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Probing quantum spin liquids in equilibrium using the inverse spin Hall effect
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We propose an experimental method utilizing a strongly spin-orbit coupled metal to quantum magnet bilayer
that will probe quantum magnets lacking long-range magnetic order, e.g., quantum spin liquids, via examination
of the voltage noise spectrum in the metal layer. The bilayer is held in thermal and chemical equilibrium, and spin
fluctuations arising across the single interface are converted into voltage fluctuations in the metal as a result of the
inverse spin Hall effect. We elucidate the theoretical workings of the proposed bilayer system and provide precise
predictions for the frequency characteristics of the enhancement to the ac electrical resistance measured in the
metal layer for three candidate quantum spin liquid models. Application to the Heisenberg spin-1/2 kagomé
lattice model should allow for the extraction of any spinon gap present. A quantum spin liquid consisting of
fermionic spinons coupled to a U(1) gauge field should cause subdominant �4/3 scaling of the resistance of the
coupled metal. Finally, if the magnet is well-captured by the Kitaev model in the gapless spin liquid phase, then
the proposed bilayer can extract the two-flux gap which arises in spite of the gapless spectrum of the fermions.
We, therefore, show that spectral analysis of the ac resistance in the metal in a single interface, equilibrium
bilayer can test the relevance of a quantum spin liquid model to a given candidate material.
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I. INTRODUCTION

Quantum spin liquids (QSLs) refer to intriguing states of
quantum spin systems in which strong quantum fluctuations
prevent spins from ordering down to zero temperature and
the prototypical wave function exhibits extensive many-body
entanglement [1,2]. They are endowed with fascinating phys-
ical properties like nonlocal excitations [3,4] and nontrivial
topology [5,6], and substantial pioneering work has been
accomplished in the pursuit of a physical instantiation of
this long-sought-after phase of matter. The most promising
candidates to date include the mineral herbertsmithite [7],
certain organic salt compounds [8], and the so-called Kitaev
materials [9], and their experimental studies have ranged from
nuclear magnetic resonance [10–13], to susceptibility and heat
capacity investigations [14–16], to thermal transport studies
[17–22], and to neutron scattering [23–26]. Theoretical works
have shown that QSL ground states are realized in the an-
tiferromagnetic S = 1/2 Heisenberg model on the kagomé
lattice [27–31], in models that couple low-energy fermionic
spin excitations to an emergent U(1) gauge field [32–37],
as well as in the exactly solvable Kitaev model [38] in two
[39,40] and three [41,42] dimensions. However, while the
number and types of potential QSL models have proliferated,
the experimental methods available for studying them have
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not [43]. It is therefore important to the search for compounds
possessing QSL ground states to propose previously un-
known techniques by which to probe and categorize candidate
materials.

The inverse spin Hall effect (ISHE) [44] is an essential
component of the spintronics repertoire [45] and provides
an opportunity to develop probes of unconventional quantum
magnets. This phenomenon has found utility in detecting spin
currents induced by thermal gradients [46–48] and in perform-
ing nonlocal spin transport experiments through magnetic
insulators [49–53]. The prime function of the ISHE is that it
acts as a transducer between spin and charge current densities
in metals with strong spin-orbit coupling. One may therefore
envisage a bilayer system in which a strongly spin-orbit cou-
pled heavy-element metal (e.g., Pt, Ta, W) is deposited on
top of a quantum magnet, i.e., consider coupling the metal to
a spin dissipating subsystem that freezes out charge degrees
of freedom to focus solely on the spin sector, while holding
the entire bilayer in thermal and chemical equilibrium. The
addition of a spin dissipating subsystem will result in equi-
librium spin current fluctuations across the interface [54,55],
which, as a result of the ISHE, are converted into charge
fluctuations inside the metal—charge fluctuations that may
encode information about the microscopic structure of the
quantum magnet. The QSL-to-normal-metal bilayer therefore
presents a table-top setup that can be used to electrically probe
the low-energy density of states of the QSL material. This
type of bilayer system has garnered some study with respect to
ferromagnetic insulators hosting magnons [56]; however, the
utility of the ISHE as a noise conversion mechanism has not
yet been explored in the context of exotic quantum magnets in
general and the search for QSLs in particular.
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In this work, we propose a relatively simple mecha-
nism that can probe exotic 2d QSL ground states possessing
gauge fluctuations and extensive many-body entanglement
via equilibrium or near-equilibrium measurements. We will
develop the theory underpinning the aforementioned QSL-to-
normal-metal bilayer that utilizes the QSL material as a spin
dissipating subsystem, where spin dissipation via the QSL
material results in spin noise generation due to the fluctuation
dissipation theorem. The normal metal layer acts as a resistive
element, and in the quantum limit, i.e., at very low temper-
atures, the power spectrum of the asymmetrized spin noise
in the metal is entirely quantum in nature [57] and encodes
information about the spin sector of the QSL layer. We show
that the asymmetrized spin noise generated in this manner
must affect, e.g., the ac resistance measured in the normal
metal, if the normal metal possesses strong spin-orbit cou-
pling. We then use our theory to examine three QSL models:
the S = 1/2 nearest-neighbor Heisenberg antiferromagnet on
the kagomé lattice, a model consisting of gapless fermionic
spin excitations coupled to an emergent U(1) gauge field, and
the bare Kitaev honeycomb model in the gapless spin liquid
phase.

We consider a gapped ground state in our approach to the
kagomé lattice antiferromagnet owing to DMRG studies that
indicate the presence of a gap [29], in addition to gapped
out flux excitations, and utilize a bosonic parton mean-field
theory [27] when characterizing the emergent low-energy spin
excitations. In so doing, we show that our proposed bilayer
system can successfully quantify any spinon gap present.

Motivated by the fact that the slave-rotor representation
[58] of the Hubbard model on a triangular lattice results in
stable QSL mean-field states comprised of a spinon Fermi
surface coupled to a U(1) gauge field [33] that may apply to
existing candidate materials [e.g., κ-(BEDT-TTF)2-Cu2(CN)3

and YbMgGaO4], we examine this QSL model theoretically
in our proposed bilayer system. We find that a QSL model
coupling gapless fermions with a Fermi surface to an emer-
gent U(1) gauge field produces a subdominant �4/3 frequency
correction to the ac resistance measured across the normal
metal that our proposed system can educe.

Finally, our treatment of the bare, gapless Kitaev model
considers the isotropic point of the quantum spin liquid phase,
where all bond interactions are equal in strength, and assumes
a flux-free background—a valid assumption for temperatures
lower than 1% of the bond strength [59,60]. Under these
considerations we find that when coupled to a normal metal,
the presence of a Kitaev QSL will allow characterization of
the two-flux gap energy that emerges in spite of the gapless
nature of the fermion spectrum.

II. THEORY

Let us consider coupling an insulating spin system (i.e.,
a quantum magnet) to a strongly spin-orbit coupled heavy-
element metal, as depicted in Fig. 1. The addition of the
spin system gives rise to increased spin dissipation, which,
as a result of the fluctuation-dissipation theorem (FDT), con-
tributes additional spin fluctuations inside the metal. If strong
spin-orbit interactions are present in the conductor (as in, e.g.,
Pt, Ta, W [61,62]), then FDT requires that spin fluctuations

FIG. 1. A cartoon of the proposed system: a quantum spin liq-
uid to normal metal bilayer in equilibrium, where fluctuating spin
current Is across the interface becomes fluctuating charge current Ic

(or fluctuating voltage) in the normal metal via the inverse spin Hall
effect and results in measurable modifications to the ac resistance of
the metal.

across the interface will give rise to voltage fluctuations in
the conductor via the ISHE, i.e., S = S0 + δS, where S is the
total voltage noise in the metal in thermal equilibrium, S0 is
the total noise present in the bare metal, and δS is the portion
of the noise that arises due to the presence of the quantum
magnet.

In the quantum limit—when the sample is cooled to as low
a temperature as possible—background thermal noise in the
metal is strongly suppressed, and

S(�) = 4h̄�R(�)θ (�). (1)

Here, the Heaviside step function θ (�) signifies that only
positive frequencies are possible in the quantum limit. This
indicates that the metal is able to absorb quasiparticles from
an external system, e.g., a detector, but is unable to emit them
[57]. The voltage fluctuations present in the metal are thus
entirely due to the presence of the QSL candidate material
and any background quantum noise.

We assume that in the quantum limit the base resistance
is essentially constant in the frequency range of interest and
known in a given strongly spin-orbit coupled metal, and there-
fore any quantum background noise linear in frequency that
arises can be accounted for and removed, exposing δS(�).

In the upcoming sections, we provide the technical calcu-
lations necessary to extract the correction to the equilibrium
voltage noise δS(�)—the enhancement to the ac power spec-
trum of the voltage noise in a strongly spin-orbit coupled
metal interfaced with a general quantum magnet possessing
no long-ranged order—and then apply our results to some
well-known QSL models. Characteristic features in the fre-
quency distribution will then allow for discriminating between
the QSL ground states of the various candidate materials via a
relatively straightforward near-equilibrium measurements of
the ac resistance present in the metal layer via Eq. (1).

We consider a bilayer system as shown in Fig. 1, comprised
of a thin normal metal layer (thickness d) affixed atop a
QSL material. The interface is set at the xz plane, and the
QSL is treated as a 2d lattice of fixed quantum spins Si. The
particular lattice structures of the QSLs come into play later
in the discussion. We assume that the entire heterostructure is
thermalized to a temperature T in order to eliminate the effects
of nonequilibrium drives.
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We assume the QSL and the normal metal are coupled via
exchange interaction

Hc = −J v0

∑
i

s(y = 0, ri ) · Si, (2)

where v0 is the volume in the metal per spin of the QSL,
J is the exchange constant, and ri is a vector of the inter-
facial coordinates at the y = 0 plane specifying the position
of Si. The local spin density of the metal is given by s(x) =
(1/2)ψ†

s (x)τss′ψs′ (x), where τ is the vector of Pauli matrices
and s labels the electron spin quantum number.

