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Benchmarking the noise sensitivity of different parametric two-qubit gates in a single
superconducting quantum computing platform
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The possibility to utilize different types of two-qubit gates on a single quantum computing platform adds
flexibility in the decomposition of quantum algorithms. A larger hardware-native gate set may decrease the
number of required gates, provided that all gates are realized with high fidelity. Here, we benchmark both
controlled-Z (CZ) and exchange-type (iSWAP) gates using a parametrically driven tunable coupler that mediates
the interaction between two superconducting qubits. Using randomized benchmarking protocols we estimate an
error per gate of 0.9 ± 0.03 and 1.3 ± 0.4% for the CZ and the iSWAP gate, respectively. We argue that spurious
ZZ-type couplings are the dominant error source for the iSWAP gate, and that phase stability of all microwave
drives is of utmost importance. Such differences in the achievable fidelities for different two-qubit gates have to
be taken into account when mapping quantum algorithms to real hardware.
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I. INTRODUCTION

With noisy quantum computers [1] it is important to com-
plete a quantum calculation or simulation within the available
coherence time. To reach this goal, high-fidelity gate opera-
tions, high qubit-qubit connectivity, and the ability to carry
out operations on multiple qubit patches in parallel are es-
sential [2]. Moreover, better results are obtained when the
device architecture is tailored to the quantum algorithm [3,4].
For example, in chemistry calculations the number of particle
excitations needs to be preserved, which makes the iSWAP
gate the optimal choice [5,6]. For quantum approximate op-
timization algorithms, on the other hand, a controlled-phase
gate is better matched to the computational task [7,8]. Ideally,
the quantum computing hardware supports a gate set with
multiple types of single-qubit and two-qubit operations. Dif-
ferent types of single-qubit operations can often be realized
by choosing a suitable amplitude, phase, and time of a control
pulse. In contrast, the nature of two-qubit operations depends
on the available interactions and the control capabilities of the
architecture.

For superconducting qubits there are several options
to realize two-qubit gates. One is the use of microwave
drives applied to fixed-frequency qubits. Examples are the
cross-resonance gate [9–11] based on a controlled-rotation
(ZX )-type interaction, the bSWAP gate [12] based on a
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biphoton (XX − YY )-type interaction, and gates that directly
involve microwave cavity states [13–15]. With frequency-
tunable qubits, both iSWAP gates based on resonant exchange
(XX + YY )-type interactions [16,17] as well as controlled-Z
(CZ) gates based on ZZ-type interactions [18–20] can be real-
ized by tuning the qubits or their higher excited states close to
resonance. Such gates can elegantly be realized also paramet-
rically by modulating the frequency of a single qubit [4,21–
24].

To avoid negative effects of additional flux noise on
frequency-tunable qubits, fixed-frequency qubits can be com-
bined with tunable couplers (TCs). A broad range of two-qubit
gates can then be engineered via a parametric modulation of
the coupling [25–31]. Different types of interactions, such
as iSWAP exchange-type (XX + YY ), bSWAP (XX − YY )
or controlled-phase ZZ-type gates, are possible simply by
choosing the correct modulation frequency [6,30,32,33]. A
multitone modulation even allows for combinations of these
interactions simultaneously [34], and with an analog control
of the modulation amplitude adiabatic protocols can be im-
plemented [35].

To benefit from an extended gate set, all gates must be exe-
cuted with high fidelity. While the tunable coupler supports
both fast iSWAP and CZ gates on the same platform with
almost identical hardware requirements, gate fidelities around
99% have been reached with the CZ gate [8], but typical
iSWAP fidelities remain lower [6,29,36]. Here, we explore
both types of gates on the same device, characterize their
respective fidelities, and analyze the specific sensitivity of the
gates to the various sources of coherent and incoherent errors.

We specifically consider the following types of errors as
illustrated in Fig. 1: (A) errors caused by spurious coherent
tones that stem from uncontrolled harmonics in the signal
generation, (B) relative phase errors caused by random pulse
delays and phase noise in the drive signals, (C) relative
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FIG. 1. Error sources split into (a) external control errors and
(b) internal system-related errors. Type A: The up-conversion mixing
process leads to spurious signals at integer multiples of the sideband
frequency (ωLO, ω2nd, ωrsb) in addition to the drive signal at frequency
ω�. Type B: Timing errors in the pulses generated by the arbitrary
waveform generators (AWGs) and phase noise of the local oscillator
(LO) sources lead to phase errors, e.g., in the frame rotating at the
qubit difference frequency. (b) Level diagram of the system illustrat-
ing internal, device-level errors. |n1n2〉 (n1,2 ∈ {0, 1, 2}) denotes the
two-qubit state with the TC in its ground state. Errors are caused by
fluctuations of the qubit frequencies due to frequency fluctuations of
the coupler (type C), by drive-induced dispersive shifts of the qubit
frequencies (type D), and by ZZ-type interactions (type E) related
to shifts of the |11〉 state, e.g., due to the presence of higher excited
qubit states |20〉 and |02〉. Other intrinsic decoherence mechanisms
such as dissipation and decoherence (type F) are illustrated for the
lowest qubit levels.

phase errors caused by coupler-induced frequency drifts of
the qubits, (D) drive-induced dispersive shifts during the gate
caused by the coupling between qubits and the modulated TC,
(E) static ZZ-type errors caused by the interaction between
|11〉 and |20〉 states [36,37], and (F) intrinsic dissipation and
decoherence (T1 and T2).

Type A and B are external errors that occur during pulse
generation [Fig. 1(a)]. Type C, D, and E are internal errors
related to the quantum system itself [see Fig. 1(b)], and
add to intrinsic energy relaxation and decoherence processes
(type F).

As we will show in the following, the iSWAP gate is in
particular susceptible to phase errors and ZZ-type crosstalk, in
contrast to the CZ gate, which is resilient to phase errors and
for which ZZ-type errors can be avoided by proper calibration.

II. DESCRIPTION OF THE SETUP

We use two fixed-frequency transmon qubits Q1 and
Q2 with frequencies ω10/2π = 5.089 GHz and ω01/2π =
6.189 GHz. Both of them are capacitively coupled to a com-
mon TC (for details see Appendix A). The device layout is
similar to the one used in Ref. [6]. The TC frequency

ωc(t ) = ω0
c

√
γ (t )|cos(π�(t )/�0)| (1)

with maximum frequency ω0
c/2π = 8.1 GHz is modulated by

applying an oscillating magnetic flux

�(t ) = �dc + δ� cos(ω�t + η) (2)

with variable phase η to the superconducting quantum in-
terference device (SQUID) loop of the TC. γ (t ) = {1 +
d2 tan2[π�(t )/�0]}1/2 takes the asymmetry d of the SQUID
loop into account [38]. Depending on the drive frequency
ω�, the frequency modulation induces transitions between
different energy levels [29,30]. We consider the CZ and the
iSWAP gate. The iSWAP gate is activated by setting ω� to the
qubits’ difference frequency ω� = ω01 − ω10 [29]. A CZ gate
is implemented by choosing ω� = ωα ≡ ω11 − ω20 = ω� −
α1 [Fig. 1(b)], which drives the transition between the |20〉
and |11〉 state [18,33,39]. Here, ω11 denotes the qubits’ sum
frequency ω01 + ω10, ω20 = 2ω10 + α1 is the frequency of the
second excited state of qubit Q1, and α1/2π = −310 MHz is
its anharmonicity. An in-phase/quadrature (IQ) mixer is used
to generate the microwave control pulses: A low-frequency
pulse from an arbitrary waveform generator (AWG) is single-
sideband modulated onto a carrier signal generated by a vector
signal source to create pulses with adjustable frequency, am-
plitude, and phase.

