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Multilevel coherences in quantum dots
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We study transport through strongly interacting quantum dots with N energy levels that are weakly coupled
to generic multichannel metallic leads. In the regime of coherent sequential tunneling, where level spacing and
broadening are of the same order but small compared to temperature, we present a unified SU(N )-invariant form
of the kinetic equation for the reduced density matrix of the dot and the tunneling current. This is achieved by
introducing the concept of flavor polarization for the dot and the reservoirs and splitting the kinetic equation
in terms of flavor accumulation, anisotropic flavor relaxation, and exchange-field- and detuning-induced flavor
rotation. In particular, we identify the exchange field as the cause of negative differential conductance at off-
resonance bias voltages appearing in generic quantum-dot models. To illustrate the notion of flavor polarization,
we analyze the nonlinear current through a triple-quantum-dot device.
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I. INTRODUCTION

The spatial confinement of electrons in quantum dots
gives rise to both a charging energy and a discrete spectrum
of single-particle energy levels. If two or more levels are
energetically close to each other compared to their tunneling-
induced broadening, coherent superpositions may form and
influence the electronic transport through the quantum dots.
By coupling a spin- 1

2 dot level to ferromagnetic leads (thereby
forming a quantum-dot spin valve) and applying a bias
voltage, the interplay of spin accumulation, relaxation, and
precession gives rise to a nonequilibrium polarization of the
quantum-dot spin [1–11]. Controlling transport by generating
and manipulating spins is the declared goal of the field of
spintronics.

The SU(2) framework for the spin degree of freedom is
easily transferred to other two-level systems by introducing
an isospin. This includes the valley degree of freedom in
the band structure of graphene and carbon nanotubes, stud-
ied in the field of valleytronics [12,13]. Another example
is given by quantum-dot Aharonov-Bohm interferometers,
in which the coherent superposition of the orbital levels of
two single-level quantum dots gives rise to Aharonov-Bohm
oscillations of the current through the device [14–16]. Further-
more, superconducting correlations in quantum dots attached
to superconducting leads have been described in terms of
an isospin defined by two quantum-dot states with different
particle numbers [17].
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In recent decades, triple quantum dots have been realized
experimentally [18–21]. In such structures, three instead of
two states can be energetically close to each other, suggesting
an SU(3) framework. Even coherences between more than
three levels are realized in molecules such as benzene [22,23].
Common among these systems are coherence-induced trans-
port signatures such as negative differential conductance
(NDC) and complete current blockades, making them inter-
esting for technological application in nanoelectronic devices.
It is therefore of high interest to find a description of the
complex nonequilibrium behavior of generic N-level dots in
a unified and physically intuitive way similar to spin-valve
systems.

In this paper, we seek such a description for quantum dots
with an arbitrary number N of orbitals coupled to generic
multichannel metallic leads. The underlying group in this case
is SU(N ). We will present a unified theoretical framework
for the regime where the level spacing � and the broadening
� are of the same order and small compared to temperature
T , which we refer to as the coherent-sequential-tunneling
regime. It is of particular interest since it exhibits quantum
coherence in weak coupling and is most easily accessible to
experiments. Similarly to quantum-optics approaches [24],
we represent the density matrix of the dot by a real vector,
which we refer to as the flavor polarization of the dot. In
addition, we define also a set of flavor polarizations for the
reservoirs, which is crucial to understand the NDC physics
induced by quantum coherence. We show that the kinetic
equations governing the dot dynamics can be cast in a uni-
versal SU(N )-invariant form containing terms that describe
dot-flavor accumulation, relaxation, and rotation, suggesting
the term flavortronics to describe transport through N-level
quantum dots. A central result of our work is the identifi-
cation of flavor rotations as the generic cause of NDC at
off-resonance bias voltages. We illustrate this and the general
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usefulness of the flavor-polarization formalism by analyzing
the I-V characteristic of a triple-dot setup.

