us to address several points:

(i) Density-dependent gauge potentials are dynamical
gauge fields with a nonzero, but trivial, back-action mecha-
nism with matter. Naively, this is not enough to obtain a full
gauge theory since its dynamics must be constrained by a
local rule, i.e., a Gauss’s law, restricting the physical states
of the system to live in a subregion of the whole Hilbert
space at any given point in spacetime. Such constraints are
not straightforwardly achieved, and even in that event, the
resulting gauge theory could be naively regarded as trivial.
This is because its dynamics vanish in the absence of matter,
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and it is thus not possible to obtain a Maxwell-type theory,
which has free propagating modes.

(ii) Chern-Simons theory provides an example of a nontriv-
ial gauge theory for which only matter degrees of freedom are
needed. This has direct implications for quantum simulation.
Typically, two species of atoms are needed for implement-
ing lattice gauge theories, representing matter (sites) and
gauge fields (links) respectively. Here we provide an example
of a gauge theory in (2+1)D that can be engineered self-
consistently with matter only, and with one species. Note that
this is also possible for some (1+1)D models by eliminating
the gauge fields at the expense of introducing nonlocalities.
The peculiarity of Chern-Simons is that the first-order de-
pendence in derivatives, contrary to the usual second-order,
allows for a reduction of the nonlocality even in 2+1 dimen-
sions.

(iii) The nontriviality of the Chern-Simons theory comes
from the intrinsic topological nature, which in the words of
Zee [135] “lives in a world without clocks or rulers.” We
show that a Chern-Simons gauge field is an example of a
density-dependent gauge field with a vortex profile. It is then
further possible to simulate this using a Bose-Einstein conden-
sate, provided the local constraint and the equation of motion
are one and the same. More generally, one might consider
a class of density-dependent gauge fields with an arbitrary
topological soliton kernel K μ, where

Aμ (t, r) ∼
∫

dd r′ {[∇r K μ (r − r′)
]
ρ (t, r′)

}
. (48)

(iv) The current view provides some intuition to the appar-
ent conundrum of classifying theories with density-dependent
gauge fields. We see that a subclass of them can be re-
lated to topological field theories, which fall in between
the notion of theories coupled to background gauge po-
tentials, and Yang-Mills type gauge theories. Furthermore,
we identify that density-dependent gauge fields naturally
appear in some strongly correlated electron systems like frac-
tional quantum Hall states or gapped quantum spin liquids,
and thus, are not only produced synthetically in engineered
systems.

We have then proceeded to show how to obtain such a
Chern-Simons term at a mean field level, starting from a mi-
croscopic weakly interacting system of bosons with internal
structure coupled by a light beam. Chern-Simons terms typi-
cally emerge at low energies in many-body systems, meaning
that they are fictitious, internal, or self-generated. Hence, it
is not straight-forward to “derive” such an emergent process.
This was possible due to careful design of a Berry connection
contribution dependent on the interparticle interactions. This
construction was done using a weakly interacting system con-
trary to the conventional scenarios in topologically ordered
materials, which are strongly coupled. Taking the interactions
to be short range, and by constraining the laser configuration,
we were able to recover flux attachment. This was then in-
corporated in the system’s action as a constraint, yielding an
effective theory for bosonic matter minimally coupled both to
a Chern-Simons and a background gauge field. While the ori-
gin of the latter contribution is given by conventional artificial
gauge fields, the former is singular and density-dependent.
Finally, we identified phenomenological consequences of a

flux-attached vortex in the Bose fluid, specifically providing
a bosonic macroscopic description of fractional quantum Hall
states, the ZHK model.

We emphasise that the relationship with the fractional
QHE is a natural consequence of our construction but not
the main aim of this work. Both Chern-Simons theory and
quantum Hall phenomena have been widely studied in the
past. In fact, it has been long known in the context of
quantum simulation that it is theoretically possible, although
experimentally challenging, to obtain fractional quantum Hall
states [136–138], either in the lattice or in continuum, by
applying a background synthetic gauge field and ramping up
interparticle contact interactions, i.e., realizing an interacting
Harper-Hofstadter model. This would emulate the conditions
from two-dimensional electron gases where the fractional
QHE was originally found, where contact interactions yield
the leading order of Coulomb-like interactions. The addition
of long-range (e.g., dipolar) interactions further stabilises the
system [139]. However, the main experimental challenge is
the “heating” associated with spontaneous emission, which
limits the strength of the applied fields, especially for alkali
atoms [140]. While similar challenges possibly also apply to
our scheme, several experimental requirements are already
available. Optically generated vortices in condensates can be
currently induced in multiple ways, for instance via Laguerre-
Gauss beams [141] or using holographic techniques [142].
Interatomic interactions can be controlled in ultracold gases
by means of Feshbach resonances tuned by magnetic fields
[143], optically [144], or by tailoring radio-frequency coupled
internal states [145]. Density-dependent gauge potentials have
recently also been realized [52–55].

