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Low-dimensional fluctuations and pseudogap in Gaudin-Yang Fermi gases
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The pseudogap is a ubiquitous phenomenon in strongly correlated systems, such as high-Tc superconductors,
ultracold atoms, and nuclear physics. Whereas pairing fluctuations inducing the pseudogap are known to be
enhanced in low-dimensional systems, such effects have not been explored well in one of the most fundamental
one-dimensional models, that is, Gaudin-Yang model. In this paper, we show how the pseudogap effect emerges
in the single-particle excitation in this system using a diagrammatic approach. Fermionic single-particle spectra
exhibit a unique crossover from the double-particle dispersion to the pseudogap state with increasing the
attractive interaction and the number density at finite temperature. Surprisingly, our results of thermodynamic
quantities in unpolarized and polarized gases show an excellent agreement with the recent quantum Monte Carlo
and complex Langevin results, indicating the validity of our approach even in the region where the pseudogap
appears.
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I. INTRODUCTION

A pseudogap phenomenon, which is the suppression of
the density of states (DOS) around a Fermi level, has been
a central issue in strongly correlated quantum many-body
systems such as high-Tc superconductors [1–5], ultracold
atoms [6–14], and nuclear and quark matter [15–20]. Al-
though the origin of the pseudogap strongly depends on the
properties of each system, it is believed that the pseudogap is
induced by fluctuation effects dominating nontrivial charac-
ters of the systems. Recently, an ultracold atomic gas provides
us an ideal platform to study pseudogap physics and associ-
ated fluctuation effects in a systematic manner [21–33], thanks
to the realization of the Bardeen-Cooper-Schrieffer (BCS) to
Bose-Einstein-condensation (BEC) crossover [34–40].

Furthermore, the low dimensionality tends to induce strong
fluctuations [41,42]. It is a key point also for properties of
carbon nanotubes [43,44], organic conductors [45–47], as
well as nuclear pasta in neutron star crusts [48,49]. In ultra-
cold atom physics, two-dimensional pseudogap effects have
attracted much attention [50–60] because these many-body
effects are expected to be more visible than three-dimensional
(3D) systems. Along this direction, the pseudogap in a one-
dimensional (1D) cold atomic system would be a fascinating
topic.

Although an attractively interacting two-component Fermi
gas in 1D, namely, Gaudin-Yang model is known as a solvable
model based on the thermodynamic Bethe ansatz (TBA) [61],
it does not mean that physical quantities we are interested in
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can easily be obtained in an exact way. Low-energy effective
field-theory descriptions, such as Tomonaga-Luttinger liq-
uid [62] have also been employed frequently in 1D. Although
such approaches also give exact results at zero temperature,
it is not the case at finite temperature where the Fermi step
is softened. Precise results of this 1D fermionic system at
finite temperature were obtained by TBA [63–65] and a re-
cent state-of-the-art work of quantum Monte Carlo (QMC)
simulation performed by Hoffman et al. [66]. Afterwards,
various thermal properties of this system have been investi-
gated within a lattice simulation [67–70]. However, no one
shows how the pseudogap phenomena occur in this famous 1D
model. Moreover, the possibility of an inhomogeneous pair-
ing state called Fulde-Ferrel-Larkin-Ovchinikov- (FFLO)-like
state [71,72] has also been extensively investigated in a spin-
imbalanced 1D system [73–79] since the 1D FFLO-like state
is expected to be robust against fluctuations. To see this, a
quantitative analysis of fluctuation effects are really desired.
It involves interdisciplinary interests from other fields. In the
context of quantum chromodynamics (QCD), the FFLO-like
state of quark-antiquark pairs called chiral spiral is anticipated
at finite density [80–82].

In this paper, we elucidate pairing fluctuation effects in
1D Gaudin-Yang Fermi gas at finite temperature within the
diagrammatic approach, which has successfully been applied
to higher-dimensional systems [6,9,11,12,14]. Our numerical
results of the number density show an excellent agreement
with the recent QMC results [66]. In the polarized case, we
show that our result also well reproduces a complex Langevin
(CL) simulation [83], which is a promising candidate for over-
coming a sign problem in an imbalanced Fermi gas [84]. Fur-
thermore, we show that the single-particle excitation spectra
exhibit the pseudogapped structure due to pairing fluctuations
in the region where the validity is guaranteed by the compari-
son with QMC results for the thermodynamic quantity.
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FIG. 1. Feynman diagrams for (a) the Hartree-Green’s function
GH (solid), (b) four-point vertex �, (c) the self-energy �, and (d) the
second-order connected diagrams taken into account in our approach.
The thin line denotes the bare Green’s function G0.

