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Functional sensitivity and mutational robustness of proteins
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Sensitivity and robustness appear to be contrasting concepts. However, natural proteins are robust enough to
tolerate random mutations, meanwhile be susceptible enough to sense environmental signals, exhibiting both
high functional sensitivity (i.e., plasticity) and mutational robustness. Uncovering how these two aspects are
compatible is a fundamental question in the protein dynamics and genotype-phenotype relation. In this work, a
general framework is established to analyze the dynamics of protein systems under both external and internal
perturbations. We introduce fluctuation entropy for the functional sensitivity and the spectrum entropy for the
mutational robustness. The compatibility of sensitivity and robustness is analyzed by the optimization of two
entropies, which leads to the power-law vibration spectrum of proteins. These power-law behaviors are confirmed
extensively by protein data, as a hallmark of criticality. Moreover, the dependence of functional sensitivity and
mutational robustness on the protein size suggests a general evolutionary constraint for proteins with different
chain lengths. This framework can also establish a general link of the criticality with robustness-plasticity
compatibility, both of which are ubiquitous features in biological systems.
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I. INTRODUCTION

Proteins are highly dynamic molecules in living cells
[1–4]. As a living system, a protein molecule is subjected
to external and internal perturbations. For proteins in the
solutions, small external perturbations from the milieu can
be felt consistently by every other residue within the entire
protein. Even weak and transient perturbations can trigger
large conformational changes [5–8]. In this way, proteins
can sense external signals ranging from metal ions to other
biomolecules, which are functionally beneficial.

Meanwhile, internal perturbations also affect proteins. Nu-
merous mutations occur intermittently in gene sequences
encoding amino acid residues of proteins. In the “sequence-
structure-dynamics-function” paradigm [9,10], mutations
may change the native protein structure; consequently, the
equilibrium dynamics and corresponding biological functions
will be affected. However, accumulating evidence has shown
that protein molecules can tolerate numerous types of amino
acid substitutions and maintain their thermodynamic stability
and folding pathways [11–15]. Besides, the principal compo-
nents of protein equilibrium dynamics are highly robust to
minor structural differences or detailed atomic-level interac-
tions [9,16–19]. These results demonstrate that the dynamics
of proteins are highly robust to mutations.
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Indeed, both high sensitivity to external perturbations
and high robustness to internal perturbations are essential
for protein systems [20]. Proteins without a high functional
sensitivity cannot respond transiently or undergo large-scale
conformational changes. Meanwhile, without high mutational
robustness, the functional proteins with high fitness cannot be
stably replicated or inherited. However, the former and latter
concern changeability and nonchangeability, respectively, and
may direct us to different ends for systems with a single
degree of freedom [21–24]. Noting that the proteins involve
many degrees of freedom, the utilization of the multiple de-
grees of freedom raises the possibility to achieve both the two
aspects. To resolve such a problem, the native-state dynamics
and corresponding responses to noises and mutations may
provide new perspectives on the genotype-phenotype relation
of the proteins.

In this paper, with a simplified protein model, we establish
a general framework for analyzing protein dynamics, which
is subjected to external and internal perturbations. We intro-
duce the fluctuation entropy and spectrum entropy as novel
descriptors of the functional sensitivity and mutational robust-
ness, respectively. Then, from the perspective of the vibration
spectrum, the interplay between functional sensitivity and
mutational robustness of proteins is analyzed. In systems with
low degrees of freedom, the two entropies act as consistent de-
scriptors. However, in systems with high degrees of freedom,
the interplay between functional sensitivity and mutational
robustness will lead to a power-law eigenvalue distribution
in the relaxation dynamics. Such a power-law distribution is
supported by the vibration spectra of natural proteins. The cor-
responding power-law coefficient is closely associated with
the packing density of protein molecules. The size dependence
of functional sensitivity and mutational robustness suggests
a general evolutionary constraint for proteins with different
sizes.
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II. FUNCTIONAL SENSITIVITY
AND MUTATIONAL ROBUSTNESS

A. Model

Globular proteins fold into their native structure to perform
their biological functions. For proteins fluctuating around
their equilibrium configuration, the relaxations and fluctua-
tions can be captured by linear models. By approximating the
energy landscape around the native state in the quadratic form,
potential energy

V (��r) = γ

2
· ��rT · H · ��r, (1)

in which ��r = [�r1,�r2, . . . �rN ]T is a vector describing
the magnitude of displacement of all N residues deviating
from the native structure, γ is the spring constant, and H
is the second-order derivative of potential energy, known as
the Hessian matrix. In this way, a protein molecule can be
modeled into an elastic network, where amino acid residues
(represented by nodes positioned at their Cα atom) are con-
nected via elastic springs [25]. As a simple yet powerful
model, elastic networks are applied widely for elucidating
the functional dynamics [26,27] and evolutionary constraints
[28–31] of proteins.

