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Evidence of half-integer Shapiro steps originated from nonsinusoidal current phase relation
in a short ballistic InAs nanowire Josephson junction
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We report on half-integer Shapiro steps observed in a gate-tunable short ballistic InAs nanowire Josephson
junction. We observed the Shapiro steps of the short ballistic InAs nanowire Josephson junction and found
the half-integer steps in addition to the conventional integer steps. In this Josephson junction device the
junction transmission can be varied with gate voltage. From measurements of the gate voltage and temperature
dependences of the Shapiro steps, the origin of half-integer steps is assigned to the skewness of the current
phase relation in the short ballistic Josephson junctions. These results will contribute to establish and control the
superconductivity physics in the short ballistic semiconductor nanowires.
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I. INTRODUCTION

The AC Josephson effect has long been studied as a
manifestation of macroscopic quantum interference [1] as
well as for application in the quantum voltage standard [2]
and more recently development of superconducting qubits
[3,4]. The Shapiro voltage step, as given by V = nh f /2e
(n = 1, 2, 3, . . .), is an immediate consequence of the AC
Josephson effect in the presence of microwave excitation [5],
reflecting the phase-mediated binding of the microwave field
and the Josephson current. Therefore, the Shapiro step mea-
surement features the current phase relation (CPR) of the
junctions. The CPR is usually sinusoidal with 2π period-
icity, which produces only the integer steps in overdamped
Josephson junctions [6,7]. Otherwise, anomalies appear in
the Shapiro steps. For example, the fractional steps have
been experimentally observed [8–14] and theoretically stud-
ied [15–17] since the 1960s. There are some different origins
of half-integer steps and one of the origins is the skewness
of the CPR. Since the 2000s, the fractional steps have also
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been observed in the Josephson junctions whose skewness of
the CPR can be controlled by some parameters. In the case
of superconductor (SC)-ferromagnet-SC junctions, the CPR
holds huge higher-order components only in the vicinity of the
0-π transition temperature or thickness and the half-integer
steps appear only in the vicinity [18–20]. Experimental stud-
ies on such controllable junctions are available to elucidate the
origin of the half-integer steps. On the other hand, odd-integer
multiples of the Shapiro steps are absent in the 4π periodic
CPR, which is observed in topological superconductors host-
ing Majorana fermions [21–24]. The topological features of
the SC junctions have been attracting intense research interest
because of their applicability to topological quantum com-
putation [25–27]; however, the physics of the bound states
remains elusive.

Josephson junctions of semiconductor nanowires can show
both anomalies in the Shapiro responses. A strong magnetic
field invokes the topological transition, resulting in the disap-
pearance of the odd Shapiro steps [21]. Furthermore, when the
Josephson junctions of the semiconductor nanowires are bal-
listic but not topological, the CPR is highly skewed [28,29];
the fractional steps are expected, although they have not yet
been observed experimentally. Studies on the Shapiro steps
in ballistic nanowire Josephson junctions can provide impor-
tant insights into the Andreev bound-state dynamics in clean
nanowire-SC junctions and may contribute to the understand-
ing of the Josephson effect in ballistic topological junctions
on semiconductor nanowires.

Here we report the observation of half-integer Shapiro
steps in a gate-tunable InAs nanowire Josephson junction.
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FIG. 1. (a) A SEM image of an InAs nanowire Josephson junc-
tion with a top gate electrode (orange region). This device is different
from the one used in this study. The junction length between two
Al electrodes (blue region) is approximately 100 nm. (b) The I-V
curves for our Josephson junction at Vg = 0 V and T = 50 mK.
The red (blue) line represents the downward (upward) current sweep.
(c) Diagram of an RCSJ circuit. The DC and AC are applied to the
Josephson junction in parallel with the resistance and capacitance.
(d) Plot of G against Vg at V = 1 μV and T = 4 K. The pinch-
off voltage is Vg = −12 V. (e) Plot of G vs V at Vg = 0 V and
T = 50 mK. Multiple Andreev reflections are observed.

