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Quenched dynamics of artificial colloidal spin ice
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Artificial spin ices are ideal frustrated model systems in which to explore or design emergent phenomena with
unprecedented characterization of the constituent degrees of freedom. In square spin ice, violations of the ice
rule are topological excitations essential to the kinetics of the system, providing an ideal test bed for studying the
dynamics of such defects under varied quench rates. In this work we examine possible scenarios including the
Kibble-Zurek mechanism and critical coarsening in colloidal square and hexagonal ice under quenches from a
weakly interacting liquid state into a strongly interacting regime. As expected, for infinitely slow quenches, the
system is free of defects such as monopoles, while for increasing quench rate, an increasing number of defects
in the form of monopoles or grain boundaries remain in the sample. For square ice, we find regimes in which the
defect population decreases as a power law with decreasing quench rate. A detailed scaling analysis shows that
for a wide range of parameters, including quench rates that are accessible by experiments, the behavior is best
described by critical coarsening rather than the Zurek-Kibble scenario if we assume that the equilibrium phase
transition in this system is in the Ising universality class. The appearance of critical coarsening is likely due to
the strong defect interactions in the colloidal ice system leading to relevant defect dynamics during the quench.
For hexagonal ice we do not find evidence for a power-law decay in the defect density, which is consistent with
the absence of an equilibrium phase transition in the hexagonal ice as well as a lack of critical coarsening.
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I. INTRODUCTION

The term artificial spin ice (ASI) describes a variety of
systems that can be modeled by frustrated, interacting ef-
fective binary degrees of freedom which obey the ice rule.
The ASI size scales are much larger than those of molecular
and atomic spin ice systems, allowing the individual spin
degrees of freedom to be imaged directly [1–5]. Artificial
spin ice can be realized using arrays of nanomagnets [1–3,6–
11], colloids in ordered trap arrays [12–16], and vortices in
nanostructured superconductors [17–21]. Of the wide variety
of different ASI geometries, the first and most studied are
the square [1–3,10,22] and hexagonal ices [2,6–9,13,20,23].
While both of these geometries obey the ice rule in their
low-energy states, the square ice exhibits an antiferromag-
netic long-range-ordered ground state, while the hexagonal
ice does not have long-range order but can form ice-rule-
obeying states.
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A particularly appealing feature of ASI systems is that
they contain well-defined defects that take the form of non-
ice-rule-obeying vertices which can be imaged directly in
experiment. In traditional spin ice systems on the molecular
scale, such imaging is not accessible. The system can be char-
acterized by its different vertex types, which can be labeled
according to the number of spins pointing toward a vertex.
In the square ice, the vertices are named Nn, where n is the
number of spins pointing toward the vertex. Here N0 and N4

are called double monopoles, N1 and N3 are monopoles, and
N2,biased and N2,gs are ice-rule-obeying vertices, where the lat-
ter is the ground-state vertex configuration [2]. Similar vertex
states appear in the F model [24,25]. In Fig. 1(a) we highlight
the different vertex types for particle-based square ice, while
Fig. 1(b) shows the same for particle-based hexagonal ice.

When the interactions between neighboring effective spins
are weak, the two-dimensional (2D) square ice forms a
trivially disordered state containing a finite number of
non-ice-rule-obeying vertices. As the interaction strength in-
creases, a second-order phase transition occurs from the
disordered state to a long-range-ordered state in which only
N2,gs vertices are present [2,26]. The 2D hexagonal ice shows
only a crossover from a disordered state with non-ice-rule-
obeying vertices to a disordered state in which all vertices
obey the ice rule [2]. These assumptions are consistent with
behaviors observed in simulations [16,27], theory [28], and
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FIG. 1. (a) Vertex types for square ice in a particle-based system.
(b) Vertex types for hexagonal ice. Dots indicate the location of the
particle with respect to the vertex.

experimental studies of colloidal spin ice [13,14], which show
that particle-based and magnetic ASI systems can be mapped
to one another.

Previous work on ASI has generally focused on equi-
librium states; however, ASI are ideal systems in which to
address current issues in nonequilibrium statistical mechanics.
For example, the density of topological defects present in a
system after it has been quenched at different rates through
a second-order phase transition has implications for defect
formation in the early universe [29,30], vortex formation at
normal to superconducting transitions [31], liquid crystal sys-
tems [32], Bose-Einstein condensates [33–35], ion crystals
[36,37], and manganites [38]. There are different scenarios
describing the behavior of the defect density depending on
whether the quench crosses a phase transition and whether the
defects diffuse randomly or are strongly interacting. Artificial
spin ice systems provide an ideal test bed for exploring these
issues since the microscopic degrees of freedom can be di-
rectly accessed and there are experimentally achievable ways
to move through the different phases in order to induce quench
dynamics.

One scenario describing the behavior of the defects for
varied quench rates is the Kibble-Zurek (KZ) mechanism
[29,30,39], in which the defect density ρd increases with in-
creasing quench rate according to a universal power law ρd ∝
τ

−β
Q . Here τQ is the inverse quench rate describing the time

duration of the quench. For large τQ or slow quench rates, ρd is
expected to be small. In the KZ mechanism, β is related to the
critical exponents associated with the underlying equilibrium
second-order phase transition through which the system is
quenched. The KZ mechanism relies on the adiabatic-impulse
approximation according to which defects are produced when
the system falls out of equilibrium, and is thus sensitive to the
freeze-out timescale. In addition, it requires that the density
of defects arises exclusively from the nonadiabatic crossing
of the critical point, and neglects any dynamics in the ordered
phase that may alter the defect population. The KZ mecha-
nism is appealing since it can be applied to a wide variety
of systems that exhibit phase transitions ranging from cosmo-
logical systems to superconductors [39], and it is desirable to
understand where the KZ mechanism breaks down or becomes
entangled with other possible mechanisms. There is already

some numerical work [40] showing that KZ scaling holds for
quenches of the magnetic field in a 3D classical dipolar spin
ice with a critical point that falls in the 3D Ising universality
class, suggesting that KZ scaling occurs in at least some
classes of spin ice systems. In Ref. [40], the KZ scaling was
argued to originate from the slow microscopic timescales of
the defect dynamics. It is possible that a 2D system such as a
particle-based ASI would behave differently since monopoles
are bound in two dimensions, which could give rise to faster
nonadiabatic dynamics [2,14,28].