Additionally, after assuming that all residue fluctuations
are Gaussian variables distributed around their equilibrium
coordinates, Gaussian network model (GNM) is introduced
to describe the fluctuations around native protein structures
[32,33]. In the GNM, when the interaction strength between
residues are assigned to be 0 or 1, the Hessian matrix H can
be reduced as the graph Laplacian, describing the topology
of the network (see Appendix A). To have a better prediction
of protein dynamics, one can also assign different weights for
different residue pairs (see Ref. [34], Sec. 1.1). The structural
fluctuations around the native state can then be described by a
multivariate Gaussian distribution [17], given by

φ(��r) = 1

(2π )3N/2(det H)−3/2
e− γ

2kBT ��rT ·H·��r
, (2)

where kB and T denote the Boltzmann constant and tempera-
ture, respectively.

For globular proteins, based on the GNM, the correlated
motions of the proteins can be predicted (see Appendix B).
By conducting normal mode analysis (NMA), one can obtain
essential information about thermal fluctuations, large-scale
conformational dynamics, and linear responses of native pro-
teins [35–38]. Upon the eigenvalue decomposition of the
Hessian matrix H, the normal modes described by eigen-
vectors (�v0, �v1, �v2, . . . , �vN−1) and corresponding eigenvalues
(0 = λ0 < λ1 � λ2 � . . . , λN−1) can be obtained. Notably,
the matrix H is positive semidefinite; there is always λ0 = 0,
showing the translational invariance of the system. The native
dynamics of proteins can then be described as a linear combi-
nation of independent normal modes. It is worth noting that,
even for the large-scale nonlinear conformational changes, the
normal modes given by elastic network models could have a
high overlap with such deformations [27,28].
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FIG. 1. Illustration of functional sensitivity and mutational ro-
bustness. (a) (Left) When λ j < λk , as compared to �vk , the motions
along �v j will be easier to access, and less energy is required for
deformation. (Right) The configuration space of the protein molecule
around the native state is shown to be a high-dimensional ellipsoid,
in which the length of the jth semiaxes is λ−1

j . The fluctuation
entropy is defined as the logarithm of this volume. (b) The original
amino acid sequence folds into a specific native protein structure
and exhibits specific functional dynamics. After the mutation on-site
p, interactions between residue p and other neighboring residues
change, and the dynamics of such a protein also change slightly. For
example, the jth eigenvector �v j will transform into �v′

j after such a
mutation. The difference in such an eigenvector is ��v j . (C) An illus-
trative model of the three-bead chain is shown. Here, maximizing the
eigengap can contribute to both functional sensitivity and mutational
robustness.

B. Functional sensitivity

Here, we introduce “functional sensitivity” to quantify
that how much will an external perturbation leads to the de-
formations of a protein molecule. For native proteins, high
functional sensitivity usually correlates with low structural ro-
bustness, and it is closely associated with the geometry at the
native basin of the energy landscape. In NMA, the eigenvalue
magnitudes provide information about the local curvature of
the energy landscape along the direction of the corresponding
eigenvectors [39]. An illustrative energy landscape is shown
in Fig. 1(a). Here, λ j < λk indicates that the motion along �v j

is more easily accessible, and lesser energy is needed to excite
such deformations, as compared to that for the motion along
the direction of �vk . To quantify the functional sensitivity of a
protein molecule, one shall measure the total “volume” of the
accessible configuration space at the given perturbation level
(temperature). To calculate that, we introduce the fluctuation

033452-2



FUNCTIONAL SENSITIVITY AND MUTATIONAL … PHYSICAL REVIEW RESEARCH 2, 033452 (2020)

entropy SF of the protein molecule as the Shannon entropy
(or differential entropy) [40–42] of the fluctuation distribution
φ(��r):

SF (��r) = −
∫

φ(��r) ln φ(��r)d��r

= 3Ns0 − 3

2
ln

N−1∏
i=1

λi = 3Ns0 − 3

2

N−1∑
i=1

ln λi, (3)

in which s0 = 1
2 · ln (2πe). The derivation of Eq. (3) is listed

in Sec. 1.2 of Ref. [34]. According to such an expression,
the fluctuation entropy of protein molecules can be decom-
posed into two parts: A constant term and another term equal
to the logarithm of the product

∏N−1
i=1 λ−1

i . This product is
also known as the pseudo-determinant of the matrix H [43].
For the j-th normal mode, the λ−1

j describes variance along
the direction of the eigenvector �v j . As illustrated in Fig. 1(a),
the pseudodeterminant can be understood as the volume
of the configuration space; the fluctuation entropy is dom-
inated by the logarithm of such a volume. Note that our
definition of fluctuation entropy has taken the contributions of
all the normal modes into account. In a more detailed analysis,
one can specify such a descriptor to quantify the sensitivity of
a set of functional modes.

