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Kondo screening in Co adatoms with full Coulomb interaction
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Using a numerically exact first-principles many-body approach, we revisit the “prototypical” Kondo case of
a cobalt impurity on copper. Even though this is considered a well understood example of the Kondo effect,
we reveal an unexpectedly strong dependence of the screening properties on the parametrization of the local
Coulomb tensor. As a consequence, the Kondo temperature can vary by orders of magnitude depending on
the complexity of the parametrization of the electron-electron interaction. Further, we challenge the established
picture of a spin-1 moment involving two cobalt d orbitals only, as orbital-mixing interaction terms boost the
contribution of the remainder of the d shell.

DOI: 10.1103/PhysRevResearch.2.033432

I. INTRODUCTION

The Kondo effect arises when a local magnetic moment
is quantum mechanically screened by the conduction elec-
trons of a metallic host. Explained by Kondo in the 1960s
[1], this phenomenon has been extensively studied there-
after within Anderson’s poor man’s approach and Wilson’s
renormalization group [2]. As a direct consequence of the
screening of the impurity magnetic moment, the spin suscep-
tibility undergoes a crossover from a Curie-Weiss to a Pauli
behavior upon lowering the temperature. At the same time, the
Abrikosov-Suhl-Kondo resonance [2–4] emerges in the elec-
tronic spectral function at the Fermi level. Magnetic response
functions and electron transport are therefore suitable probes
of the Kondo effect. Despite its well-defined characterization,
the signatures of the Kondo effect emerge at energy scales of
the order of the Kondo temperature TK , which is often of the
order of a few kelvin, making the theoretical description of
realistic Kondo systems intrinsically hard. Further, the Fermi-
liquid properties emerging below the Kondo temperature TK

are typically reached via smooth crossovers rather than with
sharp transitions, complicating also the experimental detec-
tion.

One case of Kondo effect considered to be simple and
relatively well understood is that of a Co single impurity
on a metallic substrate, such as Cu [5–8], Au [6], and Ag
[6,9]. In particular, scanning tunneling spectroscopy (STM)
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has revealed how Co adatoms on Cu hosts display sharp peaks
or Fano-like resonances at zero bias [5–8,10,11], which are
commonly interpreted as a clear experimental signature of
the Kondo screening, although the origin of these features
has been recently challenged [12]. Experimental estimates of
the Kondo scale yield, e.g., TK ≈ 88 K and 54 K for Co on
Cu(001) and Cu(111), respectively [5,6].

However, even in the case of a single impurity, for transi-
tion metal adatoms the theoretical description of the Kondo
effect is difficult, since the whole d shell is likely to play
a role in the screening. So far, the theoretical understanding
of single Co impurities on Cu [13–16] stresses the main
role played by two of the five Co-d orbitals. In the case of
Co/Cu(001)—on which we shall focus below—the dxy and dz2

orbitals are Kondo active, in the sense that they are half-filled
and carry a magnetic moment. Due to the different symmetry,
for Co/Cu(111) the dz2 orbital is instead fully occupied, and
the magnetic moment arises from one of the two doublets with
E symmetry [13,16]. In general, different crystalline environ-
ments determine variations in the local electronic structure of
the impurity and lead to drastically different Kondo resonance
line shapes observed in STM experiments [8,13]. Further-
more, the many-body nature of the Kondo effects manifests
itself also in a strong dependence of TK on the occupation
of the Co 3d shell [6,8,11,14]. This also means that the
hybridization and the charge transfer between the impurity
and the substrate play an important role. This is reflected in
a strong dependence of TK on, e.g., the adatom adsorption
distance [16,17], in agreement with the experiments [7,8].
In general, the Kondo scale depends exponentially on the
parameters of the theoretical model, making reliable estimates
of TK extremely hard.

For the same reason, it is also difficult to exactly pinpoint
the details of the physical processes underlying the Kondo
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screening in these systems. Interestingly, theoretical calcula-
tions indicate that the spin state of Co is S = 1 on both the
Cu(001) and Cu(111) surfaces [16]. However, evidence for
very different Kondo scales for the Kondo-active orbitals of
Co/Cu(001) [14,16] suggest an underscreened (or possibly a
two-stage [18]) Kondo effect to take place, while a single TK

is expected for the magnetic doublet of Co/Cu(111), although
the degeneracy could be lifted by, e.g., spin-orbit coupling
[16]. On the other hand, Nevidomskyy and Coleman [19]
showed that, in the case of a multiorbital impurity, the stabi-
lization of an impurity high-spin state due to Hund’s coupling
leads to a strong reduction of the Kondo coupling, and conse-
quently of TK , with respect to the spin S = 1/2 case [20,21].
Robust numerical evidence that the Nevidomskyy-Coleman
scenario is realized in idealized model systems comes, e.g.,
from Ref. [22]. This seems, however, at odds with the rela-
tively high estimates of TK for these systems emerging from
experiments [5–7]. Hence the question is whether or not, or
under which conditions, the Kondo screening of Co on a Cu
substrate can be described this way upon cooling.

We identify two key players which may affect the mech-
anism of the Kondo screening, i.e., multiorbital correlation
effects arising from the full treatment of the Co 3d shell, rather
than restricting the description to the Kondo-active orbitals
only, and the approximation of the form of the Coulomb
interaction. Using a combination of density functional theory
(DFT) and numerically exact quantum Monte Carlo (QMC)
we analyze the many-body processes leading to the formation
and the screening of the local moment on a Co impurity on
Cu(001) in its full realistic complexity. We provide a compara-
tive analysis of the role of the parametrization of the Coulomb
interaction, which is so-far scarcely investigated in a system-
atic way. In particular, we take into account the full Coulomb
tensor in the whole Co 3d multiplet, hitherto either simplified
[14,16] or included only at high temperatures [11,15,23], and
we push our calculations down to temperatures which are
relevant to the Kondo screening.