A competing scenario for the defect density behavior dur-
ing a quench is a coarsening process facilitated by the motion
and annihilation of defects on the ordered side of the phase
transition driven by strong defect-defect interactions [41].
When a system obeying this scenario is quenched through a
second-order phase transition, the dynamics after the quench
could still show a power-law decay of the defect density as
a function of quench duration τQ if critical coarsening occurs
[42]. Here the defects do not move independently during the
quench but interact and annihilate, and the defect density
reflects this coarsening process instead of the KZ mechanism.

Artificial spin ice systems are ideal for discriminating
between these different scenarios since the ices contain
very-well-defined excitations such as monopoles, while the
universality class of the phase transition in many types of
ASI, including the square ice, is known. Since the square ice
exhibits a phase transition but the hexagonal ice does not,
these two types of ice should have very different behaviors
during a quench. Studies of quench dynamics in ASI systems
could also provide insight into the behavior of broader classes
of spin ice systems [43–47]. We note that there are two promi-
nent types of ASI system: nanomagnetic and particle based. In
our work we focus on the particle-based colloidal ASI system,
while we comment on possible differences in behavior of the
nanomagnetic ASI in Sec. IV.

In this paper we perform simulations and scaling analysis
of a colloidal artificial spin ice. The advantage of colloidal
ice is that the strength of the colloid-colloid interactions can
be tuned experimentally as a function of time, bringing the
system from a noninteracting disordered regime to a strongly
interacting ordered regime as a function of changing magnetic
field and giving access to a range of different quench rates.
We consider both square and hexagonal colloidal ice and start
the system in the weakly interacting disordered regime where
ice-rule-obeying vertices are not favored. The strength of the
repulsive colloidal interactions is increased as a function of
time until the system either passes through a second-order
phase transition in the case of square ice or crosses into
an ice-rule-obeying state in the case of hexagonal ice. In
the square ice, the transition into a long-range-ordered state
falls into the Ising model universality class. We measure the
population of the different vertex types as well as the spatial
configurations of the defects for different interaction strength
sweep rates. This protocol could be achieved experimentally
for paramagnetic colloids by sweeping the external magnetic
field.

Our system faithfully mimics the experimental setup de-
scribed in Refs. [13,14,16,27]. An advantage to studying a
particle-based model is that the time-dependent dynamics
during the quench can be accessed directly using molecular
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dynamics techniques. This avoids the issues that arise in using
Monte Carlo (MC) methods to examine quenched dynamics
and KZ scaling, where it has been shown that different MC
methods produce different results [48].

II. SIMULATION

We simulate a system of colloidal superparamagnetic par-
ticles with a radius of r = 1 μm. The particles are placed
in a square 100 × 100 lattice containing 20 000 particles
and 10 000 pinning sites or in a hexagonal 38 × 66 lattice
containing 15 048 particles and 10 032 pinning sites. Each
pinning site is a double-well trap and the lattice constant is
ax = ay = 5.0 μm in the square ice lattice and ax = 3 μm
and ay = 3

√
3/2 μm in the hexagonal ice lattice, giving a

total system size of 500 × 500 μm2 for the square ice and
342 × 342.95 μm2 for the hexagonal ice. We use periodic
boundary conditions in both the x and y directions.

The elongated gravitational double-well traps are mod-
eled as two spherical quarters connected by an elongated
half-cylindrical trough of length 2 μm in the square ice and
1.4 μm in the hexagonal ice that has a repulsive bump in the
middle. Each minimum of the double well is located at the
end of the elongated trough, coinciding with the minimum
in the spherical quarter. When the particle is in either of the
spherical ends, a harmonic spring force tethers the particle to
the minimum with a spring constant of k = 0.222 pN/μm
for the square ice and k = 2.22 pN/μm for the hexagonal
ice. We stay in the experimentally relevant limit where the
particles never hop out of the individual double-well traps
[13]. When the particle is in the elongated part of the pin,
the same harmonic spring force acts on it in the direction per-
pendicular to the elongated trough, and an additional middle
barrier force in the trap is exerted by the bump in the middle
of the trough which has a maximum value of FMB = 0.011
pN for the square ice and FMB = 0.211 pN for the hexagonal
ice. This force decays to zero linearly in each half of the
elongated trough as the intersection with the spherical quarters
is approached. These forces together compose the substrate
force denoted by F i

s .
We use a smaller lattice constant for the less densely

packed hexagonal ice because stronger interparticle interac-
tions are required to induce the spin ice ordering compared to
the square ice system. We also increase the pinning strength
significantly for the hexagonal ice to prevent the particles from
ordering into a triangular lattice with each particle sitting at
the center of the elongated trough, which destroys the spin ice
nature of the particle based system. With the chosen values,
which are within the experimentally realizable regime, the
spin ice manifold is preserved.

Magnetization of the particles in the z direction by
an external magnetic field produces a repulsive particle-
particle interaction force Fpp(r) = Ac/r4, with Ac = 3 ×
106χ2

mV 22B2/2πμ for particles a distance r apart [14,27].
Here χm is the magnetic susceptibility, V is the particle vol-
ume, B is the magnetic field in millitesla, and all distances are
measured in μ. The interaction falls off as 1/r3, which is rapid
enough that it can be cut off beyond three lattice constants. We
have found that larger cutoffs produce essentially the same
results [27]. At B = 40 mT, the maximum field we consider,

this gives Fpp = 0.49 pN for r = 3 μm, which is a typical dis-
tance for the square ice, and Fpp = 6.05 pN for r = 1.6 μm,
which is a typical distance for the hexagonal ice. All of these
parameters are chosen to match the length and timescales of
an experimental magnetic spin ice system [13,14,27].

The dynamics of colloid i are obtained using the discretized
overdamped equation of motion

1

μ

�ri

�t
=

√
2

D�t
kBT N[0, 1] + F i

pp + F i
s . (1)

Here the diffusion constant D = 36 000 nm2/s, the mobility
μ = 8.894 μm/s/pN, and the simulation time step �t = 1
ms [27]. The first term on the right-hand side is a thermal
force consisting of Langevin kicks of magnitude FT = 0.954
pN corresponding to a temperature of T = 20 ◦C [16,27].
Here N[0, 1] denotes a random number drawn from a normal
(Gaussian) distribution with a mean of 0 and a standard de-
viation of 1. Each trap is filled with a single particle which
is randomly placed in one of the two minima. We increase B
linearly from B = 0 mT to B = 40 mT, following a procedure
that is feasible to achieve experimentally. We average the
results over 100 simulations performed with different random
seeds.