The physical meaning of the fluctuation entropy SF is clear:
When there are more eigenvalues with small magnitude, the
corresponding slow-mode motions will be easier to activate.
The fluctuation entropy of such a molecule is high, indicating
that a small perturbation can lead to large fluctuations in such
a system. It is worth noting that our definition of fluctuation
entropy is consistent with other measures for system sen-
sitivity, such as the condition number. Such consistency is
discussed in Ref. [34] (Sec. 2). Besides, previous experimen-
tal studies also showed that the conformational entropy can
contribute significantly to functionality of the proteins [44].

C. Mutational robustness

In living cells, mutations happen from time to time. For
a protein system, the mutations can be understood as in-
ternal perturbations. Mutations in the sequence may cause
changes in protein structures. However, structural differences
or residue-residue interactions do not necessarily imply that
the dynamics of a protein are different [16–19]. For example,
the structure of the apo and holo states of an allosteric protein
may differ considerably, but a conformational transition can
easily connect the two states. Besides, proteins as a product of
evolution can tolerate numerous kinds of amino acid substi-
tutions and maintain their native-state structures [11–13]. To
quantify the consequential effects (changes in the phenotype)
of mutations, in this work, we neglect the mutational effects
on the folding dynamics and mainly focus on the robustness
of the native dynamics of the proteins [45–47].

For simplification, we take the dynamics of a protein as
a linear combination of eigenvectors of the Hessian matrix
H. Recently, the quantitative assessment of the conservation
of these eigenvectors has become a new topic in the study
of protein evolution [48]. Here, we quantify the mutation-
induced changes in protein native dynamics as the differences

in eigenvectors (or the subspaces spanned by the eigenvec-
tors) of such a system. As illustrated in Fig. 1(b), a residue
substitution at site p may change the interactions between
it and its spatial neighbors. These changes will affect the
elements of the Hessian matrix H (see Ref. [34], Sec. 3.1).
After the mutation, the Hessian matrix changes from H to
H′, where H′ = H + εM. Here, the parameter ε denotes the
perturbation magnitude, and M is a symmetric perturbation
matrix that describes changes in inter-residue interactions.
After the mutation, the eigenvalues of the Hessian matrix shift
from λ1, λ2, · · · λN−1 to λ′

1, λ
′
2, . . . , λ

′
N−1, respectively, and

the corresponding eigenvectors change from �v1, �v2, . . . , �vN−1

to �v′
1, �v′

2, . . . , �v′
N−1, respectively.

To characterize the robustness of equilibrium dynamics in
a protein molecule, one needs to check if the mutation can
easily modify the eigenvectors (or the subspaces spanned by
eigenvectors) which are closely associated with the functional
motion of such a protein. If a protein can maintain its function-
related eigenvectors or subspaces after a mutation, such a
protein shows high mutational robustness in the evolutionary
process.

Here, let us first consider the case that the functional mo-
tions can be described by a single eigenvector. Assume that the
jth eigenvector is associated with the functional motion of the
protein, and λ j−1 < λ j < λ j+1. According to the first-order
perturbation theory [49], the perturbed eigenvector �v′

j can be
expressed as

�v′
j = �v j + ��v j = v j + ε

∑
i �= j

�vT
i · M�v j

λi − λ j
�vi. (4)

Therefore, for eigenvector v′
j , the square deviation is ex-

pressed as

|��v j |2 � ε2
∑
i �= j

||M||2
(λi − λ j )2

|�vi|2 � ε2N (N − 2)||M||2
(g∗

j )
2 , (5)

where ||M||2 denotes the L2-norm of matrix M, which is
bound by the number of mutated contacts, and g∗

j denotes
the minimum gap between λ j and its neighboring eigenval-
ues, say, g∗

j = min{|λ j − λ j−1|, |λ j+1 − λ j |}. The magnitude
of |��v j |2 can quantify the robustness of vector �v j after per-
turbation. Larger |��v j |2 indicates more significant changes in
the dynamics of the jth eigenvector, which implies lower mu-
tational robustness in protein dynamics. According to Eq. (5),
the upper bound of |��v j |2 of the jth eigenmode is determined
by 1/(g∗

j )
2; thus, a larger eigengap g∗

j corresponds to a higher
mutational robustness of the eigenvector �v j .