II. MODEL

We consider N spinless quantum-dot orbitals with strong
Coulomb interaction that are weakly coupled to multichan-
nel metallic leads. The total Hamiltonian is given by H =
HD + Hres + HT. For convenience, we work in a basis where
the single-particle part of the dot Hamiltonian is already di-
agonalized. Including the interaction, the dot is described by
HD = H0

D + H int
D = ∑N

i=1 εic
†
i ci + U

∑
i<i′ c†

i cic
†
i′ci′ . The av-

erage level position is defined by ε = ∑N
i=1 εi/N and the

detunings by �i j = εi − ε j . For large Coulomb interaction
U → ∞, only the empty and the singly occupied dot con-
figurations are allowed. The leads Hres = ∑Nres

r=1 Hr with Hr =∑
kν εrkνa†

rkν
arkν are modeled as reservoirs of noninteract-

ing electrons with temperature T and chemical potential
μr . The channel index ν = 1, . . . , Nch accounts for different
bands and the quantum number k labels the energy eigen-
states in each band. The reservoir density of states ρr (ω) =
ρ0�

2/[(ω − μr )2 + �2] contains a high-energy cutoff � en-
suring convergence of appearing integrals. Tunneling between
dot and leads is described by HT = ∑

rνi t r
νia

†
rkν

ci + H.c., with
energy-independent tunneling amplitudes t r

νi. The latter enter
the N × N Hermitian, positive-semidefinite hybridization ma-
trices ϒ r with matrix elements ϒ r

i j = 2πρ0
∑

ν (t r
νi )

∗t r
ν j . The

tunnel-coupling strength to reservoir r is characterized by
�r = Tr ϒ r/N and the total tunneling strength by � = ∑

r �r .
We set e = h̄ = kB = 1 throughout this paper.

III. FLAVOR REPRESENTATION OF
THE QUANTUM-DOT STATE

Since the infinite charging energy limits the number Ne of
electrons in the quantum dot to 0 and 1, the Hilbert space of
the quantum-dot states is N + 1 dimensional with basis states
|0〉 for an empty quantum dot and |i〉 for an electron occupying
level i = 1, 2, . . . , N . As a result, the reduced density matrix
ρ = ρNe=0 + ρNe=1 of the quantum dot can be decomposed
into a part ρNe=0 = P0 |0〉〈0| describing the empty quantum
dot (with probability P0) and a part ρNe=1 for single occu-
pation (with probability P1 = Tr ρNe=1 = 1 − P0). The latter
is an N × N Hermitian positive-semidefinite matrix that can
be decomposed into the identity matrix 1N and a set of sN =
N2 − 1 traceless generators {λa} of SU(N ), which are normal-
ized such that Tr(λaλb) = 2δab, [λa, λb]− = 2i

∑
c fabcλc, and

[λa, λb]+ = 4
N δab + 2

∑
c dabcλc, with real constants fabc and

dabc forming a totally antisymmetric and a symmetric tensor,
respectively.1 As a result [26,27], the density matrix for single
occupation

ρNe=1 = 1

N
(P11N + cN g · λ), (1)

1The numerical values of these constants depend on the chosen set
of generators. A straightforward choice is the generalized Gell-Mann
matrices [25].

with g · λ = ∑
a gaλa and cN = √

N (N − 1)/2, is
parametrized by the probability P1 of single occupation
and the components ga of an sN -dimensional real vector g,
referred to as flavor polarization of the dot. Semipositivity of
ρNe=1 implies Tr ρ2

Ne=1 � P2
1 , which yields |g| � P1, i.e., the

normalization is chosen such that |g| = 1 describes maximal
flavor polarization. The sN -dimensional flavor-polarization
vector g generalizes the three-dimensional spin-polarization
vector in the case of a spinful quantum-dot level for N = 2 to
any number N of quantum dot levels. We note that for N > 2,
flavor polarization is fundamentally different from angular
momentum (N − 1)/2, as the latter is described in terms of
the N-dimensional representation of the three generators of
SU(2) and not of the sN generators of SU(N ).