This paper is organized as follows. In Sec. II, we explain
our formalism of a diagrammatic strong-coupling approach.
In Sec. III, we show our results of number densities as func-
tions of chemical potentials and temperatures and compare
them with QMC results. We discuss how the pseudogap
emerges in single-particle excitation properties at finite tem-
perature. Finally, we compare our results of the polarization
at finite chemical potential differences with the CL results. In
Sec. IV, we make a summary of this paper. Throughout the
paper, we set h̄ = kB = 1, and the system size L is taken to be
unity.

II. FORMALISM

We start from the attractive Gaudin-Yang model described
by the Hamiltonian,

H =
∑
p,σ

ξp,σ c†
p,σ cp,σ + g

∑
k,k′,q

c†
k+q/2,↑c†

−k+q/2,↓

× c−k′+q/2,↓ck′+q/2,↑, (1)

where ξp,σ = p2/(2mσ ) − μσ is the kinetic energy of a
fermion with momentum p, spin σ =↑,↓, and mass mσ

measured from the chemical potential μσ . For simplicity,
we consider the mass-balanced case (m ≡ m↑ = m↓). μσ is
parametrized by the averaged one μ = (μ↑ + μ↓)/2 and a
fictitious magnetic-field h = (μ↑ − μ↓)/2. cp,σ and c†

p,σ are
fermionic annihilation/creation operators, respectively. The
coupling constant g is related to a 1D scattering length a as
g = − 2

ma . Following Ref. [66], we measure the interaction
strength through the dimensionless parameter λ2 = mg2/T .
Since the two-body bound state with the binding energy Eb =
1/(ma2) always exists in an attractive 1D system, λ2 = 4Eb/T
characterizes the ratio between Eb and T .

The important note is that, whereas in two-dimensional and
3D systems, the contact-type interaction becomes zero such
that a finite scattering length is reproduced [85], it is not the
case in this 1D system. Therefore, the lowest-order diagram,
that is, Hartree self-energy �H

σ is nonzero, in contrast to
higher-dimensional systems. To retain it as shown in Fig. 1(a),
we introduce the single-particle Green’s function GH

σ (p, iωn)
with the Hartree shift �H

σ given by

GH
σ (p, iωn) = G0

σ (p, iωn)
[
1 + �H

σ GH
σ (p, iωn)

]
, (2)

where ωn = (2n + 1)πT is the fermion Matsubara frequency
and −σ represents an opposite spin for σ. G0

σ (p, iωn) =
[iωn − ξp,σ ]−1 is a bare Green’s function. �H

σ = gnH
−σ is

self-consistently determined by solving the Hartree density
equation,

nH
σ = T

∑
p,iωn

GH
σ (p, iωn) =

∑
p

f
(
ξH

p,σ

)
, (3)

where ξH
p,σ = ξp,σ + gnH

−σ . f (ξ ) = (eξ/T + 1)−1 is the Fermi-
Dirac distribution function. A similar approximation has
been employed in nuclear physics with finite-range interac-
tions [86–89]. On the basis of GH

σ (p, iωn), we incorporate
pairing fluctuation effects described by the four-point vertex
� diagrammatically shown in Fig. 1(b), which reads

�(q, iν
) = − g2�(q, iν
)

1 + g�(q, iν
)
, (4)

where

�(q, iν
) = T
∑
k,iωn

GH
↑
(

k + q

2
, iν
 + iωn

)

× GH
↓
(
−k + q

2
,−iωn

)
(5)

is the lowest-order particle-particle bubble with the boson
Matsubara frequency ν
 = 2
πT . The self-energy �σ for the
fluctuation correction is given by

�σ (p, iωn) = T
∑
q,iν


�(q, iν
)GH
−σ (q − p, iν
 − iωn). (6)

We note that this approximation is equivalent to the so-called
T -matrix approach, except for the self-consistent treatment
of the Hartree shift. The T -matrix approach successfully re-
produces the exact results obtained by TBA for 1D Fermi
polaronic excitations realized in spin-polarized limit [90]. In
our approach, by taking GH(p, iωn) with density mean-field
�H

σ as a building block of fluctuation corrections, at least, we
take all possible connected diagrams into account up to the
second-order shown in Fig. 1(d). Using the dressed Green’s
function,

Gσ (p, iωn) = GH
σ (p, iωn)

1 − �σ (p, iωn)GH
σ (p, iωn)

, (7)

we obtain the number density nσ for given T and μσ as

nσ = T
∑
p,iωn

Gσ (p, iωn). (8)

