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Quantum jump approach to microscopic heat engines
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Modern technologies could soon make it possible to investigate the operation cycles of quantum heat engines
by counting the photons that are emitted and absorbed by their working systems. Using the quantum jump
approach to open-system dynamics, we show that such experiments would give access to a set of observables that
determine the trade-off between power and efficiency in finite-time engine cycles. By analyzing the single-jump
statistics of thermodynamic fluxes such as heat and entropy production, we obtain a family of general bounds on
the power of microscopic heat engines. Our new bounds unify two earlier results and admit a transparent physical
interpretation in terms of single-photon measurements. In addition, these bounds confirm that driving-induced
coherence leads to an increase in dissipation that suppresses the efficiency of slowly driven quantum engines in
the weak-coupling regime. A nanoscale heat engine based on a superconducting qubit serves as an experimentally
relevant example and a guiding paradigm for the development of our theory.
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I. INTRODUCTION

In classical thermodynamics, a heat engine is described
as a machine that uses a periodic series of thermodynamic
processes to convert thermal energy into mechanical work [1].
Each process, or stroke, involves the transfer of work between
the working medium and an external load, for example a
movable piston, or the exchange of heat with either a hot or
a cold reservoir. Output and input of the engine, that is, the
net generated work and the heat uptake from the hot reservoir,
depend on the applied protocol and the equations of state of
the medium. Their ratio, however, the thermal efficiency, is
subject to a universal upper bound, the Carnot limit, which
follows directly from the first and the second law and is
attained for optimal quasistatic, i.e., infinitely long, cycles [1].

Realistic machines have to operate at finite speed and
therefore inevitably produce dissipative losses, which sup-
press their efficiency. But how close can a heat engine with
fixed cycle time come to the Carnot limit? This question
cannot be resolved within the framework of classical ther-
modynamics due to its lack of a fundamental time scale.
Early on, this issue spurred the development of refined models
for macroscopic heat engines that account for irreversible
effects by phenomenological means, an approach that became
known as finite-time thermodynamics [2–5]. More recently,
with the advent of stochastic and quantum thermodynamics,
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the focus has changed to microscopic heat engines, which,
instead of a homogeneous medium, use a tiny object with
few degrees of freedom to perform thermodynamic cycles
[6–10]. The input for such devices is provided by tunable
heat sources, which control the temperature of the environ-
ment of the working system; work is extracted and injected
by changing the internal energy of the system through ex-
ternal control parameters or by coupling it to a microscopic
load.

In contrast to a macroscopic fluid, which contains a vast
amount of particles, the working systems of a microscopic
heat engine can be described on the level of trajectories or
wave functions. Macroscopic equations of state are thereby
replaced by stochastic equations of motion, which apply even
far from equilibrium and create a direct link between mi-
crodynamics and thermodynamics. This approach has opened
a wide range of possibilities to explore the basic principles
that govern the performance of periodic heat engines. Re-
cent investigations include the study of generalized cycles,
which involve continuous temperature variations [11–15], the
development of optimal control strategies [16–24], and the
systematic investigation of the thermodynamic footprint of
quantum effects, which become relevant at time and en-
ergy scales comparable to Planck’s constant, see for instance
Refs. [25–36]. As a key result, this development led to the dis-
covery of a family of trade-off relations between power, i.e.,
average work output per unit time, and efficiency, first in linear
response [11,13,37] and then beyond [38–40]. These relations
impose quantitative bounds on the efficiency of finite-time
engine cycles, which go beyond the first and the second law
and approach the Carnot limit only for infinite cycle times
leading to vanishing power. This behavior is, in fact, generic
for conventional systems and can be overcome only under
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exceptional conditions such as diverging fluctuations of ther-
modynamic quantities [40–42] or vanishing relaxation times
enabled by fine-tuned dissipation mechanisms [43–46].

Over the last decade, microscopic heat engines have been
realized on increasingly smaller length and energy scales with
working systems such as a μm-sized silicon spring [47], col-
loidal particles [48–52], a single atom [53,54], nuclear [55],
and electronic [56] spins or nitrogen-vacancy centers in dia-
mond [57]. In light of this rapid development, practical tests of
trade-off relations between power and efficiency appear as a
realistic challenge for near-future experiments. This endeavor
will, besides measurements of produced work and absorbed
heat, require the measurement of at least one additional pa-
rameter, which is necessary to match the physical dimensions
of power and efficiency [40,58]. Despite its practical impor-
tance, this problem has so far received only little attention
and studies of such trade-off relations in the quantum regime
have so far been focused on specific examples [59] or limiting
regimes [60].

In this paper, we consider a promising solid-state plat-
form for the realization of quantum thermal devices that is
in reach of current technologies [61–66]. This setup consists
of an engineered working system and a mesoscopic reservoir,
which acts as an effective environment. An engine cycle can
be implemented by applying a periodic driving field to the
system and modulating the base temperature of the reservoir.
At the same time, the temperature of the reservoir is monitored
with an ultrasensitive thermometer able to detect small vari-
ations due to the emission and absorption of single photons
[67–70]. Each detected event indicates the transfer of a spe-
cific amount of energy between the system and the reservoir
and an abrupt change of the quantum state of the system, in
other words, a quantum jump. Hence, the reservoir takes on
a twofold role; it functions as a source of thermal energy and
as a small-scale calorimeter enabling the direct measurement
of the exchanged heat and the quantitative observation of
quantum jumps. As we show in the following, the statistics
of these jumps encodes an operationally accessible trade-
off relation between power and efficiency for quantum heat
engines.

The quantum jump approach to dissipative dynamics was
first conceived for applications in quantum optics [71–74]
and has long been recognized as a powerful tool to extend
the notions of stochastic thermodynamics into the quantum
regime [10,75]. The quantum jump record is thereby com-
monly treated as an analog of a classical trajectory, along
which fluctuating thermodynamic quantities can be consis-
tently defined by invoking the two-point measurement scheme
[76,77]. Here, we pursue an alternative approach: instead of
considering accumulated quantities over an entire record, we
focus on the statistics of the quanta of thermodynamic fluxes
that are exchanged between the system and its environment in
individual quantum jumps. This strategy opens a new perspec-
tive on thermodynamic processes in systems with quantized
energy levels and enables us to built a connection between the
microscopic anatomy of the energy flow in a quantum engine
cycle and its overall performance.

Our paper is organized as follows. In the next section, we
set the stage by briefly reviewing the basics of the experimen-
tal setup proposed in Refs. [61–66] and discuss how it can

be used to realize a microscopic heat engine with a supercon-
ducting qubit. We also introduce the concept of single-jump
distributions and illustrate this idea with a numerical simu-
lation. In Sec. III, we set up the theoretical framework for
our analysis and proceed in several steps towards our main
result: a family of new trade-off relations between power and
efficiency for quantum heat engines, which hold for arbi-
trary multilevel systems and driving protocols. These relations
involve only physically transparent parameters that can be de-
termined through single-photon measurements and they unify
several earlier results, which we recover as special cases. To
demonstrate the quality of our bounds, we apply them to
the qubit engine of Sec. II in Sec. IV. We discuss possible
directions for future research and conclude in Sec. V.

II. QUBIT ENGINE: SETUP

We consider a solid-state realization of a microscopic heat
engine with a superconducting qubit. This working system can
be described by the Hamiltonian

Hqb = − h̄�

2
(�σx +

√
V 2 − �2σz ), (1)

where � sets the overall energy scale. The dimensionless
parameters � and V correspond to the characteristic tunneling
energy of the qubit and the level splitting, which can be
controlled by varying the bias magnetic flux [78,79]; σx and σz

are the usual Pauli matrices and h̄ denotes Planck’s constant.
The qubit is coupled to the electronic degrees of freedom of
a metallic island, which acts as a mesoscopic reservoir, see
Fig. 1(a). An engine cycle is realized by periodically changing
the level separation V and the base temperature T of the
island. For simplicity, we here focus on harmonic driving
protocols given by

Vt = 1

2
(3 − cos[2πt/T ]) and Tt = T0

2
(3 − sin[2πt/T ]),

(2)

so that the dimensionless level splitting Vt and the normalized
temperature Tt/T0 oscillate between 1 and 2, where T0 is the
base temperature of the island and T denotes the cycle time.