The dot flavor polarization carries the information about
the mixture and superpositions of dot states contained in the
density matrix. The modulus |g| is a measure for the purity
in the one-particle sector, defined as γ = Tr[(ρNe=1/P1)2] =
[1 + (N − 1)(|g|/P1)2]/N .2

Thus, maximal flavor polarization |g1| = 1 corresponds to
a pure state in which, in a properly chosen basis, one of the
N dot levels is occupied with probability 1. All mixed or pure
states with this specific dot level being empty are described
by flavor-polarization vectors g2 that satisfy the condition g1 ·
g2 = −1/(N − 1). In contrast, vanishing flavor polarization
corresponds to the maximally mixed state.

The notion of an sN -dimensional flavor polarization vector
is needed not only for the dot but also for each reservoir. The
reservoir flavor polarization nr (with |nr | � 1) is defined by
the decomposition

ϒ r = �r (1N + cN nr · λ) (2)

of the hybridization matrix, i.e., �r and nr contain all micro-
scopic details of the tunnel coupling. Full polarization |nr | =
1 occurs when all channels couple to the same dot state, while
vanishing polarization nr = 0 corresponds to N channels that
are coupled with equal strength to a different one of the N dot
levels each.

To determine the components of g and nr for given density
and hybridization matrices, we make use of the orthogonality
of the generators to arrive at ga = N Tr(ρNe=1λa)/2cN and
�rnr

a = Tr(ϒ rλa)/2cN . Finally, we remark that only a sub-
set of the vectors g or nr in the sN -dimensional unit sphere
describes flavor polarization, i.e., corresponds to a (positive-
semidefinite) density or hybridization matrix [26–28].

IV. KINETIC EQUATION

The quantum-dot state, including its flavor polarization,
is described by the reduced density matrix ρ with matrix
elements ρχχ ′ = 〈|χ ′〉〈χ |〉. The natural basis states |χ〉 are
the empty dot |0〉 and single occupation |i〉 of level i =
1, 2, . . . , N . The diagonal entries ρχχ are the probabilities to
find the dot in state |χ〉, while the off-diagonals ρi j describe
coherences between levels i and j. In the weak-coupling and

2The scaling by P1 in this definition ensures that the purity takes the
usual values γ ∈ [1/N, 1].
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Markov regime t−1, � 
 T , the kinetic equations of ρχχ ′ read

d

dt
ρχχ ′ = −i(εχ − εχ ′ )ρχχ ′ +

∑
ηη′

Wχχ ′,ηη′ρηη′ . (3)

The generalized transition matrix elements Wχχ ′,ηη′ in Li-
ouville space, represented as irreducible diagrams on the
Keldysh contour, are calculated up to first order in � employ-
ing a real-time diagrammatic technique presented in [29,30]
(see Appendix A for details). The current Ir from the dot
into reservoir r can then be calculated from ρ and a partial
selection of diagrams.

In the coherent-sequential-tunneling regime |�i j | � �, we
express the kinetic equations in terms of the flavor polarization
in a coordinate-free form that makes the SU(N ) invariance
explicit (see Appendix D). This is done by reading (3) as a ma-
trix equation, inserting the flavor decompositions (1) and (2)
for each appearing density and hybridization matrix, and using
the relations P1 = ∑N

i=1 ρii and ga = N Tr(ρNe=1λa)/2cN . We
find

dP1

dt
=

∑
r

�r{N f +
r (ε)P0 − f −

r (ε)[P1 + (N − 1)nr · g]} (4)

for the total-occupation number and

dg
dt

=
(

dg
dt

)
acc

+
(

dg
dt

)
rel

+
(

dg
dt

)
rot

, (5)

(
dg
dt

)
acc

=
∑

r

�r[N f +
r (ε)P0 − f −

r (ε)P1]nr, (6)

(
dg
dt

)
rel

= −
∑

r

�r f −
r (ε)(g + nr ∗ g), (7)

(
dg
dt

)
rot

= Btot ∧ g (8)

for the flavor polarization. Here f +
r (ε) = 1/{exp[β(ε −

μr )] + 1} is the Fermi function with β = 1/T , f −
r (ε) = 1 −

f +
r (ε), Btot = B + Bex, B = Tr(H0

Dλ)/cN , Bex = ∑
r Br

ex, and

Br
ex = �r

π

[
Reψ

(
π + iβ(μr − ε)