We observed the half-integer voltage steps at (n/2)(h f /2e)
(n = 1, 2, 3, . . .). We control the junction transmission by the
gate voltage of the nanowire and conclude that the half-integer
steps are assigned to the skewness of the CPR appearing in the
short ballistic Josephson junctions. Our numerical calculation
for the short ballistic junction CPR reproduces the half-integer
steps and agrees closely with the experiments, including the
temperature and gate voltage dependences of the half-integer
steps.

II. JOSEPHSON JUNCTION DEVICE
ON THE InAs NANOWIRE

A Josephson junction is fabricated on a self-assembled
InAs single nanowire, which is placed on a Si substrate. A
scanning electron microscopy (SEM) image of the fabricated
device is shown in Fig. 1(a). These nanowires grown by chem-
ical beam epitaxy have an 80-nm diameter. We transferred
them on a Si substrate covered by a 285-nm-thick SiO2 film.
We chose one of the nanowires and made the SC contacts
of Al (60 nm) (shown in blue) on the nanowire with Ti
(1 nm) as the sticking layer, resulting in the junction length
between the two SCs of approximately 100 nm. We removed
the native surface oxidized layer by (NH4)2Sx solution before
the evaporation of the metals. Then the top gate electrode
(orange) of Ti/Au (5 nm/150 nm) was fabricated, following
atomic layer deposition of 20-nm-thick Al2O3 [30–33]. We
note that the device used in the measurement is similar but
not identical to that in the figure because we were concerned

about any possible damage to our experimental device caused
by the SEM observation.

III. EXPERIMENTAL RESULTS

A. Fundamental device properties

We first performed a DC measurement on the device. The
voltage V as a function of the bias current I at a top gate volt-
age of Vg = 0 V and temperature of T = 50 mK is shown in
Fig. 1(b). The red (blue) curve was obtained when I was swept
in the downward (upward) direction. The supercurrent flows
through the nanowire at Vg = 0 V. The switching current Isw

and the retrapping current Ir are 40 and 38 nA, respectively.
For the quantitative analysis, we introduced a resistively

and capacitively shunted junction (RCSJ) model [34,35]. The
equivalent circuit for this model is shown in Fig. 1(c); we used
it to study the dynamics of the phase difference between two
SCs by solving

h̄C

2e

d2φ

dt2
+ h̄

2eR

dφ

dt
+ I (φ) = IDC + IAC sin(2π f t ), (1)

where C, R, φ, I (φ), IDC (IAC), and f are the junction capac-
itance, the resistance, the phase difference between two SCs,
the CPR, the applied DC (AC), and the applied frequency, re-
spectively. This equation is transformed into a dimensionless
equation with t ′ = [(2eIswR)/h̄]t described as

β
d2φ

dt ′2 + dφ

dt ′ + i(φ) = iDC + iAC sin(2π f ′t ′). (2)

Here we define β = 2eIswR2C/h̄ as the Stewart-McCumber
parameter [34,35] and f ′ = f /2eIswR. The β value of 0.008
was estimated from the geometry of the junction, with C =
130 fF, R = 800 � at Vg = 0 V, and Isw = 40.7 nA. Here we
used the geometric capacitance as C. Including the intrinsic
capacitance [36] in the capacitance evaluation has little effect
on the numerical results or our consideration discussed below.
The small value of β means that the junction is highly over-
damped. We note that there is a small difference between Isw

and Ir in Fig. 1(b). This can be assigned to phase instability
in a capacitively and resistively shunted Josephson junction
or simply due to the heating effect [37,38]. In our device, the
junction is overdamped, so the hysteresis is probably assigned
to the heating effect.

The differential conductance G as a function of Vg is shown
in Fig. 1(d) for T = 4 K, which is larger than the Al critical
temperature. The pinch-off voltage depleting the carrier den-
sity of the nanowire is Vg = −12 V.