Moreover, we can obtain the single-particle spectral function,

Aσ (p, ω) = − 1

π
Im Gσ (p, iωn → ω + iδ), (9)

and the DOS,

ρσ (ω) =
∑

p

Aσ (p, ω), (10)

from Gσ (p, iωn). In what follows, we suppress σ in these
quantities as n, A(p, ω), and ρ(ω) unless otherwise specified.
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T
FIG. 2. Calculated number density n/n0 as function of μ/T in an

unpolarized system, where n0 is the noninteracting counterpart. The
thick and thin curves show the numerical results of our diagrammatic
approach and the Hartree-Fock calculation given by Eq. (3), respec-
tively. The interaction parameter λ is given by 1, 2, 2.5, and 3 from
the bottom. The black symbols represent 1D QMC results [66] of
λ = 1 (square), 2 (inverted triangle), 2.5 (triangle), and 3 (circle).

III. RESULTS

Figure 2 shows the calculated number density n/n0 as a
function of μ/T in an unpolarized gas, where n0 is the nonin-
teracting counterpart. Our results given by thick curves show
an excellent agreement with 1D QMC results from Ref. [66].
For comparison, we also plot the Hartree-Fock results (thin
curves) given by nH in Eq. (3). Although all results coincides
with each other in the weak-coupling regime, such as λ = 1,
the Hartree-Fock result deviates from the others due to the
lack of fluctuation effects. Our main results well reproduce
the QMC results even in the strong-coupling regime (λ � 2)
where Eb = λ2T/4 � T . Although the result at λ = 3 is close
to the applicable limit of our approach as we will mention
later, still it shows a semiquantitative agreement with QMC.
In this way, we can check the validity of our approach in
these parameter regimes. We note that these results are also
consistent with the TBA [91].

Figures 3(a1), 3(b1), and 3(c1) show the calculated DOS
ρ(ω) at λ = 2, 2.5, and 3. One can see the dip structure around
ω = 0 (corresponding to the Fermi level) with the double
peaks in the wide parameter region. Although the higher-
energy peak locates at ω = −μ in the low-density regime
(μ/T � 0), the energy of lower one is approximately given by
ω = −Eb/2. This indicates the existence of two-body bound
molecules. With increasing the density (in other words, μ/T
or λ), one can find a pronounced gap structure even in the
high-density regime (μ/T � 0). It is expected to originate
from many-body effects, namely, pairing fluctuations associ-
ated with the Cooper instability.

Although the dip structures in Fig. 3 are similar to the
pseudogap, we have to carefully distinguish the fluctuation-
induced pseudogap and the double peak due to the two-body
bound state. For this purpose, A(p, ω) is useful. At an in-
termediate coupling (λ = 2) in Fig. 3(a2), A(p, ω) is largely
broadened around ω = 0. Although the obtained spectra are
somewhat similar to those in the Luther-Emery model at
T = 0 [92,93], the broadening and renormalization of the

FIG. 3. Calculated DOS ρ(ω) with h = 0 at (a1) λ = 2, (b1) 2.5,
and (c1) 3. Panels (a2), (b2), and (c2) show the corresponding single-
particle spectral functions A(p, ω) at μ/T = 0.4. In the right panels,
the dashed and dotted curves represent ξ eff

p,σ obtained from Eq. (12)
with G and GH, respectively.

dispersion through the self-energy corrections are signifi-
cant even in the relatively high-energy region (|ω| � T ).
The double-particle (two quadratic) dispersions in Fig. 3(a2)
can be qualitatively understood from the crossover between
high-momentum bare atoms and dressed atoms through the
self-energy at small momenta. A similar spectrum can be
found in the strong-coupling BEC regime in higher dimen-
sions [24,55]. We note that the high-momentum sharp peak
is shifted by the Hartree correction �H. With increasing the
interaction strength as shown in Fig. 3(b2), the two dis-
persions are separated, and a holelike contribution appears
at positive energy. The overall structure gradually changes
into the pseudogapped spectrum. At stronger coupling in
Fig. 3(c2) since the low-energy pole in �(q, iν
) becomes
close to q = 0 and gives a strong particle-hole coupling, one
can clearly see the pseudogap accompanying with particle-
hole branches. Intuitively, this pseudogap structure can be
understood from the so-called static approximation where
�

pg
σ (p, iωn) � −�2

pgGH
−σ (−p,−iωn) [12,14]. Here, �2

pg =
−T

∑
q,iν


�(q, iν
) is called the pseudogap parameter which
characterizes its size in A(p, ω) as well as ρ(ω). Indeed,
this approximated self-energy induce the BCS-like propagator
Gpg

σ (p, iωn) as

Gpg
σ (p, iωn) = iωn + ξH

−p,−σ(
iωn − ξH

p,σ

)(
iωn + ξH−p,−σ

) − �2
pg

, (11)

which leads to the BCS-like gapped DOS. These results indi-
cate the crossover from the superposition of bare and dressed
atoms to the pseudogap state with increasing the interaction at
finite temperature. The pseudogapped dispersion of fermions
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yields that the elementary excitation is now replaced by the
bosonic two-particle excitations [94]. We note that, in this
paper, we do not specify the crossover boundary between the
pseudogap regime and the bound molecular regime since its
definition involves ambiguity [11,12,14].