2π

)
− ψ

(
π + β�

2π

)]
nr,

(9)

with the digamma function ψ . The star and wedge products
(x ∗ y)a = cN

∑
bc dabcxbyc and (x ∧ y)a = cN

∑
bc fabcxbyc

are straightforward generalizations of those defined for the
SU(3) case in [31] and respect the SU(N ) invariance. The
equation for P0 follows simply from dP0/dt = −dP1/dt .

The kinetic equations essentially generalize those for the
spin in a quantum-dot spin valve [2] to arbitrary flavor number
N . The equations show that dot occupation P1 and flavor po-
larization g are coupled. The scalar product nr · g reflects how
strongly the dot electron couples to reservoir r. This affects the
rate of tunneling processes from the dot into r [see Eq. (4)].

We have split the equation for dg/dt into three parts. The
first part (6) describes flavor accumulation due to tunneling
between dot and flavor-polarized reservoirs. For each reser-
voir r, the contribution to flavor accumulation is proportional
to nr .

The second term (7) describes flavor relaxation. It can be
written as (dg/dt )rel = −∑

r �r f −
r (ε)Drg by introducing the

matrix Dr with matrix elements Dr
ac = δac + cN

∑
b dabcnr

b.
Because Dr is positive semidefinite (see Appendix C), the
relaxation term always reduces the modulus of the flavor
polarization (d|g|/dt )rel � 0. The matrix Dr differs from the
identity matrix, which makes flavor relaxation anisotropic.3

The last term (8) describes flavor rotation. It can be
rewritten as (dg/dt )rot = Fg by introducing the matrix F
with matrix elements Fac = cN

∑
b fabcBtot,b. Due to fabc =

− fcba, F is skew symmetric and therefore generates an
sN -dimensional rotation.4 Two mechanisms lead to fla-
vor rotation. The detuning-induced part B generalizes the
Zeeman-field induced spin rotation in the SU(2) case. The
contribution Bex is induced by virtual tunneling of quantum-
dot electrons into the flavor-polarized reservoirs and back. We
call Bex an exchange field, in analogy to the one leading to
Larmor precession of the spin in quantum-dot spin valves
[1,2]. Besides its dependence on the reservoir flavor polariza-
tions, its magnitude can be controlled via bias voltage, level
positions, and coupling strengths [see Eq. (9)]. As the term in
large square brackets in Eq. (9) is nonzero in the wideband
limit of large �, the individual reservoir exchange fields are
nonzero for polarized reservoirs and the total exchange field
Bex can only vanish in highly symmetric setups where differ-
ent Br

ex cancel.
The flavor polarization affects transport through the quan-

tum dot. In the coherent-sequential-tunneling regime |�i j | �
�, the current into reservoir r is

Ir = �r{−N f +
r (ε)P0 + f −

r (ε)[P1 + (N − 1)nr · g]}. (10)

In the special case of a singly occupied dot P1 = 1 and a fla-
vor polarization g satisfying nr · g = −1/(N − 1), no current
flows into the reservoir. This flavor blockade appears since the
states corresponding to g decouple from the reservoir.

The kinetic equations (4)–(8) and the current formula (10)
are the main results of our paper. They provide an intuitive pic-
ture of the dot dynamics and the electronic transport in terms
of the flavor polarization. We emphasize the special role of the
exchange field (9). Its dependence on the chemical potentials
is responsible for the NDC at off-resonance bias voltages,
where all Fermi functions are constant. The precise mecha-
nism is discussed below for the simple example of a triple
quantum dot, but the same reasoning applies to any setup with
N levels in the coherent-sequential-tunneling regime. While
current blockades due to coherence effects and resulting NDC
have been widely studied [32–43], this intuitive explanation
of off-resonance NDC for generic N-level setups closes a gap
in the literature.