In more complicated cases, the functional dynamics of
a protein cannot be described by a single eigenvector, but
needs to be expressed as a linear combination of a set of
eigenvectors. Then, the above discussions shall be generalized
for the mutational robustness of a linear subspace. Here, as an
example, let us consider the linear subspace V j , spanned by
the first j slow-mode eigenvectors �v1, �v2, . . . , , �v j . It can be
concluded that the mutational robustness of the linear space
V j will be upper bounded by the eigengap |λ j+1 − λ j | (details
in Ref. [34], Sec. 3.4).
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D. A system with low degrees of freedom

In previous discussions, we demonstrated that functional
sensitivity and mutational robustness are closely related to
the spectral properties of the elastic network. To illustrate
the possible relationships between functional sensitivity and
mutational robustness, let us first focus on a simple three-bead
system with two degrees of freedom. As shown in Fig. 1(c),
the strength of the bonded interactions is 1, and the strength
of the nonbonded interaction is ε (0 � ε � 1). By NMA, the
nonzero eigenvalues are found to be λ1 = 1 + 2ε and λ2 = 3.
To maximize the functional sensitivity, the nonbonded interac-
tion ε shall be weakened, to ensure that the fluctuation entropy
SF ∼ − ln(λ1λ2) is maximized. To maximize the mutational
robustness of the first and second eigenvectors, the eigengap
|λ2 − λ1| shall be maximized. When ε = 0, both functional
sensitivity and mutational robustness reach maximum. This
model illustrates that in systems with low degrees of freedom,
maximizing the gaps between the two nonzero eigenvalues
can contribute to both functional sensitivity and mutational ro-
bustness. For example, brain networks can be coarse-grained
as block models, which only have low degrees of freedom.
Previous studies have proved that larger gaps between eigen-
values, which correspond to the modular organization in the
brain, may confer increased robustness to network perturba-
tions and higher flexibility in learning [50].

III. THE INTERPLAY BETWEEN FUNCTIONAL
SENSITIVITY AND MUTATIONAL ROBUSTNESS FOR

A SYSTEM WITH MANY DEGREES OF FREEDOM

For systems with high degrees of freedom, the interplay
between functional sensitivity and mutational robustness is
complicated. To maximize the functional sensitivity (fluctu-
ation entropy SF ) of a system, as illustrated in Fig. 2(a),
one will expect an eigenspectrum with N − 2 vibration
modes, where eigenvalues are close to zero (λ1 ≈ λ2 ≈ . . . ,

≈ λN−2 ≈ 0), and the largest eigenvalue λN−1 is much larger
than zero. In such a situation, the fluctuation entropy reaches
the maximum, which ensures that external perturbations can
easily trigger the motions of the molecule along the directions
of the first N − 2 eigenvectors. However, the gaps between
low-frequency modes are expected to be very small; thus,
these low-frequency modes are not stable under mutations.

Let us consider the mutational robustness of the linear
space V spanned by all the eigenvectors �v1, �v2, . . . , �vN−1.
The mutational robustness of V will be upper bounded by
g∗

min = min j{|λ j+1 − λ j |} (proof in Ref. [34], Sec. 3.5). To
maximize the robustness of eigenspace V under mutations,
the minimum eigengap g∗

min of the entire spectrum shall be
maximized. This will lead to a uniform distribution of all the
eigenvalues as long as the eigenvalues are bounded between
λmin and λmax. To quantify the uniformity of the eigenvalue
distribution, we define spectrum entropy S as the Shannon
entropy of the eigenvalue distribution:

S = −
∫

g(λ) ln g(λ)dλ, (6)

where g(λ) = 1
N

∑
i δ(λ − λi ) is the probabilistic density

function of eigenvalues. This definition can also be understood

1nox 
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(Rg = 15.93Å, =0.23)

(a) (b)

(d)

(f)
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FIG. 2. (a) The eigenvalue distribution that maximizes functional
sensitivity. (b) The eigenvalue distribution that maximizes the muta-
tional robustness of the linear space spanned by all the eigenvectors.
(c) The cartoon structure of the three proteins (PDB code: 1NOX,
4EBY, and 4F1J) with the same chain length (N = 200). (d) The
integrated eigenvalue distribution function G(λ) and (e) the magni-
tude of the i-th mode λ−1

i vs the index (rank) i for the three proteins
is shown. The dashed lines in (d) and (e) show the fitting results
based on the first 20 eigenvalues of the proteins. (f) The eigen-
value spectra of proteins with chain length N = 200 is shown. All
eigenvalues are normalized to the lowest nonzero eigenvalue λ1, and
the logarithmic scale that clearly presents the differences between
neighboring eigenvalues is selected. The spectra of proteins are
compared with Erdős-Rényi networks and random geometric graphs
(2D or 3D).