We also compare the dispersion ξ eff
p,σ obtained from the

imaginary-time Green’s function Gσ (p, τ ) as

ξ eff
p,σ = − 1

�τ
ln

∣∣∣∣
Gσ (p, τ + �τ )

Gσ (p, τ )

∣∣∣∣
τ→β

, (12)

where �τ is a small number and β = 1/T is the inverse
temperature. We take �τ = β/40, which is small enough to
extract ξ eff

p,σ . Here, Gσ (p, τ ) is obtained by the Fourier trans-
formation,

Gσ (p, τ ) = T
∑
iωn

Gσ (p, iωn)e−iωnτ . (13)

We note that a large-τ limit (τ → β) is required to obtain
the ground-state single-particle energy. Such an extraction
of the dispersion has frequently been performed to obtain
hadronic spectra in lattice QCD simulations [95]. Indeed, in
the single-particle case in vacuum with Gσ (p, τ ) ∝ e−(p2/2m)τ ,
one can obtain ξ eff

p,σ = p2/(2m) from Eq. (12). In the present
case with strongly correlated media, whereas, at small mo-
menta, ξ eff

p,σ well reproduces the peak in Aσ (p, ω) (see the
dashed curves in the right panels in Fig. 3), it deviates from
the peak at the weaker-coupling side due to the broadening of
spectra as well as level couplings at high momenta. In such
a high-energy regime where interaction effects are irrelevant,
the dispersion obtained from GH

σ (p, τ ) = [ f (ξH
p,σ ) − 1]e−ξH

p,σ τ

agrees with the spectral peak. We note that, in the presence
of μσ and a constant shift �H

σ without fluctuation effects, we
can obtain ξ eff

p,σ = ξH
p,σ from Eq. (12) with GH

σ (p, iωn). These
results, indeed, indicate that, although the high-momentum
region can be explained by bare atomic spectra as seen in
Fig. 3(a2), the low-momentum excitation involves strong pair-
ing fluctuations due to the self-energy correction. Moreover, in
the deep inside of the pseudogap regime, such as Fig. 3(c2),
ξ eff

p,σ shows good agreement with the so-called backbending
curve in A(p, ω). We note that this quantity can be measured
in the lattice simulation without analytic continuations. The
medium corrections on ξ eff

p,σ in many-body systems would be
useful information for the future investigation of finite-density
lattice QCD simulations.

We note that our diagrammatic approach has an artifi-
cial limitation in the strong-coupling regime. Figure 4 shows
the denominator of �(q, 0). Whereas, in 3D systems, the
superfluid transition is identified by 1 + g�(0, 0) = 0, it
should be positive due to the Mermin-Wagner-Hohenberg
theorem [96,97] proving no phase transitions in uniform 1D
systems. On the other hand, we encounter the zero crossing of
�(q, 0) around λ � 3.1 due to the lack of higher-fluctuation
corrections. However, we emphasize that our results show
nontrivial spectral structures even in the region where our
approach is valid and the calculated number density quanti-
tatively agrees with the QMC results.

One may concern that, in 1D systems, the Peierls insta-
bility also occurs through the density fluctuations. In such
a case, it is needed to incorporate particle-hole fluctuation

FIG. 4. The denominator of �(q, 0) given by 1 + g�(q, 0) at
μ/T = 1. The inset shows the Lindhard function −gχ (q, 0) at finite
temperature.

effects by using more sophisticated approaches, such as
fluctuation-exchange (FLEX) approximation [2] and parquet
approximation [98,99]. However, this instability is suppressed
by finite temperature effects. To see this, we calculate the
density response function χ (q, iν
) given by

χ (q, iν
) = −
∑

k

f
(
ξH

k−q,σ

) − f
(
ξH

k,σ

)

iν
 + ξH
k−q,σ

− ξH
k,σ

. (14)

It is nothing but the Lindhard function [100], which is known
to show the logarithmic divergence with respect to T at
q = 2kμ ≡ 2