The interfacial spin current operator Is is defined by con-
sidering the total z polarized spin entering the metal, i.e.,

Is(t ) = (−ι)
J v0

2

∑
i

[s−(y = 0, ri, t )S+
i (t )

− s+(y = 0, ri, t )S−
i (t )], (3)

where ι = √−1. The spin current noise across the interface
can then be computed to lowest non-trivial order in J using,
e.g., the real-time Keldysh formalism and the result formally
takes the form [63]

〈Is(t )Is(0)〉 =
(J v0

2

)2∑
i j

〈s−(y = 0, ri, t )s+(y = 0, r j, 0)〉

× [〈S+
i (t )S−

j (0)〉 + 〈S−
i (t )S+

j (0)〉], (4)

where 〈· · · 〉 represents correlation functions with respect to
the unperturbed Hamiltonian. The spectrum of the interfacial
spin current noise is then defined via

Ss(�) =
∫ ∞

−∞
dt 〈Is(t )Is(0)〉ei�t . (5)

The spin correlation function in the metallic sector can be
readily computed, so we obtain a general expression for the
equilibrium spin current noise spectrum at finite temperature
[63],

Ss(�, T ) = 2ι

(J v0mkF

2π2h̄

)2∑
i j

∫ ∞

−∞
dν

ν − �

eβ h̄(ν−�) − 1

× sinc2(kF |ri − r j |)[χ+−
i j (ν) + χ−+

i j (ν)], (6)

where kF is the Fermi wave vector of the metal, and we
have introduced the dynamical spin correlation function of the
QSL,

χ∓±
i j (ν) ≡ −ι

∫
dt 〈S∓

i (t )S±
j (0)〉eiνt , (7)

to account for the portion of the noise that arises due to spin
fluctuations in the QSL. Finally, for large Fermi wave vectors,
i.e., kF |ri − r j | 	 1 for all i, j, Eq. (6) can be approximated
in spatially local terms, and we obtain

Ss(�, T ) ≈ 2ι

(J v0mkF

2π2h̄

)2∑
i

∫ ∞

−∞
dν

ν − �

eβ h̄(ν−�) − 1

× [χ+−
ii (ν) + χ−+

ii (ν)]. (8)

We emphasize here that the derivation has so far assumed
no particular form for the QSL Hamiltonian. Instead, Eq. (8) is

constructed in order to apply to noise generated in a strongly
spin-orbit coupled normal metal due to the proximity of a
general quantum magnet (albeit with no long-ranged magnetic
order), such that extracting a usable quantity depends only on
characterizing χ±∓

ii (ν) for a given QSL model.
The ISHE finally converts the z polarized spin current

density in the y direction into a charge current density along
the x direction (see Fig. 1). The conversion ratio between the
interfacial spin current fluctuations and the measurable volt-
age fluctuations may depend nontrivially on various properties
of the metal, e.g., its spin Hall angle, geometry, and spin
diffusion length. However, as shown in, e.g., Refs. [63,64],
these details may be lumped into a single phenomenological
spin-to-voltage noise conversion constant � so that the ac
voltage fluctuations generated by the quantum magnet can be
expressed in terms of the spin fluctuations in Eq. (8) as

δS(�, T ) = �Ss(�, T ). (9)

Therefore, what we have calculated in Eq. (8) is directly
related to the ac voltage noise in the metal generated by the
presence of the quantum magnet. We may then extract the
modification to the resistance acquired by the presence of
the quantum magnet from this quantity using Eq. (1).

III. APPLICATION TO QUANTUM SPIN LIQUIDS

We now consider three types of QSL models in the con-
text of our proposed bilayer system: the antiferromagnetic
Heisenberg S = 1/2 kagomé lattice model (HKLM); a model
involving a spinon Fermi surface coupled to an emergent U(1)
gauge field; and the Kitaev honeycomb model in the gapless
spin liquid phase. We ultimately show that the bilayer system
we propose will allow the extraction of characteristic fre-
quency dependencies in each case. All three models above are
believed to be of relevance for the descriptions of some QSL
candidate materials. Detailed discussion of these connections
will be presented in Sec. V.

A. Heisenberg antiferromagnet on the kagomé lattice

The HKLM is an important prototypical model that sup-
ports a QSL ground state, and is believed to be a relevant
model for the mineral compound ZnCu3(OH)6Cl2 (herbert-
smithite), one of the prime contenders for an experimental
realization of a QSL. Recent neutron scattering experiments
suggest that the relevant theoretical model for the QSL state
observed in this compound consists of the so-called Z2 spin
liquids [27,65,66]. These QSL states possess two types of
excitations, i.e., the S = 1/2 spinon and a gapped vortex, also
known as a vison, corresponding to an emergent Z2 gauge
field [5]. It was shown recently that these visons can act as
a momentum sink for the spinons and can flatten the dynamic
spin structure factor [66] in accordance with experimental ob-
servations of herbertsmithite. However, for the purposes of the
heterostructure, we are proposing in this work, we note that
only local spin fluctuations are important and visons do not
themselves carry spin. Therefore we expect that visons should
not significantly renormalize spin current fluctuations, and
that the reshuffling of the spin quasiparticle spectral weight in
momentum space should not drastically affect local quantities.
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ê2ê1

ê3

FIG. 2. The kagomé lattice, with positions on a representative
unit cell marked. The êi represent the unit vectors of a unit cell, and
a is the length of a bond. Arrows between sites correspond to the
direction dependent Qi j . Solid arrows around upward facing triangles
depict Qi j = Q1, and wire arrows around downward facing triangles
depict Qi j = Q2.

We therefore ignore the effects of the visons in this subsection,
follow the calculations performed in Ref. [27] for the HKLM,
and apply the result to the observable we are proposing as a
probe of the QSL state.

We begin with the Hamiltonian for the bare HKLM

HHKLM = −J

2

∑
〈i, j〉

Si · Sj, (10)

where 〈i, j〉 indicates nearest-neighbor pairings and J is the
exchange coupling. Mean-field approaches to characterizing
the HKLM ground states include bosonic representations [27]
of the gapped spinons and fermionic representations, where
a gap arises due to pairing in the Hamiltonian [67]. In what
follows, we focus on the bosonic representation of the QSL
phase as done in Ref. [27].

We begin with the standard Schwinger boson representa-
tion of the spin operators Si = (1/2)b†

iστσσ ′biσ ′ , where biσ

represents a bosonic spinon, and then use the mean-field
decoupling Qi j = (1/2)〈εσσ ′biσ b jσ ′ 〉, where εσσ ′ is the com-
pletely antisymmetric tensor of SU(2) and the field satisfies
Qi j = −Q ji. Substituting this representation into Eq. (10), the
mean-field decoupling results in the Hamiltonian

HHKLM = −J

2

∑
〈i, j〉

∑
σσ ′

Qi jεσσ ′b†
iσ b†

jσ ′ + H.c. + λ
∑
i,σ

b†
iσ biσ ,

(11)

where H.c. denotes the hermitian conjugate and λ is a La-
grange multiplier that constrains the model to one boson per
site.

Figure 2 shows a depiction of the kagomé lattice, where the
arrows between sites in a unit cell correspond to the direction
dependent Qi j , i.e., Q1 and Q2 are the two distinct expectation
values of Qi j . In the figure, solid arrows correspond to Qi j =
Q1 and wire arrows correspond to Qi j = Q2. The two possible
locally stable QSL mean-field solutions [27,65,66,68] occur
when Q1 = Q2 = Q, corresponding to π flux through the

FIG. 3. A numerical plot showing Ss(�, 0) in the HKLM as a
function of ac frequency normalized by the mean-field coupling,
λ = 0.695J . The main plot shows the computed sum. The graph
is identically zero until a critical frequency of twice the gap en-
ergy is achieved, h̄�c = 2�s = 0.158λ, at which point it becomes
possible to create spinon pairs in the QSL and noise enhancement
commences. The inset is the ac susceptibility χ (�, 0) in the case
of the HKLM, which can be extracted by numerical differentiation
of Eq. (8), and is in good agreement with previous works, see, e.g.,
Ref. [69].

hexagonal plaquette, and Q1 = −Q2, corresponding to no flux
through the plaquette, both with Q1, Q2 ∈ R. Here, we will
specifically consider the π flux case and utilize mean-field
theoretical values put forward in Ref. [66] for our purposes.

Upon diagonalizing Eq. (11), we can solve for the total spin
susceptibility χ (ν) =∑i[χ

+−
ii (ν) + χ−+

ii (ν)], and use it to
derive the noise correction. We perform the finite temperature
calculation in Appendix A, and then take the T → 0 limit. Our
resultant expression for the zero temperature ac noise power
spectrum then becomes

Ss(�, 0) = 4π

Nuh̄

(J v0mkF

2π2h̄

)2∑
k,q

∑
n,m,l

U k∗
nmU k

nmU q∗
n̄l U q

n̄l

× (h̄� − εkm − εql )θ (h̄� − εkm − εql ), (12)

where U k
nm is the 6 × 6 matrix that diagonalizes Eq. (11), εkm

is the mth energy eigenvalue of the diagonalized Hamiltonian,
and θ (x) is the Heaviside theta function. Note that n̄ = n + 3,
the index n = 1, 2, 3, and m, l = 1, . . . , 6. We now analyze
this expression numerically.