The paper is organized as follows. In Sec. II we provide
the details of the ab initio and many-body calculations for
Co/Cu(001). In Sec. III we discuss the possible Kondo sce-
narios, and in Sec. IV we analyze the screening properties,
providing evidence which supports the important role played
by the approximations of the Coulomb tensor. Finally, Sec. V
contains a discussion of our results in light of previous studies
in the literature, as well as our conclusions.
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FIG. 1. Top (a) and side (b) view of the Co/Cu(001) unit cell as
used in this study. The adsorption distance between the Co adatom
and the substrate is set to dCo-surface = 1.52 Å [17].

II. METHODOLOGY

A. DFT++
Here we investigate the correlation effects of a single Co

adatom on a Cu(001) surface using a combination of DFT
within the local density approximation (LDA) and the nu-
merical solution of an Anderson impurity model (AIM) with
realistic parameters. This approach is commonly referred to
as DFT++ in the literature [24,25].

The DFT calculations have been performed with the Vi-
enna ab initio simulation program (VASP) [26,27] using the
projector augmented plane wave (PAW) basis set. We modeled
the Cu(001) surface as a 4 × 4 slab consisting of five Cu
layers using the experimental [28] lattice constant of 3.615
Å. The Co adatom was placed in the fourfold-hollow position
(see Fig. 1) at an adsorption distance dCo-surface = 1.52 Å with
respect to the first Cu(001) layer, which we identified in one of
our earlier works [17] to be the energetically favored distance,
in agreement with previous literature [13]. We used a k mesh
centered around the � point of size 100 × 100 × 1 k points
in order to achieve a sufficiently accurate description of our
Cu(001) substrate. This will be necessary for the parametriza-
tion of the AIM, especially at low temperatures (this important
aspect is discussed in Appendix A in more detail).

With the combination of DFT and an AIM, we can take
into account the correlation effects on the Co atom explicitly
as well as the realistic complexity of its hybridization with the
Cu substrate. The Hamiltonian of the AIM reads

Ĥ =
∑
νσ

εν ĉ†
νσ ĉνσ +

∑
νiσ

(Vνiĉ
†
νσ d̂iσ + V ∗

νid̂
†
iσ ĉνσ ) +

∑
iσ

εid̂
†
iσ d̂iσ + 1

2

∑
i jkl

∑
σσ ′

Ui jkl d̂
†
iσ d̂†

jσ ′ d̂lσ ′ d̂kσ
, (1)

where ĉ†
νσ (ĉνσ ) denotes the creation (annihilation) operators

for an electron with spin σ in the νth bath state (in this work,
the Cu surface) with energy εν , whereas d̂†

iσ (d̂iσ ) denotes the
corresponding operators for the ith localized 3d orbital of the
impurity (in this work, the Co 3d shell) with energy εi. The
bath and impurity electrons are coupled via the hybridization
Vνi. For QMC techniques, it is convenient to reformulate the
AIM (1) in the action formalism, and integrate out the degrees

of freedom of the bath to obtain a retarded hybridization
function

�i(ω) =
∑

ν

VνiV ∗
νi

ω + ı0+ − εi
, (2)

which effectively embeds the impurity into the substrate. Our
results, shown in Fig. 2, are compatible with others found in
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FIG. 2. Orbital-resolved hybridization function Im�(ω) for
Co/Cu(001). The corresponding values at the Fermi level, � =
−Im�(0) for each orbital, are reported in Table I.

the literature [14]. The hybridization function is then trans-
formed into the Matsubara representation �i(ω) → �i(ıωn)
for QMC sampling. The values of the orbital-dependent ef-
fective crystal fields εi + Re�i(∞) and hybridization to the
substrate �i = −Im�i(0) are given in Table I for reference.

Finally, the tensor

Ui jkl =
∫

dr dr′ψ∗
i (r)ψ∗

j (r′)
e2

|r − r′|ψk (r)ψl (r
′) (3)

describes the local Coulomb interaction (we dropped the spin
indices, for simplicity) as introduced by Slater [29], with
ψα (α = i, j, k, l) being in general any atom-centered basis
function and e2 1

|r−r′ | the long-range Coulomb potential.

B. Coulomb tensor

The last term of Eq. (1) describes the local interaction
within the impurity 3d shell. The full Coulomb interaction
Ui jkl is in general a four-index tensor, which, in the language
of second quantization, corresponds to different combinations
of the creation and annihilation operators of the two-body
interaction. However, due to the extreme numerical complex-
ity required to take into account all possible four-fermion
terms, it is common practice so far to consider approximate
interaction schemes. Therefore, most previously published
results have been obtained neglecting—in a nonsystematic

TABLE I. Single-particle DFT parameters defining the AIM for
Co/Cu(001), i.e., the effective crystal field εi + Re�i(∞) and the
coupling to the substrate �i = −Im�i(0) for each orbital in the Co
3d shell. The C4v point-group symmetry is enforced at the DFT
level, so that dxz and dyz are degenerate. In addition to the crystal
field, we also include a double counting correction μDC = 28.0 eV
to constrain the occupation of the 3d shell to nd = 8.0 electrons.