In the low-temperature regime, the electron gas inside the
island features a low heat capacity and a short internal re-
laxation time of the order of nanoseconds. After absorbing
or emitting a photon, the electron gas therefore first settles
to an internal equilibrium state before returning to the base
temperature of the island via electron-phonon mediated heat
flow to the substrate. This equilibration process takes place on
a much longer time scale, on the order of 100 ns [66,80,81].
This mechanism leads to spikes and dips in the temperature
trace T̂t of the electron gas, which should not be confused with
the base temperature of the island T . Since the temperature of
the electron gas can be detected with an ultrasensitive electron
thermometer, see Fig. 1(b), it becomes possible to detect the
exchange of single photons and to measure a quantum jump
record,

R = {(tk, dk )}, (3)

for every operation cycle of the engine. Here, tk is the time at
which the event k occurs and the binary variable dk indicates
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FIG. 1. Quantum jump thermodynamics of a single-qubit engine. (a) Setup. The left box represents the qubit. The separation between the
two energy levels is sketched as horizontal lines. The two boxes on the right are the calorimeter, which consists of the electron gas inside
a metallic island, and an ultrasensitive thermometer monitoring its temperature. The small panels on the bottom show the driving protocols
for the level splitting of the qubit and the base temperature of the island, cf. Eq. (2). Each photon exchange between the qubit and the
island is accompanied by a quantum jump of the qubit and a short-lived variation of the electron temperature. (b) Temperature fluctuations
of the electron gas, δT̂t ≡ T̂t − Tt , as detected by the thermometer for five different operation cycles. (c) Single-jump distribution of the
exchanged heat between qubit and reservoir, cf. Eq. (4a). (d) Single-jump distribution of the effective thermal input from the heat source, cf.
Eq. (4b). (e) Power vs efficiency for � = 0, 0.5, 0.95 from top to bottom, cf. Eq. (5). The plots in (b)–(d) were obtained from a stochastic
wave-function simulation with the jump operators (54) for T = 1/� [74]. For (c) and (d), averages were taken over 5000 cycles. (e) was
prepared by numerically calculating the time-dependent density matrix of the qubit for increasing cycle times running from T = 0.1/� to
T = 250/�. For all numerical calculations we have set κ = 10 and T0 = h̄�, see Sec. IV for details.

whether a photon was emitted (dk = +) or absorbed (dk = −)
by the reservoir, that is, whether the qubit jumped to its excited
or ground state.

Each detected event indicates the transfer of discrete
amounts of heat and effective thermal energy, Q̂ and Û ,
between the qubit and the reservoir. The statistics of these
thermal quanta is described by the single-jump distributions

P[Q̂] = 1

AE

[∑
k

δ
[
Q̂ − dkεtk

]]
and (4a)

P[Û ] = 1

AE

[∑
k

δ
[
Û − dkεtk ηtk

]]
, (4b)

which can be determined by running the experiment over
a large number of cycles, see Figs. 1(c) and 1(d). Here,
the symbol E indicates the average over all jump records,
εt ≡ h̄�Vt is the time-dependent level splitting of the qubit,
ηt ≡ 1 − T0/Tt is the instantaneous Carnot factor and the ac-
tivity A = E[

∑
k1 ] is a normalization factor corresponding

to the mean number of jumps per cycle. Note that throughout
this paper we use hats to indicate thermodynamic quantities
associated with single quantum jumps and δ denotes the Dirac
delta function.

The mean value 〈Q̂〉 ≡ Q/A of the heat flux Q̂ determines
the average output of the engine since the first law requires
Q = W , where Q is net heat uptake of the working system
per cycle and W the produced work. In analogy, the mean

value 〈Û 〉 ≡ U/A of the flux Û can be regarded as the ef-
fective input provided by the external heat source [11,13].
This identification leads to a consistent generalization of the
standard thermal efficiency for heat engines that are driven by
continuous temperature variations,

η ≡ W/U = 〈Q̂〉/〈Û 〉 � 1. (5)

The upper bound 1 of this figure of merit follows directly
from the second law and corresponds to the Carnot limit,
see Sec. III A for details. To further motivate this definition,
it is instructive to consider the special case of Carnot-type
engines, which operate between two fixed temperature levels
T0 and T1 > T0. For such cycles, the effective input becomes
U = ηCQ1, where ηC ≡ 1 − T0/T1 denotes the Carnot factor
and Q1 is the heat uptake during the hot phase of the cycle,
which is considered the input of a heat engine in classical
thermodynamics. The generalized efficiency (5) thus reduces
to the normalized thermal efficiency and we have η = ηth/ηC

with ηth ≡ W/Q1. Hence, our approach is consistent with the
standard model of classical thermodynamics.

In the plot in Fig. 1(e), we observe that the efficiency
η approaches the ideal value 1 only in the quasistatic limit
T → ∞, where the power P ≡ W/T goes to zero. At the
same time, the power at fixed efficiency decreases with the
tunneling energy �. In the following section, we will show
that this behavior can be understood from general trade-off
relations, which are determined by the single-jump statistics
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of the thermodynamic fluxes between the working system and
its environment.

III. GENERAL THEORY

A. Thermodynamics

For a general model of a quantum heat engine, we now
consider an arbitrary multilevel system, whose Hamiltonian
Ht can be modulated through external fields to extract me-
chanical work. The temperature Tt of the reservoir that forms
the environment is controlled by a heat source that provides
thermal energy. The thermodynamics of the system is gov-
erned by the first and the second law,

Ėt = 
t − Pt and �t = Ṡt − 
t/Tt � 0. (6)

In the weak-coupling regime, which we focus on in this paper,
the internal energy and entropy of the system can be expressed
in terms of its density matrix ρt as [82]

Et = tr{ρt Ht } and St = − tr{ρt ln[ρt ]}. (7)

Furthermore, the rate of heat uptake from the environment and
the extracted mechanical power are given by


t = tr{ρ̇t Ht } and Pt = − tr{ρt Ḣt }, (8)

the symbol �t denotes the total rate of entropy production and
dots indicate time derivatives. Note that we set Boltzmann’s
constant to 1 throughout.

Under continuous periodic driving, the system settles to a
limit cycle state and its internal energy and entropy become
periodic functions of time. Integrating the first law over a full
period T thus gives the identity

Q = W, with Q =
∫ T

0
dt 
t and W =

∫ T

0
dt Pt (9)

being the mean heat uptake and work output per cycle. Anal-
ogously, the second law leads to the relation

�Stot = (U − W )/T0 � 0 with

�Stot =
∫ T

0
dt �t and U =

∫ T

0
dt ηt
t . (10)

Here, �Stot is the average total entropy production per cy-
cle. We further recall that ηt ≡ 1 − T0/Tt is the instantaneous
Carnot factor with respect to the base temperature T0 � Tt of
the environment and that U corresponds to the effective input
of thermal energy from the heat source [11,13].

The inequality (10) shows that the efficiency of a general
engine cycle can be consistently defined as

η ≡ W/U � 1. (11)

This figure attains its upper bound 1 in the reversible limit,
for which �Stot = 0. This condition, however, can be met
in generic systems only under quasistatic driving leading to
vanishing power. A quantitative description of this trade-off
between power and efficiency cannot be derived from the ele-
mentary laws of thermodynamics and requires a microscopic
model for the dynamics of the working system, which we
introduce in the next section.