Figure 3 is a plot of Eq. (12), from which we find that,
in the quantum limit, it is possible to extract an estimate of
the spin gap using our proposed bilayer. We use the vari-
able values proffered in Refs. [66,69] for the HKLM, taking
as a reasonable estimate for the spin gap �s = 0.055J . In
the HKLM, the gap energy can be found by setting k = 0
and finding the minimal eigenvalue [68], with the outcome
�s =

√
λ2 − 12J2Q2. Therefore, rather than computing the

values of λ and Q variationally, we set λ = 0.695J and tune
Q such that �s = 0.055J , resulting in Q = 0.2. Note that
Q quantifies antiferromagnetic correlations and is restricted
to |Q| � 1/

√
2, at which point nearest-neighbor spins form
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singlets and the model experiences a phase transition into an
ordered phase.

Importantly, the HKLM models a highly frustrated an-
tiferromagnetic material, and therefore includes quantum
fluctuations. At very low temperatures, quantum fluctuations
are required in order to drive the interfacial equilibrium noise
generated as a result of the mechanism we are consider-
ing. Figure 3 shows that no noise enhancement is expected
until probing frequencies greater than the critical frequency
h̄�c = 2�s, at which point production of a pair of spinons
can occur in the QSL and an enhancement in the noise begins
to manifest. Therefore probing this region of the frequency
range for a given material that is adequately modeled by the
HKLM should allow for a direct estimate of the spin gap, �s,
present in that material.

B. Spinon Fermi surface coupled to an emergent
U(1) gauge field

Some QSL candidate materials, e.g., organic salt com-
pounds [32–34] and YbMgGaO4 [70–72], may be described
as spinon Fermi seas, where the spin susceptibility is strongly
renormalized by an emergent U(1) gauge field. In this sec-
tion, we first compute (using the Keldysh functional integral
formalism) the thermal spin current fluctuations arising in the
metal due to the presence of fermions in the QSL material,
and second how the gauge field renormalization affects those
thermal fluctuations in our proposed bilayer system at finite
temperature. We then take the T → 0 limit at the end and
present the zero temperature ac frequency result.

Let us begin with the real-time action for N flavors of
fermionic spinons coupled to a compact U(1) gauge field in
2 + 1 dimensions [33,73,74]

S =
∑

σ

∫
dtdx

{
c̄σ (t, x)(ιh̄∂t + μ)cσ (t, x)

− 1

2ms
c̄σ (t, x)[−ιh̄∇ + a(t, x)]2cσ (t, x)

}
, (13)

where cσ (t, x) is a spinon Grassmann field, σ is the flavor in-
dex, ms is the spinon effective mass, μ is the spinon chemical
potential, and a(t, x) is the gauge field. The (real-frequency)
retarded RPA propagator for the gauge fluctuations in the
Coulomb gauge can be obtained by analytically continuing the
standard result from the imaginary-time formalism [73,75]

DR
ξξ ′ (q,�) = −

(
δξξ ′ − qξ qξ ′

q2

)
1

N
1

χ2
dq − ι EFs

π h̄3
�

vFs
q
,

≡ −
(

δξξ ′ − qξ qξ ′

q2

)
dR

q (�), (14)

where ξ, ξ ′ label the Cartesian components, vFs = h̄kFs/ms is
the spinon Fermi velocity, kFs is the spinon Fermi wave vector,
EFs is the spinon Fermi energy, and χd = (24h̄ms)−1 is the
Landau diamagnetic susceptibility of the fermions.

Lastly, we define the interaction portion of the Keldysh ac-
tion by placing Eq. (13) on the Keldysh contour and extracting

the term dependent on the gauge field to first order,

Sint = − 1

2h̄
√

A

∫ ∞

−∞
dt
∑
kk′σ

∑
ξ=x,z

∑
η=±

η

× vξ

k+k′sc̄kσ (tη )aξ

k−k′ (tη )ck′σ (tη ), (15)

where η = ± represents the Keldysh time-loop forward and
backward branches, vks = h̄k/ms, and A is the total area of
the QSL.

1. Noise correction due to bare susceptibility

The spin operators of the QSL are represented using
Abrikosov fermions, i.e., Siσ = (1/2)c†

iστσσ ′ciσ ′ , where the
constraint of one fermion per site is enforced. Starting from
the calculation of the bare bubble, without gauge field renor-
malization, we can find the uncorrected noise enhancement
generated across the interface by first calculating the total sus-
ceptibility, χ (0)(ν) =∑i [χ+−(0)

ii (ν) + χ
−+(0)
ii (ν)], given by

χ (0)(ν) = −2ι
∑

i

∫
dteινt

×〈TK c̄i↓(t−)ci↑(t−)c̄i↑(0+)ci↓(0+)〉, (16)

where TK is the Keldysh time ordering operator. Equation
(16) quantifies the portion of the susceptibility that arises due
simply to the presence of the fermions in the QSL material,
without the additional corrections from emergent gauge pho-
tons, and evaluates to

χ (0)(ν) = −ιN
a2

s m2
s

π h̄2

ν

1 − e−β h̄ν
, (17)

where N is the total number of lattice points and as is the area
occupied by each QSL spin. By inserting Eq. (17) into Eq. (8)
and then moving to the zero temperature limit the zeroth order
ac noise correction is therefore found to be

S(0)
s (�, 0) = N

3π

(J v0mkF

2π2h̄

)2(msas

h̄

)2
�3. (18)

2. Gauge field correction to the noise

The next nonzero correction to the susceptibility arises due
to gauge field renormalization and is given by the second-
order expansion using Eq. (15) as the perturbation,

χ
∓±(2)
ii (ν) = ι

2

∫
dteiνt

× 〈TK c̄i↓↑(t−)ci↑↓(t−)c̄i↑↓(0+)ci↓↑(0+)S2
int

〉
. (19)

Expanding this gives five possible diagrams, only three of
which contribute and must therefore be considered; these
three are diagrammatically depicted in Fig. 4. It is important
when calculating gauge invariant quantities to sum over all
three contributing diagrams, because only then do the diver-
gences cancel exactly [75,76].

Accounting for the required diagrams (see Appendix B for
details of the calculation), the total susceptibility at two-loop
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(a) (b)

(c)

FIG. 4. Three diagrams contributing to the O(1/N ) correction
to the spin susceptibility generated by the presence of U(1) gauge
field fluctuations.

order χ (2)(ν) =∑i[χ
+−(2)
ii (ν) + χ

−+(2)
ii (ν)] reads

χ (2)(ν) = N

1 − e−β h̄ν

m2
s a2

s

2(2π )2h̄4

∫
dω

2π

∫ ∞

0
dz F (ν, ω)

× [dR
−q(−ω) − dA

−q(−ω)
]
(1 − z−1 tan−1 z), (20)

where

F (ν, ω) =
∫

dω′

2π

[
tanh

(
h̄(ω′ + ν)

2kBT

)
− tanh

(
h̄ω′

2kBT

)]

×
[

2 coth

(
h̄ω

2kBT

)
− tanh

(
h̄(ω′ + ω + ν)

2kBT

)

− tanh

(
h̄(ω′ + ω)

2kBT

)]
. (21)

We can then express the second order ac voltage noise correc-
tion as

δS(2)
s (�, T ) = ιN

(J v0mkF

2π2h̄

)2 m2
s a2

s

(2π )2h̄4

×
∫

dν
ν − �

eβ h̄(ν−�) − 1

∫
dω

2π

∫ ∞

0
dz

F (ν, ω)

1 − e−β h̄ν

× [dR
−q(−ω) − dA

−q(−ω)
]
(1 − z−1 tan−1 z).

(22)

We now move into the zero temperature limit, which allows
completion of each of the integrals. We expand the q integral
to lowest order in ω for ω � �Fs, where �Fs is the spinon
Fermi frequency. Thus the ac noise correction due to gauge
fluctuations finally becomes

δS(2)
s (�, 0) = 0.075

N

(
�

�Fs

)4/3

S(0)
s (�, 0). (23)

We can therefore see from the zeroth and second order calcu-
lations that the total ac voltage fluctuations generated across
the normal metal sample when interfaced with a QSL material
possessing an emergent U(1) gauge field will have a �3 lowest
order temperature dependence modified by a �4/3 subdom-
inant component. The total ac noise correction generated is

n1n2

A

B

FIG. 5. The Kitaev honeycomb lattice, where the two sublattices
are shown by the purple (sublattice A) and orange (sublattice B) dots.
Representative x, y, and z links are depicted. The flux operator on
plaquette p, Wp, is shown, n1 and n2 are the primitive lattice vectors,
and a is the lattice spacing. Also depicted is a representative unit cell
enclosed in the dashed box.

given by the sum of the two terms, such that the power spec-
trum of the enhancement becomes

Ss(�, 0) = S(0)
s (�, 0)

[
1 + 0.075

N

(
�

�Fs

)4/3]
, (24)

when considering the regime � � �Fs.
That a noise enhancement accrues due to the presence of

an emergent gauge field is physically understandable as the
collective fermionic spin excitations present, i.e., the spinons,
acquiring a higher scattering probability due to the added pres-
ence of gauge fluctuations. Additional scattering must result
in additional noise generation. This enhancement should be
extricable in the quantum limit using Eq. (1): first plotting
δR(�)/�2 and then subtracting off the intercept reveals the
bare �4/3 correction term characteristic of the gauge field
renormalization calculated in Eq. (24).