Co 3d orbital εi + Re�i(∞) (eV) �i (eV)

dxy −0.226 0.196
dxz −0.403 0.244
dz2 −0.295 0.180
dyz −0.403 0.244
dx2−y2 −0.221 0.128

and uncontrolled way—parts of the Coulomb tensor. With the
advent of continuous-time quantum Monte Carlo (CT-QMC)
methods (see Ref. [30] for a review), it has become possible
to treat the full Coulomb interaction without approximations.
There are already indications in the literature [23] that the
structure of the full Coulomb interaction is important to de-
scribe the physics of Co/Cu(001). We will show that different
parametrizations of the Coulomb interaction also give rise to
substantially dissimilar Kondo screening properties.

Below we describe the properties of Ui jkl in different ap-
proximation schemes. Within the simplest parametrization,
one retains only the “density-density” terms, i.e., those in
which the four operators are contracted in pairs of number
operators n̂iσ = d̂†

iσ d̂iσ . Within the density-density approxima-
tion, the Coulomb tensor in Eq. (1) reduces to

ĤD =
∑

i

Uiin̂i↑n̂i↓ +
∑
i 	= j

∑
σσ ′

(Ui j − Ji jδσσ ′ )n̂iσ n̂ jσ ′ . (4)

In terms of the Coulomb tensor, the above parameters Uii =
Uiiii and Ui j = Ui ji j denote the intra- and interorbital (direct)
interactions, while Ji j = Ui j ji denotes the density-density
Hund’s exchange coupling for σ = σ ′ (see Appendix B for
all definitions and symmetry relations).

Including also the missing two-body scattering terms,
which describe “spin-flip” (Ji j = Ui j ji for σ 	= σ ′) and “pair-
hopping” (Ji j = Uii j j for σ 	= σ ′) processes between electrons
on different orbitals, gives rise to the so-called “Kanamori”
parametrization, of the form

ĤK = ĤD +
∑
i 	= j

Ji j (d̂
†
i↑d̂†

j↓d̂i↓d̂ j↑ − d̂†
i↑d̂†

i↓d̂ j↑d̂ j↓), (5)

which has the important consequence of restoring the rota-
tional invariance of the Coulomb interaction. Finally, the “full
Coulomb” interaction, given by the generic form

ĤC = 1

2

∑
i jkl

∑
σσ ′

Ui jkl d̂
†
iσ d̂†

jσ ′ d̂lσ ′ d̂kσ
, (6)

contains all possible terms allowed on the 3d shell, without
restrictions. In the case of a spherically symmetric atom, these
terms can be described in terms of the Slater radial inte-
grals [29,31] F 0, F 2, and F 4. With a spherically symmetric
Coulomb tensor, one has the advantage of excluding sources
of differences associated with specificities of the Cu(001)
substrate, at the same time allowing us to reduce the number of
interaction parameters to two: U = F 0 and J = 1

14 (F 2 + F 4).
For instance, the intraorbital Hubbard repulsion becomes in-
dependent of the orbital index i and is given by the relation
Uii = F 0 + 8

7
1

14 (F 2 + F 4). The different angular dependence
of the five d orbitals results in four different Hund’s couplings
Ji j , which can all be expressed in terms of F 2 and F 4, so
that Ui j = (Uii + Uj j )/2 − 2Ji j (see, e.g., Refs. [32,33] and
Appendix B for a detailed discussion).

C. Details of the Co/Cu(001) calculations

We solve the AIM (1) by using the numerically exact
CT-QMC method as implemented in the W2DYNAMICS pack-
age [34,35]. With the choices of interaction parameters U =
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4.0 eV, J = 0.9 eV, and ratio F 4/F 2 = 0.625, which com-
pletely determine the Coulomb tensor, the values we use in
this study are very similar (although spherically symmetric) to
those calculated for Co/Cu(001) from first principles by Jacob
within the constrained random phase approximation [14]. For
the purpose of showing how significant the differences be-
tween the results obtained within various interaction schemes
can be, we compare the magnetic properties of Co/Cu(001)
obtained by solving the impurity problem with the Coulomb
interaction ĤC of Eq. (B1), as well as with its density-density
and Kanamori approximations of Eqs. (4) and (5), respec-
tively. We will show that different approximations of the
Coulomb tensor lead to different physical pictures. In partic-
ular, the lowest temperature reached here for Co/Cu(001) in
the scope of the full Coulomb interaction is T 
 33 K, which
is below the experimental estimates of TK for this system.

When interfacing many-body and ab initio calculations,
as within the DFT++ scheme, one should also be aware of
the so-called double-counting problem, which one encounters
because part of the correlation energy (in this case on the Co
3d shell) is already taken into account within DFT. Usually,
one approximates the double-counting value from the fully
localized limit (FLL) [36] or the around mean-field (AMF)
[37] methods. Here we follow an alternative procedure, and
choose the double counting in order to fix the Co 3d oc-
cupation to nd = ∑

iσ niσ = 8 electrons, instead. One reason
behind this choice is that the system has been investigated in
several theoretical studies in an STM-like setup [14,16,38],
where it is assumed that Co on Cu(001) has an S =1 spin state
with an overall Co 3d occupation of roughly nd =8 electrons.
This was also confirmed by correlated wave-function-based
calculations, where a Co/Cun cluster is embedded in a peri-
odic potential [13]. Under the effect of the substrate crystal
field, the Co dx2−y2 and the (dxz, dyz ) doublet are completely
full while the dxy and dz2 orbitals are both half filled. In
this situation, S =1 high-spin configurations are expected to
be locally dominant, which calls for a systematic analysis
of the role of the Hund’s coupling within the different ap-
proximations of the Coulomb tensor. However, we will also
discuss deviations from integer filling of the Co 3d shell,
as they are expected to influence the screening properties of
Co/Cu(001) [14].