In the opposite incoherent-sequential-tunneling regime of
large detunings |�i j | ∼ T  �, the coherences can be ne-
glected and both contributions to the rotation term drop out. In
that case, the kinetic equations simplify to the standard Fermi

3An exception is the SU(2) case, where the d’s are vanishing, which
makes spin relaxation in quantum-dot spin valves isotropic [2].

4Similar rotations of coherence vectors have been discussed in the
context of quantum optics [25] and open quantum systems in general
[24].
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FIG. 1. Three reservoirs are coupled to two levels each. Nonzero
tunnel couplings are chosen real and equal. A bias voltage V is
applied such that μB = μC = −μA = V/2.

golden rule rate equations dρii/dt = ∑
r[ϒ r

ii f +
r (εi )ρ00 −

ϒ r
ii f −

r (εi )ρii] and dρ00/dt = −∑N
i=1 dρii/dt , as well as Ir =∑

i[−ϒ r
ii f +

r (εi )ρ00 + ϒ r
ii f −

r (εi)ρii].
Let us briefly consider the general case, where the levels

are arranged in multiple groups of close-lying energies. This
case can be treated straightforwardly by the formalism. All
isolated levels enter the master equations via the Fermi golden
rule rate equations. Regarding groups of at least two close-
lying levels, flavor equations must be set up for each group,
defining adequate flavor polarizations from the projections of
the density and hybridization matrices onto the subspace of
states included in the group.

Finally, we remark that an additional spin degeneracy of
the quantum-dot levels can be easily taken into account with-
out doubling N . All presented formulas remain valid once
P0 = ρ00 appearing on the right-hand side is multiplied by a
factor of 2, while ρi j is understood as

∑
σ ρiσ, jσ , i.e., spin af-

fects the results only quantitatively. In the following example,
we assume spinless electrons.

V. EXAMPLE

We illustrate the usefulness of the concept of flavor
polarization by analyzing the current through the triple-dot
setup shown in Fig. 1. Each of the three reservoirs r = A, B,C
couples symmetrically to two dot levels, such that �r = �/3,
and accommodates one channel only, which implies maximal
flavor polarization (|nr | = 1). We choose the standard
Gell-Mann matrices [44] (see Appendix E for a list) as the
generators of SU(3). Then the explicit flavor-polarization
vectors are given by nA = (

√
3/2, 0, 0, 0, 0, 0, 0, 1/2),

nB = (0, 0,−√
3/4, 0, 0,

√
3/2, 0,−1/4), and nC =

(0, 0,
√

3/4,
√

3/2, 0, 0, 0,−1/4). The chemical potentials
are set to μB = μC = −μA = V/2, i.e., leads B and C can
be combined into a single lead BC with flavor polarization
nBC = (nB + nC )/2 and coupling strength �BC = 2�/3.
Using the flavor framework, we will be able to explain NDC
and current blockades due to coherence effects (similar as
reported in Refs. [32–43]) in terms of flavor blockade and its
lifting by flavor rotation.

In Fig. 2 we show the current into reservoir A for an average
dot-level energy of ε = ε3 = 25� and symmetric detunings
ε1/2 = ε ± � as a function of bias voltage V . We find the
expected increase in current as the chemical potentials ap-
proach the dot level energies. At higher voltages, the current
exhibits signatures of quantum coherence for detunings of

−150 −100 −50 0 50 100 150

eV [Γ]

−0.3

−0.2

−0.1

0.0

0.1

0.2

I A
[e

Γ
/
h̄
]

Δ = 0.0Γ, no rotation

Δ = 0.0Γ

Δ = 0.3Γ

Δ = 0.5Γ

Δ = 10.0Γ

−150 0 150
eV [Γ]

−0.5

0.0

n
d
·g

FIG. 2. Current-voltage characteristics for ε = 25� and detun-
ings �13 = −�23 = � calculated with the flavor equations (4)–(10)
(for � = 0, 0.3�, 0.5�) and with Fermi’s golden rule (for � =
10�). For the dashed curve, the rotation term (8) has been omitted
by hand. The inset shows the scalar product of drain and dot flavor
polarization. Further parameters are T = 5� and � = 1000�.