C. The Kitaev honeycomb model

The second example of a Z2 QSL is the Kitaev model on
the honeycomb lattice (see Fig. 5), where exchange frustra-
tion arising due to the inability to simultaneously satisfy all
Kitaev interactions along neighboring bonds can drive the
system into a QSL phase. The Kitaev spin liquid is exactly
solvable, and we select this example for consideration in
our proposed system for that reason, in addition to the fact
that there are potential material candidates available currently
[13,26]. Furthermore, we restrict our investigation to the gap-
less phase, where the Kitaev exchange couplings are equal.
However, while fermionic excitations are gapless, the emer-
gent Z2 gauge field is not, and this has the peculiar effect of
generating an apparent gap in the fermionic sector [40,77].
The Kitaev model therefore provides something of a synthesis
of the last two sections, as it is both a Z2 and gapless theory.
We give a short overview of the approach to solving the Kitaev
model following Refs. [38,78], and then apply the solution to
extracting an observable out of our proposed heterostructure.
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The Kitaev model on the honeycomb lattice is given by
[38]

HK =
∑

γ ,〈i, j〉γ
−Kγ Sγ

i Sγ

j , (25)

where γ = {x, y, z} represents the different nearest-neighbor
bond directions (see Fig. 5) at each lattice point with inter-
action strength Kγ . In understanding the gapless spin liquid
phase of the Kitaev model, parton mean-field theories have
been proposed [38,79] that characterize the emergent exci-
tations as Dirac fermions [78] arising in tandem with an
emergent gapped flux.

This can be seen by first representing the spin opera-
tors in terms of four Majorana fermions, i.e., Sγ

i = ι fiγ ci

with { fiγ , fi′γ ′ } = 2δii′δγ γ ′ , {ci, ci′ } = 2δii′ , and { fiγ , ci′ } = 0,
which then gives Sγ

i Sγ

j = −ιûi jcic j , where ûi j = ι
∑

γ fiγ f jγ

is the bond operator. Noting that the bond operators commute
with each other and with any bilinear operator containing ci,
it is possible to replace them with their eigenvalues ±1. One
thus obtains Sγ

i Sγ

j = ±ιcic j , and HK becomes bilinear in the
Majorana fermions. Second, we note that the so-called flux
operator on a plaquette Wp = f1x f2y f3z f4x f5y f6z, where the
subscript p labels the plaquette number, commutes with the
Hamiltonian and is therefore an integral of motion. When a
plaquette has an even number of bonds, as Fig. 5 makes clear
is the case for the honeycomb lattice, its eigenvalues are ±1.
Finally, we note that the spin representation in terms of four
Majorana fermions enlarges the Hilbert space from two to
four, and must therefore be constrained in order to recover
the physical Hilbert space. This constraint is enforced via a
projection operator Pi = (1/2)(1 + fix fiy fizci) for each site
i, which requires that the initial spin algebra be conserved.
Effectively, what has been done is to reduce the initial Hamil-
tonian to a noninteracting Dirac fermion hopping Hamiltonian
in a static Z2 gauge field, where the choice of values for ûi j

amounts to fixing a gauge, and the gauge invariant quantities
are the plaquette operators Wp.

A theorem by Lieb [80] guarantees that if the number of
sites per plaquette is 2 mod 4, then the ground state is in
the flux-free sector, i.e., where it is possible to set ûi j = 1.
The ground state is therefore described by the free Majorana
hopping Hamiltonian,

HK = ιK
∑
〈i, j〉

cic j, (26)

where Kx = Ky = Kz ≡ K , and the subscripts i and j are now
labeling A and B sites respectively.

Equation (26) can be expressed in terms of complex
fermions using a standard procedure [40]. We take r as a unit
cell coordinate, comprised of an A site and a B site as shown
in Fig. 5, and combine the two Majorana species into a single
complex fermion species through br = (cAr + ιcBr)/2. Putting
the system on a torus with Nu unit cells, and changing to
reciprocal space with br = N−1/2

u

∑
k eιkrbk, Eq. (26) becomes

HK =
∑

k

(b†
k b−k)

(
εk ι�k

−ι�k −εk

)(
bk

b†
−k

)
, (27)

where εk = Re(sk), �k = Im(sk), sk = K (1 + eιkn1 + eιkn2 ),
and the primitive vectors n1 and n2 are defined in Fig. 5. Thus
the ground state energy is E0 = −∑k |sk| [38,40].

The isotropic Kitaev spin liquid offers a unique opportunity
in that only on-site and nearest-neighbor spin correlations
contribute [81]. Therefore we use Eq. (6) in calculating the
noise and include both on-site and nearest-neighbor contribu-
tions under the assumption that the envelope sinc2(kF |ri − r j |)
does not noticeably vary over the lattice constant a. We
then find that the total susceptibility χ (ν) =∑i j[χ

+−
i j (ν) +

χ−+
i j (ν)] becomes

χ (ν) = −8ιNu

∫
dt
(〈

Sx
A0(t )Sx

A0(0)
〉

+ 〈Sx
A0(t )Sx

B0(0)
〉)

eινt , (28)

where we invoke the translation invariance of the isotropic
spin liquid to select the r = 0 unit cell.

The above two dynamical spin correlation functions can be
written as [81]〈

Sx
A0(t )Sx

A0(0)
〉 = 〈eιHK t/h̄cA0e−ι(HK +Vx )t/h̄cA0

〉
K〈

Sx
A0(t )Sx

B0(0)
〉 = −ι

〈
eιHK t/h̄cA0e−ι(HK +Vx )t/h̄cB0

〉
K ,

(29)

where the subscript K for the expectation values indicates
they are taken with respect to the ground state of HK , and
the bond potential reads Vx = −2ιKcic j with i and j, again,
representing the A and its adjacent x-bond connected B site,
respectively [40,81].

The form of the correlators in Eq. (29) can be understood
by taking into consideration the effect of operator Sγ

i on an
eigenstate. In addition to adding a single Majorana fermion
ci at site i, the spin operator also adds one π flux each to
the two plaquettes sharing the γ -bond emanating from i. The
bond potential Vx represents the insertion of this flux pair,
and Eq. (29) calculates the dynamic rearrangement of the
Majorana fermions at time t following the sudden appearance
of the fluxes at t = 0. Incidentally, Baskaran et al. showed that
this quench problem is equivalent to an exactly solvable x-ray
edge problem [81].

It was later shown by Knolle et al. [40] that due to a
vanishing Majorana density of states in the Kitaev model,
slowly switching on the bond potential in the infinite past and
then switching it off in the infinite future—what may be called
the adiabatic approximation—replicates the quench dynamics
in the low-energy limit. Thus, as we desire a probe of the
low-energy density of states, we perform the calculation under
this approximation, meaning we rewrite Eqs. (29) so that the
correlation functions are taken with respect to the Hamiltonian
Hx = HK + Vx, i.e., the Hamiltonian with a flux pair present,
or equivalently one flipped x-bond. As a result, we evaluate

〈
Sx

A0(t )Sx
A0(0)

〉 ≈ eιE0t/h̄〈cA0e−ιHxt/h̄cA0〉x,〈
Sx

A0(t )Sx
B0(0)

〉 ≈ −ιeιE0t/h̄〈cA0e−ιHxt/h̄cB0〉x,
(30)

where the subscript x on the correlators explicitly indicates
that they are now taken with respect to the ground state of
Hx. Time-evolving the Majorana operators in Eqs. (30) in the
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Heisenberg picture ci(t ) = eιHxt/h̄cie−ιHxt/h̄, we write〈
Sx

A0(t )Sx
A0(0)

〉 = e−ι�F t/h̄〈cA0(t )cA0(0)〉x,〈
Sx

A0(t )Sx
B0(0)

〉 = −ιe−ι�F t/h̄〈cA0(t )cB0(0)〉x,
(31)

where the two-flux gap energy �F ≈ 0.26K is the energy
required to insert the fluxes [38].

Replacing the Majorana operators in the correlation func-
tions with the complex fermions bk allows us to rewrite the
total susceptibility Eq. (28) as

χ (ν) = −16ιNu

∫
dteι(ν−�F /h̄)t 〈b0(t )b†

0(0)〉x. (32)

The last correlator can be obtained by solving a Dyson equa-
tion, details of which can be found in Appendix C. Utilizing
the result, we produce (at zero temperature)

χ (ν) = 16h̄θ (h̄ν − �F )
[
gR

11(h̄ν − �F ) − gA
11(h̄ν − �F )

]
[
1 + 4K

Nu
gR

11(h̄ν − �F )
][

1 + 4K
Nu

gA
11(h̄ν − �F )

] ,

(33)
where the local retarded Green function gR

11(ω) is derived in
Appendix C and is given by

gR
11(x) =

∑
k

x + 2εk

(x + ι0+)2 − 4|sk|2
= gA∗

11 (x). (34)

The ac noise correction generated in the metal by proximity to
a gapless Kitaev spin liquid can now be calculated by utilizing
Eq. (33) in Eq. (8) in the quantum limit. We find

Ss(�, 0) = 32ι

h̄

(J v0mkF

2π2h̄

)2 ∫
dε(h̄� − ε)θ (h̄� − ε)

× θ (ε − �F )
[
gR

11(ε − �F ) − gA
11(ε − �F )

]
[
1 + 4K

Nu
gR

11(ε − �F )
][

1 + 4K
Nu

gA
11(ε − �F )

] ,
(35)

which can be measured electrically as ac resistance via
Eq. (1).

Figure 6 depicts our numerical evaluation of Eq. (35) in
the main plot, with the critical frequency �c = �F /h̄ marked.
The figure displays our primary result for the gapless Kitaev
spin liquid compound, namely, that even in the ostensibly
gapless case the ac noise correction generated in the metal
is suppressed until frequencies greater than the two-flux gap,
�F . Equivalently, via the FDT, measurement of the ac resis-
tance enhancement in the metal near the critical frequency �c

should expose the two-flux gap when measured utilizing the
proposed heterostructure.

That a completely suppressed region occurs seems odd
given that the fermion spectrum sk is gapless, however while
inserting a fermion into the lattice requires no extra energy
input, it also requires the addition of a flux in each of the adja-
cent plquettes. These fluxes are gapped, and so an indirect gap
appears even for the fermions. This outcome has been noted
previously [40,77], however the proposed bilayer system of-
fers a method for quantifying the flux gap experimentally.