as the Kullback-Leibler divergence from a uniform distri-
bution to the given eigenvalue distribution (see Ref. [34],
Sec. 4.2). Notably, the maximum-entropy distribution, in the
absence of other constraints, corresponds to a uniform distri-
bution. In such a situation, the minimum eigengap g∗

min can be
maximized. That is to say, to maximize the mutational robust-
ness of the linear space V spanned by eigenvectors, as shown
in Fig. 2(b), a uniform distribution is expected. Thus, for a
system with many degrees of freedom, functional sensitivity
and mutational robustness becomes two different optimization
objectives that may be hard to be compatible.
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A. Entropy maximization

How can the dynamics of a protein molecule ensure
that both functional sensitivity and mutational robustness are
maintained? To resolve this problem, we introduced the en-
tropy maximization approach to analyze the spacing problems
of the eigenvalue distribution. Previously, the principle of
maximum entropy [51] had already been applied in protein
science. The applications include protein sequence evolution
[52], structural constraint identification from correlated mo-
tions [53], residue interaction deduction [54], and protein
folding [55]. In practice, the entropy maximization approach
can handle multiple constraints, which introduce additional
information into the system.

To determine the optimal eigenvalue distribution of protein
systems, we consider fluctuation entropy as a constraint and
maximize the spectrum entropy. From the physical perspec-
tive, it means that we fix the high functional sensitivity of
a system, and then attempt to maximize the mutational ro-
bustness of the linear space spanned by all the eigenvectors.
There are three constraints in this optimization process. (a)
The spectrum distribution is normalized, i.e.,

∫
g(λ)dλ = 1.

(b) The total number of contacts in the proteins is constant,
i.e., the trace of the Hessian matrix is fixed:

∫
λg(λ)dλ = m.

(c) The fluctuation entropy is be fixed as a constraint C, i.e.,∫
ln λ g(λ)dλ = C. Such a functional constraint ensures that

during the evolution process, no matter how the interactions
within proteins change with mutations, the fluctuation entropy
will always be constant.

Take the three constraints as multipliers, we can obtain the
Lagrangian expression:

Ŝ = −
∫

g(λ) ln g(λ)dλ + ζ0

(∫
g(λ)dλ − 1

)

+ ζ1

(∫
λg(λ)dλ − m

)
+ ζ

(∫
ln λ g(λ)dλ − C

)
. (7)

To find the distribution function g∗(λ) that maximizes en-
tropy Ŝ across all probability distributions, we require the
following:

∂ Ŝ

∂g(λ)
= − ln g(λ) − 1 + ζ0 + ζ1λ + ζ ln λ = 0, (8)

hence g∗(λ) can be solved as

g∗(λ) = e−1+ζ0+ζ1λλζ . (9)

Such a spectrum shows a power-law distribution with an
exponential cutoff. In the slow-mode limit, when λ ∼ 0, such
a spectrum can be reduced into a power-law distribution:
g(λ) ∼ λζ , and the power-law exponent equals the Lagrangian
multiplier ζ . In the fast-mode limit, the spectrum distribution
will be dominated by the exponential function, which mainly
results from the finite-size effect of the molecule. A similar
eigenvalue distribution can be obtained by taking spectrum
entropy as a constraint and maximizing the fluctuation entropy
(listed in Ref. [34], Sec. 4.1).

Since proteins involve many degrees of freedom, such a
distribution can achieve a great balance between sensitivity
and robustness. For example, the external perturbations can
easily trigger motions along the eigenvectors correspond to
small eigenvalues. Meanwhile, other degrees of freedom can

remain highly robust, reflecting that the energy landscape
around the native basin of proteins is highly anisotropic,
which is in line with previous molecular simulations [56–58].
Note that such anisotropy or heterogeneity is not encoded arti-
ficially into our model. Our definition of functional sensitivity
and the mutational robustness of the whole subspace are both
isotropic. Such anisotropy or heterogeneity emerges from the
optimization process.

B. The eigenvalue distribution of proteins

Remarkably, the spectra of natural proteins are in good
accord with the above theoretical analysis. Here, we take
three proteins [illustrated in Fig. 2(c)] with the same chain
length (N = 200) but different structures as examples (more
examples listed in Ref. [34], Sec. 5.1). Based on the vibra-
tion spectra (obtained by NMA) of proteins, the power-law
coefficients can be obtained by fitting the eigenvalue distribu-
tion. Here, we consider the integrated eigenvalue distribution
function G(λ) = ∫ λ

0 g(λ′)dλ′. In the slow-mode limit, we have
g(λ) ∼ λζ ; thus, G(λ) ∼ λζ+1. As shown in Fig. 2(d), for
the first 10 to 20 eigenvalues, G(λ) occurs in a line in the
double logarithmic scale, clearly demonstrating power-law
behavior. The slope of the log-log plot of G(λ) is used to
determine the power-law coefficient ζ + 1. After fitting the
first 20 distribution-based eigenvalues, for the three proteins
in Fig. 2(c), we have ζ = −0.17, 0.12, and 0.23.