III. POSSIBLE KONDO SCENARIOS

The goal of this section is to determine how the Kondo
screening mechanism can be influenced by the parametriza-
tion of the local Coulomb repulsion on the Co impurity. To
this end, we are going to analyze in particular the finite-
temperature spin and charge response functions, calculated
at the Co site. We compare the three interaction schemes
discussed in Sec. II B (i.e., density-density, Kanamori, and
full Coulomb), especially focusing on the Co dxy and dz2

orbitals, which are identified as the Kondo-active orbitals in
the literature [14,16] (note the different orientation of the xy
plane here compared with these works). However, we will
claim that more realistic descriptions of the Coulomb tensor
favor a scenario in which also the other 3d orbitals play an
important role in the screening of the Co local moment.

The scheme presented in Fig. 3 anticipates the main results
of the present paper. The electronic configuration of the Co
3d shell hybridized with the Cu(001) surface is shown in
Fig. 3(a). In the Co adatom with nd = 8.0 electrons in the
3d shell, a high-spin state is always realized for temperatures
above the Kondo regime. We find a link between the form
of the Coulomb interaction, which strongly affects spin and
charge fluctuations, as represented schematically in Fig. 3(b),
and the possible mechanism behind the screening of the Co
spin, indicated in Fig. 3(c). In the simplest approximation
scheme, i.e., the one of Eq. (4), in which only the density-
density part of the local Coulomb interaction is taken into
account, the (dxz, dyz, dx2−y2 ) subspace is almost completely
filled, and can be considered inert. Due to the strong Hund’s
coupling within the Kondo-active subspace, the Co impurity
is locked into an S = 1 state down to a few K, when it can
eventually be screened by the conduction electrons of the Cu
surface, thus realizing the Nevidomskyy-Coleman scenario of
the suppression of TK for an S = 1 Kondo impurity. As we
increase the complexity of the Coulomb tensor, by including
interaction terms beyond the density-density approximation
in the Kanamori parametrization of Eq. (5) and in the full
Coulomb parametrizations of Eq. (B1), the most important
effect that we observe is a progressive breakdown of the
(dxy, dz2 ) S = 1 high-spin state. We can rationalize this effect
in terms of two key players: (i) the enhancement of charge
fluctuations within the whole Co 3d multiplet and (ii) the frus-
tration of the spin correlations due to the competition between
all generalized exchange interactions in the Coulomb tensor,
e.g., of the form Ui j jk This includes Hund’s coupling and the
spin-flip processes (i = k), as well as additional processes
beyond the density-density approximation (i 	= k), or of the
form Ui jkl , with four different orbital indices. A thorough
discussion of these terms is provided in Appendix B.

It is interesting to speculate on the suitable screening
mechanisms which could replace the Nevidomskyy-Coleman
scenario for Co/Cu systems, in order to look for their char-
acteristics in our numerical analysis. One possibility is the
underscreened Kondo effect, where the Co spin is only par-
tially screened by the substrate. Depending on how many
modes of the host effectively couple to the impurity, a Noz-
iéres Fermi liquid can be recovered at lower T by screening
the remaining spin (thus realizing a two-stage Kondo effect).
In the regime where the charge fluctuations become domi-
nant, the dxy and dz2 orbitals may also behave as a pair of
S = 1/2 replicas, which are screened at possibly very differ-
ent Kondo temperatures. Moreover, depending on the degree
of orbital degeneracy of the 3d multiplet, an SU(4) Kondo
effect could also take place. The latter may be relevant for the
Co/Cu(111) case, where the Co magnetic state is actually a
doublet [16]. The increased symmetry, from an SU(2) spin-
Kondo to an SU(4) spin-orbital Kondo—or even an SU(N)
symmetry, involving also the rest of the 3d multiplet—is
generally expected to result in a single enhanced Kondo scale
[39]. All the above mechanisms would be compatible with
the relatively high TK ∼ 50 − 100 K estimated by transport
experiments [5–7].

While the general role of the Coulomb interaction emerges
clearly from our calculations, a precise estimate of TK and
the identification of the Kondo mechanism responsible for
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FIG. 3. Schematics of possible Kondo scenarios for Co impurities on Cu hosts. In all three panels (a)–(c), the complexity of the Coulomb
tensor increases from top to bottom. (a) Configuration of the Co 3d shell hybridized to the Cu(001) surface in the presence of Coulomb
repulsion. For simplified interactions, the (dxy, dz2 ) half-filled orbitals identify the Kondo-active subspace, but for realistic Coulomb tensors
the whole multiplet becomes relevant to the Kondo screening. (b) Behavior of the spin (Si 	= j) and charge (Ci 	= j) interorbital fluctuations in
relation to the complexity of the Coulomb tensor. Within the density-density approximation, the physics is dominated by the Hund exchange,
while exchange interactions (e.g., of the form Ui j jk or Ui jkl ) favor charge fluctuations and weaken the tendency towards a high-spin state.
(c) Kondo screening processes (top to bottom). If the Co impurity is locked in a high-spin state due to the Hund’s coupling JH = Ui j ji the
Nevidomskyy-Coleman scenario [19] can be realized at a very low TK . As charge fluctuations are enhanced, an underscreened (or possibly
two-stage) Kondo effect may take place at a higher TK . The extreme limit for two-orbital models is a pair of S = 1/2 Kondo replicas, while in a
five-orbital model, the charge redistribution within the whole Co 3d shell can result in a more complicated Kondo effect and in an enhancement
of the Kondo scale.

the screening for each parametrization of the Coulomb tensor
remains elusive. This is mostly due to the difficulty of ob-
serving typical Fermi liquid temperature scaling within our
methodology.