B. Dynamical model

The density matrix of the working system evolves accord-
ing to a linear master equation with the form [74]

ρ̇t = Lt [ρt ]. (12)

The structure of the generator Lt thereby depends on the cou-
pling mechanism between the system and its environment and
on the hierarchy of the involved time scales. Here, we focus on
the adiabatic weak-coupling regime, where the applied driving
is slow and the system-environment interactions can be treated
perturbatively. That is, we assume that both the time scale
of the driving and the thermalization time scale −1

th , where
h̄th is the typical system-environment interaction energy, are
long compared to both the unperturbed evolution of the work-
ing system and the relaxation dynamics of the surrounding
reservoir [82–85]. The fluctuations T̂t of the reservoir temper-
ature displayed in Fig. 1(b) therefore do not have to be taken
into account in the discussion of the system dynamics. The
generator Lt can then be divided into a unitary part, which
describes the evolution of the bare working system, and a
dissipation superoperator, which accounts for the influence of
the environment, that is,

Lt [ρt ] = − i

h̄
[Ht , ρt ] + Dt [ρt ]. (13)

Here, [A, B] ≡ AB − BA denotes the commutator. Owing to
microreversibility, the dissipation superoperator can be further
decomposed into independent Markovian dissipation chan-
nels. Specifically, we have

Dt [ρt ] =
∑

α

Dα+
t [ρt ] + Dα−

t [ρt ] with

Dα±
t [ρt ] ≡ 1

2

[
Jα±

t ρt ,
(
Jα±

t

)†] + 1

2

[
Jα±

t , ρt
(
Jα±

t

)†]
. (14)

The jump operators Jα+
t and Jα−

t , which respectively describe
the emission and absorption of a photon with energy εα

t > 0
by the reservoir, fulfill the relation

[Ht , Jα±
t ] = ±εα

t Jα±
t (15)

and the detailed-balance condition(
Jα−

t

)† = exp
[
εα

t

/
2Tt

]
Jα+

t . (16)

For a detailed discussion of the microscopic basis and the
range of validity of the adiabatic weak-coupling approach, see
for example Refs. [82–85]. To ensure that the working system
settles to a unique limit cycle state, we further require that
the jump operators connect all energy levels of the working
system during a finite fraction of the cycle.1

Using the master equation (12) and the structure of the
generator (13), the rate of heat uptake and the total rate of

1Specifically, we assume that the Hilbert space of the working
system has finite dimension and that the set of all jump operators
is irreducible for a finite fraction of the cycle [86]. Irreducibility here
means that the commutant of the set of jump operators contains only
multiples of the identity operator.
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entropy production can be expressed as [10]


t = tr{Dt [ρt ]Ht } and �t = tr{Dt [ρt ](ln[Rt ]− ln[ρt ])},
where Rt ≡ exp[−Ht/Tt ]/ tr{exp[−Ht/Tt ]} (17)

denotes the instantaneous Gibbs state of the working sys-
tem. The instantaneous Gibbs state is introduced here only
for technical reasons and does in general not describe the
actual state of the system. Upon observing that Dt [Rt ] = 0
as a consequence of the conditions (15) and (16), it follows
from Spohn’s theorem that �t � 0 for any ρt [87]. This result
shows that the adiabatic weak-coupling approach is inherently
consistent with the second law, for details, see Ref. [13].

C. Quantum jump statistics

To develop a quantum jump description of microscopic
heat engines, we now assume that the reservoir can be con-
tinuously monitored such that the external observer obtains
a channel-resolved quantum jump record R for every opera-
tion cycle of the device. Extending the notation introduced in
Sec. II, we write

R = {(tk, dk, αk )}, (18)

where tk is the time at which the event k in the dissipation
channel αk is detected and dk = ± indicates whether a photon
was emitted (+) or absorbed (−) by the reservoir. After col-
lecting sufficiently many records, the single-jump distribution

P[X̂ ] = 1

AE

[∑
k

δ
[
X̂ − dkX αk

tk

]]
(19)

can be determined for every thermodynamic flux X̂ that is
exchanged between the system and the reservoir. Recall that
E denotes the average over all possible records and A is
the mean number of jumps per cycle; by X α

t , we denote the
amount of the quantity X̂ that is carried by a photon in the
channel α at the time t . For example, the fluxes of heat and
of effective thermal energy are characterized by Qα

t = εα
t and

U α
t = εα

t ηα
t . Note that positive and negative values of the

single-jump variable X̂ correspond to emission and absorption
events, respectively.

To derive an explicit expression for the distribution (19),
we have to analyze the dynamics of the engine under con-
tinuous monitoring. To this end, we use the stochastic wave
function method, which unravels the master equation (12) into
measurement-conditioned quantum trajectories with piece-
wise deterministic evolution of the pure state |ψt 〉 of the
system [71–75]. In this approach, every detected event (d, α)
corresponds to a quantum jump, which is described by the
transformation

|ψt 〉 → |ψ ′
t 〉 = Jαd

t |ψt 〉/||Jαd
t |ψt 〉||. (20)

Here, |||ψ〉||2 ≡ 〈ψ |ψ〉 denotes the norm of the state |ψ〉.
Between two consecutive jumps at the times t and t ′ > t , the
state changes continuously according to the transformation

|ψ ′
t 〉 → |ψt ′ 〉 = Wt ′,t |ψ ′

t 〉/||Wt ′,t |ψ ′
t 〉||, (21)

where the nonunitary time evolution operator is given by the
antichronologically ordered exponential

Wt ′,t ≡ ←−exp

[
− i

h̄

∫ t ′

t
dτ Kτ

]
(22)

with the effective Hamiltonian

Kt ≡ Ht − ih̄

2

∑
α

(
Jα+

t

)†
Jα+

t + (
Jα−

t

)†
Jα−

t . (23)

Hence, if the record R is observed over the period T , the
initial state |ψ0〉 undergoes the transformation

|ψ0〉 → |ψT [R]〉 = W [R]|ψ0〉/||W [R]|ψ0〉||, (24)

where the record-conditioned time evolution operator

W [R] ≡ WT ,tM

←−∏M

k=1
Jαkdk

tk Wtk ,tk−1
(25)

is found by successively applying the transformation rules
(21) and (22). The arrow in Eq. (25) indicates the product is
ordered antichronologically, M is the total number of events
in the record R and we set t0 ≡ 0.

The probability density to observe a given record R for the
initial state |ψ0〉 can now be expressed as

p[R|ψ0] = ||W [R]|ψ0〉||2. (26)

Consequently, if the system is initially in the mixed state ρ0 =∑
j r j

0 |ψ j
0 〉〈ψ j

0 |, the cycle average of any record-dependent
observable X can be expressed as

E[X ] =
∑

j

r j
0

∫ T

0
D[R] X [R] p

[
R

∣∣ψ j
0

]
. (27)

Here,
∫ T

0 D[R] denotes the sum over all records between 0
and T and the function X [R] assigns the corresponding value
of the observable X to a given record R. This formula makes
it possible to evaluate the distribution (19) in terms of the
weights (26), which leads to the compact expression

〈X̂ n〉 ≡
∫

dX̂ X̂ n P[X̂ ]

= 1

A
∑

α

∫ T

0
dt

(
jα+
t

(
X α

t

)n + jα−
t

(−X α
t

)n)
(28)

for the moments of the single-jump distribution P[X̂ ] as we
show in Appendix B. The variables

jα±
t ≡ tr

{
ρt

(
Jα±

t

)†
Jα±

t

}
(29)

correspond to the mean flux of photons that is absorbed (+) or
emitted (−) by the system through the channel α at the time
t and the activity A is the mean total number of jumps per
cycle,

A =
∑

α

∫ T

0
dt

(
jα+
t + jα−

t

)
. (30)

D. Bounds on entropy production

The total entropy production �Stot provides a measure for
the thermodynamic cost of running a cyclic heat engine in
finite time. In the following, we first show that this cost can
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be divided into two non-negative contributions, one arising
from quantum jumps and one stemming from the decay of
coherences. We then derive a lower bound on the jump en-
tropy production, which depends only on the activity A and
the dimensionless parameter

λX̂ ≡
√

〈X̂ 〉2/〈X̂ 2〉 � 1, (31)

which we refer to as the homogeneity of the flux X̂ . These
results will provide the basis for the derivation of our new
trade-off relation between power and efficiency.