IV. PHYSICAL ESTIMATES

In this section, we estimate the expected signal strength
of the voltage noise arising across the heavy metal layer of

FIG. 6. A numerical plot showing Ss(�, 0) for the Kitaev model
as a function of ac frequency normalized by the isotropic interaction
strength, K . The main plot shows the computed sum. The graph is
identically zero until a critical frequency equal to the gap energy is
achieved, h̄�c = �F ≈ 0.26K , at which point it becomes possible to
inject flux pairs into the QSL and noise enhancement commences.
Here, Nu = 4 × 104 has been used. The inset is the ac susceptibility
χ (�, 0) in the case of the Kitaev model, which can be extracted via
numerical differentiation of Eq. (8), and is in good agreement with
previous works [40].

our proposed bilayer system as a result of the proximity of
a QSL state characterized by each of the three models we
examine, noting that Eq. (1) connects the voltage noise and
the ac resistance.

The variable � in Eq. (9) is a conversion parameter con-
necting the charge and spin sectors via the ISHE. We estimate
the strength of � by first assuming, given Pt with a spin
diffusion length λ = 2 nm and thickness d = 7 nm, a spin
current density profile of

js(x, t ) = NIs(t )
sinh ((d − x)/λ)

sinh (d/λ)
, (36)

where N is the number of QSL spins per unit area on the
interface and Is(t ) is the spin current per QSL spin entering the
interface. We model the spin to charge current conversion via
the ISHE, so that we have jc(x, t ) = θSH(2e/h̄) js(x, t ), where
θSH is the spin Hall angle. Integrating over the cross-sectional
area of the metal and multiplying by the resistivity ρ reveals
the total voltage generated across the metal:

Vc(t ) = θSH

(
2eλ

dh̄

)
NlρIs(t ) tanh

(
d

2λ

)
, (37)

where l is the length of the metal layer. Then we can reexpress
Eq. (9) using voltage noise, δSV = 〈Vc(t )Vc(0)〉, by writing

δSV (�, T ) =
[
θSH

2e

h̄
Nρl

λ

d
tanh

(
d

2λ

)]2

Ss(�, T ). (38)

In Pt θSH ≈ 0.1, ρ ≈ 10−8 �m, the lattice spacing a = 4 Å ∼
k−1

F , and the electron effective mass m = 13me [82]. The pref-
actor here characterizes �.

In each QSL case, we assume an exchange coupling
strength of J /kB ∼ 1 K, set the unitless integral component
of Ss ∼ 0.01, and work out N using the lattice spacing of
the QSL spin sites. In the case of herbertsmithite, sample
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sizes can have linear dimensions of 1 cm [83], and the lattice
spacing is on the order of 10 Å, so N ∼ 1020 spins/m2. Given
that J/kB ∼ 200 K [23] and using Eq. (12) in Eq. (38), our
proposed bilayer system should find δSV ∼ 10−18 V 2s when
probing herbertsmithite.

For the organic triangular lattice compounds, sample sizes
can have linear dimensions of 1 mm [18], and nearest-
neighbor spin distances on the order of a ∼ 10 Å ∼ k−1

Fs [18],
so that N ∼ 1020 spins/m2. We approximate the spinon veloc-
ity in the QSL using that of 1D spin chains, vFs ≈ πJa/2h̄, as
in Ref. [18], resulting in a Fermi frequency of �Fs ≈ 1014 Hz,
and J/kB ∼ 250 K [10] in these compounds. As a result, we
find that δS(0)

V ∼ 10−18 V 2s, and the subleading correction due
to the gauge field δS(2)

V ∼ 10−20 V 2s.
Lastly, we represent Kitaev compounds using α-RuCl3,

with a lattice constant of a ≈ 6 Å, sample sizes of linear
dimension 1 cm, and coupling strength K/kB ∼ 80 K [26].
Thus N ∼ 1019 spins/m2. Using Eq. (35) in Eq. (38) results
in δSV ∼ 10−18 V 2s. Voltage fluctuations of these magnitudes
have been measured in, e.g., Ref. [64].

V. DISCUSSION AND CONCLUSIONS

Equation (8) is a general relationship that quantifies the
noise enhancement present in a normal metal adjacent to
an insulating magnet lacking long-ranged magnetic order as
a result of the coupling to that magnet, i.e., as a result of
spin fluctuations across the interface. We assume that in the
quantum limit the base ac resistance of a particular strongly
spin-orbit coupled metal layer is known and constant, and as
a result that background quantum noise can be accounted for
and removed. This exposes the portion of the voltage noise
power spectrum that quantifies the presence of the affixed
quantum magnet, or more specifically the QSL candidate
material. So, by measuring the ac frequency dependence of
the spin fluctuations in the metal layer, it should be possible
to compare the various QSL candidate materials in order
to examine gapped and gapless models, and the low-energy
spin excitations of these exotic phases of matter in general.
Now we will connect the models we have examined to real
materials.

The compound herbertsmithite, ZnCu3(OH)6Cl2, evinces
no long-range magnetic order down to temperatures of at least
50 mK, which is four orders of magnitude lower than its
exchange coupling J/kB ∼ 200 K [23], suggesting the pres-
ence of a QSL phase. Additionally, the Cu2+ ions form a
perfect kagomé lattice, and therefore herbertsmithite is mod-
eled, to a first approximation, by the HKLM. Experimental
treatments of herbertsmithite include NMR [11,12], neutron
scattering [24,25], and susceptibility [14] studies, most of
which indicate that ground state excitations should be gapless.
However, while some numerical DMRG studies agree [31],
others show that the ground state of herbertsmithite should be
a gapped spin liquid with Z2 topological order [29], and the
more recent NMR measurements indicate a gapped ground
state as well [12]. Additional complications arise due to the
fact that the low-energy spectrum appears to be dominated
by impurity spins [84] that occur as a result of Cu2+ ions
replacing some nonmagnetic Zn2+ in the transition metal sites

between kagomé layers [85]. We have shown that our pro-
posed heterostructure can address some of these issues. For
instance, the presence of a gap energy will be indicated by a
lack of frequency scaling in the voltage noise power spectrum
measured in the heavy metal layer in the quantum limit up to
a critical frequency of h̄�c = 2�s. Technical issues notwith-
standing, herbertsmithite remains one of the most promising
QSL candidate material on offer, and our proposed technique
adds a tool for further investigation.

The primary organic salt candidate QSL material that has
been modeled as a spinon fermi sea coupled to an emergent
U(1) gauge field is κ-(BEDT-TTF)2-Cu2(CN)3, henceforth
κ-ET [32,33]. It is an antiferromagnetic weak Mott insulator,
where structural dimers possessing a single spin-1/2 degree
of freedom arise and form an approximately triangular lattice
that becomes geometrically frustrated when cooled. The pri-
mary experimental evidence of QSL like behavior comes from
thermal and NMR measurements; in the specific heat versus
temperature, for example, a large linear term is observed
[15–17], and NMR measurements show a lack of long-range
magnetic ordering down to temperatures of 32 mK, ap-
proximately 4 orders of magnitude lower than the exchange
coupling of J/kB ∼ 250 K [10]. The necessity of working
at very low temperatures when probing the low-energy den-
sity of states of κ-ET and similar compounds has caused
some doubt as to the reliability of specific heat measure-
ments, however, due to the difficulty of properly accounting
for nuclear contributions. Nevertheless, other triangular lat-
tice compounds exist, and the recent discoveries of possible
QSL phases in YbMgGaO4 [86] and NaYbO2 [87], neither of
which order down to temperatures of at least 70 mK, provide
new opportunities to study previously unknown QSL candi-
date materials—opportunities the proposed heterostructure is
intended to capitalize upon by providing a clear prediction for
the frequency scaling of the modification to the ac resistance
enhancement in the metal. We have shown that in its QSL
state, a compound that can be modeled as a spinon fermi sea
coupled to a U(1) gauge field should evince a correction to the
ac resistance measured across a coupled heavy metal that goes
as �4/3, which would therefore shed light on the low-energy
density of states directly. The heterostructure proposed here
would avoid the issue of contamination by signals due to
nuclear spins entirely, and provide a powerful tool for probing
the low-energy excitations of more recently discovered candi-
date QSL materials as well.

Finally, we mention the iridate honeycomb materials [88]
and α-RuCl3 [89] in the context of Kitaev compounds accessi-
ble to our bilayer technique. Initially, iridates like α-Na2IrO3

and α-Li2IrO3 were realized to have Ir4+ ions, with effective
spin j = 1/2, arranged in a honeycomb lattice. While these
particular compounds were found to order at low temperatures
[90–92], this class of materials does exhibit bond-directional
Kitaev interactions [93]. Thus the discovery of a variant that
does not magnetically order, H3LiIr2O6, is interesting [13]; in
particular, it would be an excellent test of this material to see
if the measured resistance enhancement in a coupled heavy
metal film in fact behaves as we predict should be the case for
Kitaev spin liquid compounds. A second material, α-RuCl3,
is also known to evince similar structural properties to the iri-
dates, with magnetic Ru3+ ions forming a honeycomb lattice.
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As with most iridates, α-RuCl3 orders at low temperatures
[94], though interesting Kitaev spin liquidlike behavior occurs
before ordering [26,95]. However, while α-RuCl3 exhibits
Kitaev-like physics prior to freezing, questions have arisen
as to whether or not Kitaev physics are actually responsible
for that appearance, rather than more conventional physics
from the perspective of magnonlike excitations [96]. We have
shown that the proposed bilayer could perhaps address this
controversy directly, as the presence of Kitaev spin liquid
physics in the α-RuCl3 layer should result in characteristic
suppression of the ac resistance enhancement in the coupled
metal, particularly suppression below any flux gap present.
We therefore believe that our proposed QSL-to-metal bilayer
could be helpful to the search for a material exhibiting a true
Kitaev spin liquid state.