This view on density-dependent gauge fields is expected to
be rather general. Hence, similar ideas to those of this work
could be pursued on the lattice [146,147], for fermionic sys-
tems [83], or in other platforms such as helium thin films [148]
or quantum fluids of light [149]. An interesting extension
of the current work is based on spinor bosonic condensates
[150,151], e.g., by considering coherent coupling of three or
more internal atomic states. The naive expectation is that the
corresponding emergent model would be that of a quantum
Hall ferromagnet [152], for which topologically nontrivial
spin textures are believed to arise [153,154], namely, baby
skyrmions.

Furthermore, a plethora of new systems could be ap-
proached if similar ideas can be extended to a non-Abelian
gauge group [155]. Immediate examples of the applicability
are the study of non-Abelian FQH states, and the generation
of non-Abelian anyonic vortices, for which nontrivial braiding
can potentially lead to applications in quantum computing
based on topologically protected qubits [156]. Additionally,
this could also prove useful to theories of gravity in 2+1
dimensions [157], since the Einstein-Hilbert action is de-
scribed by a Chern-Simons theory, indicating that gravity is
topological on a planar universe. This can be seen in the
so-called first-order formalism by realizing that the dreibein
and the Lorentz connection act effectively as gauge fields, i.e.,
connections for diffeomorphisms. The realization and control
of such a term coupled to matter would make possible the
incorporation of back-action in a consistent way in a quantum
simulation of fields in curved spacetime.
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Our approach to flux attachment explicitly links the pres-
ence of interactions at a microscopic level with dynamics of
a Berry connection which, in turn, is found to be a Chern-
Simons gauge field. It is thus tempting to speculate on whether
such a mechanism could take place in real material samples.
In that scenario, it would lead to a heuristic picture in which
the strength of the interparticle interactions determines the
relevance of the Chern-Simons term relative to other scales
in the system. The nonlocal interactions caused by the Chern-
Simons field could affect the quantum correlations, leading
to a correction to the so-called area law in the entangle-
ment entropy of the ground state, which signals the presence
of long-range entanglement [158,159], i.e., the topological
entanglement entropy is not zero. By extension, topological
order would arise, even from short-range interactions.

Note Added. Only recently have we become aware of the
work in Refs. [160,161], for which a similar effective theory
is considered. We find consistent findings with these studies at
the points where both works overlap. Furthermore, the authors
provide numerical evidence of the formation of localized den-
sity profiles identified as anyons. We also find Refs. [162,163]
to be somewhat similar in spirit to our scheme. There, when
identical impurities are introduced in a planar bosonic bath,
Fröhlich polarons are identified as anyons, which play a simi-
lar role to our localized density profiles.
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APPENDIX A: MULTIVALUED FUNCTIONS

There is a small subtlety involving the function ϕ, which
appears when recovering the flux attachment condition B ∝ ρ

from the expression for the vector potential A. One would
naively expect that ∇ × ∇ϕ = 0, from the conventional vec-
tor identities, i.e., derivatives commute. However, this is not
the case at r = 0, since ϕ is essentially the polar angle
variable, which is multivalued and ill-defined at zero. More
generally one would write ∇ × ∇ϕ (r) = α δ (2)(r). To find
the proportionality constant α we must integrate on both sides
of the last expression for a disk D, of boundary ∂D, and
infinitely small radius ε → 0, such that

α=
∫
D

d2r ∇ × ∇ϕ (r) =
∮

∂D
dr ∇ϕ=

∫ 2π

0
dϕ ∂ϕ ϕ = 2π,

(A1)
where we have used the Green-Riemann formula. Hence, we
are left with

ε i j ∂ i ∂ j ϕ (r) = 2π δ (2) (r) (A2)

as a final answer. See Refs. [164,165] for a more detailed
discussion of this result.

APPENDIX B: INTERACTION KERNEL

When aiming to recover flux attachment from the form
of the interaction-induced Berry connection, one might be
tempted to identify Eq. (27) with Eq. (10) for the Chern-
Simons vector potential. At least three aspects should be taken
into account in following this line of thought: (i) The magnetic
field b± must be pointing along the z direction, so that it is a
“scalar” in the x-y plane. (ii) The nonlocal kernel K requires
long-range interparticle interactions. This does not seem a par-
ticularly stringent requirement since ultracold dipolar gases
present an anisotropic nonlocal interaction kernel ∝ 1/r3. Yet,
we would also require it to yield a δ-function when integrated
over the plane, which implies it must be singular. This happens
for the Green’s function in the Chern-Simons case, for which
such kernel is a vortex, allowing

∇ ×
[

h̄ ε i j

κ

∫
d2r′ G j (r − r′) ρ (t, r′)

]
= 2π h̄

κ
ρ (t, r)

(B1)
to be satisfied. (iii) It is worth noting that while the Green’s
function is a vectorial quantity, the interaction kernel we have
considered is scalar. This makes the matching harder than
anticipated. For instance, fixing the phase of the laser to be
plane-wave like φ = k · r = k (x + y), working in Cartesian
coordinates, and considering for simplicity k = kx = ky. We
observe that the dynamical contribution to the magnetic field
is

b± = ±k
f±(θ )