IV. RESULTS

A. Spin correlations and effective local moment

In order to investigate the screening of the impurity mag-
netic moment we sample the spin-spin response function in
imaginary time within CT-QMC:

χi j (τ ) = g2
〈
Ŝz

i (τ )Ŝz
j (0)

〉
, (7)

where i and j denote the Co 3d impurity orbitals, Ŝz
i is the

local spin operator on orbital i, and g is the electron spin gyro-
magnetic factor. The static (i.e., ω = 0) spin susceptibility is
obtained via integration of the diagonal elements of Eq. (7) as

χii(T ) =
∫ β

0
dτ χii(τ ), (8)

where β is the inverse temperature. For a Kondo impurity,
the static spin susceptibility follows a Curie-Weiss behavior
χ (T ) ∝ 1/T in the local moment regime well above TK . As
the moment is screened by the conduction electrons, the spin
susceptibility has a crossover to a Pauli behavior due to the
onset of a Fermi liquid (FL) regime: χ−1(T ) ∝ T +TFL, with
the characteristic coherence temperature TFL corresponding to
TK in the case of a single impurity [40,41].

In Fig. 4 we compare the spin susceptibility of the dxy and
dz2 orbitals obtained for all interaction parametrizations. In the
corresponding inset we also plot T χii(T ), as it is customarily
done in order to represent a Curie-Weiss susceptibility as
a constant and a Pauli susceptibility as linearly vanishing.

density-density
Kanamori
Coulomb

(a) (b)

FIG. 4. Orbital-resolved static spin-spin response function
χ (T ) ≡ χii(T ) for the dxy (a) and the dz2 (b) orbitals. The dashed
lines show the Curie-Weiss behavior χ (T ) ∝ 1/T in the local mo-
ment regime. Plotting T χ (T ) (insets) highlights the differences
observed with the three interaction schemes, with T χ (T ) ∼ const
in the local moment regime, and linearly vanishing at T � TK (see
text).
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This allows one to highlight the differences observed with
the three interaction schemes. Within the density-density ap-
proximation, we obtain an almost perfect 1/T behavior of the
susceptibilty (in the main panels, and a plateau in the insets)
for both orbitals, indicating a Curie-Weiss behavior in the
full range of temperatures of our calculations. Consequently,
we can infer that the upper bound for the Kondo tempera-
ture within the density-density approximation is substantially
lower than 30 K, i.e., it is likely of O(1) K. Instead, the
Kanamori and full Coulomb parametrizations yield clear sig-
natures of Kondo screening in the same temperature window.
The Kanamori coherence scale seems to be still quite low,
and at about 30 K the crossover from a residual entropy to
a fully screened moment is indeed far from being complete.
We also observe a pronounced departure from a constant
T χ (T ) within the Kanamori and—even more evidently—the
full Coulomb parametrizations. A linearly vanishing T χ (T )
is clearly observed for the dz2 orbital (yet not for the dxy one),
which suggests different Kondo scales T z2

K > T xy
K for those

two orbitals. In order to quantify this analysis, we extract
TK from the saturation that characterizes the crossover from
Curie-Weiss to Pauli behavior of the spin susceptibility. We
obtain TK individually for each with the following fitting func-
tion [32,42]:

χ (T ) = μ2

3kB(T + 2TK )
,

where μ is a fitting parameter of the same order of mag-
nitude of Bohr’s magneton μB. Within the density-density
approximation, we estimate TK < 1 K for both orbitals. A
significant enhancement of the Kondo scale is found within
the Kanamori, T xy

K = 8.5 K and T z2

K = 14 K, and within the
full Coulomb, T xy

K = 18 K and T z2

K = 40 K, parametrizations.
In particular, the latter value is also in qualitative agreement
with the estimate of TK ≈ 88 K from the experiments [5].

Further insight in the different screening processes ac-
tivated by the Coulomb interaction can be obtained by
inspecting two special values of the impurity spin suscepti-
bility in imaginary time: χ (τ =0) and χ (τ =β/2). At τ =0,
it corresponds to the (square of the) bare magnetic moment,
sometimes also called the unscreened paramagnetic moment.
It indicates the tendency of the Co impurity to build up a
quantum magnetic moment at short time scales. Instead, its
value at τ =β/2 can be associated to a magnetic moment
at asymptotically long times, and hence it provides informa-
tion on the effectiveness of the dynamical screening due to
quantum fluctuations [43]. These two quantities are helpful
to visualize the different screening properties within the three
interaction schemes and allow us to understand which two-
body processes are decisive for the Kondo screening.

In a correlated system we expect a strong contribution from
the orbital off-diagonal components of the spin susceptibility
and, in particular, in the case under study they are equally
important as the diagonal ones. We inspect the screening
properties by looking at the total (unscreened and screened,
respectively) “effective” spin moment Seff. This involves all
components of χi j (τ ) and takes into account the difference
between the quantum nature of the spin degrees of freedom of
the three parametrizations of the Coulomb interaction. Within

FIG. 5. Analysis of the spin correlations at the Co impurity.
(a)–(c) Unscreened (open symbols) and screened (filled symbols)
effective spin Seff(τ ) estimated from the spin susceptibility (see text
for the details). (d)–(f) Screened magnetic moment m2(β/2) within
the whole 3d shell (filled symbols) and restricted to the (dxy, dz2 )
subspace (solid line). The dashed lines separate intra- and interorbital
contributions within the subspace. Due to the increasing contribution
of orbitals outside the subspace, a two-Kondo-active orbital descrip-
tion of the magnetic moment becomes unsatisfactory for realistic
Coulomb interactions.