1. Decomposition of entropy production

We begin our analysis by observing that, upon insert-
ing the spectral decomposition of the density matrix, ρt =∑

j r j
t |ψ j

t 〉〈ψ j
t |, the expressions (17) and (29) for the total rate

of entropy production and the average photon fluxes can be
rewritten as

�t =
∑

α

∑
j�


α, j�
t g

[
r�

t , r j
t exp

[
εα

t

/
Tt

]]
,

jα+
t =

∑
j�


α, j�
t r�

t and

jα−
t =

∑
j�


α, j�
t r j

t exp
[
εα

t

/
Tt

]
(32)

with 
α, j�
t ≡ |〈ψ j

t |Jα+
t |ψ�

t 〉|2 and g[a, b] ≡ (a − b) ln[a/b].
Since the function g[a, b] is convex for a, b � 0, we can apply
Jensen’s inequality [88], which yields2

�t �
∑

α

g
[

jα+
t , jα−

t

]
. (33)

After integrating both sides of this relation over a full cycle,
we end up with the result

�Stot � �Sj ≡
∑

α

∫ T

0
dt

(
jα+
t − jα−

t

)
ln

[
jα+
t

/
jα−
t

]
� 0.

(34)

This bound admits a transparent physical interpretation, which
derives from the observation that the quantity �Sj can be
expressed as

�Sj = A 〈�̂j〉 with �α
jt ≡ ln

[
jα+
t

/
jα−
t

]
. (35)

2Recall that Jensen’s inequality can be formulated as follows. For
two sets of real numbers {ϕ j} ⊂ R+ and {x j} ⊂ D ⊆ R, with φ ≡∑

j ϕ j < ∞, and a function f that is convex on D, we have

∑
j

ϕ j f [x j] � φ f

[ ∑
j

ϕ j

φ
x j

]
.

The analogous relation∫
D

dx ϕ[x] f [x] � φ f

[∫
D

dx
ϕ[x]

φ
f [x]

]

holds for any non-negative function ϕ[x] on D with φ ≡∫
D dx ϕ[x] < ∞.

In analogy to the entropy production associated with classical
stochastic dynamics on a discrete set of states, which is given
by the same formal expression [6], we identify the flux �̂j as
the entropy production of single quantum jumps. The quantity
�Sj thus provides a measure for the average thermodynamic
cost of all jumps in one cycle. The remainder of the total
entropy production,

�Sc ≡ �Stot − �Sj � 0, (36)

stems from the nonunitary evolution of the system between
the jumps, that is, from the decay of superpositions between
different energy levels.3 It can therefore be interpreted as a
measure for the thermodynamic cost of coherence. As we
show in Appendix C, the contribution �Sc indeed vanishes in
the quasiclassical regime, where the density matrix of the sys-
tem commutes with its Hamiltonian throughout the cycle and
every jump operator can be identified with a single transition
between two energy levels. Under these conditions, equality
is attained in Eq. (33) and the bound (34) becomes trivial.

2. Homogeneity bound

In order to derive a lower bound on the jump entropy
production, we first introduce the weighting factors and the
rescaled photon fluxes

�α
t ≡ (

X α
t

)2(
jα+
t + jα−

t

)/
A � 0 and

kα±
t ≡ 2 jα±

t

X α
t

(
jα+
t + jα−

t

) , (37)

which fulfill the relations∑
α

∫ T

0
dt �α

t = 〈X̂ 2〉 and

∑
α

∫ T

0
dt �α

t kα±
t = � ± 〈X̂ 〉. (38)

We thereby defined the auxiliary variable

� ≡ 1

A
∑

α

∫ T

0
dt X α

t

(
jα+
t + jα−

t

)
. (39)

The expression (34) can now be cast into the form

�Sj = A
4

∑
α

∫ T

0
dt �α

t h
[
kα+

t , kα−
t

]
(40)

with h[a, b] ≡ (a2 − b2) ln[a/b]. Since this function is convex
for a, b � 0, Jensen’s inequality implies4

�Sj �
A

4〈X̂ 2〉h[� + 〈X̂ 〉, � − 〈X̂ 〉)]

= 2A |〈X̂ 〉| |�|
〈X̂ 2〉 artanh[|〈X̂ 〉|/|�|]. (41)

3Note that a similar decomposition of the total entropy production
into a jump and a drift part was introduced in Ref. [89] to derive
quantum corrections to the integral fluctuation theorem.

4We recall that artanh[a] ≡ 1
2 ln[ 1+a

1−a ] for −1 < a < 1.
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Finally, because the right-hand side of the inequality (41) is
monotonically decreasing in |�|, this variable can be elimi-
nated by replacing it with its upper bound

A
√

〈X̂ 2〉 � |�|, (42)

which again follows from Jensen’s inequality. Recalling the
definition (31) thus leaves us with the compact result

�Sj � 2A λX̂ artanh[λX̂ ], (43)

which shows that the jump entropy production is bounded
from below by a monotonically increasing function of the
homogeneity of any thermodynamic flux X̂ .

This figure attains its upper limit 1, for which the
right-hand side of Eq. (43) diverges, if the corresponding
single-jump distribution P[X̂ ] has zero width, indicating that
either emissions or absorptions are fully suppressed and every
photon carries the same amount of the quantity X̂ . Any devia-
tion of λX̂ from 1 signifies fluctuations in the single-jump units
of X̂ with the lower limit 0 being attained if no net exchange
of the quantity X̂ takes place between the system and the
reservoir, i.e., if 〈X̂ 〉 = 0. The relation (43) then reduces to
the trivial bound �Sj � 0.

E. Performance bounds for quantum heat engines

Our bounds on entropy production (34) and (43) imply a
whole family of trade-off relations between power and ef-
ficiency, which we derive in two steps. In the first one, we
obtain a simple relation, which depends on the second single-
jump moment of the effective thermal input and allows us to
recover two earlier results. We then derive an optimal trade-off
relation, which is stronger than the simple one but involves
more parameters.

1. Simple trade-off relation

We first consider the effective thermal input Û and note
that the bounds (34) and (43) together imply

��Stot � 2A λÛ artanh[λÛ ] with � ≡ �Sj/�Stot � 1.

(44)

Upon recalling Eqs. (5), (10), and (31), the first of these
bounds can be rewritten as a trade-off relation between the
power and the efficiency, which is given by

P � ηγ

√
〈Û 2〉 tanh

[
�(1 − η)

2T0

√
〈Û 2〉

]
(45)

with γ ≡ A/T denoting the average jump rate. Note that we
used 〈Û 〉 = U/A = P/(ηγ ) in the derivation. Our trade-off
relation shows that, for generic systems with finite γ , the
power output of any cyclic engine must go to zero as its
efficiency approaches the ideal value 1. The linear slope of this
decay is determined by the second single-jump moment of the
thermal input Û . Moreover, while all quantities in the bound
(45) are generally interrelated, this bound restricts the possible
values of the performance indicators P and η for any given
values of the remaining parameters. This restriction becomes
successively stronger as the parameter � decreases, that is,
as the coherence-induced entropy production �Sc = �Stot −
�Sj increases. In line with previous results [7,13,15,29], this

behavior indicates that coherence is generally detrimental to
the performance of microscopic heat engines, at least under
weak-coupling and slow-driving conditions.