III. CHARACTERIZATION OF THE CZ GATE

By modulating the TC at frequency ωα , a resonance con-
dition between the states |20〉 and |11〉 is established in a
reference frame rotating at the respective qubit frequencies,
similar to bringing the energies of these levels into or close to
resonance by directly tuning the qubit frequencies [18,19,40–
42]. When starting in the |11〉 state, this leads to oscillations
of the population between the |11〉 and the |20〉 state. At a
given TC modulation amplitude, the length of the modulation
pulse (gate length τgate) is chosen such that one full oscillation
occurs, i.e., such that the state population returns to |11〉. The
state then acquires a phase ϕ, thus implementing a CZ gate.
The dynamics is described by the unitary

UCZ(ϕ) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iϕ

⎞
⎟⎟⎟⎟⎠, (3)

provided that leakage into the |20〉 state is avoided by a
suitable pulse shape. The acquired phase, ϕ = φg + φζ , is
composed of a geometric component φg and an energy-
dependent dynamical component φζ . The geometric phase φg

is proportional to the solid angle enclosed by the evolution
of the state vector on the two-dimensional Bloch sphere [43]
spanned by |11〉 and |20〉 [see Fig. 2(d)]. It depends on the
ratio between the effective coupling strength � of the |11〉 ↔
|20〉 transition and the detuning � = ω� − ωα as

ϕg = π

{
1 − cos

[
arctan

(
�

�

)]}
, (4)

where τ = 2π/
√

�2 + (� − ζ )2 is the duration of the
gate [13]. The dynamical phase component φζ is induced by
the frequency shift of the |11〉 state by its static coupling to
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FIG. 2. Calibration of the CZ gate. (a) Schematic of a Ramsey-
type experiment measuring the phase on qubit Q2 with an interleaved
CZϕ gate UCZϕ

with qubit Q1 in its ground state (left) or its excited
state (right). (b) Population in qubit Q2 measured for different az-
imuthal rotation angles β on the trailing Xβ π/2-pulses in (a). Gray
(brown) Ramsey fringes are obtained with the left (right) quantum
circuit in (a) and a sinusoidal fit yields the phase φId (φXπ

). (c) Phase
ϕ = φXπ

− φId as a function of the detuning � for a sideband fre-
quency of ωSB/2π = 105 MHz and τgate = 591 ns. The solid line is
a fit based on Eq. (4); the dashed cross indicates the detuning �CZ

at which the best RB gate fidelity is measured. (d) Bloch sphere
spanned by |11〉 and |20〉. The phase φg is determined by the solid
angle |A| = 2φg enclosed by the path of the state vector.

nearby |20〉 and |02〉 states and is described by φζ = ζ τ , with
the pulse duration τ and the ZZ-type shift ζ = ω11 − ω01 −
ω10 of the |11〉 state given by the Hamiltonian

Hζ /h̄ = ζ |11〉 〈11| = ζ

4
(ZZ−IZ−ZI+II ). (5)

Here, I denotes the single-qubit identity operation and Z the
σz Pauli operator. To measure the total controlled phase ϕ

we compare the phases of the superposition states |00〉 + |01〉
and |10〉 + |11〉 after application of the CZ gate. For this, a
Ramsey-type experiment on qubit Q2 with an interleaved CZ
gate is performed with qubit Q1 being initialized either in its
ground state or in its excited state [Fig. 2(a)]. The Ramsey
fringes are measured by varying the angle β of virtual Z
rotations [44] before the final π/2 pulse (implemented ex-
perimentally by varying the phase of the Xπ/2 pulse) [see
Fig. 2(b)]. The phases φId and φXπ

of the measured oscillations
in β then determine ϕ = φXπ

− φId. The procedure is repeated

FIG. 3. Benchmarking of a CZ gate at �dc = 0.15�0. (a) Inter-
leaved RB at a gate length of τgate = 188 ns. The measurement is
performed on qubit Q1, averaged over 200 realizations of random-
ized Clifford gate sequences. Similar results are obtained for Q2

(not shown). The blue diamonds and dark blue circles depict the
reference and interleaved sequence, respectively. (b) Average error
per gate εCZ (violet squares) and purity error per gate (dark blue
triangles) measured as a function of the gate length τgate. The dashed
orange line represents the simulated error per CZ gate including qubit
decoherence rates, while the solid violet line depicts the simulated
error per CZ gate including decoherence and an additional ZZ-type
crosstalk contribution with ζ = −200 kHz.

for different detuning �. The resulting phase ϕ is shown in
Fig. 2(c).

From a fit of φg + φζ [using Eq. (4)] to the measured data
we find the value of the ZZ-shift component ζ/2π = −355 ±
1 kHz and the drive strength �/2π = 1.450 ± 0.006 MHz. A
detuning �/2π = −770 kHz results in a total phase shift ϕ =
π , the expected value for an ideal CZ gate. By minimizing
the error per gate using a randomized benchmarking (RB)
protocol for varying � we, however, find a slightly different
value �CZ/2π = −600 kHz (where ϕ = 2.82 ± 0.09 rad), as
discussed in Appendix C together with the complete calibra-
tion procedure. These values were obtained for τgate = 591 ns.

For different TC modulation amplitudes and therefore dif-
ferent τgate we repeat the calibration procedure and perform
interleaved RB [45] at � = �CZ to assess the two-qubit gate
errors. From the sequence fidelity Fseq of the reference and
interleaved RB sequences measured as a function of the length
of the Clifford sequence, we determine the average error per
gate εCZ for UCZ [see Fig. 3(a)]. The average error per gate
εCZ is shown in Fig. 3(b) as a function of τgate. We find the
lowest error at τgate = 188 ns. The gate error there, εCZ =
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0.0089 ± 0.0003, is a tradeoff between decoherence errors
and leakage errors [29,30].

IV. CHARACTERIZATION OF THE iSWAP GATE

The iSWAP gate is realized by modulating the coupler at
the qubit difference frequency ω� that drives the |01〉 ↔ |10〉
transition at a rate � which is determined by the modulation
amplitude [30]. The effective Hamiltonian is described by

HXY /h̄ = �

4
[cos η(XX +YY )−sin η(Y X −XY )] (6)

with the set of Pauli operators {I, X,Y, Z}. η is the relative
phase between the modulation pulse of the TC and the phase
difference of the frames rotating at the qubit frequencies. HXY

generates the unitary operation

UiSWAP(θ, η) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 cos θ/2 ieiη sin θ
2 0

0 ie−iη sin θ/2 cos θ/2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠, (7)

where the rotation angle θ = �τ is controlled by the length
τ of the pulse and set to θ = π to realize an iSWAP gate
UiSWAP = UiSWAP(π, 0). To calibrate the gate we follow a sim-
ilar procedure as for the CZ gate as discussed in Appendix C.
In contrast to the CZ gate, the calibration of the gate involves
an extra step that adjusts the relative phase between the qubits
and the TC to η = 0 via a cross-Ramsey-type experiment.
This is because the iSWAP Hamiltonian HXY in Eq. (6) de-
pends explicitly on the phase η of the drive [6]. We then
measure the average error per gate εiSWAP via the sequence
fidelity Fseq of reference and interleaved RB sequences as a
function of the number of Cliffords as shown in Fig. 4(a).
At a gate length τgate = 170 ns, similar to the duration of the
best CZ gate, we find an error per gate of 0.019 ± 0.003.
This value is almost twice as large as the error of the best
CZ gate even though we use the same hardware configuration
and similar parametric drive frequencies that differ only by the
anharmonicity α1. By varying τgate we find the minimal error
to be εgate = 0.0130 ± 0.004 at τgate = 130 ns [see Fig. 4(b)].

V. DISCUSSION OF GATE ERRORS

In addition to the difference in the average error per gate,
we notice that the spread of the measured sequence fidelity
Fseq for the iSWAP gate is significantly larger as compared to
that of the CZ gate. This is seen when comparing the error bars
in Fig. 3(a) with those in Fig. 4(a) and hints at the presence
of correlated unitary errors [46] as will be discussed further
below.