the density-density approximation we describe an Ising spin,
so that the (instantaneous, i.e., τ =0) magnetic moment is
given by

m2
Ising = g2〈Ŝ2

z

〉
. (9)

Instead, since the Kanamori and the full Coulomb
parametrizations preserve the spin SU(2) rotational invariance
of the Coulomb tensor, the magnetic moment is given by

m2
Heisenberg = g2

[〈
Ŝ2

x

〉 + 〈
Ŝ2

y

〉 + 〈
Ŝ2

z

〉] = 3g2
〈
Ŝ2

z

〉
. (10)

We can hence define m2 =ξ
∑

i j χi j (τ =0), where ξ =3, ex-
cept for the density-density case in which ξ =1, and the
indices i and j in the summation run over either all Co 3d
orbitals or over a subset thereof, as necessary. The natural
generalization at finite imaginary time is therefore

m2(τ ) = ξ
∑

i j

χi j (τ ), with

{
ξ = 1, Ising,
ξ = 3, Heisenberg, (11)

which allows us to extract the effective spin Seff(τ ) from the
relation m2 = g2S2

eff for density-density (Ising spin) or m2 =
g2Seff(Seff + 1) for Kanamori and full Coulomb interactions
(Heisenberg spin) [43].

The empty symbols in the three upper panels of Fig. 5 show
the unscreened (i.e., instantaneous) effective spin Seff(τ =
0), including the intra- and interorbital contributions from
the whole Co 3d shell. For all interaction parametrizations
we get an instantaneous paramagnetic spin moment Seff >

0.9, in excellent agreement with the value S = 1 expected
in the high-spin configuration, and with the literature [14],
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which remains perfectly constant in the whole range of tem-
peratures considered here. The screened effective moment
Seff(τ = β/2) at each temperature is suppressed with respect
to its τ = 0 counterpart by quantum fluctuations. Within the
density-density approximation, we observe a sizable effec-
tive moment Seff(β/2) ≈ 0.8 down to the lowest temperature
investigated. This mirrors the information obtained by the
analysis of the static spin susceptibility, and substantially
rules out any temperature-dependent (i.e., Kondo) screen-
ing of the local moment in this temperature window within
the density-density approximation. In contrast, within both
the Kanamori and the full Coulomb parametrizations we
observe the pronounced screening of the “long-time” local
moment, which is considerably stronger than what was ob-
served within the density-density approximation. At the same
time, a clear temperature dependence of Seff indicates a strong
ability of the environment to Kondo screen the Co impu-
rity spin. Therefore, even at integer filling of the Co 3d
shell (nd = 8), the local quantum fluctuations described by
more complete parametrizations of the Coulomb interaction
destabilize the high-spin state already in the high-temperature
regime, and favor the onset of Kondo screening. Instead, this
does not happen in the density-density case, for which the
Nevidomskyy-Coleman scenario of a strong suppression of TK

for a spin S = 1 is fully realized.
We can analyze the orbital character of the impurity mag-

netic moment by looking at the (screened) partial magnetic
moment (which is an additive quantity, unlike Seff). This is
obtained by restricting the double sum over i and j in the
definition of m2 to the (dxy, dz2 ) subset of orbitals. We can also
distinguish between the m2

intra (i = j) and m2
inter (i 	= j) com-

ponents within the subspace. As shown in the lower panels of
Fig. 5, within the density-density approximation, Seff(β/2) is
mostly determined by the (dxy, dz2 ) subspace, whereas in the
full Coulomb parametrizations there is substantial contribu-
tion from the dxz, dyz, and dx2−y2 orbitals. This demonstrates
that a two-Kondo-active orbital description of the system is
no longer accurate when a realistic Coulomb interaction is
taken into account. The intra- and interorbital contributions
to the local moment within the (dxy, dz2 ) subspace are sim-
ilar to each other for all three parametrizations, but both
are strongly suppressed by introducing interaction terms be-
yond the density-density approximation. As we discuss in
Sec. IV B, this observation can be understood by considering
the charge redistribution within the whole Co 3d multiplet,
which competes with the spin-locking tendency induced by
Hund’s coupling.

B. Spin and charge fluctuations

The full Coulomb tensor (even if here it still assumes a
spherical environment) represents the reference point in our
comparative analysis, as it gives the most coherent of all the
results and the largest Kondo temperature, meaning the closest
to the experiments. In order to ascertain the origin of the
physical differences between the full Coulomb and the two
other approximate schemes we consider the generalized dou-
ble occupations 〈n̂iσ n̂ jσ ′ 〉 for parallel (σ ′ = σ ) and antiparallel
(σ ′ = σ ) spin orientations. The numerical data representative
of the low-temperature regime (at T ≈ 33 K) are collected

Kanamori Coulombdensity-density

1.0

0.5

0

1.0

0.5

0

(a) (b) (c)

(d) (e) (f)

FIG. 6. Generalized double occupations 〈niσ njσ ′ 〉 for parallel
(σ ′ = σ ) and antiparallel (σ ′ = σ ) spin orientation for the Co 3d
multiplet at T ≈ 33 K.

in Fig. 6 and illustrated by a set of matrix heat maps, but
their temperature dependence is much weaker than their de-
pendence on the parametrization of the Coulomb interaction.
For σ = σ ′, the diagonal elements correspond to the spin-
and orbital-resolved occupations 〈n̂iσ 〉. Note that all quantities
are symmetrized over both spin (σ ↔ σ ′) and orbital (i ↔ j)
indices. Within the density-density approximation, both the
dxy and dz2 orbitals are close to half filling (i.e., 〈n̂iσ 〉 = 0.5
electrons) and have well defined local moments. All the other
Co 3d orbitals are almost full. Moreover, within the (dxy, dz2 )
subspace, 〈n̂iσ n̂ jσ 〉 � 〈n̂iσ n̂ jσ 〉, for i 	= j, which marks the
clear tendency towards an S = 1 high-spin configuration fa-
vored by Hund’s coupling JH = Ui j ji. Within this picture,
which is very similar to the atomic ground state configuration
[13,16], not only can one identify dxy and dz2 as the Kondo-
active orbitals, but one could naively expect the physics to be
described to a good degree of approximation by a two-orbital
AIM, as also assumed in previous literature [16].