Another approach for demonstrating power-law behavior is
to obtain the rank-size distribution of the system. As discussed
in the previous section, the magnitude of λ−1

i describes fluc-
tuations along the direction of eigenvector �vi. Because λ−1

1 �
λ−1

2 � . . . ,� λ−1
N−1, the rank-size relation of the eigenmodes

is λ−1
i vs the rank (eigenvalue index) i. As shown in Fig. 2(e),

for slow-mode eigenvalues, the rank-size distribution shows a
power law, known as Zipf’s law, i.e., λ−1

i ∼ i−s, where s is the
Zipf’s exponent. Fitting the first 20 eigenvalues in the spectra
of the three proteins, we have s = 1.19, 0.88, and 0.78, which
are all close to 1. Such a power-law decay quantitatively
demonstrates that the low-frequency normal modes contribute
significantly to the equilibrium fluctuations of proteins.

It is worth noting that the eigenvalue index i is pro-
portional to the integrated eigenvalue distribution function,
because G(λi ) = ∫ λi

0 g(λ′)dλ′ ∼ ∑
k�i δ(λk − λi ) = i. In the

slow-mode limit, G(λ) ∼ λζ+1 ∼ i ∼ λ1/s. Thus ζ = 1/s − 1
and measured ζ and s values are consistent with the re-
lationship: For the three proteins in Fig. 2(c), when ζ =
−0.17, 0.12, or 0.23, s = 1.19, 0.88, or 0.78. For most pro-
teins, s ≈ 1 and ζ ≈ 0. Note that power-law coefficients ζ and
s are closely related to the spectral dimension ds [59] of the
proteins: ds = 2(ζ + 1) = 2/s, and ds ≈ 2 < 3 (see Ref. [34],
Sec. 4.3).

In Fig. 2(f), the spectra of proteins with the same chain
lengths (N = 200) are illustrated. Although the spectra of
different proteins are varied, these spectra show similar be-
havior. At the logarithmic scale, the first 10 to 20 eigenvalues
are roughly uniformly distributed, and act as a power-law
distribution. The other eigenvalues are rather concentrated,
demonstrating the characteristic scale of the exponential dis-
tribution. For comparison, the spectra of the Erdős-Rényi (ER)
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(c)

(d) (e) (f)

(b)(a)

FIG. 3. For proteins with similar sizes (chain length 180 � N < 220), the scattering plots (every data point denotes a protein) and trend
lines of (a) functional sensitivity 1/(λ1λ2) vs the power-law coefficient ζ ; (b) mutational robustness |λ−1

1 − λ−1
2 | vs ζ ; (c) mutational robustness

|λ−1
1 − λ−1

2 | vs functional sensitivity 1/(λ1λ2); and (d) radius of gyration Rg vs ζ . For proteins with different sizes (30 � N � 1200), the
scattering plots (every data point denotes for a protein) and trend lines of (e) functional sensitivity 1/(λ1λ2) vs chain length N , and (f)
mutational robustness |λ−1

1 − λ−1
2 | vs chain length N are shown.

random network [60] and random geometric graphs (RGGs)
with a similar number of nodes and edges [61] are also
shown in Fig. 2(f). The ER networks can be recognized as
a simplification of extended or collapsed polymer systems
with random correlations between the monomer units. The
RGGs represent the random dense packing structures in the
real space. In comparison with ER networks, the vibration
spectrum of proteins has a notable power-law distribution in
the slow mode. In contrast, the spectra of these proteins are
very similar to those of RGGs. For most proteins, the scales of
the eigenvalues (characterized by λN−1/λ1) [62] lie between
the spectra of two-dimensional and three-dimensional RGG.
This result is robust for different kinds of weighted GNMs
(see Ref. [34], Sec. 1.1) and is in line with those of previous
studies, demonstrating that the structure of proteins can be
described as the packing of amnio-acid residues in a fractal
dimension between 2 and 3 [8,59].