In Fig. 2(a) we illustrate the colloid positions in a repre-
sentative square ice vertex state, where arrows indicate the net
colloid-colloid interaction forces F i

pp on colloid i. Each colloid
sits in one of the two minima found within its confining trap.
For the colloid in the upper trap, F i

pp is parallel to the axis
of the confining trap and points away from the vertex center,
while for the colloids in the horizontal traps, F i

pp is at an
angle to the axis of the confining trap. The magnitude of
F i

pp increases with increasing magnetic field B. In the inset
of Fig. 2(b) we plot F i

pp versus colloid-colloid spacing r,
showing that the interaction force decreases as r increases but
increases as B becomes larger. The main panel of Fig. 2(b)
shows the magnitude of F i

pp at a specific value of r as a
function of B, showing that F i

pp = 0 when B = 0 and that F i
pp

increases with increasing B. When B = 0, the force arrows
in Fig. 2(a) disappear and the ice-rule-obeying vertex states
are no longer energetically favorable, so the vertex types are
randomly populated. We hold the temperature of our system
fixed in order to model the experimentally relevant situation in
which the relative strength of B2/T is changed only by varying
B. If B is slowly increased adiabatically, there is a critical
second-order phase transition in the square ice at which F i

pp
overwhelms the thermal fluctuations and the system enters the
long-range-ordered square ice-rule-obeying state in which all
of the vertices are in the N2,gs configuration. In the hexagonal
ice, there is no symmetry breaking in the ice-rule-obeying
state, so there is only a crossover but no phase transition as
the system shifts from a disordered state in which the vertices
are populated randomly to a disordered state in which all of
the vertices obey the ice rule.

III. RESULTS

In Fig. 3(a) we show a schematic of the magnetically in-
teracting colloids in a square ASI of double-well traps and
in Fig. 3(b) we show the corresponding hexagonal ASI. Each
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FIG. 2. (a) Schematic illustrating the forces (blue arrows) experienced by the colloids (red circles) in the double-well traps (gray)
surrounding an individual vertex in a square ice system. Each colloid sits at one end of its confining double-well trap. (b) Colloid-colloid
interaction force F i

pp vs applied magnetic field strength B at three colloid-colloid spacings of r = 3 (black), 5 (red), and 7 μm (green). The
inset shows F i

pp vs r at three magnetic field strengths of B = 20 (blue), 30 (orange), and 40 mT (brown).

elongated trap holds a single colloid which can sit on either
end of the trap, determining the direction of the effective spin.
For our parameters, the critical magnetic field at which the
equilibrium system orders into a defect-free ground state is
Bc = 9 mT. We start the system at B = 0 and increase the field
to B = 40 mT in a time of τQ, given in seconds. The fastest
value of τQ we consider is 10 s, while the slowest is τQ =
6000 s, which is close to the adiabatic limit. These timescales
are experimentally accessible. Figure 4 shows the vertex pop-
ulations with the same color scheme from Fig. 3(a) in a
simulation with a quench time duration of τQ = 80 s at several
values of B corresponding to several different instants of time

FIG. 3. (a) Schematic of the square ice system. Lozenges are
the double-well traps which are each occupied by a single colloid,
shown as a gray sphere, that preferentially sits at one of the two
ends of the trap. In experimental realizations, the colloidal particles
are paramagnetic and repel each other with a strength that can be
controlled using an applied magnetic field. The circles underneath
each vertex are colored according to the vertex type: N2,gs (the ground
state), white; N2,biased, green; N1, light blue; and N3, orange. Here
there are no highly unfavorable N0 or N4 vertices. At the center of
the image is a ground-state cluster of vertices surrounded by a grain
boundary which separates it from vertices in a ground state with the
opposite orientation. (b) Schematic of the hexagonal ice system. The
circles underneath each vertex are colored according to the vertex
type: N1 and N2 (the ice rule obeying states), white; N3, orange; and
N0, blue.

t . The defects form closed loop grain boundaries similar to
those observed in square ice systems with varied amounts
of quenched disorder [10,17,49,50]. For faster quench rates
corresponding to smaller τQ, the number of non-ground-state
vertices increases and the grain boundaries are smaller.

In Fig. 5(a) we plot the fraction of non-ground-state ver-
tices Nngs/N versus B at different sweep rates. Note that the
value of B is changing as a function of time, so it is possible to
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FIG. 4. Coarsening in the square ice system shown as snapshots
of a small portion of the system with quench time τQ = 80 s. Each
snapshot shows a different value of the magnetic field, which is being
swept dynamically from B = 0 mT to B = 40 mT: (a) B = 16 mT at a
time of t = 32 s, (b) B = 20 mT at a time of t = 40 s, (c) B = 24 mT
at a time of t = 48 s, and (d) B = 30 mT at a time of t = 60 s.
Dark blue and red dots show N0 and N4 vertices (double monopoles),
blue and orange dots N1 and N3 vertices (monopoles), and green
dots N2,biased vertices. The white areas contain N2,gs ice ground-state
vertices.
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FIG. 5. Transition from the ordered to the disordered state as a
function of quenching speed in the square ice system. (a) Fraction
of non-ground-state vertex types Nngs/N in the system vs magnetic
field B. From dark blue to dark red, the curves represent quench
times of τQ = 10, 20, 40, 80, 150, 300, 600, 1200, 2500, and 6000 s.
(b) Rescaling of the data in (a) plotted as Nngs/N vs t/τα

Q , the elapsed
time t divided by the total quench time raised to the power α = 0.75.
(c) Scaling of Nngs/N as a function of quench time τQ for different
magnetic field values. From dark blue to dark red, the curves rep-
resent constant magnetic fields of B = 4 mT (dark blue), B = 6 mT
(light blue), B = 8 mT (light green), and subsequently B = 10, 12,
16, 20, 24, 28, 32, 36, and 40 mT. (d) Power-law exponents β

obtained from the data in (c) vs the magnetic field value B. The inset
shows the fraction of the larger ground-state cluster ngs1 = Ngs1/N
(upper pink line) and the fraction of the smaller ground-state cluster
ngs2 = Ngs2/N (lower purple line) as a function of B, showing a
bifurcation at the critical field (dashed line), corresponding to the
spontaneous symmetry breaking.