8�

[
∂x

∫
d2r′ K (r − r′) ρ±(r′)

− ∂y

∫
d2r′ K (r − r′) ρ±(r′)

]
ẑ, (B2)

where the magnetic field points in the correct direction.
Matching Eq. (10) would require the prefactor (dependent on
the laser parameters) to be equal to 2π h̄k−1 and, in addition,
the term in square brackets should be set to

∂x

∫∫
dx′ dy′ x − x′

(x − x′)2 + (y − y′)2
ρ±(x′, y′)

− ∂y

∫∫
dx′ dy′ − (y − y′)

(x − x′)2 + (y − y′)2
ρ±(x′, y′), (B3)

constraining the form of the interaction kernel. Solving the
constraint would indeed give a magnetic field depending on
the matter density which is our end goal. This can be checked
numerically. However, at an experimental level it is a signifi-
cant challenge.

APPENDIX C: SINGULAR GAUGE TRANSFORMATION

In this section we closely follow Ref. [121], where a more
detailed discussion can be found. Let us consider a micro-
scopic Hamiltonian in 2+1 dimensions of the form

Hf =
N∑

j=1

|p j − eA (r j )|2
2m

+
∑
i< j

V (ri − r j ) +
N∑

i=1

eA0 (ri ),

(C1)
which involves minimal coupling to a gauge field and a pair-
wise interaction potential V . Hamiltonian Hf satisfies the
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time-independent Schrödinger equation

Hf 
 (r1, . . . , rN ) = E 
 (r1, . . . , rN ), (C2)

where 
 is a totally antisymmetric many-body wave function.
Thus, this is a fermionic problem. In a similar spirit, we can
define a new Hamiltonian,

Hb =
N∑

j=1

| p j − eA (r j ) − ea (r j ) |2
2m

+
∑
i< j

V (ri − r j ) +
N∑

i=1

eA0 (ri ), (C3)

where a is a vector field yet to be defined. Hamiltonian Hb

satisfies the eigenvalue equation

Hb � (r1, . . . , rN ) = E ′ � (r1, . . . , rN ), (C4)

where now � is a totally symmetric wave function, so
the problem is bosonic in nature. The claim is that, while
one would naively think that Eqs. (C2) and (C4) describe
completely unrelated problems, there exist a canonical trans-
formation that maps one into the other. Consider the relation


̃ (r1, . . . , rN ) = [
e−i h̄

κ

∑
i< j α (ri−r j )

]

 (r1, . . . , rN ), (C5)

where α defines the angle formed by the direction |ri − r j |
between two particles in the system, and an arbitrary reference
direction. The term in square brackets is a unitary matrix U
and can be alternatively represented in complex coordinate
notation as

U = − h̄

κ

∏
i< j

zi − z j

|zi − z j | for z = x + i y. (C6)

This is a singular gauge transformation, analogous to
that of the Aharonov-Bohm bound state problem, where
A (r) ∼ ∇ arg(r) is a pure gauge vector potential which
can be removed by means of a gauge transformation ψ ′ ∼
exp [ i arg(r) ] ψ . Notice that there is an implicit hardcore

constraint in the transformation involving U since it is ill-
defined at ri = r j . Let us transform the fermionic Hamiltonian

H̃f = U Hf U −1, (C7)

where the key term consists of

p j − eA (ri ) − ea (ri ) = U [pi − eA (ri )]U −1. (C8)

Here, a constitutes a many-body version of the Aharonov-
Bohm vector potential, defined as

ea (ri ) ≡ h̄

κ

∑
j �=i

∇riα (ri − r j ) = h̄

κ

∑
j �=i

ẑ × ri − r j

|ri − r j |2 .

(C9)
Now, H̃f has exactly the same form as Hb, but it defines a
different eigenvalue problem unless 
̃ = �. That is, unless
the statistics of the originally antisymmetric wave function

 become symmetric after the canonical transformation.
Provided the property α (ri − r j ) = π + α (r j − ri ) is
fulfilled, it can be verified that upon exchange of two particles
at different positions,


̃ (r1, . . . , ri, . . . , r j, . . . , rN )
= − e i π

κ 
̃ (r1, . . . , r j, . . . , ri, . . . , rN ), (C10)

the many-body wave function acquires a phase factor in
addition to the usual fermionic sign. This new contribution
indeed comes from the Aharonov-Bohm effect. We observe
that for values κ = 1/(2m + 1) where m ∈ Z, the transformed
wave function becomes bosonic, meaning that 
̃ = �, and
therefore Eqs. (C2) and (C4) describe the same eigenvalue
problem. For κ = 1/(2m) the system is fermionic and, for any
other value, it is regarded as anyonic. The presence (absence)
of the vector potential a is induced (removed) by the singular
gauge transformation performed by U at the expense of
effectively changing the statistics of the problem. Thus, this
process describes an operator bosonization or fermionization
mechanism. The connection to flux attachment is made by
taking the curl over such a vector potential to verify

b (ri ) = 2π h̄

κe

∑
j �=i

δ (2)(ri − r j ) ≡ 2π h̄

κe2
ρ (ri ). (C11)
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