The trade-off relation (45) includes two earlier results as
special cases. First, for small driving amplitudes, it reduces
to the bound that was obtained in Ref. [13] as we show in
Appendix D. Second, for Carnot-type cycles with two heat
baths at different temperatures, Eq. (45) becomes

P � ηthγ

√〈
Q̂2

1

〉
tanh

[
�(ηC − ηth)

2T0

√〈
Q̂2

1

〉]
with

〈
Q̂2

1

〉 = 1

A
∑

α

∫
T1

dt
(
εα

t

)2(
jα+
t + jα−

t

)
(46)

denoting the second single-jump moment of the heat uptake
during the hot phase of the cycle T1; recall that ηC and
ηth denote the Carnot factor and the thermal efficiency and
that Û = ηCQ̂1. Upon noting that tanh[a] � a for a � 0, this
bound can be reduced to the weaker trade-off relation

P � ηth(ηC − ηth) �/T0 with � ≡ γ
〈
Q̂2

1

〉
/2, (47)

which was derived in Refs. [38,39] by Shiraishi and cowork-
ers.

Before moving on, it is worth noting that applying the
bound (43) to the heat uptake Q̂ instead of the thermal input
Û yields the alternative trade-off relation

P � ηγ

√
〈Q̂2〉/η2 tanh

[
�(1 − η)

2T0

√
〈Q̂2〉/η2

]
, (48)

which is, however, weaker than the one in Eq. (45), since
〈Û 2〉 � 〈Q̂2〉 � 〈Q̂2〉/η2 and the hyperbolic tangent is a
monotonically increasing function.

2. Optimal trade-off relation

We now consider the flux

Ŷϕ ≡ Û + ϕQ̂, (49)

whose first and second moment are given by

〈Ŷϕ〉 = 〈Û 〉 + ϕ〈Q̂〉 = (U + ϕW )/A and〈
Ŷ 2

ϕ

〉 = 〈Û 2〉 + 2ϕ〈R̂2〉 + ϕ2〈Q̂2〉 (50)

with Rα
t ≡ εα

t
√

ηt and ϕ being an arbitrary real number. Upon
applying the bound (43), this ansatz yields the general trade-
off relation

P � ηγ

√〈
Ŷ 2

ϕ

〉
/(1 + ϕη)2

× tanh

[
�(1 − η)

2T0

√〈
Ŷ 2

ϕ

〉
/(1 + ϕη)2

]
, (51)

which includes the two results (45) and (48) as limiting cases
for ϕ → 0 and ϕ → ∞, respectively. Its strongest form is
obtained by choosing ϕ such that the right-hand side of the
inequality (51) becomes minimal. This value, which can be
found by inspection, also maximizes the homogeneity λŶϕ

of

the flux Ŷϕ and is given by

ϕ∗ = −〈R̂2〉 − η〈Û 2〉
〈Q̂2〉 − η〈R̂2〉 . (52)
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FIG. 2. Power and efficiency of the qubit engine at the tunneling energies (a) � = 0, (b) � = 0.5, and (c) � = 1. In each panel, the three
curves, from top to bottom, show the simple bound (45), the optimal bound (53) and the actual power output of the engine as a function of its
efficiency. The shaded areas under the two upper curves indicate the admissible regions of the power-efficiency plane for the corresponding
bounds. All plots were prepared by varying the cycle time from T = 0.1/� to T = 250/� for κ = 10 and T0 = h̄�.

Inserting this result into Eq. (51) gives the optimal trade-off
relation

P � ηγ zη tanh

[
�(1 − η)

2T0
zη

]
with

z2
η ≡ 〈Q̂2〉〈Û 2〉 − 〈R̂2〉2

〈Q̂2〉 − 2η〈R̂2〉 + η2〈Û 2〉 . (53)

As we will show in the following section, this bound can be
significantly stronger than the simple one in Eq. (45). We
stress that, despite its complex structure, the trade-off relation
(53) could be tested in experiments since it involves only
parameters that would be accessible through single-photon
measurements.

IV. QUBIT ENGINE: NEW BOUNDS

To probe the quality of our new trade-off relations, we now
return to the qubit engine discussed in Sec. II. The dissipative
dynamics of this system can be described with the two jump
operators [80]

J± =
√

∓κ�V

1 − exp[±h̄�V/T ]
|E±〉〈E∓|, (54)

where the dimensionless parameter κ determines the average
jump frequency and |E+〉 and |E−〉 are the eigenvectors of
the Hamiltonian (1) with corresponding eigenvalues E± =
±h̄�V . Upon inserting the protocols (2) for the level splitting
V and the base temperature of the reservoir T , the periodic
density matrix of the qubit can be determined by numerically
solving the master equation (12). The work output W , the
thermal input U and the total entropy production �Stot of the
engine can then be evaluated using Eqs. (8), (9), and (10)
[15]. Furthermore, the second single-jump moments of the
fluxes Q̂, Û , R̂ and the first moment of �̂j, which enter the
trade-off relations (45) and (53), can be evaluated with the
help of Eqs. (29) and (28).

The results of this analysis are plotted in Fig. 2. They
show that the simple trade-off relation (45) overestimates the
power of the qubit engine by a factor between 4 and 9. By
contrast, the optimal bound (53) closely follows the exact
power-efficiency curve and practically saturates for small η.
Exact saturation is, in fact, achieved for small driving am-
plitudes and optimal protocols as we show in Appendix D.
As a second key observation, we find that the power at fixed

efficiency is uniformly suppressed along with its upper bounds
in the tunneling energy �. This behavior can be understood by
noting the engine is quasiclassical in the limit � → 0, where
the eigenstates of the Hamiltonian (1) become independent
of the level separation. As � deviates from 0, the driving
generates superpositions between the two energy levels of the
system. This effect leads to coherence-induced dissipation and
thus reduces the performance of the engine.

V. CONCLUDING PERSPECTIVES

Power and efficiency are arguably the two most important
benchmarks for the performance of a heat engine. Quantitative
bounds that make it possible to assess the trade-off between
these two figures are key results of the theory of microscopic
heat engines that has emerged over the last years. This pa-
per contributes to these ongoing developments in two ways.
On the conceptual side, our analysis shows that, within the
adiabatic weak-coupling regime, a whole family of trade-off
relations between power and efficiency can be derived in a
technically simple and transparent manner. These relations,
which unify and extend previous results, were obtained only
through the repeated application of Jensen’s inequality. As we
show in Appendix A, it is straightforward to generalize this
technique for setups involving multiple reservoirs and other
types of thermal devices such as microscopic refrigerators.
From a practical perspective, our approach delivers a clear
physical interpretation of the additional parameters that deter-
mine the relationship between the power and the efficiency of
microscopic heat engines. Inspired by current developments
in the area of superconducting circuits, our theory provides a
promising avenue towards practical tests of thermodynamic
trade-off relations in future experiments, which could shed
new light on the working mechanisms of microscopic thermal
devices.

Turning to more general situations, we note that our results
provide a valuable starting point for investigations of the ef-
fects of fast driving and strong coupling on the power and the
efficiency of heat engines. In these regimes, the performance
of heat engines can generally be enhanced through coherence,
see for example Refs. [22,90–92]. In order to analyze this per-
formance boost on the basis of our trade-off relations, further
theoretical research generalizing the concept of single-jump
distributions to the strong-coupling and fast-driving regimes
will be necessary. In addition, a fully realistic model of small-
scale calorimetric measurements must account for imperfect
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photon detection, for instance due to background noise, as
well as the finite size of the electronic reservoir and the back
action of its temperature fluctuations on the working system.
Investigating how our bounds will be altered by these effects
is an important subject for future work. In paving the way for
such studies, our paper contributes to the general goal of a uni-
fied and experimentally confirmed theory of thermodynamic
trade-off relations for microscopic thermal devices.
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APPENDIX A: MULTIPLE RESERVOIRS

To keep the discussion in the main text simple, we focused
on heat engines that operate with a single reservoir in the
main text. In the following, we show how our approach can
be applied to setups with several reservoirs, which cover more
general types of thermal devices. As an application, we derive
a family of trade-off relations between cooling power and
efficiency for microscopic refrigerators.