the order of �. For V < 0, lead BC is the drain electrode,
nd = nBC . At high voltages and zero detuning, a full suppres-
sion of the current is obtained when omitting the rotation term
(8) by hand (dashed line). In this case, the steady-state fla-
vor polarization becomes g = (1, 0, 0,−1, 0,−1, 0, 0)/

√
3,

which corresponds to the occupation of the dark state |ψ123〉 =
(|1〉 + |2〉 − |3〉)/

√
3 that decouples from the drain, i.e.,

the flavor-blockade conditions P1 = 1 and nd · g = −1/(N −
1) = −1/2 are satisfied. The blockade is partially lifted when
the exchange-field- and detuning-induced flavor rotation is
taken into account (see solid lines and inset), as they rotate the
flavor polarization away from the blocking orientation. The
magnitude of the exchange field falls off like |ln(|V |/2�)| at
large voltages, which explains the observed NDC. Since away
from resonance |μr − ε|  T all Fermi functions are either 0
or 1, the voltage dependence of Bex is the sole cause of the
NDC appearing here. While the perfect blockade in the ab-
sence of flavor rotation is not a generic feature, this reasoning
actually applies to NDC in any multilevel-dot model: The ex-
change field rotates the flavor polarization into an orientation
that increases nd · g, i.e., couples more strongly to the drain,
and an NDC appears because |Bex| decays with increasing
voltage.

Returning to the model at hand, for large detuning (pink
line), coherences are absent. This implies that flavor rotations
vanish, but as the dark state |ψ123〉 is a coherent superposi-
tion, it is not occupied to begin with and the current is not
suppressed.

For V > 0, lead A becomes the drain electrode nd = nA.
Our maximally symmetric model shows (nongeneric) striking
current signatures here, which can easily be explained in the
flavor framework. At zero detuning (green line) the flavor
polarization is g = (−√

3/2, 0, 0, 0, 0, 0, 0, 1/2), which cor-
responds to the occupation of the dark state |ψ12〉 = (|1〉 −
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|2〉)/
√

2 and satisfies the flavor-blockade conditions P1 = 1
and nd · g = −1/2. In contrast to V < 0, flavor rotations do
not restore the current since they cannot affect the dark state,
as nA ∧ g = 0 and nBC ∧ g = 0. This changes with small
|�|, where the flavor is rotated by the detuning-induced
field B. The resulting flavor is then affected by exchange-
field-induced rotations and similarly to the case for V < 0,
off-resonance NDC appears because of the V dependence of
the exchange field. For large detuning, current is suppressed
again since once an electron enters level 3, it cannot leave
anymore. However, compared to zero detuning, the physics
involved is fundamentally different since the blockade can be
understood in a simple Fermi golden rule approach.

VI. CONCLUSION

We have introduced the concept of flavor polarization
for the dynamics of N quantum-dot levels in the coherent-
sequential-tunneling regime. The significance of the kinetic
equations presented in this paper is threefold. First, they
constitute a unifying description of multilevel quantum dots.
Second, they allow for an intuitive interpretation of the dy-
namics in these systems in terms of accumulation, relaxation,
and rotation of a flavor-polarization vector. Third, they isolate
the entire bias-voltage dependence beyond the Fermi func-
tions in a single term, the exchange field, which reveals flavor
rotations as the origin of negative differential conductances in
off-resonance regimes.

Our framework can straightforwardly be generalized to
arbitrary occupations by introducing several dot flavor po-
larizations [45]. Furthermore, it will be also very useful for
strong dot-lead coupling by taking higher-order tunneling
processes into account using, e.g., real-time renormalization-
group methods [46], where broadening and renormalization
effects influence the resonance line shapes [47] and the Kondo
effect occurs in the cotunneling regime [48–52].
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APPENDIX A: DIAGRAMS

The generalized transition matrix elements Wχχ ′,ηη′ are rep-
resented as irreducible diagrams on the Keldysh contour. The

Wii,ii =
∑

r

i i

i i

0

εi

ω, r
+

i i

i i

εi

0

ω, r

Wij,00 =
∑

r

0 i

0 j

εi

0

ω, r +

0 i

0 j

0

εj

ω, r

FIG. 3. Diagrams for two generalized transition matrix elements.

physical time axis runs from left to right, while the Keldysh
contour runs from left to right and then back again. The rules
for the evaluation of a diagram Wχχ ′,ηη′ to first order in the
tunneling strength � are as follows.