We investigated G vs V at Vg = 0 V and T = 50 mK as
shown in Fig. 1(e). We observed several conductance peaks
attributed to the multiple Andreev reflections. Peaks are ex-
pected to appear at V = 2�/en (n = 1, 2, 3, . . .) with � =
140 μeV of the Al superconducting gap energy. Indeed, the
observed peaks are located at these voltages for n = 1–4. Ob-
servation of the multiple Andreev reflections up to the fourth
order implies that elastic Andreev reflections occur sequen-
tially at both interfaces of the Al and the nanowire. Therefore,
we assumed that the interfaces are transparent enough and
the nanowire between the interfaces is clean enough to en-
able ballistic transport through the Al-nanowire-Al junction
at Vg = 0 V [39].
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FIG. 2. (a) Shapiro steps under microwave irradiation at f =
4.2 GHz, Vg = 0 V, and P = 6 dBm (black curve). Both conventional
Shapiro steps and half-integer steps are observed. The red curve rep-
resents R of the I-V curve. (b) Numerical simulated Shapiro response
at β = 0.008, f ′ = 0.095, and iAC = 2. The half-integer steps are
reproduced.

B. Observed half-integer Shapiro steps

Next we applied microwave radiation to study the Shapiro
response. The black curve in Fig. 2(a) represents the I-V
curve at Vg = 0 V and T = 50 mK measured for a microwave
input with applied power P = 6 dBm and f = 4.2 GHz. The
conventional Shapiro steps are observed at V = nh f /2e (n =
1, 2, 3, . . .). Furthermore, there are additional plateaus at the
half-integer multiples of h f /2e. The half-integer steps are de-
tected at various microwave frequencies (see the Appendix).
Here R as a function of I becomes zero at the integer steps
as shown by the red dotted line in Fig. 2(a). The half-integer
steps appear as the dips.

To determine the cause of the half-integer steps, we intro-
duced the CPR for a short ballistic Josephson junction having
a single channel which is given by

I (φ) = e�(T )

2h̄

τ sin(φ)

[1 − τ sin2(φ/2)]1/2

× tanh

(
�(T )

2kBT
[1 − τ sin2(φ/2)]1/2

)
, (3)

where �, τ , and T are the superconducting gap, transmission
of the junction, and temperature, respectively [40–43]. This

FIG. 3. (a) Comparison of short ballistic CPR curves for τ =
0.98 (red), τ = 0.85 (orange), τ = 0.89 (blue), and τ = 0.7 (purple)
at T = 50 mK. (b) Plot of Isw vs T . The red, orange, blue, and purple
dots correspond to Vg = 0, −1, −2, and −3 V, respectively. These
data were fit using the short ballistic CPR (see the Appendix). (c) Plot
of I-V curves at Vg = 0, −1, −2, and −3 V with P = −17 dBm and
f = 1.8 GHz. (d) Plot of β and τ vs Vg. Here τ decreases whereas β

is nearly constant with decreasing Vg.

CPR is skewed from the sinusoidal function of φ for the
conventional Josephson junctions. The CPR with τ = 0.98
and T = 50 mK is represented by the red line in Fig. 3(a) as
the normalized supercurrent vs φ. As previously predicted, the
skewed CPR can generate the steps at the fractional quantized
voltages because the skewed CPR includes higher harmonic
components whose periodicity is fractions of 2π .

We numerically calculated the Shapiro responses using the
CPR with τ = 0.98 and T = 50 mK in the RCSJ model. In
Fig. 2(b) a typical result is shown of the calculated Shapiro
steps for f = 4.2 GHz, β = 0.008, and Isw = 40 nA. The
black solid and red dotted lines represent V vs I/Isw and
the differential resistance δR vs I/Isw, respectively. It is clear
that the experimentally observed half-integer Shapiro steps
are reproduced by the numerical calculation. In addition, we
recognize weak features of additional steps with heights of
one-third and two-thirds of the quantized voltages in the cal-
culation. However, in the experiment we observed neither of
them [see Fig. 2(a)], but the half-integer plateaus were largely
tilted. We therefore suspect that the one-third and two-third
steps were smeared in the experiment because of the insuffi-
cient resolution of our measurement setup. In our numerical
calculation, we assumed all the channels have the same τ for
simplicity. Even with this rough assumption, the experimental
results are explained well by the CPR skewness as shown in
the following discussion.