1. Thermodynamics and dynamical model

For a multireservoir setup, the first and the second law read

Ėt =
∑

ν


ν
t − Pt and �t = Ṡt −

∑
ν


ν
t /T ν

t � 0. (A1)

Here, T ν
t is the periodically modulated temperature of the

reservoir ν, which provides the working system with the
heat current 
ν

t . To derive microscopic expressions for these
currents, we recall that each reservoir can be described with
a separate dissipation superoperator in the weak-coupling
regime [93]. Hence, the generator Lt , which enters the master
equation (12), has the form

Lt [ρt ] = − i

h̄
[Ht , ρt ] +

∑
ν

Dν
t [ρt ]. (A2)

Owing to microreversibility, each of the superoperators Dν
t

can be further decomposed into independent dissipation chan-
nels, i.e., we have

Dν
t [ρt ] =

∑
α

Dνα+
t [ρt ] + Dνα−

t [ρt ] with

Dνα±
t [ρt ] ≡ 1

2

[
Jνα±

t ρt ,
(
Jνα±

t

)†] + 1

2

[
Jνα±

t , ρt
(
Jνα±

t

)†]
.

(A3)

The jump operators Jνα+
t and Jνα−

t , which describe the ex-
change of photons with energy ενα

t > 0 between the working
system and the reservoir ν, obey the relation

[Ht , Jνα±
t ] = ±ενα

t Jνα±
t (A4)

and the detailed balance condition

(Jνα−
t )† = exp

[
ενα

t

/
2T ν

t

]
Jνα+

t . (A5)

Upon recalling the expressions (7) for the internal energy and
entropy of the working system, the rate of heat uptake from
the reservoir ν can now be identified as


ν
t = tr

{
Dν

t [ρt ]Ht
}
. (A6)

Furthermore, the total rate of entropy production �t can be
decomposed as �t = ∑

ν �ν
t , where each component

�ν
t ≡ tr

{
Dν

t [ρt ]
(
ln

[
Rν

t

] − ln[ρt ]
)}

� 0 with

Rν
t ≡ exp

[−Ht/T ν
t

]
/ tr

{
exp

[−Ht/T ν
t

]}
, (A7)

is non-negative according to Spohn’s theorem [87].

2. Quantum jump statistics

We now assume that each reservoir is monitored by means
of an ultrasensitive thermometer. For every operation cycle,
we thus obtain a quantum jump record

R = {(tk, dk, αk, νk )} (A8)

with the variable νk indicating the reservoir where the event k
was detected. After collecting sufficiently many records, the
single-jump distributions

Pν[X̂ ] = 1

Aν

E

[∑
k

δννk δ
[
X̂ − dkX νkαk

tk

]]
(A9)

can be determined, where X να
t is the amount of the quantity

X̂ that is exchanged with a single photon in the channel α at
the time t between the working system and the reservoir ν. As
we show in Appendix B, the activity Aν , which corresponds
to the mean number of events per cycle in the reservoir ν, and
the moments of the distributions (A9) can be expressed as

Aν =
∫ T

0
dt

(
jνα+
t + jνα−

t

)
, (A10)

and

〈X̂ n〉ν ≡
∫

dX̂ X̂ nPν[X̂ ]

= 1

Aν

∑
α

∫ T

0
dt

(
jνα+
t

(
X να

t

)n + jνα−
t

(−X να
t

)n)
,

(A11)

where

jνα±
t ≡ tr

{
ρt

(
Jνα±

t

)†
Jνα±

t

}
(A12)

denotes the average flux of photons that is absorbed (−) or
emitted (+) by the reservoir ν through the channel α at the
time t .

3. Bounds on entropy production

In order to generalize our bounds on entropy produc-
tion (34) and (43) for setups with multiple reservoirs, we
first observe that the expressions (A7) and (A11) for the
components of the total rate of entropy production and
the reservoir-conditioned single-jump moments have the same
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formal structure as their single-reservoir counterparts, cf.
Eqs. (17) and (28). Therefore, the steps of Sec. III D 1 can
be repeated to obtain the bounds

�Sν
tot � �Sν

j = Aν〈�̂j〉ν, (A13)

where �να
t ≡ ln[ jνα+

t / jνα−
t ], and

�Sν
tot ≡

∫ T

0
dt �ν

t � 0 and

�Sν
j ≡

∑
α

∫ T

0
dt

(
jνα+
t − jνα−

t

)
ln

[
jνα+
t

/
jνα−
t

]
� 0 (A14)

correspond to the total and the jump entropy production due to
the reservoir ν. Second, by following the lines of Sec. III D 2,
it is now straightforward to derive the bounds

�Sν
j � 2Aν λν

X̂ artanh
[
λν

X̂

]
, (A15)

which generalize our previous result (43) in terms of the
reservoir-resolved homogeneities

λν

X̂ ≡
√

〈X̂ 〉2
ν

/〈X̂ 2〉ν � 1. (A16)

4. Performance bounds for quantum refrigerators

As an application of our multireservoir bounds (A13)
and (A15), we will now derive a family of thermodynamic
trade-off relations for cyclic microcoolers. Such devices use
a periodically driven microscopic working system to transfer
heat from a cold reservoir with temperature T0 to a hot one
with temperature T1 > T0 [21]. Their thermodynamic output
and input are given by the cooling power Pc ≡ Q0/T and the
absorbed mechanical power Pin ≡ −W/T = (Q1 − Q0)/T ,
respectively; their thermal efficiency, or coefficient of perfor-
mance, is defined as [1]

ω ≡ Pc/Pin = Q0/(Q1 − Q0) � ωC ≡ T0/(T1 − T0). (A17)

Here, Q0 > 0 and Q1 > Q0 are the average heat extraction
from the cold reservoir and heat disposal to the hot reservoir.
The upper bound ωC on ω follows from the second law

�Stot = Q1/T1 − Q0/T0 � 0, (A18)

and corresponds to the Carnot limit for refrigerators. As for
heat engines, this bound is generically only attainable in the
quasistatic limit, where Pc = 0.

For a quantitative account of the trade-off between cooling
power and thermal efficiency, we apply our bounds (A13)
and (A15) to the heat flux Q̂ with Qνα

t = ενα
t . The resulting

relation,

��Stot � 2
∑

ν

Aνλ
ν

Q̂ artanh
[
λν

Q̂

]
with

� ≡ �Sj/�Stot =
(∑

ν

�Sν
j

)/(∑
ν

�Sν
tot

)
� 1,

(A19)

cannot be solved for Pc analytically. We may, however, still
obtain explicit trade-off relations by dropping either the first
or the second summand on the right-hand side of the inequal-
ity (A19), both of which are non-negative. This strategy yields

Pc � γ0

√
〈Q̂2〉0 tanh

[
�

2T1

ωC − ω

ωCω

√
〈Q̂2〉0

]
(A20)

and

Pc �
γ1ω

1 + ω

√
〈Q̂2〉1 tanh

[
�

2T1

ωC − ω

ωC(1 + ω)

√
〈Q̂2〉1

]
, (A21)

where γν ≡ Aν/T is the average rate of events in the reser-
voir ν and we have used that |〈Q̂〉ν | = Qν/Aν for ν = 0, 1.
Alternatively, we can simplify the bound (A19) by noting that

artanh
[
λν

Q̂

]
� λν

Q̂, (A22)

thus obtaining the trade-off relation

Pc �
�(ωC − ω)

2T1ωC

ωγ0γ1〈Q̂2〉0〈Q̂2〉1

(1 + ω)2γ0〈Q̂2〉0 + ω2γ1〈Q̂2〉1
. (A23)

All three of the bounds (A20), (A21), and (A23) show that,
first, the Carnot limit ωC can, for finite jump rates γν , be
attained only at the price of vanishing cooling power. Second,
the maximum cooling power at given efficiency decreases uni-
formly with the coherence factor �. Hence, like microscopic
heat engines, microcoolers can be expected to perform best in
the quasiclassical limit, as has been observed before for qubit-
based devices [21,94]. Which of the bounds (A20), (A21), and
(A23) is strongest, in general, depends on the specific setting.