IV. THE COMPATIBILITY OF FUNCTIONAL
SENSITIVITY AND MUTATIONAL ROBUSTNESS:

CONFIRMATION BY STRUCTURAL INFORMATION

Here, based on a large data set of protein structures (see
Appendix C), we analyze the interplay between functional

sensitivity and mutational robustness of proteins. For simpli-
fication, we mainly focus on the functional sensitivity and
mutational robustness contributed by the first two normal
modes (discussions on the other modes are listed in Ref. [34],
Sec. 5.1). The fluctuation entropy contributed by the first
two modes can be expressed as − ln(λ1λ2); hence, we take
1/(λ1λ2) to be a descriptor of functional sensitivity. For
mutational robustness, because λ1 and λ2 are the smallest
eigenvalues in the system, to magnify the difference between
them, we introduce |λ−1

1 − λ−1
2 | to describe the gap between

the first and second eigenvalues.
Now, let us address the question regarding the physical

meaning of the exponent ζ . We focus on a subset of proteins
with similar chain lengths (180 � N < 220). Although these
proteins have similar sizes, their shapes and structures are
different. For every protein, we fit the spectrum and obtain
the value of ζ . Notably, the magnitude of ζ correlates with the
functional sensitivity and mutational robustness of proteins.
As shown in Fig. 3(a), as ζ increases, the functional sensitiv-
ity described by 1/(λ1λ2) decreases. As shown in Fig. 3(b),
the mutational robustness described by |λ−1

1 − λ−1
2 | also de-

creases as ζ increases. Since both functional sensitivity and
mutational robustness are negatively correlated with the coef-
ficient ζ , as shown in Fig. 3(c), for proteins with a given size,
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functional sensitivity is positively correlated with mutational
robustness. This behavior resembles that of the three-bead
system, as discussed in previous sections, which suggests the
low-dimensionality of the dynamics of natural proteins.

The coefficient ζ is closely related to the protein structure.
As shown in Fig. 3(d), the radius of gyration Rg is negatively
correlated with ζ . The three proteins illustrated in Fig. 2(d)
can also support such an analysis. They have the same chain
length, but their Rg and ζ are different. The chain length N
per volume (∼N/R3

g) can act as an estimator of the packing
density of proteins. A smaller Rg (larger ζ ) indicates a higher
packing density and lower flexibility of the molecule. On the
contrary, a larger Rg (smaller ζ ) implies a lower packing den-
sity and higher flexibility. The coefficient ζ is correlated with
the fractal dimensions of proteins. When a protein is packed in
lower spatial dimensions, there will be a smaller ζ and a larger
Rg. Besides, there will be a larger solvent-accessible surface
area (SASA) [63] and higher modularity [64,65], contributing
to the large-scale motions and slow relaxations of the proteins
(see Ref. [34], Sec. 5.2).

For natural proteins, both functional sensitivity and muta-
tional robustness are scaled up as the protein size increases.
As shown in Fig. 3(e), as the chain length N increases, the
magnitude of 1/(λ1λ2) also increases, showing that large
proteins also have a higher functional sensitivity. The phys-
ical picture of this relationship is clear: small proteins tend
to have a densely packed structure that ensures a stable
folded state [66]; while for large proteins, slower vibration
modes, which usually correspond with disordered loops or
linkers, are demanded by the functionality. Meanwhile, as
shown in Fig. 3(f), as the protein size increases, the eigengap
|λ−1

1 − λ−1
2 | also increases, showing that slow vibration modes

also exhibit a high mutational robustness. It is also under-
stood that large proteins or protein complexes usually have
multi-domain structures, which shows the high modularity
of their residue contact networks [8]. The enhancement of
the molecular flexibility contributes to inter-domain motions,
which are usually highly robust. In all, the size dependence
of functional sensitivity and mutational robustness suggests
a general evolutionary constraint for proteins with different
sizes.

V. DISCUSSIONS

Plasticity and robustness are considered to be the two basic
characteristics of biological systems [21–24]. They seem to
be two opposite concepts at first glance; however, proteins
can exhibit both the two characteristics. Native proteins are
not only robust enough to tolerate random mutations, but
also susceptible enough to sense environmental signals and
perform large-scale conformational changes. It is suggested
that a hidden link evolves between sensitivity/robustness to
external perturbations and to mutations [23]. To reveal the
relationship between functional sensitivity and mutational ro-
bustness, in this study, a general framework is presented to
analyze the dynamics of a system under external and internal
perturbations.

We demonstrate that for systems with low degrees of
freedom, high functional sensitivity is equivalent to high