In conclusion, we have proposed a heterostructure com-
posed of a QSL candidate material overlaid with a strongly
spin-orbit coupled heavy metal film as a viable probe of QSL
ground states that can perhaps alleviate some of the currently
outstanding controversies. Our proposal marries concepts
from spintronics and quantum magnetism in order to use the
well-understood physics of equilibrium noise in a new con-
text, namely the search for, and categorization of, QSL ground
states in various materials. The theory advanced here indicates
that an equilibrium measurement, i.e., a measurement taken
within the linear response regime, of the ac resistance in the
normal metal layer will provide information about the low-
energy density of states of the QSL material under observation
due to a connection via the FDT and Eq. (1) to the noise power
spectrum we have calculated. In particular, determining the
presence or absence of a gap, or probing a gapless QSL as in
the U(1) gauge fluctuations case will be readily accessible to
this method. For quantifying a gap energy beyond the reach
of modern electronic spectral analyzers, quantum absorption
measurements utilizing the relaxation rate of a two level sys-
tem coupled to the metal layer, as in Ref. [97], may prove
advantageous. Thus the system we propose will have wide
ranging applicability to probing insulating quantum magnets
in general, and should provide an interesting method of exam-
ining and categorizing QSL candidate materials in particular.
We show that the proposed bilayer should be able to extract
any gap energy present in the HKLM, that fermions coupled
to an emergent U(1) gauge field should see a subdominant
frequency dependent correction arising in the ac resistance
that goes as �4/3, and that the bare Kitaev model in the gapless
spin liquid phase should nevertheless evince gapped behavior
extricable through ac resistance measurements across the cou-
pled metal layer.

We have restricted our analysis to bulk conversion effects
in the metal layer, so in future works it could be interesting
to consider interfacial effects that may affect conversion; in
this vein examining different metal compounds like CuBi
[98] with low intrinsic spin-orbit coupling could be illumi-
nating. Additionally, it would be interesting to expand this
analysis to include extensions to the QSL models such as
Dzyaloshinskii-Moriya interactions, or correction to the Ki-
taev model [96], and especially to include disorder in the
analysis, as disorder appears to be highly influential when
attempting to discriminate between QSL and non-QSL ground
states.
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APPENDIX A: THE HEISENBERG KAGOMÉ LATTICE
MODEL CALCULATION

In this Appendix, we explicitly perform the steps involved
in proceeding from Eq. (11) to Eq. (12) of the main text. The
three basis vectors for the unit cell shown in Fig. 2 are

ê1 = a

2
(1,

√
3), ê2 = a

2
(1,−

√
3), ê3 = a(−1, 0), (A1)

where a is the lattice constant. These unit vectors allow us
to Fourier transform the Hamiltonian into momentum space,
where we define st ki = êi · k. Equation (11) then reads

HHKLM =
∑

k

�
†
k

(
λ C†

k
Ck λ

)
�k, (A2)

where �(k)= [b1(k), b2(k), b3(k), b†
1(−k), b†

2(−k), b†
3(−k)]T

is the vector of particle-hole boson operators for each of the
three sites of the unit cell, and the matrix Ck is a traceless
3 × 3 matrix with components

c12 = JQ1eik1 + JQ2e−ik1 = −c∗
21,

c23 = JQ1eik2 + JQ2e−ik2 = −c∗
32,

c31 = JQ1eik3 + JQ2e−ik3 = −c∗
13.

Here, Q1, Q2 ∈ R are the two distinct expectation values of
Qi j (see Fig. 2), and as covered in the main text we explicitly
consider the regime Q1 = Q2 = Q.

Diagonalizing Eq. (A2) with a unitary matrix U leads to

HHKLM =
∑

k

γ
†
k Dγk (A3)

with the rotated boson operators γk = U †�k. The diagonal-
ized matrix D = Diag (ε1, ε2, ε3, ε1, ε2, ε3), where ε1 = λ and

ε2 = ε3 =
√

λ2 − 4J2Q2[cos2 (k1) + cos2 (k2) + cos2 (k3)].

To calculate the total spin susceptibility χ (ν) =∑
i[χ

+−
ii (ν) + χ−+

ii (ν)], we reexpress the sum over all
lattice sites i by reformulating it as

∑
i = Nu

∑3
n=1, where Nu

is the number of unit cells and n indexes each position within
a single unit cell. We then obtain

χ (ν) = −ι
2π h̄Nu

N2
u

∑
k,q

3∑
n=1

6∑
m,l=1

U k∗
nmU k

nmU q∗
n̄l U q

n̄l

× [δ(h̄ν + ξkm + ξql )Nm(k)Nl (q)

+ δ(h̄ν − ξkm − ξql )Mm(k)Ml (q)], (A4)

where U k
ml is the 6 × 6 matrix that diagonalizes Eq. (11),

n̄ = n + 3, and ξk = (ε1, ε2, ε3,−ε1,−ε2,−ε3) is the vector
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of energy eigenvalues with the last three negated. Here, we
also introduce vectors of distribution functions,

N (k) = [nB(ε1), nB(ε2), nB(ε3), n̄B(ε1), n̄B(ε2), n̄B(ε3)],

M(k) = [n̄B(ε1), n̄B(ε2), n̄B(ε3), nB(ε1), nB(ε2), nB(ε3)],

where

nB(x) = 1

eβx − 1
(A5)

and n̄B = 1 + nB.

With this, we can express the ac, finite temperature noise
created by the proximate QSL by using Eq. (A4) in Eq. (8),

Ss(�, T ) = 4π

h̄Nu

(J v0mkF

2π2h̄

)2∑
k,q

∑
n,m,l

U k∗
nmU k

nmU q∗
n̄l U q

n̄l

×
[ −ξkm − ξql − h̄�

e−β(ξkm+ξql +h̄�) − 1
Nm(k)Nl (q)

+ ξkm + ξql − h̄�

eβ(ξkm+ξql −h̄�) − 1
Mm(k)Ml (q)

]
. (A6)

The zero temperature limit of this result gives Eq. (12).

APPENDIX B: U(1) GAUGE FIELD CORRECTION TO THE SUSCEPTIBILITY

In this Appendix, we examine the steps involved in proceeding from Eq. (19) to Eq. (20). When considering a single gauge
propagator, there are three contributing diagrams as shown in Fig. 4. Figures 4(a) and 4(b), where the gauge propagator does not
cross the particle-hole bubble, are self-energy corrections to a fermion line, and Fig. 4(c), where the propagator does cross the
bubble, is a vertex correction. Maintaining the gauge invariance of the susceptibility requires that all three diagrams are included
in the calculation [75,76].

We begin this section with the action given in Eq. (13) of the main text, and place it explicitly on the Keldysh contour in the
Keldysh basis. We write the components of the action zeroth and first order in the gauge field as

S0 =
∫

dt
∫

dt ′∑
kσ

(
c̄1

kσ (t ) c̄2
kσ (t )

)(gR
kσ (t − t ′) gK

kσ (t − t ′)

0 gA
kσ (t − t ′)

)−1(c1
kσ (t ′)

c2
kσ (t ′)

)
, (B1)

S1 = − 1

2h̄
√

2A

∫
dt
∑
kk′σξ

vξ

k+k′s

(
c̄1

kσ (t ) c̄2
kσ (t )

)(aξ,c
k−k′ (t ) aξ,q

k−k′ (t )

aξ,q
k−k′ (t ) aξ,c

k−k′ (t )

)(
c1

k′σ (t )

c2
k′σ (t )

)
, (B2)

where vks = h̄k/ms. We have split the gauge field into its classical and quantum components denoted by the c and q superscripts,
and split the fermion fields into their 1 and 2 components in accordance with Ref. [99]. Here, S1 is the RAK basis equivalent to
what we have called Sint in the main text.

Expanding Eq. (19), and restricting ourselves to terms with a single gauge propagator, it is possible to write three expressions
of the form χ (2)

n (p, ν) = χ+−(2)
n (p, ν) + χ−+(2)

n (p, ν), each corresponding to one of the diagrams in Fig. 4:

χ (2)
a (p, ν) = 1

4h̄2A 2

∑
kq

∑
ξξ ′

∑
η1η2

∫
d�

2π

∫
dω

2π
η1η2Dη1η2

ξξ ′ (−q,−ω)vξ

2k+2p+qsv
ξ ′
2k+2p+qs

× [g−η1

k+p(� + ν)gη1η2

k+p+q(� + ν + ω)gη2+
k+p(� + ν)g+−

k (�)
]
, (B3)

χ
(2)
b (p, ν) = 1

4h̄2A 2

∑
kq

∑
ξξ ′

∑
η1η2

∫
d�

2π

∫
dω

2π
η1η2Dη1η2

ξξ ′ (−q,−ω)vξ

2k+2p+qsv
ξ ′
2k+2p+qs

× [g−+
k (� + ν)g+η1

k+p(�)gη1η2

k+p+q(� + ω)gη2−
k+p(�)

]
, (B4)

χ (2)
c (p, ν) = 1

4h̄2A 2

∑
kq

∑
ξξ ′

∑
η1η2

∫
d�

2π

∫
dω

2π
η1η2Dη1η2

ξξ ′ (−q,−ω)vξ

2k+qsv
ξ ′
2k+2p+qs

× [g−η1

k+p(� + ν)gη1+
k+p+q(� + ν + ω)g+η2

k+q(� + ω)gη2−
k (�)

]
. (B5)

Here, η1, η2 = ± represent Keldysh indices for the forward and backward contours, and bare ± superscripts on the Green
functions also represent the externally fixed forward and backward Keldysh indices. The gauge propagator, which can be derived
from the Matsubara formalism in the Coulomb gauge by analytic continuation of the zero temperature result, is given as