The situation is substantially overthrown in the case of
the Kanamori and full Coulomb parametrizations. In fact, by
progressively including more interaction terms beyond the
density-density approximation, i.e., moving from left to right
in Fig. 6, two trends emerge clearly. (i) There is a significant
charge redistribution within the Co 3d shell. In particular,
n̂iσ in the (dxy, dz2 ) subspace increases as (0.57, 0.60) →
(0.59, 0.65) → (0.64, 0.77), resulting in the suppression of
the local moment of the Kondo-active subspace observed in
Fig. 5. (ii) The interorbital (i 	= j) double occupations for
parallel and antiparallel spin orientations become progres-
sively more similar, i.e., 〈n̂iσ n̂ jσ 〉 
 〈n̂iσ n̂ jσ 〉 for all pairs of
orbitals. As a consequence, the tendency towards a high-spin
state of the (dxy, dz2 ) pair is substantially weakened. At the
same time, the dxy and dz2 orbitals still possess the two largest
local moments of the entire multiplet, so that they supposedly
maintain a prominent role in the Kondo screening process, but
with important contributions to the physics coming from the
other orbitals. The results are in complete agreement with the
conclusions of the spin susceptibility analysis.
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FIG. 7. Correlation functions describing orbital charge (Ci j) and
spin (Si j) fluctuations within the Co 3d shell, calculated at T ≈ 33 K.

The considerations above can also be better understood
by explicitly calculating the spin and charge fluctuations,
defined as

Si j = 〈σ̂iσ̂ j〉 − 〈σ̂i〉〈σ̂ j〉, (12)

Ci j = 〈n̂in̂ j〉 − 〈n̂i〉〈n̂ j〉, (13)

where we introduced the operators n̂i = n̂i↑ + n̂i↓ and σ̂i =
n̂i↑ − n̂i↓ (and 〈σ̂i〉 = 0 in the paramagnetic state). In Fig. 7
we show a matrix heat map for each of the correlators above,
for data representative of the low-temperature regime (at T ≈
33 K). As usual, we discuss the behavior of spin and charge
fluctuations upon increasing the complexity of the Coulomb
tensor. The data support the scenario of the destabilization
of the high-spin state in the (dxy, dz2 ) subspace as both their
spin moments (proportional to the elements Sii) and their
interorbital correlator Si 	= j are suppressed, while the spin mo-
ments of the orbitals in the rest of the 3d shell increase, as a
consequence of the charge redistribution. At the same time,
we observe a significant enhancement of charge fluctuations,
in both the inter- and the intraorbital components (in absolute
value, as Ci 	= j <0). The orbital spin polarization is respon-
sible for the orbital decoupling in the regime dominated by
the Hund exchange [44,45], while the enhancement of the
charge fluctuations is the hallmark of increased metallicity
in the (Kanamori and) full Coulomb parametrization(s), as
also previously reported in model studies of multiorbital im-
purity problems [46]. The high-spin state is weakened already
by the spin-flip term in the Kanamori Hamiltonian, but the
two-body mixing terms, involving combinations of three (e.g.,
Ui j jk) or even four (Ui jkl ) different orbital indices, which are
included within the full Coulomb parametrization, are highly
effective in reducing the “orbital rigidity” and eventually yield
a solution which is well described neither by a single S =1
Kondo effect [19] nor by two independently screened S =1/2
spins [14,16]. A thorough discussion of these terms and their
relation with Hund’s coupling is provided in Appendix B.

Interestingly, the temperature dependence of both spin and
charge fluctuations within the Co 3d shell is negligible with

1.0

0.8

0.6

0.4

0.2

0

Hund Hund

charge
transfer

rest rest

rest rest

0

0.4

0.8

1.2

04.0- 2.0 2.0 4.0

(a)

(b)

FIG. 8. (a) Generalized double occupations within the density-
density approximation. The 2 × 2 block represents the (dxy, dz2 )
subspace, while the extra block, labeled “rest,” denotes the average
over the diagonal elements for the (dyz, dxz, dx2−y2 ) subspace. Moving
away from integer filling nd = 8 results in a net charge transfer (in
addition to the extra �nd = 0.2 electrons) to the (dxy, dz2 ) subspace
from the rest of the multiplet. The overall effect is a weakening of
the tendency towards the S = 1 high-spin state. (b) Spectral function
A(ω) of the dxy and dz2 orbitals within the density-density approxima-
tion. The development of low-energy resonances away from integer
filling is compatible with an enhancement of the Kondo scale.

respect to the changes observed between different interaction
schemes, so that the above picture is valid in the whole range
300–30 K, and probably still holds below that.

C. Spectral signatures of the Kondo effect

Useful insight can also be obtained by looking at the
orbital-resolved spectral function of the Co 3d shell. While
one may estimate TK (or at least an apparent TK at T 	= 0)
from spectral features such as the width of the resonance
[14,16], we will refrain from doing so. Since our spectral
functions are obtained with a numerical analytic continuation
procedure (maximum entropy method), we only take them
as qualitative indications of the redistribution of the spectral
weight.