APPENDIX B: SINGLE-JUMP MOMENTS

In this Appendix, we show how the expression (A11) for
the moments of the reservoir-conditioned single-jump distri-
butions can be derived within the quantum jump approach
to open-system dynamics. For setups with one reservoir, this
result reduces to Eq. (28).

We recall Eq. (A9) and use it to express the moments of
the single-jump distributions in terms of the distribution of
quantum jump records,

〈X̂ n〉ν = 1

Aν

∫ T

0
D[R] p[R|ψ0]

M∑
k=1

δννk

(
dkX νkαk

tk

)n
. (B1)

Here, M is the number of events in the record R and we
assumed, for simplicity, that the initial state of the system
is the pure state |ψ0〉. To generalize Eqs. (23) and (25) for
multiple-reservoir setups, we also defined the probability dis-
tribution of jump records,

p[R|ψ0] = ||W [R]|ψ0〉||2, (B2)

where the record-conditioned time evolution operator is given
by [74]

W [R] ≡ WT ,tM

←−∏M

k=1
Jνkαkdk

tk Wtk ,tk−1 with

Wt ′,t ≡ ←−exp

[
− i

h̄

∫ t ′

t
dτ Kτ

]
and

Kt ≡ Ht − ih̄

2

∑
ν,α

(
Jνα+

t

)†
Jνα+

t + (
Jνα−

t

)†
Jνα−

t . (B3)
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The path integral
∫ T

0 D[R] is defined as the sum over all
possible records,∫ T

0
D[R] X [R]

≡
∑

M

∫ T

0
dtM

∑
νMαM dM

· · ·
∫ t2

0
dt1

∑
ν1α1d1

X [R], (B4)

where X is any record-dependent observable.
In order to evaluate Eq. (B1), we formally understand its

right-hand side as a function of the parameter T and derive
a differential equation for f (T ) ≡ Aν〈X̂ n〉ν . Writing out the
path integral, f (T ) can be expressed as

f (T ) =
∑

M

∫ T

0
dtM

∑
νMαM dM

· · ·
∫ t2

0
dt1

×
∑

ν1α1d1

〈ψ0|W [R]†W [R]|ψ0〉
∑M

k=1
δννk

(
dkX νkαk

tk

)n
.

(B5)

To determine the derivative of f (T ), we will make use of the
identities

∂T W [R] = − i

h̄
KT W [R] (B6)

and

W [R]
∣∣
tM=T = JνMαM dM

T W [R′], (B7)

which follow directly from Eq. (B3). Here, the record R′ is
the record R without its last jump. By combining Eqs. (B3)
and (B7), we further obtain the relation∑

νMαM dM

W [R]†W [R]
∣∣
tM=T = i

h̄
W [R′]†(KT − K†

T )W [R′].

(B8)
Recall that according to the Leibniz integral rule, the

derivative of a parameter-dependent integral is generally given
by

∂T

∫ T

0
dt g(t, T ) = g(t, T )

∣∣
t=T +

∫ T

0
dt ∂T g(t, T ) (B9)

for any function g. Using Eqs. (B6), (B8), and (B9), we find

f ′(T ) =
∫ T

0
D[R′]

∑
νMαM dM

δννM

(
dMX νMαM

T
)n

× 〈ψT [R′]|(JνMαM dM
T

)†
JνMαM dM
T |ψT [R′]〉

=
∑

α

(
jνα+
T

(
X να
T

)n + jνα−
T

(−X να
T

)n)
. (B10)

Recall that |ψT [R′]〉 was defined as W [R′]|ψ0〉. Since

〈X̂ n〉ν = A−1
ν

∫ T

0
dt f ′(t ), (B11)

our proof of Eq. (A11) is concluded. The formula (A10), and
thus Eq. (30), for the activity follows from the normalization
condition 〈1〉ν = 1.

APPENDIX C: QUASICLASSICAL LIMIT

In the adiabatic weak-coupling regime, coherence can enter
a thermodynamic engine cycle in two different ways: through
driving-induced superpositions between the energy levels of
the working system and through superpositions between en-
ergetically degenerate transitions, which belong to the same
dissipation channel. A microscopic heat engine can thus be
regarded as quasiclassical if the two conditions

[Ht , ρt ] = 0 and (C1a)

tr
{(

Jα±
t

(
Jα±

t

)†)2} = (
tr
{
Jα±

t

(
Jα±

t

)†})2
(C1b)

are met throughout the cycle. In the following, we will ex-
plain the motivation for these conditions in more detail and
show that they are sufficient and necessary for �Sc to vanish.
Note that we focus on settings with a single reservoir in this
Appendix for the sake of simplicity.

The first condition (C1a) states that there is no coherence
in the working fluid at any time. For example, this condition
is satisfied at long times if the system Hamiltonians at any
two times t and t ′ commute, [Ht , Ht ′ ] = 0. It ensures that
the Hamiltonian and the periodic state of the working system
share a common eigenbasis, i.e., that

Ht =
∑

n

En
t |nt 〉〈nt | and ρt =

∑
n

rn
t |nt 〉〈nt |. (C2)

Here, E1
t � E2

t � · · · are the ordered energy levels of the
system and {|nt 〉} is a complete set of orthogonal vectors at
each time.

The second condition (C1b) implies, together with the con-
ditions (15) and (16), that the jump operators have the form

Jα+
t = wα

t

∣∣mα
t

〉〈
nα

t

∣∣ and

Jα−
t = exp

[−εα
t /2Tt

] (
wα

t

)∗∣∣nα
t

〉〈
mα

t

∣∣ (C3)

with mα
t > nα

t and the complex weighting factors wα
t depend-

ing on the specifics of the system. This condition thus ensures
that the set { jα±

t } of directed photon currents in our model cor-
responds one-to-one to the set of directed probability currents
in the classical thermal machine. To illustrate the necessity
of this condition, we examine the difference between two
dynamical models for a three-level system with energy eigen-
states |1〉, |2〉, and |3〉. In the first model, the influence of the
environment is modeled using two dissipation channels with
jump operators J12+ ≡ |2〉〈1| and J23+ ≡ |3〉〈2|. In the second
model, there is only a single-jump operator J+ ≡ J12+ + J23+
and the corresponding directed photon current is given by
j+t = j12+

t + j23+
t . The latter model describes a setup where

the two transitions are in superposition and the transition
that took place cannot be inferred from an emitted photon.
A classical setup, where all types of state transition are in
principle distinguishable, must therefore be described with a
model of the first type. Note that both models lead to the same
time evolution of the system if condition (C1a) holds, but the
jump entropy production agrees with the classical expression

�Scl ≡
∫ T

0
dt

∑
α∈{12,23}

(
jα+
t − jα−

t

)
ln

[
jα+
t

/
jα−
t

]
(C4)

only in the first model.
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If both conditions are satisfied, the coefficients 
α, j�
t intro-

duced in Eq. (32) become


α, j�
t ≡ ∣∣〈 jt

∣∣Jα+
t

∣∣�t
〉∣∣2 = ∣∣wα

t

∣∣2
δ jmα δ�nα , (C5)

that is, they vanish for all but one combination of indices j
and �. This form of the coefficients implies that equality is
attained in Eq. (33). Conversely, whenever equality is attained
in Eq. (33), the coefficients must have this form and, hence,
the jump operators must be given by Jα±

t ∼ |ψα±
t 〉〈ϕα±

t | for
some states |ψα±

t 〉, |ϕα±
t 〉. Due to the detailed-balance condi-

tion (15), these states must be eigenstates of the Hamiltonian
and condition (C1b) is therefore satisfied. From the form (C5)
of the coefficients 

α, j�
t and our assumption that the jump

operators connect all energy levels of the working system, we
finally deduce that the eigenstates of ρt are also eigenstates of
Ht and condition (C1a) is satisfied as well.