rescale the x axis and plot the curves as a function of elapsed
time t . The fastest transition with τQ = 10 s is denoted by the
rightmost blue line and the quench rate decreases for curves
that are further to the left. The systems are initialized in a com-
pletely random configuration at B = 0 with Nngs/N = 7/8. As
the quench rate decreases, the value of Nngs/N decreases. In
Fig. 5(b) we show that the Nngs/N curves from Fig. 5(a) can be
replotted as a function of time t and then collapsed by dividing
the time t by τα

Q , where α = 3/4.
In Fig. 5(c) we plot Nngs/N versus the quench time τQ at

different fixed values of the magnetic field from B = 4 mT
(top) to B = 40 mT (bottom). The runs were performed over
the range of total time τQ = 10 s to τQ = 6000s, which is an
experimentally accessible range of timescales for changing
magnetic fields [13,14,27]. We fit each curve to a power law
with

Nngs/N ∝ τ
−β
Q , (2)

where Nngs/N = ρd , and we plot the resulting exponents β

versus B in Fig. 5(d). For B < 9 mT, the system does not
order at all, while for B > 12 mT, the exponent saturates at
β = 0.45. This indicates that we have two different regimes
of behavior. For smaller magnetic fields between the values of
B = 10 mT and B = 12 mT, we find a slower decay rate with
an exponent between β = 0.2 and β = 0.3.

A. Kibble-Zurek mechanism

Now that we have established that our system has both a
critical point and power-law scaling of the defect density for
different quench rates, we can test whether our results are con-
sistent with the KZ mechanism [29,30,39]. In particular, the
lag time between the nonequilibrium and equilibrium value
scales is expected to be set by the so-called freeze-out time

t̂ ∼ τ
zν/(1+zν)
Q , (3)

where z is the dynamic exponent and ν is the correlation
length exponent [39].

To investigate whether the transition obeys the KZ mech-
anism, we collapse the runs with different quench times
together by rescaling the time axis. In Fig. 5(b) we show
the evolution of Nngs/N versus time where the time has been
divided by a power of the quench time τα

Q . The collapse is
achieved by setting α = 3/4. The KZ mechanism prediction
then implies that zν

1+zν = α = 3/4; however, the square ice
falls into the Ising universality class, which has ν = 1 and z =
2 [51], as was also established experimentally [26]. Inserting
the numbers expected for the Ising model gives zν

1+zν = 2/3,
which is different from the value 3/4 that we find. This implies
that either our system obeys KZ scaling in a universality class
different from the 2D Ising model or that the power law we
observe should be attributed to the alternative mechanism of
critical coarsening.

Another prediction of the KZ mechanism is that the total
number of defects should scale as

ρd ∼ τ
−Dν/(1+zν)
Q , (4)

where D is the dimension of the system. In our case, D = 2
and ρd = Nngs/N . The 2D Ising model gives a prediction of

Dν
1+zν = 2/3, but in Fig. 5(c) we find ρd ∼ τ

−1/2
Q or Dν

1+zν =
1/2, indicating that the scaling of the defects that we obtain
does not agree with the KZ mechanism in the 2D Ising uni-
versality class. This could be due to the strong interactions
between the defects, since for quenches out to higher values
of B, the defects such as +1 and −1 monopoles are strongly
interacting and undergo a non-negligible amount of motion
during the quench via their effective Coulomb interactions, as
has been observed in colloidal experiments [14] and simula-
tions [27].

The presence of defect dynamics during the part of the
quench that approaches the ordered state violates one of the
assumptions for the validity of the KZ scenario. We note that
for coarsening dynamics near a critical point, ordered regions
of radius R grow as R(t ) ∝ t1/z [42], which for the Ising model
gives

R(t ) ∝ t1/2, (5)

where t is time. In our case, the onset of coarsening begins
once B is large enough that the equilibrium system would be
in the longer-range-ordered phase. If the size of the ordered
regions grows, the number of defects would be proportional to
1/R(t ), in agreement with our observations. We also note that
direct observation of the dynamics through the quench reveals
behavior consistent with defect-defect interactions, such as
defects aggregating by moving in straight lines toward each
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FIG. 6. Transition in the hexagonal ASI shown as snapshots of a
small part of the system with quench time τQ = 80 s. Each snapshot
shows a different value of the magnetic field, which is being swept
dynamically from B = 0 mT to B = 40 mT: (a) B = 8 mT at a time
of t = 16 s, (b) B = 10 mT at a time of t = 20 s, (c) B = 12 mT at
a time of t = 24 s, and (d) B = 14 mT at a time of t = 28 s. Blue
dots show three-out vertices and orange dots three-in vertices. White
regions contain ground-state vertices that are not plotted.

other, suggesting that there is a strong Coulomb interaction
between the defects.

In other types of ASI, such as nanomagnetic systems, it is
possible that the KZ regime could be accessed more easily
since the motion of the defects may be slower due to the
presence of quenched disorder in the nanomagnetic islands.
Alternatively, at much faster quench rates than those we con-
sider, there could be a regime of KZ behavior in which the
defects simply do not have time to move. There is some
recent Monte Carlo–based numerical work on magnetic spin
ice systems in which the quench dynamics was shown to be
consistent with the KZ mechanism [52]. For 3D magnetic spin
ice systems there is evidence for KZ scaling [40]; however, in
three dimensions, defects such as monopoles are not bound
and are able to wander freely. It was argued in Ref. [40]
that the slow dynamics of such wandering defects makes it
possible to access the KZ regime.