C. Gate voltage dependence of the half-integer Shapiro steps

The CPR skewness depends on τ and T . Therefore, we
investigated the Vg and T dependence of Isw. From the tem-
perature dependence of Isw, we can evaluate τ because Isw

is derived as the maximum of the CPR in Eq. (3). We note
that the recent analytical method enables us to evaluate the
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FIG. 4. (a) Comparison of short ballistic CPR curves for T =
50 mK (red), T = 150 mK (orange), T = 250 mK (yellow), and T =
750 mK (blue) at τ = 0.98. Here Isw is the simulated critical current
at each temperature for τ = 0.98. (b) Temperature dependence of the
Shapiro steps at P = 11 dBm and f = 4.2 GHz. The y axis shows the
data for 150 mK; the other data are incremented upward by h f /2e.

transmissions for each conduction channel but this method is
available only for junctions with a few conduction channels
[44]. Here our junction includes around 15 spin-degenerated
channels, so we used the single transmission τ as a represen-
tative. Then we measured the temperature dependence of Isw

at Vg = 0, −1, −2, and −3 V as shown by the red, yellow,
blue, and purple circles in Fig. 3(b), respectively. We carried
out the numerical fitting of the experimental results with the
maximum of Eq. (3) with τ and the effective channel number
as free fitting parameters. The calculated result is shown as
the solid lines in Fig. 3(b). We obtained excellent fitting of
the solid lines to the experimental results for Vg = 0, −1, −2,
and −3 V with τ of 0.98, 0.85, 0.89, and 0.7, respectively,
as shown in Fig. 3(b). The transmission tends to be smaller
as the conductance decreases by the gating. In particular,
τ = 0.98 for Vg = 0 V is nearly unity, indicating nearly per-
fect transmission. The CPR or normalized supercurrent vs φ

with τ = 0.98, 0.85, 0.89, 0.7 at T = 50 mK is represented
in Fig. 3(a). The results indicate that the CPR skewness is
remarkable at Vg = 0 V because of the high transmission.

The Vg dependence of the Shapiro steps measured for
f = 1.8 GHz, P = −17 dBm, and T = 50 mK is shown in
Fig. 3(c). The half-integer steps vanish before the integer steps
do with decreasing Vg. First we checked β vs Vg because
the junction dynamics in the RCSJ model highly depends on
β. The obtained β vs Vg is shown in Fig. 3(d). Here β is
as small as 0.008–0.01 in the Vg range of our measurement,
indicating that the RCSJ circuit is highly overdamped. Thus,
the measured Vg dependence of the half-integer steps cannot
be attributed to the change in β. On the other hand, as shown
in Fig. 3(a), the CPR skewness fades away or τ decreases as
Vg decreases. Therefore, the disappearance of the half-integer
steps with decreasing Vg is attributed to the change in CPR
skewness.

D. Temperature dependence of the half-integer Shapiro steps

Finally, to confirm the relation between the CPR skewness
on the half-integer steps, we investigated the temperature de-
pendence of the Shapiro steps at Vg = 0 V. The calculated
CPR with τ = 0.98 at T = 50, 150, 250, and 750 mK is
shown in Fig. 4(a). As T increases, the CPR becomes closer
to a sinusoidal function and the skewness disappears. The

I-V curves including the Shapiro steps measured at various
temperatures between T = 150 and 900 mK are shown in
Fig. 4(b). Both the conventional integer and half-integer steps
become gradually more vague as T increases. In addition,
the half-integer steps almost vanish at T = 750 mK, whereas
the conventional steps are still visible at the even higher T .
This behavior is consistent with the temperature dependence
expected from the CPR as shown in Fig. 4(a). Consequently,
we conclude that the observed half-integer steps originate
from the skewed CPR.