To discriminate between the different error contributions,
we have also measured the purity error determined by the
length of the Bloch vector [47,48]. A reduced length of the
Bloch vector indicates incoherent errors (e.g., decoherence
or thermal population), while coherent errors only change its
orientation, but not its length. We measure the density matrix
ρm of the final state after an RB sequence as a function of
the number of Clifford gates m using state tomography. The
purity of the final state is then Tr[ρ2

m], which we model by

FIG. 4. Benchmarking of an iSWAP gate at �dc = 0.15�0.
(a) Interleaved RB at a gate length of τgate = 170 ns. The measure-
ment is performed on qubit Q1, averaged over 200 random RB
circuits. Similar results are obtained for Q2 (not shown). The blue
diamonds and dark blue circles depict the reference and interleaved
sequence, respectively. (b) Average error per gate εiSWAP (violet
squares) and purity error per gate (dark blue triangles) measured as a
function of the gate length τgate. The dashed orange line represents
the simulated error per iSWAP gate including qubit decoherence,
while the solid violet line depicts the simulated error per iSWAP
gate including decoherence and an additional ZZ contribution with
ζ = −200 kHz.

(3γ 2m + 1)/4, where γ parametrizes a completely depolar-
izing noise channel ρ0 �→ ρ(m) = γ mρ0 + (1 − γ m)I/d with
the dimension d = 4 of the Hilbert space. The survival proba-
bility γ is determined from a fit of the measured purity decay
over the number of Cliffords m to Aγ 2m + B. The (purity)
error per gate is then given by ε = (1 − γ 2/3)(d − 1)/d =
3(1 − γ 2/3)/4 [49], where the exponent 2/3 comes from the
average number of 1.5 iSWAP or CZ operations composing
one Clifford gate [3].

We compare the measured errors with numerical sim-
ulations based on a Lindblad-type master equation (in
QUTIP [50]) taking dissipation and dephasing (T1 and T ∗

2 ) into
account. The qubits and the TC are modeled with three an-
harmonic energy levels each; the TC frequency is modulated
with an oscillating flux according to Eqs. (1) and (2). The
average error per gate [Figs. 3(b) and 4(b), solid lines] is
extracted from a quantum process tomography (QPT) using
ε̄ = 1 − (Tr[χχ0]), where χ and χ0 are the simulated and
ideal process matrices describing the state evolution (for de-
tails, see Appendix H). To separate decoherence errors from
ZZ-type errors we also run simulations in which we artificially
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add an interaction that compensates the static ZZ term [dashed
line in Figs. 3(b) and 4(b)] emerging from the dispersive
coupling of the qubits to the TC.

For the CZ gate the purity error closely follows the mea-
sured error per gate in the interleaved RB sequence [Fig. 3(b)],
indicating that the CZ gate is limited by incoherent errors only.
Moreover, for this gate the difference between the numerical
simulation with and without ZZ compensation is negligible,
owing to the fact that the static ZZ-type crosstalk contribution
can be fully compensated in the gate calibration procedure.
In contrast, for the iSWAP gate the purity error is larger
than the error expected from decoherence alone [dashed line
in Fig. 4(b)], indicating other noise sources during the gate.
Moreover, for both short and long gate times the measured
purity error is smaller than the interleaved RB error, which
indicates the presence of additional coherent (unitary) errors.

To get a better understanding of the effect of errors on the
CZ and iSWAP gate we consider the error sources listed in the
introduction and illustrated in Fig. 1.

A. Spurious tones: Type A

Carrier leakage from the mixer and nonlinearities in the
signal generation lead to spurious signals at multiples of the
sideband frequency that drive unwanted transitions and lead
to coherent errors and leakage. These effects can be avoided
by using large sideband frequencies. For the CZ gate we have
chosen ωSB/2π = 105 MHz, which suppresses these types of
errors as shown in Appendix F. This strategy does, however,
not work for the iSWAP gate that is sensitive to (type B) phase
errors (see below): Such phase errors increase linearly with
ωSB in the presence of timing errors in the pulse generation.
To balance these error sources, we have chosen ωSB/2π =
5 MHz for the iSWAP gate. We attribute the difference be-
tween the measured and the significantly smaller simulated
errors for gate lengths τgate � 300 ns with a minimal error per
gate of 0.006 for τgate = 80 ns partly to this type of error.

B. Relative phase errors: Types B and C

Both timing errors in the pulses from the AWGs and phase
noise of the signal sources [51] lead to fluctuations of the rela-
tive phase of the parametric drive relative to the frame rotating
at the CZ or iSWAP transition frequency (type B). Similarly,
frequency fluctuations of the TC (type C) induce dispersive
shifts of the qubit frequencies and thereby cause random Z
rotations of the qubits and lead to relative phase errors. In
particular, we have observed significantly enhanced frequency
fluctuation of the qubits when the parametric drive is on. If
such frequency fluctuations occur within the time scale of the
RB experiment, they can be regarded as a reduction of the
effective T ∗

2 of the qubits from the value of 50 and 27 μs
when the parametric drive is off to an amplitude-dependent
value between 4 and 8 μs (for details see Appendix G). Both
types of relative phase errors can be described by terms of
the form HZ/h̄ = δ(ZI − IZ ), a phase advance in the frame
rotating at the difference frequency of the qubits. The CZ
gate is insensitive to these errors, since it does not depend
on the actual phase of the difference frame. This is formally
expressed by the vanishing commutator of the effective CZ
Hamiltonian Hζ in Eq. (5) with the error Hamiltonian HZ ,

[Hζ , HZ ] = 0. In contrast, the iSWAP gate explicitly depends
on the relative phase of the drive and is, therefore, affected by
noise. The nonvanishing commutator [H0

XY , HZ ] ∝ XY −Y X
corresponds to a rotation in the |01〉 − |10〉 subspace of the
iSWAP Hamiltonian H0

XY /h̄ = � (XX +YY )/4 in Eq. (6) and,
therefore, to errors in the phase η of the iSWAP gate. When
taking these relative phase errors into account in the numerical
simulations, the larger gate errors for gate lengths τgate �
300 ns can be explained (see Appendix H).

C. Dispersive shifts: Type D

For both types of gates, dispersive shifts of the transition
frequencies |01〉 ↔ |10〉 during the gate are taken into ac-
count by calibrating both the drive frequency and the phase
accumulated by the qubits during the pulse as discussed in Ap-
pendix C. Shifts of the |11〉 ↔ |20〉 transition frequency can,
however, only be compensated for the CZ gate as discussed
below.

D. ZZ-type errors: Type E

The effect of the static ZZ term in Eq. (5) can be com-
pletely omitted for the CZ gate by adjusting the frequency
and length of the gate pulse to compensate the shift of the |11〉
level. For the iSWAP gate the extra ZZ term adds undesired
controlled-phase-type interactions that increase the average
gate error, as it becomes evident from numerical simula-
tions: In the ZZ noncompensated simulations we find good
agreement with experimental values for longer gate duration
τgate > 400 ns [Fig. 4(b), solid line], implying that in addition
to dissipation and decoherence the error per gate is limited by
static ZZ-type crosstalk. Compensating the static ZZ coupling
in the numerical simulation leads to an overall decrease of
the error per gate to a similar value as the one reached in the
purity RB measurement for longer gates [Fig. 4(b), dashed
line]. The increase of the error for τgate smaller than 100 ns
is attributed to the spectral broadening of the parametric TC
pulse that excites unwanted transitions, an effect that could be
mitigated using pulse optimization [52,53].

E. Effect of ZZ-type errors

To further analyze the effect of ZZ terms we analyze his-
tograms of measured Fseq for the CZ and the iSWAP gates
for 800 RB realizations. We observe a significant increase of
the spread in Fseq with the number of Clifford gates m for
the iSWAP gate shown in Fig. 5(a). In contrast, the spread for
the CZ gate remains constant [see Fig. 5(b)]. To investigate
the reason for this observation we separately run different
RB randomizations and plot individual histograms for each
randomization in Fig. 5(c). The individual histograms have
an equal spread of Fseq, but their average sequence fidelity
strongly depends on the chosen randomization. This indicates
that the overall spread of Fseq for the iSWAP gate is not
given by statistical fluctuations, but results from a determin-
istic dependence of Fseq on the individual RB sequences.
This is a consequence of the presence of ZZ-type interac-
tions that induce phase errors to qubits that depend on the
state of other qubits. Note that such state-dependent phase
errors that are accumulated during a sequence influence the
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FIG. 5. Distribution of sequence fidelities for the (a) iSWAP and
(b) CZ gate for different number of Cliffords in a standard RB
measurement. We recorded 800 different realizations. Solid lines
indicate fits to a � function [46]. In (c) the statistical distribution
of the sequence fidelity for different realizations with m = 8 Clifford
gates is shown. Each colored histogram shows 150 measurements of
a single realization, rescaled by a factor of 1/5 for better visibility.
The gray histogram shows a total of 800 randomizations measured
one time each.

iSWAP gate because of its sensitivity to the alignment of
the TC drive phase with the qubit’s relative phase. The CZ
gate does not depend on that phase, so the line shapes of
the sequence fidelity histograms in Fig. 5(b) remain small for
increasing m.