DR,A
ξξ ′ (q, ω) = −

(
δξξ ′ − qξ qξ ′

q2

)
dR,A

q (ω), with dR,A
q (ω) = 1

N

1

χd q2 ∓ ι ωEF

vF qπ h̄3

, (B6)

where EF is the Fermi energy, and χd = (24π h̄ms)−1 is the Landau diamagnetic susceptibility of the fermions.
We now introduce the fermion self-energy in order to represent Eqs. (B3) and (B4) in terms of the self-energy. Note at

the outset that because the system we consider is in equilibrium, only the retarded spinon self-energy need be explicitly
constructed; the advanced self-energy can be derived from the retarded term. The retarded one-loop self-energy can be calculated
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by considering the second-order correction to the retarded Green function using S1 as a perturbation

gR(2)
kσ

(t, t ′) = ι

2

〈
c1

kσ (t )c̄1
kσ (t ′)S2

1

〉
. (B7)

Extracting the self-energy is then a matter of expanding this quantity and enforcing causality, resulting in

�R
kσ (t, t ′) = 2ι

(4h̄)2A

∑
q

∑
ξξ ′

[
gR

k+qσ (t − t ′)DK
ξξ ′ (−q, t − t ′) + gK

k+qσ (t − t ′)DR
ξξ ′ (−q, t − t ′)

]
vξ

2k+qsv
ξ ′
2k+qs. (B8)

Completing the ξ and ξ ′ sums and transforming to frequency space, we have

�R
kσ (�) = − ι

2A

∫
dω

2π

∑
q

( |k × q̂|
ms

)2[
gR

k+qσ (� + ω)dK
−q(−ω) + gK

k+qσ (� + ω)dR
−q(−ω)

]
. (B9)

In general, we expect d−q(−ω) to be dominated by small q, due to the form of the propagator. By selecting the coordinates
q = q‖k̂ + ẑ × k̂q⊥ we can express the dispersion as

ζk+q ≈ εk − μ + h̄2q2
⊥

2ms
+ h̄vFsq‖, (B10)

with εk = h̄2k2/2ms. From this, we further expect to find momentum scaling as q‖ ∼ q2
⊥ � q⊥, i.e., where q is essentially

normal to k, which allows us to replace the momentum dependence of the gauge propagator with q⊥ and write |k × q̂|2 ≈ k2
Fs for

momentum near the spinon Fermi surface. Therefore, by explicitly substituting in the spinon Green functions, Eq. (B9) becomes

�R
kσ (�) ≈ − ιk2

Fsas

2m2
s

∫
dω

2π

∫
dq⊥
2π

∫
dq‖
2π

[
dK

−q⊥ (−ω)

� + ω − ζk
h̄ − εq⊥

h̄ − vFsq‖ + ιδ
− 2πιδ

(
� + ω − ζk

h̄
− εq⊥

h̄
− vFsq‖

)

× tanh

(
h̄(� + ω)

2kBT

)
dR

q⊥ (−ω)

]
. (B11)

At this point, it is clear that the q‖ integral poses no trouble, so we complete it and find

�R
kσ (�) ≈ vFsas

2h̄2

∫
dω

2π

∫
dq⊥
2π

[
−1

2
coth

(
h̄ω

2kBT

)[
dR

q⊥ (−ω) − dA
q⊥ (−ω)

]+ tanh

(
h̄(� + ω)

2kBT

)
dR

q⊥ (−ω)

]
. (B12)

Note that from this expression for the self-energy, we can see that the k dependence drops out entirely.
Evaluating the sums over the Keldysh indices in the self-energy correction terms, Eqs. (B3) and (B4), allows us to rewrite the

expressions for diagrams a and b in terms of spinon Green’s functions and the self-energy:

χ (2)
a (p, ν) = −ι

1

1 − e−β h̄ν

1

2A

∑
k

∫
d�

2π

[
tanh

(
h̄�

2kBT

)
− tanh

(
h̄(� + ν)

2kBT

)]

× [gR
k (�) − gA

k (�)
][

gR
k+p(� + ν)�R

k+p(� + ν)gR
k+p(� + ν) − gA

k+p(� + ν)�A
k+p(� + ν)gA

k+p(� + ν)
]
, (B13)

χ
(2)
b (p, ν) = −ι

1

1 − e−β h̄ν

1

2A

∑
k

∫
d�

2π

[
tanh

(
h̄�

2kBT

)
− tanh

(
h̄(� + ν)

2kBT

)]

× [gR
k+p(� + ν) − gA

k+p(� + ν)
][

gR
k (�)�R

k (�)gR
k (�) − gA

k (�)�A
k (�)gA

k (�)
]
. (B14)

In the end, we must sum together all three diagrams in order to maintain gauge invariance, which we begin by combining
these two terms into χ

(2)
ab (p, ν) = χ (2)

a (p, ν) + χ
(2)
b (p, ν), and use the fact that any integral over only retarded or advanced terms

vanishes, to write χ
(2)
ab (p, ν) compactly. The outcome is

χ
(2)
ab (p, ν) = ι

msas

2h̄

1

1 − e−β h̄ν

∫
d�

2π

∫ ∞

−μ

dζk

2π

∫
dθk

2π

[
tanh

(
h̄�

2kBT

)
− tanh

(
h̄(� + ν)

2kBT

)]

×
[

gA
k (�)

[
�R

k+p(� + ν) − �A
k (�)

]
gR

k+p(� + ν)

ν + ζk
h̄ − ζk+p

h̄ + ιδ
+ gR

k (�)
[
�A

k+p(� + ν) − �R
k (�)

]
gA

k+p(� + ν)

ν + ζk
h̄ − ζk+p

h̄ − ιδ

]
, (B15)

where we have represented the k integral in polar coordinates, with θk the angle between k and p, and performed a change
of variables from k to ζk. Here it is important to point out two things: first, the Fermi surface μ is the largest energy scale in
the problem, and so we extend the lower bound of the ζk integral to −∞. Second, note that ζk+p − ζk = εp + h̄vFs p cos θk ≈
h̄vFs p cos θk, where the last step is due to the expectation that small p dominates, which means the ζk dependence drops out of
the denominator in both terms. Thus there is no ζk dependence in either the denominator or the self-energies, and so we can
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complete the ζk integral by simply integrating over the spinon Green functions; this is the reason terms that only have retarded
or advanced Green functions in them vanish. The result is

χ
(2)
ab (p, ν) = −msas

2h̄

1

1 − e−β h̄ν

∫
d�

2π

∫
dθk

2π

[
tanh

(
h̄�

2kBT

)
− tanh

(
h̄(� + ν)

2kBT

)]

×
[

�R
k+p(� + ν) − �A

k (�)

(ν − vFs p cos θk + ιδ)2 − �A
k+p(� + ν) − �R

k (�)

(ν − vFs p cos θk − ιδ)2

]
. (B16)

We can now substitute in the self-energies represented in Eq. (B12) to present the final step in combining these two diagrams,

χ
(2)
ab (p, ν) = −kFsa2

s

2h̄2

1

1 − e−β h̄ν

∫
d�

2π

∫
dω

2π

∫
dθk

2π

∫
dq⊥
2π

[
tanh

(
h̄(� + ν)

2kBT

)
− tanh

(
h̄�

2kBT

)]

×
{

coth
(

h̄ω
2kBT

)[
dR

q⊥ (−ω) − dA
q⊥ (−ω)

]− tanh
( h̄(�+ν+ω)

2kBT

)
dR

q⊥ (−ω) + tanh
( h̄(�+ω)

2kBT

)
dA

q⊥ (−ω)

(ν − vFs p cos θk + ιδ)2

+ coth
(

h̄ω
2kBT

)[
dR

q⊥ (−ω) − dA
q⊥ (−ω)

]+ tanh
( h̄(�+ν+ω

2kBT

)
dA

q⊥ (−ω) − tanh
( h̄(�+ω)

2kBT

)
dR

q⊥ (−ω)

(ν − vFs p cos θk − ιδ)2

}
. (B17)

The third diagram corresponds to a vertex correction. We expect that p � k dominates, and recall that the form of the gauge
propagator restricts us to small q as well. We express q in components perpendicular and parallel to k as above, and note that,
via the same approximation as in Ref. [76], near the Fermi surface we can write

−
∑
ξξ ′

(
δξξ ′ − qξ qξ ′

q2

)
vξ

2k+qsv
ξ ′
2k+2p+qs ≈ −4h̄2k2

Fs

m2
s

(
q2

⊥
q2

+ q2
‖

q2
− q‖q⊥

q2

)
≈ −4v2

Fs. (B18)

Above, the first approximation is from recalling that p � k and the second is a result of q‖ ∼ q2
⊥ � q⊥. Therefore summing

over ξ and ξ ′ and expanding the Keldysh indices, Eq. (B5) becomes

χ (2)
c (p, ν) = − v2

F

2h̄2A 2

1

1 − e−β h̄ν

∑
kq

∫
d�

2π

∫
dω

2π

[
tanh

(
h̄(� + ν)

2kBT

)
− tanh

(
h̄�

2kBT

)]

×
{

gR
k+p(� + ν)gR

k+p+q(� + ν + ω)gA
k+q(� + ω)gA

k (�)

[
coth

(
h̄ν

2kBT

)
[dq⊥ (−ω) − dq⊥ (−ω)]

− dR
q⊥ (−ω) tanh

(
h̄(� + ν + ω)

2kBT

)
+ dA

q⊥ (−ω) tanh

(
h̄(� + ω)

2kBT

)]

+ gA
k+p(� + ν)gA

k+p+q(� + ν + ω)gR
k+q(� + ω)gR

k (�)