mutational robustness. Biological systems, however, involve
high degrees of freedom. Here, we show that these de-
grees of freedom are hierarchically organized, with power-law
statistics of eigenvalues of relaxation dynamics. Larger con-
formational changes are governed by low-dimensional slow
modes. Recent reports have shown that the dimensions of
biologically relevant modes are reduced through evolution
[67,68]. Such evolutionary dimensional reduction was also
observed in the phenotypic dynamics of proteins [28,29,69].
Such a property also concerns with “sloppiness” [70–72].
Systems are usually sensitive to perturbations along a few stiff
dimensions that correspond with the functional dynamics and
highly robust to mutations along many other sloppy dimen-
sions. Both functional sensitivity and mutational robustness
can be achieved with these sloppy systems. From the per-
spective of statistical inference, such systems can have both
high sensitivity of the variables and high robustness in the es-
timation of the inferred parameters [73]. The low-dimensional
dynamics have a slower timescale in general. These slow-
mode motions usually overlap significantly with displacement
during functional motions. These functional motions usually
involve relative movements of large protein subunits or coop-
erative conformational changes in entire proteins. They confer
a high functional sensitivity; a small perturbation can lead
to motions along the directions of these modes. Previous
research has shown that weak interactions at the interfaces
of domains enable proteins to exhibit large-amplitude con-
formational changes [74–76], contributing to the functional
sensitivity of the molecule. Meanwhile, these functional slow
modes are also highly robust to mutations. Modularized struc-
tures in residue contact networks define gaps between the
eigenvalues of the graph Laplacian [64,65,77], and contribute
to mutational robustness (details in Ref. [34], Sec. 5.2). In
practice, the gap between the first and second eigenvalues
[|λ−1

1 − λ−1
2 | or ln(λ2/λ1)] has been applied as an empirical

descriptor of protein fitness [28,29]. One theoretical interpre-
tation is that when protein dynamics are low-dimensional,
the maximization of the gap between the first two nonzero
eigenvalues can contribute to the functional sensitivity and
mutational robustness of a protein molecule.

For systems with high degrees of freedom, our results
show that the compatibility between functional sensitivity and
mutational robustness will lead to a power-law eigenvalue
distribution in the spectrum, which is a sign of criticality.
Our statistics for natural proteins reveal that small proteins
prefer a densely packed structure to ensure a stable folded
state, while large proteins have higher flexibility, which is
required for their functionality. Such results reveal a universal
principle in the evolution of proteins with different sizes and
shed light on the design of functional proteins. Interestingly,
staying at the critical point seems to be a common organizing
principle of numerous varieties of biological systems [20,78–
83]: If a system is too disordered, it cannot stably exist or
be reproduce; if it is too ordered, it cannot adapt or respond
to environmental perturbations. Considering that proteins sat-
isfy both functional sensitivity and mutational robustness, the
theory we proposed here may explain why the proteins after
evolution are near the critical points, and suggest one possible
scenario for the evolution towards criticality.
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APPENDIX A: GNM AND GRAPH LAPLACIAN

In Gaussian network model (GNM), the Hessian matrix H
then can be expressed as a Kirchhoff matrix that described
residue contact topology [32,33]. The entries in matrix H are
calculated as

hi j =
⎧⎨
⎩

−1 if i �= j and ri j � rC,

0 if i �= j and ri j > rC,

−∑N
j, j �=i hi j if i = j.

(A1)

Here, rC is the cutoff distance. In this study, we used
rC = 8.0Å. In practice, one can also introduce more accu-
rate distance-dependent weights to describe the interaction
strength between residue pairs. Additional discussions on the
weighted GNM are listed in Ref. [34] (Sec. 1.1).

According to Eq. (A1), matrix H can be expressed as H =
D − A, in which D is a diagonal matrix that describes the
degrees of the nodes, and A is the adjacency matrix of the
elastic network. For the matrix H, the trace

∑
i Hii = ∑

i λi =

2E , in which E denotes the total number of edges in the elastic
network. In a protein molecule, the number of edges, i.e., E
indicates the total number of covalent and noncovalent residue
contacts. Thus E can work as an estimator of the energy of the
native state.

APPENDIX B: CORRELATED MOTION

The correlated motion of native proteins can be described
using the covariance matrix C, in which the matrix element
Ci j = 〈��ri · � �r j〉 [35–37]. Experiments and molecular simu-
lations can provide information on the correlated motions of
the proteins. Based on the covariance matrix, by conducting
principal component analysis (PCA), the eigenvalues and the
eigenvectors describing the proteins’ dynamical modes can
be obtained. It is observed that the low-frequency normal
modes predicted by elastic network models can well match
the eigenmodes given by PCA. In the GNM, the covariance
matrix C is proportional to the pseudoinverse of the Hessian
matrix H: C = 3kBT

γ
H† = ∑N−1

i=1 λ−1
i �vi�vT

i [17,25,32].

APPENDIX C: DATASET

Our dataset contains 12954 proteins selected from the
Protein Data Bank (PDB) [84]. The structures of these pro-
teins were all determined via high-resolution x-ray diffraction
(�2.0 Å). No DNA, RNA, or hybrid structures of proteins are
included in the dataset, and the chain lengths are 30 � N �
1200. In our protein dataset, every two proteins share less than
30% sequence similarity. The PDB codes of all the proteins in
our dataset are listed in the Ref. [34] (Sec. 6.3).
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