B. Hexagonal system

In the hexagonal colloidal ice, each vertex is surrounded
by only three elongated pinning sites. The colloidal hexagonal
ice shows a crossover from a disordered paramagnetic state at
low B with three-in and three-out monopoles to a disordered
ice-rule-obeying state with two-in/one-out and two-out/one-
in vertices at higher B [13]. The lack of long-range order in the
ice rule state means that there is no phase transition between
the paramagnetic and ice-rule-obeying states. As a result, we
would not expect the KZ mechanism to apply to the hexagonal
colloidal ice, nor do we expect critical coarsening to occur.
We conduct the same type of simulation described above in

FIG. 7. (a) Measure of the transition in the hexagonal ASI sys-
tem. Non-ground-state vertex fraction Nngs/N as a function of applied
field B for τQ = 10, 20, 40, 80, 150, 300, 600, 1200, 2500, and
6000 s, from blue (right) to red (left). The inset shows rescaling of
Nngs/N as a function of elapsed time t divided by τα

Q , where α = 0.88.
(b) A log-log plot of Nngs/N vs τQ for the system in (a) at B = 7.0,
7.5, 8, 8.5, 9, 9.5, 10, 11, 12, 13, 14, 15, 16, and 17 mT, from purple
(top) to red (bottom), showing the lack of a power-law decay of
defects, in contrast to the square ice case.

which we pass from a zero-field state to a maximum field of
B = 40 mT during a quench time τQ. Here the equilibrium
configurations at higher B would not contain any monopoles.
In Fig. 6 we show snapshots of the transition in the hexagonal
ice as a function of increasing interaction strength B = 8,
10, 12, and 14 mT corresponding to consecutive times of
16, 20, 24, and 28 s for a system with a quench time of
τQ = 80 s. In this case, nonfavorable vertex types disappear
during the crossover to the disordered ice-rule-obeying state
without forming any spatially correlated structures or grain
boundaries of the type observed in the square ice system.
Therefore, we expect the defect dynamics and coarsening to
be different in the hexagonal and square ices. In the initial
random configuration, the ground-state vertices in the hexag-
onal ice already occupy Ngs/N = 3/4 of the system. This is
in contrast to the square ice system, where Ngs/N = 1/8 at
initialization. As a result, it is not necessary for the hexagonal
ice to nucleate and grow clusters of ice-rule-obeying vertices.
Additionally, power-law critical coarsening does not occur in
the hexagonal ice since there is no underlying phase transition.

In Fig. 7 we plot the number of non-ground-state vertices
as a function of the applied field for different τQ values
ranging from τQ = 10 s to τQ = 6000 s for the hexagonal
ice. Here the crossover to an ice-rule-obeying state happens
over a narrower range of B than in the square ice since
there are no kinetic barriers to overcome in the process of
eliminating the non-ice-rule-obeying defects. This produces
a higher exponent of α = 0.88 when we create a scaling
plot of Nngs/N versus t/τα

Q as shown in the inset of Fig. 7,
indicating that the defect annihilation mechanism differs from
what is found in the square ice system. In the square ice, the
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monopoles are located along grain boundaries and annihilate
as the grain boundaries shrink. In contrast, the monopoles in
the hexagonal ice are not on grain boundaries and can move
toward each other along straight paths, as observed experi-
mentally [8]. More relevantly, monopoles in hexagonal ice are
not topologically protected. While charges ±2 of square ice
cannot be reabsorbed but can only be annihilated and created
in pairs, ±3 charged violations of the ice rule in hexagonal
ice can appear and disappear individually. This is because
in the hexagonal ice, even the ice-rule-obeying vertices are
charged (±1), and thus each monopole in the hexagonal ice
can transfer charge to the surrounding plasma.

In Fig. 7(b), the plot of defect density Nngs/N versus the
quench duration τQ for the hexagonal ice at varied B shows
that there is no power-law behavior in the density of defects,
which is consistent with the lack of a phase transition in the
system. As a result, the KZ mechanism scenario does not
apply, and critical coarsening cannot occur due to the lack of
a critical point.

IV. DISCUSSION

Our results can be compared directly to experiments on
colloidal ice. Extending the results to the case of magnetic
ice requires more caution. Up to a nearest-neighbor approx-
imation, a magnetic square ice can be mapped into a J1-J2

Ising system [53]. The colloidal square ice differs from the
magnetic square ice in both its energetics and the nature
of its frustration [16,54]. An equilibrium colloidal square
ice can be mapped into a magnetic square ice as shown in
Refs. [26,28,55], but the equilibrium phase transition has a
different nature in the magnetic and colloidal spin ices. As
described in Ref. [27], the magnetic spin ice system minimizes
the energy of each local vertex, whereas the colloidal spin ice
system minimizes the global Coulomb energy. Additionally,
the colloidal ice contains many more states, corresponding
to colloids located in between preferential positions, which
can make its out-of-equilibrium kinetics much different from
those of its magnetic analog. As a result, although the col-
loidal ice and magnetic ice have similar equilibrium phases
[28], the dynamics could be different in the two systems.

It is possible that the coarsening dynamics in the mag-
netic square ASI could differ from that found in the square
particle-based ASI since the particle-based system minimizes
the global energy rather than the vertex energy, making the
resulting ice state more fragile [16,28]. It has also been
demonstrated that the motion of defects in colloid ice differs
from the motion in magnetic ice since +1 and +3 monopoles
move at different speeds in the colloidal ice due to their dif-
fering energies [27], but move at equal speeds in the magnetic
ice since their energies in the magnetic system are equal.
The kinetics of annihilation and spin flipping in magnetic ice
are also likely to depend on the microscopic details of the
particular magnetic ASI realization.

It should be possible to perform quenches across transi-
tions or crossovers in magnetic ASI by sweeping temperature
in order to pass from a higher-temperature liquid to a
lower-temperature ordered state [2,56,57]. Quenches can be
performed by varying the rate at which the temperature is
swept across the transition or crossover. In colloidal systems,

beyond changing the magnetic field it would also be possi-
ble to consider temperature-induced quenches, although the
fastest accessible quench time would be longer compared to
the magnetic quenches. In superconducting systems, where
particle-based artificial ices can be realized using magnetic
flux lines in specially designed pinning sites, a similar temper-
ature control could be used at finite fields to pass from a nor-
mal to a superconducting state as a function of temperature.

In our system, it is likely that the strong interactions
between the defects result in coarsening behavior. Therefore,
it may be possible to access a regime in which the KZ
mechanism would be valid by reducing the defect-defect
interaction strength. One possible experiment to test this
would be to create magnetic nanoislands that are sufficiently
far apart to reduce the strength of the defect-defect
interactions, which could minimize the coarsening. Other
future directions are to consider alternative ASI geometries
[2,11,16,58–60], including geometries in which the
monopoles are not as strongly bound [61,62]. It would
also be interesting to study the effect of disorder to see
whether the exponents change or if glassy dynamics arise,
which could produce a crossover to a logarithmic behavior
rather than a power-law decay. It may also be possible that a
small amount of disorder could slow down the dynamics of
the defects enough to make the KZ mechanism accessible.