In order to support this observation, we emulate the RB
experiment using a simplified model where qubits are repre-
sented by two levels and a direct interaction between the two
qubits is assumed, given by the unitaries of Eqs. (3) and (7).
A ZZ-type crosstalk interaction [see Eq. (5)] with ζ/2π =
−200 kHz is added. The unitaries are transformed into

FIG. 6. RB simulations of (a, c) CZ and (b, d) iSWAP gates with
200-ns length, using a simple two-level model of the two qubits
and including dissipation and dephasing, as well as a static ZZ
interaction of −200 kHz. Shown in (a) and (b) are sequence fidelities
of ten randomizations over different Clifford sequence lengths (small
symbols) and their average (large symbol), as well as an exponential
fit (solid lines) that determines the error per Clifford and thereby the
error per gate (0.0068 for CZ, 0.0202 for iSWAP). Due to the static
ZZ crosstalk in the iSWAP gate, the RB fidelity at a given sequence
length strongly depends on the randomization of the sequence, giving
rise to large standard deviations of the sequence fidelity, as seen by
comparing (c) and (d).

Liouvillian representations of supermatrices, taking dissi-
pation and decoherence into account (for details see Ap-
pendix H). Ten different randomizations of Clifford sequences
of variable lengths were simulated, and the resulting sequence
fidelity is plotted in Fig. 6. In agreement with the experimental
observations, the spread in sequence fidelity increases for the
iSWAP gate and stays much lower for the CZ gate. If no ZZ-
type crosstalk is assumed, the spread in the iSWAP remains
on the same level as that of the CZ gate (see Appendix H).

The misalignment between qubit phases and TC drive
phase resulting from the ZZ-type crosstalk accumulates dur-
ing a gate sequence. This also influences the RB error per
gate that is larger than the one estimated from QPT. In nu-
merical simulations (see Appendix H) we find for the iSWAP
gate with ζ/2π = −200 kHz a RB error per gate of 0.0202,
whereas the QPT value is 0.0117, almost a factor of 2 lower.
If ζ = 0 is chosen, the RB error decreases to 0.0066 with a
QPT error of 0.0078.

VI. CONCLUSION

On a given hardware, a “native” gate set can be imple-
mented that contains different variants of two-qubit gates. The
preferred gate depends on the quantum algorithm that one
wants to run, but also on the dominating source of noise that
determines the fidelity of the gate operations. Here we demon-
strate that in a tunable coupler architecture with a parametric
gate implementation the CZ gate is mostly insensitive to vari-
ous error sources, such as ZZ-type crosstalk errors, frequency
drifts of the qubits, and phase errors of the drive. The error per
gate of 0.89% that is reached in our experiment for the CZ gate
is mainly limited by decoherence of the qubits. In contrast,
the error per gate of 1.3% of the iSWAP gate is limited by
external noise and ZZ-type interactions. Moreover, a large
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FIG. 7. (a) Optical micrograph and (b) circuit scheme of the device consisting of two fixed-frequency transmons (Q1, Q2) capacitatively
coupled to a flux-tunable transmon acting as tunable coupler (TC). The tunable coupler is controlled by a flux line (FL) providing a current I (t )
and a consequent flux �(t ) = �dc + δ cos(ω�t + ϕ�) threading the SQUID loop of the coupler. Each of the fixed-frequency qubits is coupled
to an individual readout resonator (R1, R2).

spread of the measured sequence fidelity is observed when
sampling different realizations in a randomized benchmarking
sequence. This puts the average error per gate as a measure for
the quality of a gate in question, since the overall error after
a sequence of gates depends significantly on the details of the
sequence. Some quantum algorithms will therefore perform
better, and some may lead to completely random results for
the same number of gates.

The gate set in the tunable coupler architecture can be even
further extended by including the bSWAP gate, which requires
modulation of the coupler at the qubits’ sum frequency [30],
typically around 10 GHz. Due to its dependence on the TC
phase its noise sensitivity is expected to resemble the sensitiv-
ity of the iSWAP gate. A detailed analysis will, however, be
subject to further investigation.

To lower the gate errors for the iSWAP and bSWAP gate,
improvements in the control electronics to reduce phase errors
are required. A further route towards better gate fidelities may
be provided by optimizing the shape of short TC pulses to
avoid errors such as leakage into the |20〉 state for the CZ gate
and in general into excited states of the tunable coupler. Syn-
chronization of such coherent Rabi oscillations into leakage
channels can minimize leakage errors [54]. On the device end,
strategies to mitigate always-on ZZ-type interactions [36,37]
need to be devised that can be readily employed in scalable
architectures.
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APPENDIX A: DEVICE CHARACTERIZATION

Standard characterization techniques such as spectroscopy,
Ramsey-echo, and spin-echo experiments are used to extract
the characteristic properties of the superconducting qubit de-
vice shown in Fig. 7. The results are summarized in Table I.

APPENDIX B: FLUX NOISE DENSITY OF DIFFERENT
TUNABLE COUPLER DESIGNS

The geometry of the TC is similar to the one used in earlier
experiments [6], but for the different geometry of the SQUID
loop. In these earlier experiments we have used symmetric
SQUID loops with loop areas of S = 625 μm2. The gate fi-
delities and the accuracy of the reported quantum chemistry
calculation in Ref. [6] were then mainly limited by the result-
ing flux noise amplitude A = 17 ± 0.4 μ�0 and the coherence
time of the TC of T ∗

2 = 30 ns. In order to improve the TC
coherence time, we have characterized tunable couplers with
different values for the SQUID asymmetry and different loop
sizes. We have measured the T1 and T ∗

2 times as a function of
the applied magnetic flux for the different TC designs using
the technique described in [6] and have estimated the flux
noise amplitude A and density A/S as summarized in Table II.

While the TC asymmetry has only a minor effect on the
flux noise amplitude, a reduction of the loop size to 100 μm2

as in design C reduces the noise sensitivity. The small loop
size, however, has weaker inductive coupling to the drive

TABLE I. Device parameters of two fixed-frequency transmons (Q1, Q2) coupled via a flux-tunable transmon (TC). The qubits have
transition frequencies ω, anharmonicities α, and capacitive couplings g to the tunable coupler (TC) at zero flux bias (�dc = 0). The relaxation
time T1, spin-echo coherence time T2, and Ramsey coherence time T ∗

2 are measured at the flux bias point �dc = 0.15 �0. At this bias point the
TC has a transition frequency of 7.71 GHz.

ω/2π (GHz) α/2π (MHz) g/2π (MHz) T1 (μs) T2 (μs) T ∗
2 (μs)

Q1 5.089 −310 ± 1 116 ± 2 70 ± 1 81 ± 1 50 ± 1
Q2 6.189 −286 ± 1 142 ± 2 23 ± 1 26 ± 1 27 ± 1
TC 8.1 −235 ± 6 15 ± 1 15 ± 1 7 ± 0.1
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TABLE II. Flux noise sensitivity for different SQUID loop areas
S and asymmetries d measured by the flux noise amplitude A assum-
ing 1/ f noise with a power spectral density of A2/ω.