[
coth

(
h̄ν

2kBT

)
[dq⊥ (−ω) − dq⊥ (−ω)]

+ dA
q⊥ (−ω) tanh

(
h̄(� + ν + ω)

2kBT

)
− dR

q⊥ (−ω) tanh

(
h̄(� + ω)

2kBT

)]}
. (B19)

Representing the k integral in polar coordinates, where again the angle is with respect to the momentum p, and then performing
a change of variables from the modulus k to ζk, we can complete the q‖ and ζk integrals. Note that the only quantities that contain
these variables now are the spinon Green’s functions, and those only occur only in specific pairings. We find∫

dζk

2π

∫
dq‖
2π

gR
k+p(� + ν)gR

k+p+q(� + ν + ω)gA
k+q(� + ω)gA

k (�)

= −kFs/v
2
Fs

(ν − vFs p cos θk + ιδ)
(
ν − vFs p cos θk − h̄

ms
q⊥ p sin θk + ιδ

)
∫

dζk

2π

∫
dq‖
2π

gA
k+p(� + ν)gA

k+p+q(� + ν + ω)gR
k+q(� + ω)gR

k (�)

= −kFs/v
2
Fs

(ν − vFs p cos θk − ιδ)
(
ν − vFs p cos θk − h̄

ms
q⊥ p sin θk − ιδ

)
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which we can use in χ (2)
c (p, ν). The result is

χ (2)
c (p, ν) = kFsa2

s

2h̄2

1

1 − e−β h̄ν

∫
d�

2π

∫
dω

2π

∫
dθk

2π

∫
dq⊥
2π

[
tanh

(
h̄(� + ν)

2kBT

)
− tanh

(
h̄�

2kBT

)]

×
[

coth
(

h̄ν
2kBT

)[
dR

q⊥ (−ω) − dA
q⊥ (−ω)

]− dR
q⊥ (−ω) tanh

( h̄(�+ν+ω)
2kBT

)+ dA
q⊥ (−ω) tanh

( h̄(�+ω)
2kBT

)
(ν − vFs p cos θk + ιδ)

(
ν − vFs p cos θk − h̄

ms
q⊥ p sin θk + ιδ

)

+ coth
(

h̄ν
2kBT

)[
dR

q⊥ (−ω) − dA
q⊥ (−ω)

]+ dA
q⊥ (−ω) tanh

( h̄(�+ν+ω)
2kBT

)− dR
q⊥ (−ω) tanh

( h̄(�+ω)
2kBT

)
(ν − vFs p cos θk − ιδ)

(
ν − vFs p cos θk − h̄

ms
q⊥ p sin θk − ιδ

)
]
, (B20)

which we must combine with Eq. (B17) in order to maintain gauge invariance.
In order to express the combined term more concisely, we perform the angular integral and introduce the function

I±(q) =
∫

dθk

2π

1

x − cos θk ± ιδ

1

x − cos θk − q
kF

sin θk ± ιδ

= |x|
(x ± ιδ)2

√
(x ± ιδ)2 −

(( q
kF

)2 + 1
) , (B21)

where x = ν/(vFs p) and we have substituted q⊥ → q for notational convenience. Therefore the sum of Eq. (B17) and Eq. (B20)
becomes

χ (2)(p, ν) = kFsa2
s

2h̄2

1

(vFs p)2

1

1 − e−β h̄ν

∫
d�

2π

∫
dω

2π

∫
dq

2π

[
tanh

(
h̄(� + ν)

2kBT

)
− tanh

(
h̄�

2kBT

)]

×
{

coth

(
h̄�

2kBT

)[
dR

q (−ω) − dA
q (−ω)

]
(I+(q) + I−(q) − I+(0) − I−(0))

− tanh

(
h̄(� + ν + ω)

2kBT

)[
dR

q (−ω)(I+(q) − I+(0)) − dA
q (−ω)(I−(q) − I−(0))

]

− tanh

(
h̄(� + ω)

2kBT

)[
dR

q (−ω)(I−(q) − I−(0)) − dA
q (−ω)(I+(q) − I+(0))

]}
. (B22)

We need to connect to Eq. (20), so we must obtain the momentum integrated susceptibility: χ (2)(ν) = (2π )−2
∫

d pχ (2)(p, ν).
Only the angular term I±(q) carries external momentum, however, so the momentum integral can be carried out:

∫ ∞

0

pd p

p2
I±(q) =

∫ ∞

0

dx

x
I±(q) = − tan−1(q⊥/kFs)

q/kFs
. (B23)

At this point, note that the integrand in Eq. (B22) is even in q, so it is possible to restrict the q integral to half the domain. If we
recall that there is an external sum over all lattice points,

∑
i = N , then because the quantum spin liquid is isotropic we have for

the final result

χ (2)(ν) = 1

1 − e−β h̄ν

Nm2
s a2

s

2(2π )2h̄4

∫
dω

2π

∫ ∞

0

dq

kFs
F (ν, ω)

[
dR

q (−ω) − dA
q (−ω)

][
1 − tan−1(q/kFs)

q/kFs

]
, (B24)

with

F (ν, ω) =
∫

d�

2π

[
tanh

(
h̄(� + ν)

2kBT

)
− tanh

(
h̄�

2kBT

)][
2 coth

(
h̄ω

2kBT

)
− tanh

(
h̄(� + ω + ν)

2kBT

)
− tanh

(
h̄(� + ω)

2kBT

)]
.

(B25)
These are Eqs. (20) and (21) from the main text.

APPENDIX C: THE KITAEV MODEL CALCULATION

In this Appendix. we explicitly show our calculation of the
retarded Green function for the Kitaev model calculation in
Sec. III C. The unperturbed Hamiltonian for the b fermions

reads

H0 =
∑

q

(b†
q b−q)

(
εq −�q

−�∗
q −εq

)(
bq

b†
−q

)
, (C1)
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where εq = K (1 + cos q · n1 + cos q · n2), �q =
−ιK (sin q · n1 + sin q · n2), and n1, n2 are the real space
lattice vectors as defined in the main text. The local potential
across the x bond of the r = 0 unit cell is given by

Vx = ub†
0b0 − u

2
= u

Nu

∑
pq

b†
pbq − u

2
, (C2)

where u = −4K and Nu is the number of unit cells in the lat-
tice. Then the full Hamiltonian including the local potential is
Hx = H0 + Vx, for which we want to find the Green functions.

We take the equation of motion approach, so we require the
commutation relations for bk,

[Hx, bk] = −2εkbk + 2�kb†
−k − u

Nu

∑
k

bk. (C3)

We now examine the retarded matrix Green functions
in the Nambu basis, which we express as GR

pq(t, 0) =
θ (t )[G>

pq(t, 0) − G<
pq(t, 0)] (note that capitalized G Green

functions will be reserved for matrices, and lower-case g for
components). The greater-than matrix Green functions is

G>
pq(t, 0) = −ι

(
〈bp(t )b†

−q(0)〉 〈bp(t )bq(0)〉
〈b†

−p(t )b†
−q(0)〉 〈b†

−p(t )bq(0)〉

)
, (C4)

and the lesser-than Green function matrix can be found by an-
ticommuting the fermions in each component. Using Eq. (C3),
we then find

ι∂t G
R
pq(t, 0) = ιδ(t )δpq + 2

h̄
H0(p)GR

pq(t, 0)

+ u

h̄N
σz

∑
p

GR
pq(t, 0), (C5)

where H0(p) is the coefficient matrix of H0, and σz is the z-
component Pauli matrix. Fourier transforming to frequency

GR
pq(ω) = GR,0

p δpq + u

h̄Nu
GR,0

p (ω)σz

∑
k

GR
kq(ω), (C6)

where the unperturbed Green function matrix for the bk

fermions reads

GR,0
p (ω) = 1

Np(ω)

(
ω + 2

h̄εp + ιδ 2
h̄�p

2
h̄�∗

p ω − 2
h̄ + ιδ

)
, (C7)

and Np(ω) = (ω + ιδ)2 − (2/h̄)2|sp|2. When summing over
the momentum index, we can see that the off diagonal el-
ements of GR,0

p (ω) vanish because �p is an odd function
of p, and the Brillouin zone is symmetric about the origin.
This is the reason there are no anomalous Green functions
of the form 〈b†

0(t )b†
0(t ′)〉—or the complex conjugate—as

mentioned in the main text. Thus we have
∑

p GR,0
p (ω) =

Diag{gR
11(ω), gR

22(ω)}, where the elements are

gR
11,22(ω) =

∑
p

ω ± 2
h̄εp + ιδ

Np(ω)
. (C8)

We then sum over p in Eq. (C6) in order to rewrite the full
Green function in terms of unperturbed Green functions as

∑
p

GR
pq(ω) =

[
1 − u

h̄Nu

(∑
p

GR,0
p (ω)

)
σz

]−1

GR,0
q (ω).

(C9)

Finally, by substituting this expression back into Eq. (C6)

∑
pq

GR
pq(ω) =

⎛
⎝ gR

11(ω)
1− u

h̄Nu
gR

11(ω) 0

0 gR
22(ω)

1+ u
h̄Nu

gR
22(ω)

⎞
⎠. (C10)

The correlation function we require is 〈b0(t )b†
0(0)〉x =

(1/Nu)
∑

pq〈bp(t )b†
q(0)〉x, which in frequency space is

ιg>
11(ω). In equilibrium at the quantum limit, G>(ω) =

θ (ω)[GR(ω) − GA(ω)], and therefore we have

g>
11(ω) = θ (ω)

(
gR

11(ω)

1 − u
h̄Nu

gR
11(ω)

− gA
11(ω)

1 − u
h̄Nu

gA
11(ω)

)
.

This is the expression used to compute the susceptibility in
Eq. (28).
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