V. CONCLUSION

In conclusion, we have examined the defect density popu-
lations for varied quench rates from a disordered to an ordered
state in square and hexagonal colloidal spin ice systems,
where a magnetic field is used to tune the strength of the
interactions between the effective spins. In the square ice, we
find that when the quench into the ordered state is sufficiently
deep, there is a power-law decay of the defect density with
ρd ∝ τ

−1/2
Q . Based on scaling arguments for the universal-

ity class of the square ice, we find that the behavior of the
quenched square ice is most likely governed by critical coars-
ening rather than the Kibble-Zurek mechanism. The lack of
KZ behavior could be due to the strong Coulomb interactions
between the monopoles, which arise because particle-based
spin ice models minimize the global Coulomb energy rather
than the local vertex energy. These stronger interactions per-
mit the defects to move toward each other nondiffusively,
whereas the KZ mechanism assumes that no dynamics occurs
in the ordered phase. It is also possible that the colloidal ice
falls into a universality class different from the 2D Ising model
observed for magnetic spin ice, and therefore it is not possible
to rule out the KZ mechanism for the colloidal square ice. In
the case of the colloidal hexagonal ice, which has no second-
order phase transition to an ordered state, we find distinctive
defect configurations, no grain boundaries, and no power-law
scaling of the defect density under varied quench rates. Our
results could be compared with quenches of different types
of ASI in magnetic, colloidal, and superconducting systems.
Each of these systems could exhibit different interactions be-
tween the defects or different kinetics and it is possible that
one or more of the systems could have a regime in which the
KZ mechanism is observable.

033433-7



A. LIBÁL et al. PHYSICAL REVIEW RESEARCH 2, 033433 (2020)

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the U.S. De-
partment of Energy through the LANL/LDRD program for
this work. This work was supported by the U.S. Department

of Energy through the Los Alamos National Laboratory. Los
Alamos National Laboratory is operated by Triad National
Security, LLC, for the National Nuclear Security Admin-
istration of the U.S. Department of Energy (Contract No.
892333218NCA000001).

[1] R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J.
Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi,
and P. Schiffer, Artificial ‘spin ice’ in a geometrically frustrated
lattice of nanoscale ferromagnetic islands, Nature (London)
439, 303 (2006).

[2] C. Nisoli, R. Moessner, and P. Schiffer, Colloquium: Artificial
spin ice: Designing and imaging magnetic frustration, Rev.
Mod. Phys. 85, 1473 (2013).

[3] I. Gilbert, C. Nisoli, and P. Schiffer, Frustration by design, Phys.
Today 69 (7), 54 (2016).

[4] V. Schanilec, Y. Perrin, S. Le Denmat, B. Canals, and
N. Rougemaille, Artificial vertex systems by design,
arXiv:1902.00452.

[5] S. H. Skjaervø, C. H. Marrows, R. L. Stamps, and L. J.
Heyderman, Advances in artificial spin ice, Nat. Rev. Phys. 2,
13 (2019).

[6] Y. Qi, T. Brintlinger, and J. Cumings, Direct observation of the
ice rule in an artificial kagome spin ice, Phys. Rev. B 77, 094418
(2008).

[7] S. Ladak, D. E. Read, G. K. Perkins, L. F. Cohen, and W. R.
Branford, Direct observation of magnetic monopole defects in
an artificial spin-ice system, Nat. Phys. 6, 359 (2010).

[8] E. Mengotti, L. J. Heyderman, A. F. Rodríguez, F. Nolting, R. V.
Hügli, and H.-B. Braun, Real-space observation of emergent
magnetic monopoles and associated Dirac strings in artificial
kagome spin ice, Nat. Phys. 7, 68 (2011).

[9] S. Zhang, I. Gilbert, C. Nisoli, G.-W. Chern, M. J. Erickson,
L. O’Brien, C. Leighton, P. E. Lammert, V. H. Crespi, and P.
Schiffer, Crystallites of magnetic charges in artificial spin ice,
Nature (London) 500, 553 (2013).

[10] J. P. Morgan, A. Stein, S. Langridge, and C. H. Marrows,
Thermal ground-state ordering and elementary excitations in
artificial magnetic square ice, Nat. Phys. 7, 75 (2011).

[11] Y.-L. Wang, Z.-L. Xiao, A. Snezhko, J. Xu, L. E. Ocola,
R. Divan, J. E. Pearson, G. W. Crabtree, and W.-K. Kwok,
Rewritable artificial magnetic charge ice, Science 352, 962
(2016).

[12] A. Libál, C. Reichhardt, and C. J. O. Reichhardt, Realizing
Colloidal Artificial Ice on Arrays of Optical Traps, Phys. Rev.
Lett. 97, 228302 (2006).

[13] A. Ortiz-Ambriz and P. Tierno, Engineering of frustration in
colloidal artificial ices realized on microfeatured grooved lat-
tices, Nat. Commun. 7, 10575 (2016).

[14] J. Loehr, A. Ortiz-Ambriz, and P. Tierno, Defect Dynamics
in Artificial Colloidal Ice: Real-Time Observation, Manip-
ulation, and Logic Gate, Phys. Rev. Lett. 117, 168001
(2016).

[15] D. Y. Lee and P. Tierno, Energetics and the ground state quest in
an artificial triangular colloidal ice, Phys. Rev. Mater. 2, 112601
(2018).

[16] A. Libál, D. Y. Lee, A. Ortiz-Ambriz, C. Reichhardt, C. J. O.
Reichhardt, P. Tierno, and C. Nisoli, Ice rule fragility via topo-
logical charge transfer in artificial colloidal ice, Nat. Commun.
9, 4146 (2018).

[17] A. Libál, C. J. O. Reichhardt, and C. Reichhardt, Creating
Artificial Ice States using Vortices in Nanostructured Supercon-
ductors, Phys. Rev. Lett. 102, 237004 (2009).

[18] M. L. Latimer, G. R. Berdiyorov, Z. L. Xiao, F. M. Peeters, and
W. K. Kwok, Realization of Artificial Ice Systems for Magnetic
Vortices in a Superconducting MoGe Thin Film with Patterned
Nanostructures, Phys. Rev. Lett. 111, 067001 (2013).

[19] J. Trastoy, M. Malnou, C. Ulysse, R. Bernard, N. Bergeal,
G. Faini, J. Lesueur, J. Briatico, and J. E. Villegas, Freezing
and thawing of artificial ice by thermal switching of geometric
frustration in magnetic flux lattices, Nat. Nanotechnol. 9, 710
(2014).