√
2m(μ − �H) and ν
 = 0 in 1D. One can eas-

ily find that χ (q, iν
) disappears in the high-temperature or
low-density limit where the Fermi-Dirac distribution function
becomes zero [ f (ξ ) → 0]. On the other hand, the particle-
particle bubble involves a temperature-independent term as

�(q, 0) = m

2
√

q2/4 − 2mμ

−
∑

k

f
(
ξH

k+q/2,↑
) + f

(
ξH
−k+q/2,↓

)

ξH
k+q/2,↑ + ξH

−k+q/2,↓
. (15)

In Eq. (15), the first term survives even in the limit of
f (ξ ) → 0. In this way, with increasing the temperature (other-
wise approaching the low-density limit), the particle-particle
ladder resummations employed in this paper become more
important than those of particle-hole bubbles for density and
spin fluctuations even in 1D. The inset of Fig. 4 shows the cal-
culated −gχ (q, 0) at μ/T = 1. Although −gχ (q, 0) exhibits
a maximum around q = 2kμ, indeed, it is still finite due to
the finite temperature effect. Such a softening of the anomaly
in χ (q, 0) is one of the reasons why our diagrammatic ap-
proach unexpectedly well reproduces the QMC results at finite
temperature. Even in the analysis based on the random-phase
approximation for the density channel since the Peierls insta-
bility is identified by 1 + gχ (q, 0) = 0, the region where we
explore in this paper is safely far away from this instability.
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FIG. 5. The polarization equation of state P = (n↑ − n↓)/(n↑ +
n↓) at (a) λ = 1 and (b) λ = 2. The calculated P in our diagrammatic
approach is plotted at h/T = 0.5, 1, and 2 from the bottom to the top
in each figure. The filled symbols show the numerical results of the
CL method [83].

We note that χ (q, iν
) is involved in the second-order self-
energy diagram �2nd

σ (p, iωn) in our approach as

�2nd
σ (p, iωn) = g2T

∑
q,iν


χ (q, iν
)

×GH
σ (p − q, iωn − iν
), (16)

which is topologically equivalent to the first diagram in
Fig. 1(d) with replacing G0 with GH. If χ (q, 0) has a diver-
gent behavior associated with the 1D nesting, one can also
obtain the approximate self-energy inducing the Peierls pseu-
dogap �Pi. [41,101] as �2nd

σ (p, iωn) � �2
Pi.G

H
σ (p ± 2kμ, iωn).

Within the framework of FLEX and parquet approximations,
one may expect the competition of two pseudogaps originat-
ing from Cooper and Peierls instabilities, even in this simple
model at higher density or lower temperature, which is left as
interesting future work.

Finally, in Fig. 5, we have also plotted the polarization
P = (n↑ − n↓)/(n↑ + n↓) in the presence of finite fictitious
magnetic-field h/T . We compare our results with the CL
method [83] which is developed to avoid a possible sign
problem in polarized systems. We note that the CL method
also agrees with other methods, such as lattice simulation

with an analytic continuation from the imaginary chemi-
cal potential [67,70,83]. Our results well reproduce the CL
results, indicating that our approach enables us to evalu-
ate fluctuation effects quantitatively even in the presence
of polarization. Thus, one can expect possible future appli-
cations of our diagrammatic approach to other interesting
problems, such as fluctuation effects on FFLO-like pairing
states, transport in quantum wires [102], and multipolaronic
excitations [103,104].

IV. SUMMARY

To summarize, we have investigated low-dimensional fluc-
tuation effects in an attractive Gaudin-Yang Fermi gas at finite
temperature within the diagrammatic approach. We have de-
veloped the many-body T-matrix theory combined with the
self-consistent Hartree approximation to incorporate pairing
fluctuation effects and a nonvanishing mean-field shift, re-
spectively.

The calculated number densities and polarizations in un-
polarized and polarized gases show excellent agreement with
the recent QMC and CL results in the wide ranges of an
interaction parameter and chemical potentials. These results
indicate the reliability of our approach in the region where we
have explored in this paper. The single-particle spectral func-
tions exhibit the crossover from the superposition of bare and
dressed atomic states to the pseudogap state with increasing
the interaction strength and the number density. These excita-
tion properties can partially be captured by the extraction of
the dispersion from the imaginary-time Green’s function. Our
results would contribute to further understanding of strong-
coupling nature in low-dimensional systems.

In this paper, whereas we consider a uniform 1D system, it
is worth studying the dimensional crossover as well as mixed-
dimensional systems in order to find relations to pseudogap
phenomena in higher-dimensional systems. Furthermore, our
approach can be extended to the mass-imbalanced mixtures
and the trapped systems. It is also interesting to address pho-
toemission spectra which can be experimentally measured.
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