(i) Draw all topologically different diagrams with states η

and η′ to the left and χ and χ ′ to the right. Assign dot states
and their energies to all Keldysh contour elements between
vertices representing the tunneling Hamiltonian. Vertices are
connected in pairs by directed tunneling lines that carry a
reservoir index r and tunneling energy ω. A first-order dia-
gram contains one tunneling line connecting two vertices on
the far left and far right of the diagram.

(ii) Each segment between vertices gives a factor 1/(E +
i0+), with E being the difference of all energies going to
the left minus all energies going to the right, including the
tunneling line energy.

(iii) A tunneling line with index r going from a vertex
where a dot state i is annihilated to a vertex where a dot
state j is created implies a factor ϒ r

jiρ̄r (ω) f ±
r (ω)/2π , where

ρ̄r (ω) = ρr (ω)/ρ0 and f +
r (ω) is to be taken if the line goes

backward with respect to the Keldysh contour and f −
r (ω) if it

goes forward.
(iv) Assign a total prefactor (−i) and for each vertex on the

lower contour a prefactor −1.
(v) Sum over internal indices and integrate over the tunnel-

ing energy ω.
As an example, Fig. 3 shows the diagrams for two general-

ized transition matrix elements, with i, j = 1, . . . , N labeling
a dot level. According to the above rules, their values are in
the limit of large �

Wii,ii = −i
∑

r

ϒ r
ii

2π

∫
dω ρ̄r (ω) f −

r (ω)

(
1

εi − ω + i0+ + 1

ω − εi + i0+

)
= −

∑
r

ϒ r
ii f −

ri
(εi ), (A1)

Wi j,00 = i
∑

r

ϒ r
i j

2π

∫
dω ρ̄r (ω) f +

r (ω)

(
1

ω − εi + i0+ + 1

ε j − ω + i0+

)

=
∑

r

ϒ r
i j

2
{[ f +

r (εi ) + f +
r (ε j )] + i[�r (εi) − �r (ε j )]}, (A2)
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with �r (εi ) = 1
π

[Reψ ( 1
2 + i β

2π
(μr − εi )) − ψ ( 1

2 + β�

2π
)],

where ψ is the digamma function.
The current into reservoir r reads, to first order,

Ir =
∑
χηη′

∑
m

mW rm
χχ,ηη′ρηη′ . (A3)

Here W rm
χχ,ηη′ are those first-order diagrams where the number

of electrons entering reservoir r minus those leaving reservoir
r is m.

APPENDIX B: USEFUL RELATIONS
FOR THE SU(N) GENERATORS

The generators λa of SU(N ) fulfill the relations

Tr(λa) = 0, (B1)

Tr(λaλb) = 2δab, (B2)

[λa, λb]− = 2i
∑

c

fabcλc, (B3)

[λa, λb]+ = 4

N
δab + 2

∑
c

dabcλc. (B4)

We can express the antisymmetric tensors fabc and dabc as

dabc = 1
4 Tr([λa, λb]+λc), (B5)

fabc = − i

4
Tr([λa, λb]−λc). (B6)

These relations will be used in the following proofs.