[20] C. Xue, J.-Y. Ge, A. He, V. S. Zharinov, V. V. Moshchalkov,
Y. H. Zhou, A. V. Silhanek, and J. Van de Vondel, Mapping de-
generate vortex states in a kagome lattice of elongated antidots
via scanning Hall probe microscopy, Phys. Rev. B 96, 024510
(2017).

[21] Y.-L. Wang, X. Ma, J. Xu, Z.-L. Xiao, A. Snezhko, R.
Divan, L. E. Ocola, J. E. Pearson, B. Janko, and W.-K.
Kwok, Switchable geometric frustration in an artificial-spin-
ice–superconductor heterosystem, Nat. Nanotechnol. 13, 560
(2018).

[22] G. Möller and R. Moessner, Artificial Square Ice and
Related Dipolar Nanoarrays, Phys. Rev. Lett. 96, 237202
(2006).

[23] A. Libál, C. Nisoli, C. J. O. Reichhardt, and C. Reichhardt,
Inner Phases of Colloidal Hexagonal Spin Ice, Phys. Rev. Lett.
120, 027204 (2018).

[24] E. H. Lieb, Exact Solution of the F Model of an Antiferroelec-
tric, Phys. Rev. Lett. 18, 1046 (1967).

[25] F. Rys, Über ein zweidimensionales klassisches konfigurations-
modell, Ph.D. thesis, ETH Zürich, 1963.

[26] O. Sendetskyi, V. Scagnoli, N. Leo, L. Anghinolfi, A. Alberca,
J. Lüning, U. Staub, P. M. Derlet, and L. J. Heyderman, Con-
tinuous magnetic phase transition in artificial square ice, Phys.
Rev. B 99, 214430 (2019).

[27] A. Libál, C. Nisoli, C. Reichhardt, and C. J. O. Reichhardt,
Dynamic control of topological defects in artificial colloidal ice,
Sci. Rep. 7, 651 (2017).

[28] C. Nisoli, Unexpected Phenomenology in Particle-Based Ice
Absent in Magnetic Spin Ice, Phys. Rev. Lett. 120, 167205
(2018).

[29] T. W. B. Kibble, Topology of cosmic domains and strings,
J. Phys. A: Math. Gen. 9, 1387 (1976).

[30] W. H. Zurek, Cosmological experiments in superfluid helium?
Nature (London) 317, 505 (1985).

033433-8

https://doi.org/10.1038/nature04447
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1063/PT.3.3237
http://arxiv.org/abs/arXiv:1902.00452
https://doi.org/10.1038/s42254-019-0118-3
https://doi.org/10.1103/PhysRevB.77.094418
https://doi.org/10.1038/nphys1628
https://doi.org/10.1038/nphys1794
https://doi.org/10.1038/nature12399
https://doi.org/10.1038/nphys1853
https://doi.org/10.1126/science.aad8037
https://doi.org/10.1103/PhysRevLett.97.228302
https://doi.org/10.1038/ncomms10575
https://doi.org/10.1103/PhysRevLett.117.168001
https://doi.org/10.1103/PhysRevMaterials.2.112601
https://doi.org/10.1038/s41467-018-06631-1
https://doi.org/10.1103/PhysRevLett.102.237004
https://doi.org/10.1103/PhysRevLett.111.067001
https://doi.org/10.1038/nnano.2014.158
https://doi.org/10.1103/PhysRevB.96.024510
https://doi.org/10.1038/s41565-018-0162-7
https://doi.org/10.1103/PhysRevLett.96.237202
https://doi.org/10.1103/PhysRevLett.120.027204
https://doi.org/10.1103/PhysRevLett.18.1046
https://doi.org/10.1103/PhysRevB.99.214430
https://doi.org/10.1038/s41598-017-00452-w
https://doi.org/10.1103/PhysRevLett.120.167205
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1038/317505a0


QUENCHED DYNAMICS OF ARTIFICIAL COLLOIDAL … PHYSICAL REVIEW RESEARCH 2, 033433 (2020)

[31] R. Monaco, J. Mygind, R. J. Rivers, and V. P. Koshelets, Spon-
taneous fluxoid formation in superconducting loops, Phys. Rev.
B 80, 180501(R) (2009).

[32] M. J. Bowick, L. Chandar, E. A. Schiff, and A. M. Srivastava,
The cosmological Kibble mechanism in the laboratory: String
formation in liquid crystals, Science 263, 943 (1994).

[33] C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J.
Davis, and B. P. Anderson, Spontaneous vortices in the forma-
tion of Bose-Einstein condensates, Nature (London) 455, 948
(2008).

[34] G. Lamporesi, S. Donadello, S. Serafini, F. Dalfovo, and G.
Ferrari, Spontaneous creation of Kibble-Zurek solitons in a
Bose-Einstein condensate, Nat. Phys. 9, 656 (2013).

[35] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, Critical
dynamics of spontaneous symmetry breaking in a homogeneous
Bose gas, Science 347, 167 (2015).

[36] S. Ulm, J. Roßnagel, G. Jacob, C. Degüenther, S. T. Dawkins,
U. G. Poschinger, R. Nigmatullin, A. Retzker, M. B. Plenio, F.
Schmidt-Kaler, and K. Singer, Observation of the Kibble-Zurek
scaling law for defect formation in ion crystals, Nat. Commun.
4, 2290 (2013).

[37] K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin, T.
Burgermeister, D. M. Meier, K. Kuhlmann, A. Retzker, M. B.
Plenio, W. H. Zurek, A. del Campo, and T. E. Mehlstäubler,
Topological defect formation and spontaneous symmetry break-
ing in ion Coulomb crystals, Nat. Commun. 4, 2291 (2013).

[38] S. M. Griffin, M. Lilienblum, K. T. Delaney, Y. Kumagai, M.
Fiebig, and N. A. Spaldin, Scaling Behavior and Beyond Equi-
librium in the Hexagonal Manganites, Phys. Rev. X 2, 041022
(2012).

[39] A. del Campo and W. H. Zurek, Universality of phase transition
dynamics: Topological defects from symmetry breaking, Int. J.
Mod. Phys. A 29, 1430018 (2014).

[40] J. Hamp, A. Chandran, R. Moessner, and C. Castelnovo,
Emergent Coulombic criticality and Kibble-Zurek scaling in a
topological magnet, Phys. Rev. B 92, 075142 (2015).