Design d S (μm2) A (μ�0) A/S (n�0/μm2)

A 0.59 225 6.6 ± 1.1 29 ± 5
B 0.36 225 4.1 ± 1 19 ± 5
C 0.0 100 2.9 ± 0.1 29 ± 3
D 0.0 625 17.1 ± 4 25 ± 6

line and requires a larger current. This leads to heating of
the device. We have, therefore, used the TC design B with a
medium-sized SQUID loop (S = 225 μm) for the experiments
reported in this paper. Later, we have improved the filtering of
the dc and rf lines used for the parametric drive and further re-
duced the flux noise amplitude to A = 1.7 ± 0.1 μ�0 (Fig. 8)
for the experiments.

APPENDIX C: CALIBRATION

1. CZ-gate calibration

In the following, we describe the complete calibration
procedure for a controlled-phase gate CZϕ described by the
unitary

UCZ(ϕ) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iϕ

⎞
⎟⎟⎟⎟⎠. (C1)

Setting the phase ϕ to π realizes a CZ gate. A CZϕ-type
gate with arbitrary phase ϕ is implemented in the tunable
coupler architecture using higher transmon levels. Threading
a magnetic flux �(t ) = �dc + δ� cos(ω�t + η) at a frequency
that is slightly detuned by � = ω� − ωα from the |11〉 −
|20〉 transition for a time τ2π = 2π/

√
�2

eff + �2 through the
SQUID loop of the TC implements the following unitary

transformation with a geometric phase φg [33]:

UCZφg
=

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 e−iφ01 0 0

0 0 e−iφ10 0

0 0 0 e−i(φg+φζ +φ10+φ01 )

⎞
⎟⎟⎟⎟⎠. (C2)

Here we assume that the system returns to the |11〉 state and
leakage to the |20〉 state can therefore be neglected. φζ is
the phase shift induced by the static and induced ZZ-type
coupling between the qubits discussed in Appendix D below,
and the single-qubit phases φ01 and φ10 are caused by disper-
sive shifts from the TC on the qubits during the gate. �eff =
�eff (�dc, δ�) denotes the Rabi rate of the |11〉 − |20〉 transi-
tion. For the pulses we use a Gaussian flat-top with a rise/fall
time of ≈13 ns. In contrast to exchange-type (iSWAP) gates
discussed below, the geometric phase φg of such a CZφg -type
gate does not depend on the phase η of the two-qubit gate drive
and therefore the CZ gate is not sensitive to type-B errors.

To calibrate the gate, we first measure Rabi oscillations
(starting in the |11〉 state) as a function of the detuning � as
shown in Fig. 9(a). For each detuning, this determines the gate
length τ2π at which the population completely returns to the
|11〉 state. Figure 9(b) shows the oscillations for a detuning of
�/2π = −650 kHz. Next, we compensate single-qubit phase
shifts φ01 and φ10 (type-D errors). Starting with the |00〉 state,
one of the two qubits is rotated by π/2 about the X axis (de-
noted as a X π

2
pulse). Applying the CZφg gate and its inverse

should yield the identity operation on that qubit, such that a
final X π

2
pulse will lead to population transfer into the excited

state. Adding an extra Z rotation after the CZφg gate as in the
circuit

Q1 |0〉 Xπ
2 UCZφg

Zφ
U†

CZφg

Zφ Xπ
2

Q2 |0〉
(C3)

with phase φ allows for the adjustment of the single-qubit
phase shift. Zφ is a virtual-Z gate [44] with programmable
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FIG. 8. Coherence of the tunable coupler. (a) Measurement of T1 and T ∗
2 time as a function of magnetic flux. (b) Tφ as a function of

∂ωc/∂�. The flux noise amplitude A is obtained from an exponential fit (red line).
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FIG. 9. Calibration of the CZ gate UCZπ
at a TC flux-bias point �dc = 0.15�0. (a) Population in |20〉 as a function of pulse length τ and

detuning from the |11〉 - |20〉 transition �. (b) Population in |20〉 as a function of pulse length τ at a given drive frequency ω� [white dashed
line in (a)]. For a pulse length of τ2π the population is returned to the initial |11〉 state. (c) Population in |10〉 as a function of the phase φ of the
virtual Zφ gate of qubit Q1 (open circles). The solid line is a sinusoidal fit used to determine the compensation phase φ

comp
10 . (d) Population in

|01〉 as a function of the phase φ of the virtual Zφ gate of qubit Q2 (triangles). The dashed line is a sinusoidal fit to determine the compensation
phase φ

comp
01 . (e) Population in |01〉 measured for different rotation angles β using the calibration sequence in Eq. (C7) with U = I (yellow

curve) and U = Xπ (brown curve). Solid lines represent fits with Eqs. (C8) and (C9), respectively. (f) Phase ϕ as a function of the detuning �.

phase φ defined by

Zφ =
(

e−iφ/2 0
0 eiφ/2

)
. (C4)

In practice, the Zφ gate is realized by shifting the phase of the
corresponding single-qubit drive signal by φ. The resulting
oscillation of the qubit Q1 population is shown in Fig. 9(c).
The same sequence with now applying the X π

2
pulse on Q2

allows for compensation of the φ01 single-qubit phase shift.
The resulting unitary transformation reads

UCZϕ
= Z1

φ10
Z2

φ01
UCZφg

=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iϕ

⎞
⎟⎟⎠. (C5)

The total phase ϕ = φg + φζ includes the geometric phase φg

and the extra phase φζ = ζstatτ from the ZZ-type coupling be-
tween the qubits. As discussed in the main text, the geometric
phase

ϕg = π

{
1 − cos

(
arctan

[
�eff

�

])}
(C6)

originates from the cyclic evolution of the state |11〉.

As the last step, we adjust the total phase to give ϕ = π ,
which also compensates static ZZ shifts during the gate oper-
ation. For that purpose we run the π/no-π sequence

Q1 |0〉 U
UCZϕ

Q2 |0〉 X Xπ
2

, (C7)

with either a leading identity U = I or a π rotation U = Xπ .
Here, Xβ = cos βX + sin βY describes a π/2 pulse about the
axis rotated by β in the azimuthal X -Y plane. The population
measured on qubit Q2 is described by

p(β ) = 1
2 + 1

2 cos β for U = I, (C8)

p(β ) = 1
2 + 1

2 cos (β + ϕ) for U = Xπ . (C9)

Measuring the population in qubit Q2 as a function of β for
both cases as shown in Fig. 9(e) [Fig. 2(b) in the main text] and
fitting the data with Eqs. (C8) and (C9) yields the controlled-
phase shift on the |11〉 state as the sum of geometric phase
and static offset phase ϕ = ϕg + φζ for a given detuning �.
The procedure is repeated for different detuning values; the
resulting phase ϕ is shown in Fig. 9(f) [Fig. 2(c) of the main
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FIG. 10. Error per Clifford as a function of the drive detuning
�. Shown are the interleaved (black circles) and the reference (blue
crosses) randomized benchmarking curves.

text]. The targeted CZ gate with ϕ = π is realized at the
detuning �CZ = −770 kHz. To fine tune �CZ we characterize
the error per CZ gate using interleaved RB as a function
of detuning shown in Fig. 10. We find the minimum of the
error at a slightly different value �CZ = −600 kHz. Possi-
ble explanations of this mismatch between the value found
in calibration sequences and the value found by fine tuning
with randomized benchmarking experiments are averaging
effects of single-qubit phases in the RB sequence, pulse dis-
tortions, and/or memory effects caused by reflections in the
system.

2. iSWAP-gate calibration

The interaction Hamiltonian HiSWAP(�eff , ϕ) [main text
Eq. (6)] and the corresponding unitary operator

UiSWAP(θ, ϕ) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos θ/2 ieiϕ sin θ/2 0

0 ie−iϕ sin θ/2 cos θ/2 0

0 0 0 1

⎞
⎟⎟⎟⎠

(C10)

result in the iSWAP gate when setting the angle θ = π . θ =
�effτ is controlled by the length τ of the parametric drive
pulse on the tunable coupler. For a length τπ = π/�eff an
iSWAP gate is realized, which completely transfers an exci-
tation from one qubit to the other.

In the following, we will limit our discussion to the iSWAP
gate UiSWAPϕ

= UiSWAP(π, ϕ), a Clifford gate the error of
which can be estimated via randomized benchmarking.