APPENDIX C: SEMIPOSITIVITY OF
THE RELAXATION MATRIX Dr

The relaxation matrix Dr is defined as

Dr
ac = δac + cN

∑
b

dabcnr
b (C1)

or, equivalently,

Drg = g + nr ∗ g. (C2)

We need to show that Dr is positive semidefinite, i.e., g ·
Drg � 0 for any g, to justify the interpretation of the corre-
sponding term in the kinetic equation as a relaxation term. Us-
ing g · g = ∑

a gaga and g · (nr ∗ g) = cN
∑

abc dabcganr
bgc =

cN
∑

abc dabcgagbnr
c, we get

g · Drg =
∑

a

{
gaga + cN

∑
bc

dabcgagbnr
c

}

= 1

2

∑
ab

gagb Tr(λaλb)

+ cN

4

∑
abc

Tr([λa, λb]+λc)gagbnr
c

= 1

2
Tr[(g · λ)2] + cN

4
Tr([g · λ, g · λ]+nr · λ)

= 1

2
Tr[(g · λ)2(1N + cN nr · λ)].

Since the hybridization matrix ϒ r = �r (1N + cN nr · λ) is
positive semidefinite and �r > 0, we can use the decomposi-
tion 1N + cN nr · λ = ∑

i σi |i〉〈i|, with σi � 0. This yields

g · Drg = 1

2

∑
i j

〈 j| (g · λ)2σi |i〉〈i| j〉

= 1

2

∑
j

σ j 〈 j| (g · λ)(g · λ) | j〉

= 1

2

∑
j

σ j‖g · λ | j〉 ‖2 � 0. (C3)

In the last line we have used the Hermiticity of λa and σ j � 0.

APPENDIX D: SU(N) INVARIANCE

Any N × N Hermitian matrix M can be decomposed as
M = k1N + m · λ, with k and ma ∈ R. After a basis change
M → M̃ = UMU †, we can decompose similarly M̃ = k1N +
m̃ · λ. The elements of m̃ read

m̃a = Tr(M̃λa)/2 = Tr(UMU †λa)/2

=
∑

b

mb Tr(UλbU
†λa)/2

=
∑

b

R(U )abmb, (D1)

or in matrix-vector notation m̃ = R(U )m, where R(U ) is the
sN -dimensional rotation matrix corresponding to the basis
transformation U .

The kinetic equations are written in terms of P0 and P1,
which are obviously invariant under rotation, as well as g, nr,
and B, which transform as vectors. To prove the form invari-
ance of the kinetic equation under an SU(N ) transformation
of the basis, we need to show that the scalar product x · y
transforms like a scalar and the star and wedge products x ∗ y
and x ∧ y like vectors.

Let us start with the invariance of the scalar product

x · y =
∑

a

xaya = 1

2

∑
ab

xayb Tr(λaλb)

= 1

2
Tr[(x · λ)(y · λ)]

= 1

2
Tr[U (x · λ)U †U (y · λ)U †]

= 1

2
Tr[(x̃ · λ)(ỹ · λ)] = x̃ · ỹ. (D2)

Next we show the vector character of the star and wedge prod-
ucts by convincing ourselves that the combinations (x ∗ y) · z
and (x ∧ y) · z remain invariant under rotation. We find

(x ∗ y) · z = cN

∑
abc

dabcxaybzc

= cN

4

∑
abc

Tr([λa, λb]+λc)xaybzc

= cN

4
Tr{[(x · λ), (y · λ)]+(z · λ)}
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= cN

4
Tr{[(x̃ · λ), (ỹ · λ)]+(z̃ · λ)}

= (x̃ ∗ ỹ) · z̃ (D3)

as well as

(x ∧ y) · z = cN

∑
abc

fabcxaybzc

= −i
cN

4

∑
abc

Tr([λa, λb]−λc)xaybzc

= −i
cN

4
Tr{[(x · λ), (y · λ)]−(z · λ)}

= −i
cN

4
Tr{[(x̃ · λ), (ỹ · λ)]−(z̃ · λ)}

= (x̃ ∧ ỹ) · z̃, (D4)

which completes the proof of the SU(N ) invariance of the
kinetic equations.

APPENDIX E: EXPLICIT FORM OF
THE GELL-MANN MATRICES

In the example of the triple quantum dot, we choose
the standard Gell-Mann matrices for expressing the flavor-
polarization vectors. These are given by

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, λ3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, (E1)

λ4 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, λ5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, (E2)

λ6 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, λ7 =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (E3)
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