IV. DISCUSSION

We note that the observed half-integer steps are not related
to the 0-π transition of the junction, which also generates half-
integer steps as reported in previous research [18–20]. The
0-π transition can be invoked in a Josephson junction with
the time-reversal symmetry broken [45,46] or the quantum-
dot Josephson junctions [47–50]. We detected the fractional
steps in the time-reversal invariant system, that is, our junction
does not contain ferromagnetic materials and we applied no
magnetic field. In addition, quantum dots are not formed in
our nanowire as confirmed from the conductance as a function
of Vg. Therefore, we can rule out these scenarios.

In addition, we discuss the nonadiabatic effect which can
also produce the half-integer steps [10,11,14]. This nonadia-
batic effect plays important roles in the case of f > 2ETh/h
in the diffusive junctions (ETh is Thouless energy). The char-
acteristic energy can be replaced by IswR in the ballistic
junctions. In our experiments, the half-integer steps were ob-
served in f = 1.8 GHz at Vg = 0 V as seen in Fig. 3(c) with
IswR = 33 μeV, resulting in f � IswR. In addition, thermal
energy at T = 50 mK ∼ 4.3 μeV is also sufficiently smaller
than IswR. Furthermore, the Vg dependence of the half-integer
Shapiro steps in Fig. 3(c) shows that the half-integer steps
disappear at more negative Vg, although IswR at Vg = −3 V
decreases to 16 μeV. If the nonadiabatic effect were the case,
this smaller IswR would produce more explicit half-integer
steps. Therefore, the observed half-integer steps cannot be
assigned to the nonadiabatic effect.

V. CONCLUSION

We have observed half-integer Shapiro steps in the short
ballistic Josephson junction of an InAs nanowire. We as-
sociated this observation with the skewed CPR in a short
ballistic Josephson junction by using numerical calculations.
This association was further supported by the experimentally
derived gate-tunable junction transmission from the temper-
ature dependence of the switching current. Due to the gate
tunability of the junction, we can conclude that the observed
half-integer Shapiro steps originated from the ballistic trans-
port in the nanowire. The present study elucidated the relation
between the junction CPR and the junction dynamics of the
AC Josephson effect and may provide appropriate knowledge
and methods for exploring the topological phenomena of the
proximitized superconducting dynamics that is realized in
superconductor-nanowire junctions.
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A
C

FIG. 5. (a) Plot of R as a function of I and P at f = 4.2 GHz,
Vg = 0 V, and T = 50 mK. (b) Observed Shapiro steps (black
curves) at f = 4.2 GHz, Vg = 0 V, and P = 0 dBm (left panel)
and P = 15 dBm (right panel). The red curves show R of the I-V
curve. (c) Simulated R as a function of I/Isw and iAC at β = 0.01 and
f ′ = 0.095. (d) Numerically simulated Shapiro steps at β = 0.01,
f ′ = 0.095, and iAC = 2 and 5.
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APPENDIX

1. Additional data of Shapiro steps

We executed the Shapiro step measurement with the
microwave frequency f = 4.2 GHz. We observed the half-
integer steps at various P, not only at P = 6 dBm [Fig. 2(a)].

FIG. 6. Shapiro steps at other frequencies. (a) Plot of R as a
function of I and P at f = 3.7 GHz and Vg = 0 V. (b) Shapiro steps
(black curves) at f = 3.7 GHz, Vg = 0 V, and P = 10 dBm (left
panel) and P = 15 dBm (right panel). The red curves show R of the
I-V curve. (c) Plot of R as a function of I and P at f = 1.8 GHz and
Vg = 0 V. (d) Shapiro steps (black curves) at f = 1.8 GHz, Vg = 0 V,
and P = −16 dBm (left panel) and P = −10 dBm (right panel). The
red curves show R of the I-V curve.