For the calibration of the iSWAP gate we first determine
the frequency and pulse area of the flux pulse implementing
the transformation UiSWAP(π,φ). As for the CZ gate we use a
Gaussian flat-top with a rise/fall time of ≈13 ns. The shift of
the mean TC frequency causes dispersive shifts δ01 and δ10 of
the qubit frequencies during the TC pulse, which also shifts
the iSWAP transition frequency by δ01 − δ10. The resonance
drive frequency, thus, depends on the drive amplitude [30].
Consequently, we fix the pulse amplitude and measure Rabi
oscillations for frequencies at a detuning from the qubits’
difference frequency as shown in Fig. 11(a). For a given pulse
modulation amplitude, we select the frequency with maxi-
mum contrast oscillations (minimal Rabi frequency) and set
the gate length τπ for which θ = π [see Fig. 11(b)].

FIG. 11. Calibration routine for an iSWAP gate UiSWAP(π,0) at �dc = 0.15�0. (a) Population in qubit |10〉 as a function of pulse length τ and
the detuning (δ01 − δ10 ). The white dashed (solid) line indicates the driven (undriven) resonance frequency. (b) Population in |10〉 as a function
of pulse length τ at the driven resonance frequency [white dashed line in (a)]. For a pulse length of τπ = 103 ns an iSWAP gate UiSWAP(π,φ)

is realized. (c) Population in |10〉 as a function of the phase φ obtained from sequence (C11) with U = I (black symbols), U = Xπ/2 (blue
symbols), and U = Xπ (light blue symbols). Solid lines are fits to the functions discussed in the text. (d) Population in |01〉 as a function of the
phase ϕ� of the coherent drive. The black solid line is a fit with Eq. (C15).
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FIG. 12. Error per Clifford for varying TC frame correction
phases �ϕ�, measured for a gate length of 171 ns. Shown are the in-
terleaved (black circles) and the reference (blue crosses) randomized
benchmarking curves. The phase is shown relative to the calibrated
value �ϕ�,0 = φ01 − φ10.

The dispersive shifts δi also induce corresponding phase
shifts 2πδ01/10τ on the states |01〉 / |10〉, which requires an
adjustment of the qubits’ reference frame after the gate oper-
ation. The precise value of the Z rotations on the individual
qubits is determined by a Ramsey-type sequence. For qubit
Q1 the sequence

Q1 |0〉 Xπ
2

UiSWAP U−iSWAP

Q2 |0〉 U

X

(C11)

with the rotated trailing π/2 pulse about the Xβ =
cos(2β )X + sin(2β )Y axis and with U = I results in an os-
cillation of the population in the |10〉 state as a function of
the variable phase β, p(β ) = {1 + cos [2(β + φ10)]}/2 [see
Fig. 11(c)]. This fit function is found by assuming that the
shift of the transition frequency is already compensated by the
drive frequency and that the length of the gate UiSWAP is ad-
justed to give a complete excitation transfer. For β = −φ10 the
excitation probability of Q1 is maximal, and UiSWAPU−iSWAP

equals the identity operation. Similarly, the phase shift on
qubit Q2 is determined by exchanging the roles of Q1 and
Q2. After each iSWAP gate, the phase shifts φ01 and φ10

are then compensated by additional virtual-Z gates on each
qubit, as is the phase ϕ� of the coupler drive by an amount
�ϕ�,0 = φ01 − φ10.

The situation is complicated by the presence of the ZZ-
type interactions during the gate operation described by the
Hamiltonian [33]

Hζ /h̄ = ζ |11〉 〈11| = ζ

4
(ZZ − IZ − ZI + II ), (C12)

where ζ = ω11 − ω01 − ω10 is the energy shift of the |11〉
state. While the iSWAP gate acts only on the |01〉 − |10〉
subspace, the |11〉 state acquires a phase φζ proportional to
ζ τ relative to the sum of the individual qubit phases. With
the calibration sequence described above, only the dispersive
phase shifts on the states |01〉 and |10〉 are zeroed. When the
system is initially in the |11〉 state a ZZ-type error |11〉 →

exp −iζ τ |11〉 is picked up. Alternatively, in a calibration
with Q2 in the excited state (U = Xπ ) the Ramsey oscilla-
tion is shifted by the ZZ shift φζ according to p(β ) = {1 +
cos [2(β + φ10 + φζ )]}/2 [Fig. 11(c), black triangles], result-
ing in β = −φζ − φ10. With this choice, however, the system
accumulates a phase error whenever it is in the ground state.
From randomized benchmarking experiments we have identi-
fied that balancing the φζ error results in the lowest errors per
gate: With qubit Q2 prepared in a superposition state (U =
Xπ/2) the Ramsey oscillations are shifted by φζ /2 follow-
ing p(φ) = {1 + cos φζ cos [2(β + φ10) + φζ ]/2, resulting in
β = −φζ /2 − φ10 [Fig. 11(c), blue crosses)]. A virtual-Z shift
of value β compensates the dispersive shift on qubit Q1 for
a phase factor φζ /2. A similar measurement with the roles
of Q1 and Q2 exchanged determines the virtual-Z shift for
qubit Q2. A fit of the measurement to the indicated curves
gives a phase shift φζ = −0.299 rad which corresponds to
a shift of the |11〉 state of ζ = −464 kHz for the calibrated
pulse length of τπ = 103 ns. The shift of the |11〉 state has a
contribution from a static coupling of ζstat = −202 kHz and
a remaining contribution from a drive-induced coupling of
ζdyn = ζ − ζstat = −268 kHz, as discussed in Appendix D.

With the such compensated single-qubit dispersive shifts
we obtain the gate operation

ŨiSWAPϕ
= Zφ

comp
01

Zφ
comp
10

UiSWAPϕ

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 0 −iei(ϕ−φζ /2) 0

0 −iei(−ϕ−φζ /2) 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠. (C13)

The phase ϕ = ϕ� + ϕ0 is set to zero by adjusting the phase
ϕ� of the parametric drive to compensate an a priori unknown
offset phase ϕ0. We use the cross-Ramsey pulse sequence

Q1 |0〉 Xπ
2

ŨiSWAPϕ

Xπ
2

Q2 |0〉 Xπ
2

Yπ
2

(C14)

with a leading X π
2

pulse on Q2 which prepares a superposition
state to average over the ZZ shifts. The population measured
in qubit Q2 depends on the phase ϕ� [Fig. 11(d)] and is
described by the following equation:

p(ϕ�) = 1
2 {1 − sin (ϕ� + ϕ0) sin (φζ /2)}. (C15)

From p(ϕ�) = 1/2 we find the value for the drive phase ϕ� =
−ϕ0 and realize the iSWAP operation up to ZZ-induced phase
shifts:

UiSWAP =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 0 −ie−iφζ /2 0

0 −ie−iφζ /2 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠. (C16)

Note that for small ZZ shift two separate measurements with
a leading identity or π pulse on Q2 are employed to find the
correct value for ϕ�.

Finally, we fine tune the frame correction �ϕ� of the TC
drive caused by the dispersive qubit shifts. We characterize
the error per iSWAP gate using interleaved RB as a function
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FIG. 13. Measurement of the static ZZ shift: (a) Population in |10〉 as a function of the delay time τ in the Ramsey-type sequence described
in the text, red with dark symbols corresponding to U = I and bright symbols corresponding to U = Xπ . (b) Measured static ZZ shift ζstat as a
function of the dc magnetic flux �dc.

of �ϕ� as shown in Fig. 12. We find the minimum of the
error very close to �ϕ�,0. Small asymmetries may be due to a
slightly miscalibrated absolute phase η to which the repetitive
influence of the frame correction �ϕ� is more sensitive. Such
effects are confirmed in numerical simulations.

APPENDIX D: ZZ-TYPE DISPERSIVE SHIFTS

With the weakly anharmonic structure of the transmon, the
second-excited state of the transmon influences the energy
levels of the system. One of the effects is the dispersive shift
of the |11〉 due to its coupling to the |20〉 and |02〉 level. In
addition to the static dispersive shift, we also consider drive-
induced ZZ-type interactions caused by the mean frequency
shift of the tunable coupler during the gate operation.