[41] G. Biroli, L. F. Cugliandolo, and A. Sicilia, Kibble-Zurek mech-
anism and infinitely slow annealing through critical points,
Phys. Rev. E 81, 050101(R) (2010).

[42] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical
phenomena, Rev. Mod. Phys. 49, 435 (1977).

[43] P. W. Anderson, Ordering and antiferromagnetism in ferrites,
Phys. Rev. 102, 1008 (1956).

[44] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, and
K. W. Godfrey, Geometrical Frustration in the Ferromagnetic
Pyrochlore Ho2Ti2O7, Phys. Rev. Lett. 79, 2554 (1997).

[45] S. T. Bramwell and M. J. P. Gingras, Spin ice state in frustrated
magnetic pyrochlore materials, Science 294, 1495 (2001).

[46] R. Moessner and A. R. Ramirez, Geometrical frustration, Phys.
Today 59 (2), 24 (2006).

[47] C. Castelnovo, R. Moessner, and S. L. Sondhi, Magnetic
monopoles in spin ice, Nature (London) 451, 42 (2008).

[48] C. W. Liu, A. Polkovnikov, and A. W. Sandvik, Dynamic
scaling at classical phase transitions approached through
nonequilibrium quenching, Phys. Rev. B 89, 054307 (2014).

[49] Z. Budrikis, K. L. Livesey, J. P. Morgan, J. Akerman, A.
Stein, S. Langridge, C. H. Marrows, and R. L. Stamps, Domain
dynamics and fluctuations in artificial square ice at finite tem-
peratures, New J. Phys. 14, 035014 (2012).

[50] J. Drisko, T. Marsh, and J. Cumings, Topological frustration of
artificial spin ice, Nat. Commun. 8, 14009 (2017).

[51] C. Fan and F. Wu, Ising model with second-neighbor interac-
tion. I. Some exact results and an approximate solution. Phys.
Rev. 179, 560 (1969).

[52] G. M. Macauley, G. W. Paterson, Y. Li, R. Macedo, S. McVitie,
and R. L. Stamps, Tuning magnetic order with geometry: Ther-
malization and defects in two-dimensional artificial spin ices,
Phys. Rev. B 101, 144403 (2020).

[53] F. Y. Wu, Critical behavior of Two-Dimensional Hydrogen-
Bonded Antiferroelectrics, Phys. Rev. Lett. 22, 1174 (1969).

[54] C. Nisoli, Dumping topological charges on neighbors: Ice
manifolds for colloids and vortices, New J. Phys. 16, 113049
(2014).

[55] D. Levis, L. F. Cugliandolo, L. Foini, and M. Tarzia, Thermal
Phase Transitions in Artificial Spin Ice, Phys. Rev. Lett. 110,
207206 (2013).

[56] V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A.
Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, Ther-
mal fluctuations in artificial spin ice, Nat. Nanotechnol. 9, 514
(2014).

[57] L. Anghinolfi, H. Luetkens, J. Perron, M. G. Flokstra, O.
Sendetskyi, A. Suter, T. Prokscha, P. M. Derlet, S. L. Lee, and
L. J. Heyderman, Thermodynamic phase transitions in a frus-
trated magnetic metamaterial, Nat. Commun. 6, 8278 (2015).

[58] A. Farhan, C. F. Petersen, S. Dhuey, L. Anghinolfi, Q. H. Qin,
M. Saccone, S. Velten, C. Wuth, S. Gliga, P. Mellado, M. J.
Alava, A. Scholl, and S. van Dijken, Nanoscale control of
competing interactions and geometrical frustration in a dipolar
trident lattice, Nat. Commun. 8, 995 (2017).

[59] Y. Lao, F. Caravelli, M. Sheikh, J. Sklenar, D. Gardeazabal,
J. D. Watts, A. M. Albrecht, A. Scholl, K. Dahmen, C. Nisoli,
and P. Schiffer, Classical topological order in the kinetics of
artificial spin ice, Nat. Phys. 14, 723 (2018).

[60] J. Sklenar, Y. Lao, A. Albrecht, J. D. Watts, C. Nisoli, G.-W.
Chern, and P. Schiffer, Field-induced phase coexistence in an
artificial spin ice, Nat. Phys. 15, 191 (2019).

[61] Y. Perrin, B. Canals, and N. Rougemaille, Extensive degen-
eracy, Coulomb phase and magnetic monopoles in artificial
square ice, Nature (London) 540, 410 (2016).

[62] A. Farhan, M. Saccone, C. F. Petersen, S. Dhuey, R. V.
Chopdekar, Y.-L. Huang, N. Kent, Z. Chen, M. J. Alava, T.
Lippert, A. Scholl, and S. van Dijken, Emergent magnetic
monopole dynamics in macroscopically degenerate artificial
spin ice, Sci. Adv. 5, eaav6380 (2019).

033433-9

https://doi.org/10.1103/PhysRevB.80.180501
https://doi.org/10.1126/science.263.5149.943
https://doi.org/10.1038/nature07334
https://doi.org/10.1038/nphys2734
https://doi.org/10.1126/science.1258676
https://doi.org/10.1038/ncomms3290
https://doi.org/10.1038/ncomms3291
https://doi.org/10.1103/PhysRevX.2.041022
https://doi.org/10.1142/S0217751X1430018X
https://doi.org/10.1103/PhysRevB.92.075142
https://doi.org/10.1103/PhysRevE.81.050101
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/PhysRev.102.1008
https://doi.org/10.1103/PhysRevLett.79.2554
https://doi.org/10.1126/science.1064761
https://doi.org/10.1063/1.2186278
https://doi.org/10.1038/nature06433
https://doi.org/10.1103/PhysRevB.89.054307
https://doi.org/10.1088/1367-2630/14/3/035014
https://doi.org/10.1038/ncomms14009
https://doi.org/10.1103/PhysRev.179.560
https://doi.org/10.1103/PhysRevB.101.144403
https://doi.org/10.1103/PhysRevLett.22.1174
https://doi.org/10.1088/1367-2630/16/11/113049
https://doi.org/10.1103/PhysRevLett.110.207206
https://doi.org/10.1038/nnano.2014.104
https://doi.org/10.1038/ncomms9278
https://doi.org/10.1038/s41467-017-01238-4
https://doi.org/10.1038/s41567-018-0077-0
https://doi.org/10.1038/s41567-018-0348-9
https://doi.org/10.1038/nature20155
https://doi.org/10.1126/sciadv.aav6380