Figure 5(a) shows R as a function of I and P. The curves
in Figs. 5(b) and 2(a) are taken from Fig. 5(a). The left and
right panels of Fig. 5(b) were obtained at P = 0 and 15 dBm.
In the left panel, the half-integer steps appear at V =
(±n/2)(h f /2e) (n = 1, 3). In the P = 15 dBm case, smeared
half-integer steps are observed.

A calculated color plot of R as a function of I and P is
shown in Fig. 5(c). The numerically calculated Shapiro steps
at β = 0.01 and f ′ = 0.095 [see Eq. (2) for the parameters]
are shown in Fig. 5(c). The curves in Fig. 5(d) are in quali-
tative agreement with the experimental data of Fig. 5(b). The
left and right panels in Fig. 5(d) correspond to the line profiles
at iAC = 2 and 5, respectively. In our numerical calculation,
one-third and two-third steps appear in addition to the half-
integer steps. This reflects the third harmonic component of
the short ballistic CPR.

2. Shapiro step measurement at other frequencies

The half-integer steps were observed with various f . Here
we show our results with f = 3.7 and 1.8 GHz. The curves in
Fig. 6(b) represent line profiles at f = 3.7 GHz in Fig. 6(a).
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FIG. 7. (a) Temperature dependence of the Shapiro steps (off-
set clearly). These steps were measured at P = 6 dBm and f =
4.2 GHz. (b) Plot of R as a function of I and P at T = 150, 250,
350, 450, 550, 650, and 750 mK.

The left and right panels are obtained at P = 10 and 15 dBm,
respectively. On the other hand, the curves in Fig. 6(d) rep-
resent line profiles at f = 1.8 GHz in Fig. 6(c). The left and
right panels were acquired at P = −16 and −10 dBm. In all
the I-V curves, the half-integer steps are observed.

3. Temperature dependence of the half-integer steps

The Shapiro steps at f = 4.2 GHz and P = 6 dBm mea-
sured at T = 150, 250, 350, 450, 550, 650, and 750 mK are
shown in Fig. 7(a). We note that P in this figure is different
from that of Fig. 4(b). The y axis shows the data for 150 mK;
the other data are incrementally shifted upward by h f /2e. As
with the data shown in Fig. 4(b), the half-integer steps become
vague and disappear as T increases; on the other hand, the
integer steps remain. A color plot of R as a function of I and
P at T = 150, 250, 350, 450, 550, 650, and 750 mK is shown
in Fig. 7(b).

4. Temperature dependence of the integer step length

We introduced the normalized integer Shapiro step length
as a ratio of length of the integer Shapiro steps at each tem-
perature to that at T = 150 mK. Normalized step length as
a function of temperature is shown in Fig. 8. Figures 8(a),

FIG. 8. Temperature dependence of normalized step length ratio
at V = nh f /2e for (a) n = 0, (b) n = 1, and (c) n = 2. The close
circles, open squares, and open triangles represent our experimental
data, simulated results of the short ballistic CPR, and simulated
results of the sinusoidal CPR, respectively.

8(b), and 8(c) represent the length of the steps with n = 0,
1, and 2, respectively. The circles represent the experimental
results at Vg = 0 V. The squares indicate the numerical results
using the RCSJ model with the CPR of the short ballistic
Josephson junctions. In this calculation, we used τ = 0.98 and
β = 0.008. The experimental results show good agreement
with the numerical results. For comparison, we calculated the
normalized step length with the sinusoidal CPR shown as the
triangles. The results in the sinusoidal CPR case do not repro-
duce the experimental results. This supports our conclusion
that the measured Josephson junction holds the skewed CPR
and the estimated τ is reasonable.
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5. Capacitance estimation

The total capacitance Ctotal is represented as the sum of the
geometric capacitance C and the intrinsic capacitance C∗ [36].
The capacitance including the intrinsic capacitance changes

from 130 fF in the main text to 166 fF, resulting in the modi-
fied Stewart-McCumber parameter from 0.008 to 0.01. This
modification causes no significant change in our numerical
results. Therefore, we do not include this intrinsic capacitance
term in our discussion.
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