1. Static ZZ shift

The static ZZ shift ζstat is mediated by the tunable coupler
and depends on the coupling strength gi and frequency detun-
ing �i between the ith qubit Qi and the tunable coupler, the
anharmonicities αi of the qubits, the direct capacitive coupling
between the qubits g12, and the qubit difference frequency �12

as described by the following equation [55]:

ζstat = 2

[
g2

12 +
(

g1g2
�1 + �2

�1�2

)2]
α1 + α2

(�12 + α1)(α2 − �12)
.

(D1)
To determine the static ZZ shift, we run a π/no-π Ramsey

sequence:

Q1 |0〉 Xπ
2 I(τ) X̃π

2
(τ)

Q2 |0〉 U ,
(D2)

where X̃ π
2
(τ ) = cos (2πnrot

τ
τmax

)X + sin (2πnrot
τ

τmax
)Y and

nrot = 20 for varying delay τ . Measuring the population in
|10〉 as a function of the delay time τ for U = I and Xπ

[Fig. 13(a)] and fitting the data to the function

pU (τ ) = 1
2 + 1

2 cos (ωU τ + φ) exp (−τ/Tdecay) (D3)

gives the static ZZ shift ζstat = ωXπ
− ωI . In this way, we have

measured the dependency of ζstat on the applied magnetic flux

[see Fig. 13(b)]. For the operating point of � = 0.15�0 we
obtain a ZZ shift of ζstat/2π = −202 ± 1 kHz.

2. Dynamic ZZ shift

We measure the total ZZ shift ζ as defined in the main
text, i.e., the sum of static and drive-induced ZZ shifts for the
iSWAP gate, using the method described in Appendix C2 (see
Fig. 14). A fit to a quadratic function gives good agreement
with the quadratically increasing ZZ shift with a static offset
phase ζstat = −202 ± 22 kHz. This value is in full agreement
with the value found by the measurement described above in
Appendix D1.

APPENDIX E: PHASE SYNCHRONIZATION

The single- and two-qubit gate pulses are generated by
in-phase/quadrature up-conversion mixing of a carrier signal
(taken from a R&S SGS100A signal generator) with a pulse
modulated at a sideband frequency ωSB generated by a Tek-
tronix AWG5014C arbitrary waveform generator. The AWGs
exhibit a variable reaction time jitter on an incoming trigger

FIG. 14. Total ZZ shift ζ as a function of Rabi frequency � of
the |01〉 − |10〉 transition. The dashed line shows the static ZZ shift
ζstat/2π = −202 kHz. The solid gray line indicates a quadratic fit to
the function ζ (�)/2π = −202 − 15� − 8�2.
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FIG. 15. Circuit diagram of the experimental setup. Single- and
two-qubit gate drives are generated via IQ mixing of a coherent
microwave signal from a R&S source (R&S SGS 100A) with a
pulse modulated at the sideband frequency ωSB from a Tektronix
5014C arbitrary waveform generator (Tek AWG5014C). Phase off-
sets φoff

i and ϕoff
� may arise on each single- and two-qubit drive lines,

respectively, due to cable delays, phase difference between signal
generators, and instrument phase jitter. A homemade 100-MHz clock
and phase synchronization unit ensure a low phase jitter between
single- and two-qubit gate drives. In a standard setup without syn-
chronization unit (yellow box) the delay generator triggers directly
the master AWG (red dashed arrow). In a phase-stabilized setup with
a synchronization unit (yellow box) the trigger signal is routed via
the synchronization unit to the master AWG (solid red arrow). The
master AWG triggers directly the slave AWG in both setups.

signal between 833-ps and 4.2-ns corresponding integer mul-
tiples of a clock cycle, i.e., δτ = n/SR = n × 833 ps, with the
sampling rate SR = 1.2 GS/s and n the number of cycles. In
our experiment, a delay generator triggers a master AWG (red
dashed arrow in Fig. 15) which then triggers a slave AWG.
Consequently, a reaction time jitter is observed both between
the delay generator and the master AWG and between master
and slave AWG. The qubit drives are generated by the master
AWG, and the TC drive is generated by the slave AWG.

When up-converted, the reaction time jitter translates into
a phase jitter δφ = ωSBδτ of the qubits’ or tunable coupler

drive channel. The random-phase difference between each of
the single-qubit pulses relative to the tunable coupler pulse
leads to a jitter of the iSWAP phase ϕ. It can be detected in a
two-qubit cross-Ramsey experiment:

Q1 |0〉 Xπ
2

UiSWAPϕ

Q2 |0〉 Xπ
2

.
(E1)

We measure the excitation transfer between the |10〉 and |01〉
states as a function of the phase ϕ� of the parametric drive
[Fig. 16(a)] and determine the phase ϕ of an iSWAP gate
for M repetitions of the measurement [Fig. 16(b)]. Using
a sideband frequency of ωSB = 200 MHz for the TC pulse
(generated at the slave AWG), we obtain four distinct ϕ

values separated by 1.041 ± 0.004 rad, which effectively cor-
responds to a time delay of δτ = 825 ± 4 ps or ni = 0.990 ±
0.005 clock cycles of the AWG. Obviously, this phase ran-
domization leads to large gate error estimates in a randomized
benchmarking experiment.

We use a home-built electronics that synchronizes the mas-
ter (qubits) and slave (TC) AWG before the experiment starts.
However, the current version of the synchronization electron-
ics cannot compensate the reaction time jitter between delay
generator and the master AWG and we have to resort to a
low sideband frequency on the slave AWG. With ωSB/2π =
5 MHz, we obtain a stable iSWAP phase with a remaining
phase jitter of ≈20 mrad (Fig. 17).

APPENDIX F: EFFECT OF THE SIDEBAND FREQUENCY
ON THE GATE ERROR

Spurious coherent tones caused by intermodulation prod-
ucts and local oscillator leakage may cause increased gate
errors which become more dominant at low sideband frequen-
cies. We have estimated the error per gate for the CZ gate
using interleaved RB at different sideband frequencies and
observe a clear increase for frequencies below ≈50 MHz as
shown in Fig. 18.

APPENDIX G: AMPLITUDE-DEPENDENT FREQUENCY
FLUCTUATIONS OF THE QUBITS

To measure the effective T ∗
2 of the qubits during the para-

metric driving of the tunable coupler we run a simultaneous
Ramsey-type experiment with two iSWAP pulses of variable
length τ , one with positive and the second with negative
amplitude:

Q1 |0〉 Xπ
2

UiSWAP(τ) U−iSWAP(τ)
Q2 |0〉 Xπ

2

.X

X

(G1)
We run the experiment for different modulation ampli-

tudes set by the amplitude scaling factors sout = 0.01, 0.3,
0.4, 0.5, 0.7, 0.8 of the AWG pulses. The duration of the
pulses UiSWAP(τ ) is varied between zero and 1 μs. A reference
experiment is carried out in which the output channels of
the AWG are completely switched off. We record 1 × 106
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FIG. 16. Reaction time jitter without synchronization unit. (a) Population in qubit Q2 as a function of the phase of the two-qubit gate drive
ϕ�. The black solid line is a fit with a sinusoidal function. (b) Histogram of the extracted iSWAP phases ϕ for a slave AWG sideband frequency
of f1 = 200 MHz and M = 200 repetitions.

complete Ramsey measurements at a rate of 30 Hz; the tran-
sition frequencies are then extracted from a fit to an average
of 1000 measurements. The normalized histograms of both
qubit frequencies are shown in Figs. 19(a) and 19(b), and the
difference frequency is shown in Fig. 19(c).

We observe an increase of the frequency fluctuations σδ f

on both qubits and in the difference frequency for increasing
pulse amplitude as shown in Figs. 19(d)–19(f), hinting at
amplitude-dependent noise from the drive. Interestingly we
also notice that merely turning on the AWG channel has a sig-
nificant influence on the frequency fluctuations of the qubits
during driving. The source of the noise and its spectral density

will be subject to further detailed investigations. The effective
T ∗

2 = 1/(2πσδ f ) of the driven qubits [Figs. 19(g)–19(i)] drops
from the reference T ∗

2 � 25 μs (see Appendix A) to values
below 10 μs that contributes to the gate error of the iSWAP as
discussed in the main text and in Appendix H on the numerical
simulations below.