We have thus shown that the two conditions (C1a) and
(C1b) are both sufficient and necessary for equality in
Eq. (33). It follows that we have �Stot = �Sj in the quasiclas-
sical limit and �Stot > �Sj otherwise. This result confirms
that the contribution �Sc to the total entropy production is
of genuine quantum origin and can be regarded as a measure
for the thermodynamic cost of coherence.

APPENDIX D: LINEAR-RESPONSE REGIME

The physical picture behind our thermodynamic trade-off
relations becomes particularly clear in the linear-response
regime, as we will demonstrate in this Appendix. To keep our
analysis as simple as possible, we focus on the quasiclassical
limit and setups with a single reservoir.

We assume that the Hamiltonian of the working system and
the temperature of the reservoir are given by

Ht = H0 + �wGw f w
t and Tt = T0

(
1 + �u f u

t

)
, (D1)

where the operator Gw corresponds to the degree of free-
dom that couples to the mechanical driving, f w

t and f u
t

are dimensionless periodic functions and �w,�u � 1 are
dimensionless parameters that control the strength of the time-
dependent perturbations. To the lowest order in �w and �u,
the effective input and the work output of the engine are given
by [13]

U = Luw�u�w + Luu�
2
u and

W = Lww�2
w + Lwu�w�u. (D2)

Here, the generalized kinetic coefficients are defined as

Lxy ≡
∫ T

0
dt

∫ ∞

0
dτ Ċxy

τ ḟ x
t f y

t−τ (D3)

for x = u,w and y = u,w. Further,

Cxy
t ≡ 〈〈Gx; Gy〉〉t

≡ 1

T0

∫ 1

0
dλ

(
tr
{
G̃x

t Rλ
0GyR1−λ

0

}− tr
{
G̃x

t R0
}

tr
{
GyR0

})
(D4)

denotes the Kubo correlation function with respect to the
Gibbs state R0 ≡ exp[−H0/T0]/ tr{exp[−H0/T0]} of the un-
perturbed system [95]. Tildes in Eq. (D4) indicate Heisenberg-
picture operators, which evolve according to the equilibrium
master equation

˙̃Ot = i

h̄
[H0, Õt ] + F0[Õt ] with Õt=0 = O. (D5)

The adjoint dissipation superoperator is defined as

F0[O] ≡
∑

α

Fα+
0 [O] + Fα−

0 [O] with

Fα±
0 [O] ≡ 1

2

(
Jα±

0

)†
[O, Jα±

0 ] + 1

2

[(
Jα±

0

)†
, O

]
Jα±

0 (D6)

and Jα±
0 ≡ Jα±

t |�w,�u=0 are the equilibrium jump operators.
Note that, in Eq. (D4), we have implicitly introduced the
variable Gu ≡ −H0 for convenience. The subscript 0 indicates
equilibrium quantities throughout.

To derive the linear-response counterparts of our trade-off
relations from Sec. III E, we first observe that the bound (43)
reduces to

�Stot � 2A0〈X̂ 〉2/〈X̂ 2〉0, (D7)

since �Stot is of second order in the perturbations and the
mean value of any thermodynamic flux must be of first order.
We now consider the flux Ŷ ′

ϕ ≡ (Û + ϕQ̂)/�u, whose first and
second single-jump moments become

〈Ŷ ′
ϕ〉 = U/(A0�u) + O[�2]

= (Luw�w + Luu�u)/A0 + O[�2] and

〈
Ŷ ′2

ϕ

〉
0 = 1

A0

∑
α

(
εα

0

)2(
jα+
0 + jα−

0

) ∫ T

0
dt

(
f u
t + ϕ/�u

)2

(D8)

in lowest order, since the parameter ϕ must be considered
as first order in �u for consistency. Inserting the expressions
(D8) into Eq. (D7) yields the relation

P � η(1 − η)�ϕ,0�
2
u/T0 (D9)

with

�ϕ,0 = γ0
〈
Ŷ ′2

ϕ

〉
0

/
2 = ϑ0

T

∫ T

0
dt

(
f u
t + ϕ/�u

)2
(D10)

and

ϑ0 ≡ 1

2

∑
α

(
εα

0

)2(
jα+
0 + jα−

0

)

= 1

2

∑
α

(
tr
{
R0[H0, Jα+

0 ]†[H0, Jα+
0 ]

}
+ tr

{
R0[H0, Jα−

0 ]†[H0, Jα−
0 ]

})
= − tr{R0H0F0[H0]}. (D11)

Here, we have used the conditions (15) and (16).
Setting ϕ = 0 in Eq. (D9) leads to the simple trade-off

relation

P � η(1 − η)
ϑ0�

2
u

T0

1

T

∫ T

0
dt

(
f u
t

)2
, (D12)
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which corresponds to Eq. (45) for � = 1, since we focus
on the quasiclassical limit here. This result was derived ear-
lier in Ref. [13]. For two-temperature cycles, it becomes the
linear-response version of the bound (47), which goes back to
Refs. [38,39].

The bound (D9) becomes strongest for

ϕ∗ = −�u

T

∫ T

0
dt f u

t ≡ −�u f̄ u, (D13)

as can be easily verified by inspection. For this choice, we
obtain the optimal trade-off relation

P � η(1 − η)
ϑ0�

2
u

T0

1

T

∫ T

0
dt

(
f u
t − f̄ u

)2
, (D14)

which corresponds to Eq. (53). Note that the scaling factor
between power and efficiency in the bounds (D12) and (D14)
is independent of the mechanical protocol f w

t . Furthermore,
Eq. (D14) implies the efficiency-independent bound

P � ϑ0�
2
u

4T0

1

T

∫ T

0
dt

(
f u
t − f̄ u

)2
, (D15)

on power, which was derived in Ref. [29].
Finally, it is instructive to note that the optimal trade-off re-

lation (D14) can be saturated if the variable Gw is proportional
to the unperturbed Hamiltonian H0 and the equilibrium energy

correlation function decays monoexponentially, that is, if

Gw = H0/ζ and

〈〈H0; H0〉〉t = (tr{R0(H0)2} − (tr{R0H0})2) exp[−μt], (D16)

where ζ and μ > 0 are real constants. These conditions are
met, for example, for the qubit engine discussed in the main
text. In this case, the mechanical protocol f w∗

t that generates
the maximal work for a given temperature protocol f u

t and
fixed efficiency η is given by

f w∗
t = ζ�u

�w

(
η f u

t − μ(1 − η)
∫ t

0
dτ

(
f u
t − f̄ u

))
. (D17)

This result can be derived by expanding the protocols f w
t

and f u
t into Fourier series and maximizing the work W with

respect to the Fourier coefficients of f w
t under the constraint

W − ηU = 0, for details see Refs. [13,19]. Evaluating the
kinetic coefficients (D3) for the protocols (D17) and using
the conditions (D16) shows that the bound (D14) is indeed
saturated with

ϑ0 = − tr{R0H0F0[H0]}
= μ(tr{R0(H0)2} − (tr{R0H0})2) (D18)

being proportional to the equilibrium energy fluctuations of
the working system. Hence, we can conclude that our optimal
trade-off relation between power and efficiency, Eq. (53), can
be saturated in linear response.
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