APPENDIX H: NUMERICAL SIMULATIONS

In this section, we describe in more detail the numeri-
cal simulations performed to estimate the infidelities of the
CPHASE and iSWAP gates.

FIG. 17. Reaction time jitter with synchronization unit: Histograms of the extracted iSWAP phases ϕ for slave AWG sideband frequencies
of ωSB/2π = 100, 50, 20, 10, 5, 2 MHz measured with M = 500 repetitions.
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FIG. 18. (a) Error per gate εCZ of a CZ gate measured as a function of the sideband frequency. The solid line is a fit to a Lorentzian function
with a sigma of 17 MHz. (b) Error per gate εCZ as a function of the gate length τgate for a sideband frequency of 5 MHz (crosses) and 105 MHz
(circles). The lines represent numerical simulations with ZZ interaction terms as discussed in the main text and below in Appendix H.

FIG. 19. Frequency fluctuations of Q1 (left column), Q2 (middle column), and their difference frequency (right column) measured via a
Ramsey experiment with the parametric coupler modulation on. (a–c) Normalized histograms of 1000 experiments averaged over 1000 rounds
at varying output amplitude scaling factors sout = 0.01, 0.3, 0.4, 0.5, 0.7, 0.8 corresponding to increasing Rabi amplitudes of the iSWAP
transition. The narrow yellow peak corresponds to the output channels being turned off. (d–f) Standard deviation of the amplitude fluctuations
obtained from a Gaussian fit to the histograms in (a)–(c) as a function of the Rabi amplitude. The solid line indicates a quadratic increase of the
fluctuations with the Rabi amplitude. The point at zero amplitude showing much smaller σδ f is not taken into account for the fit. (g–i) Related
(effective) T2 = 1/(2πσδ f ).

033447-15



M. GANZHORN et al. PHYSICAL REVIEW RESEARCH 2, 033447 (2020)

FIG. 20. Numerical results for the error per gate vs gate length
for (a) CZ and (b) iSWAP gate as obtained by solving the full
Lindblad master equation with time-dependent flux modulation of
the tunable coupler (violet, QPT full model), from quantum maps
using Liouville supermatrix representation of a simple two-level
two-qubit model (orange, QPT simple model), and by emulating
interleaved RB using the simple model (red, RB simple model).
The full model shows a characteristic increase of the error per gate
at small gate lengths due to excitation of undesired transitions by
the spectrally widening parametric pulse. Whereas the QPT and RB
results are comparable for the CZ gate, they differ for the iSWAP
gate. Experimental values are shown for reference. Numerical results
for a simple model with drive-amplitude-dependent qubit dephasing
times are shown as orange dashed line (QPT simple model + noise).

1. Full model

In the full model approach, the time evolution of the system
is calculated using a Lindblad-type master equation:

ρ̇ = − i

h̄
[Ĥtr, ρ] +

∑
i=Q1,Q2,TC

�−
i L[ai]ρ + �z

i L[a†
i ai]ρ (H1)

with the standard Lindblad operator L[C] =
(2Cρ(t )C† − {ρ(t ), C†C})/2. The decay rates for the ith
transmon are given by the dissipation rates reported in
Table I via �z

i = 1/(2Tφ,i ) = (1/2)[1/T ∗
2,i − 1/(2T1,i )] and

�−
i = 1/T1,i. The master equation in Eq. (H1) is numerically

solved using QUTIP [30,50]. Ĥtr describes the coupled system
of two transmons and a tunable coupler all implemented
as three-level systems [see Eq. (2) of Ref. [34]]. A fixed
dc component of the flux through the tunable coupler is
superposed by a harmonic oscillation with a pulsed envelope
(Gaussian flat-top of varying length with fixed 5-ns flanks).
The solution of the master equation results in the density

FIG. 21. Comparison of QPT and RB infidelities for the iSWAP
gate. Results are obtained with a simple two-level model of the two
qubits. For zero ZZ-type crosstalk, QPT and RB results are the same
up to a factor close to 1. For a ZZ-type crosstalk of 200 kHz, the RB
error per gate is substantially larger than the QPT value, mirroring the
cumulative error induced by the crosstalk. The QPT and RB errors
for the CZ gate in Fig. 20 are very close to those of the iSWAP gate
with zero ZZ-type crosstalk.

matrix of the evolved state after the pulse. Similar to the
experimental approach, different calibration steps need to be
performed. For the iSWAP gate, first the resonance of the
parametrically driven transition is determined for different
flux modulation amplitudes, and then the ideal pulse length
is determined. For the controlled-phase (CZϕ) gate, the
phase ϕ is determined for different values of the detuning
of the parametric drive from the nominal, undriven 11 − 20
transition frequency. From this, the drive frequency at which
the CZ gate is realized is found (ϕ = π ), and again the ideal
pulse length is determined. With these calibrated pulses,
the resulting density matrix after starting in 16 different
initial states is calculated. From this, the process matrix χ

is determined and the QPT infidelity ε̄ = 1 − (Tr[χχ0]) is
calculated with χ0 being the process matrix of the perfect gate.

2. Simple model

In the simple model, we consider two qubits with two
levels each and model the Hamiltonians according to Eqs. (4)
and (6) in the main text. Dissipation and decoherence
are taken into account by representing these Hamiltonians
with Liouville-type quantum maps, including an overall ZZ-
type crosstalk with an amplitude of ζ/2π = 200 kHz [see
Eq. (C12)]. The QPT infidelity is computed from the χ -matrix
representation of the maps, in the same way as in the full
model above. By obtaining different quantum maps for sets of
Clifford gates, we can emulate the RB experiment and obtain
the RB error per gate as shown in Fig. 6 of the main text.

3. Results

In Fig. 20, the errors per gate obtained from the different
methods (full model QPT, simple model QPT, and simple
model RB) are compared for the CZ and the iSWAP gate and
for different gate lengths. The increase of the error per gate
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with gate length is because of the growing importance of dissi-
pation and decoherence. As expected, full model calculations
of QPT show a slightly larger error than the corresponding
results from the simple model. Surprisingly, the RB error is
significantly larger than the QPT error for the iSWAP gate,
whereas the errors are similar for the CPHASE gate. This
deviation is due to the remaining ZZ interaction. If the ZZ
interaction is set to zero, then RB and QPT fidelities coincide
also for the iSWAP gate, as shown in Fig. 21. Also shown
in Fig. 20 are experimental errors per gate obtained by in-
terleaved RB. The values for the CZ gate are well described
by the numerical simulations. The experimental values for
the iSWAP gate with lengths between 100 and 300 ns are
substantially larger than the numerically obtained QPT errors,
but are consistent with either the larger numerical RB errors or
the QPT errors obtained by considering frequency fluctuations
of the two qubits in the form of a decreased qubit T ∗

2 time (see
Appendix G).

As presented in Fig. 22, the spread in the RB fidelity
significantly decreases if the ZZ-type crosstalk is set to zero
(compare to the data shown in Fig. 6 of the main text
where ζ/2π = 200 kHz). This is because without this type of
crosstalk the outcome of the Clifford sequence depends much
less on the chosen randomization of the sequence.

FIG. 22. Emulated RB results for the iSWAP gate with zero
ZZ-type crosstalk for (a) 200-ns and (c) 400-ns gate length. Small
symbols are the sequence fidelities for ten individual randomizations
and the large symbols are the average of those. Solid lines are
exponential fits, giving errors per Clifford sequence of 0.0157 for
the reference and 0.0222 for the interleaved RB (for τgate = 200 ns;
values are 0.0241 and 0.0370 for τgate = 400 ns). The resulting error
per gate is 0.0066 for 200-ns and 0.0133 for 400-ns gate lengths. The
standard deviation of the RB fidelity as a function of sequence length
shown in (b) and (d) is strongly reduced as compared to the situation
with 200-kHz ZZ-type crosstalk shown in Fig. 6 of the main text.
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