First, we consider results obtained within the density-
density approximation, which are shown in Fig. 8. For a Co
3d shell occupation of nd = 8.0 and at T = 58 K, neither the
dxy nor the dz2 orbital displays a resonant feature close to the
Fermi level, in agreement with the lack of Kondo screening.
By adjusting to nd = 8.2, corresponding to a charge transfer
from the Cu surface to the Co adatom, prominent resonances
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FIG. 9. (Main panel) Orbital-resolved spectral function of the Co
3d shell at integer filling, i.e., nd = 8 electrons in the full Coulomb
parametrization. The dyz and dxz resonances suggest that those or-
bitals may be relevant to the Kondo effect. (Side panels) Temperature
evolution of the dxy and dz2 low-energy resonances.

appear in the spectral functions of both orbitals. The analysis
of the charge redistribution within the 3d shell (upper panels
of Fig. 8) shows that, upon adding the extra �nd = 0.2 elec-
trons, the occupation of the Kondo-active orbitals increases
as (0.57, 0.60) → (0.63, 0.71). However, part of the charge
accumulating in the subspace comes from the rest of the
Co 3d shell. This is indicated by the red arrow in Fig. 8,
where the extra block denotes the average occupation of
the (dyz, dxz, dx2−y2) subspace. Such a charge redistribution is
detrimental to the stabilization of the high-spin state, which
one realizes by comparing the interorbital double occupations
〈n̂iσ n̂ jσ 〉 and 〈n̂iσ n̂ jσ 〉 (connected by red dots and a line in the
upper panels of Fig. 8). The effect of charging is qualitatively
analogous to, yet not as strong as, what we observed by com-
paring the density-density and full Coulomb parametrizations
at nd = 8.0 in Fig. 6. Hence both scenarios are compatible
with an enhancement of the Kondo scale.

A clear signature of the Kondo effect is indeed observed
already at integer filling in the full Coulomb spectral function,
which is shown in Fig. 9 for different temperatures. A clear
resonance close to the Fermi level is observed for both the
dxy and the dz2 orbitals. The resonance is already present at
T ≈ 100 K, but it gets progressively closer to the Fermi level
and its width decreases as the temperature is lowered (see
side panels of Fig. 9). Interestingly, within this interaction
scheme, a low-energy resonance develops also in the (dxz, dyz )
doublet. This feature is almost completely absent within the
density-density approximation, and it can be regarded as a
further indication that a purely (dxy, dz2 ) description of the
Kondo effect is not adequate, when accounting for a realistic
Coulomb interaction in Co/Cu(001). Similar resonances are
also evident in the spectral functions obtained away from
integer filling (not shown), where the role of the other three
orbitals is possibly enhanced.

V. DISCUSSION AND CONCLUSIONS

In this work we investigate the Kondo screening properties
of Co/Cu(001) in its full realistic complexity. We solve an
AIM for the whole Co 3d shell and we focus on the role of the
parametrization of the Coulomb tensor for the Kondo effect.

It is important to compare our findings to previous studies in
the literature, in order to highlight both the differences and the
similarities.

Previous theoretical analyses were restricted to a two-
orbital model for the Kondo-active orbitals [16], with
approximate interaction schemes [14,16] or impurity solvers
[14]. The most direct comparison can be done with the re-
sults reported by Jacob [14], obtained with similar interaction
parameters as ours, derived from first principles within the
constrained random-phase approximation. There, many-body
effects are taken into account at the level of the one-crossing
approximation (OCA), in contrast to our numerically ex-
act CT-QMC. The OCA calculation takes into account all
density-density terms as well as the spin-flip contributions. It
may therefore be regarded as an intermediate parametrization
between density-density and Kanamori, albeit restricted to
one-crossing diagrams. There, a Kondo feature for the dz2

orbital at T ∼ 10 K for Co/Cu(001) is reported, with a Kondo
temperature TK ≈ 90 K, estimated from the width of the
Kondo resonance in the spectral function. The lack of a similar
feature for the other Kondo-active orbital (dxy in the notation
of this work) was suggested as evidence of an underscreened
Kondo effect. Whether the Co magnetic moment is completely
screened at lower temperature, with the onset of a Fermi liquid
state and the realization of a two-stage Kondo effect, was not
investigated, and it remains debatable.

On the basis of our CT-QMC results we can delineate a
quite different situation, whose physical explanation can be
unveiled thanks to our comparative analysis of the various
Coulomb tensor parametrizations. Within the density-density
approximation the overall TK is much smaller than the
lowest temperature of our calculation, and the Nevidomskyy-
Coleman scenario for a spin S = 1 Kondo is fully realized. We
progressively include additional exchange interactions within
the Co 3d multiplet in the Kanamori and eventually all of them
in the full Coulomb parametrizations. Due to the associated
charge redistribution, spin fluctuations are partially quenched,
whereas charge fluctuations increase, together with the orbital
entanglement. Two effects consequently emerge. The dxy and
dz2 orbitals start to thrive on Kondo screening, especially with
the full Coulomb interaction, while the remaining three d
orbitals substantially increase their active contribution to the
local moment. The latter is transparently observed by com-
paring the charge distribution within the Co 3d multiplet in
Fig. 6 and the contribution of the (dxy, dz2 ) subspace to the
local moment in Fig. 5 (by moving from the left to the right
panels). The relevant role of the whole Co 3d shell within
the full Coulomb parametrization of the interaction has also
been suggested in the past [15,23]. However, the temperature
regime previously investigated is hardly relevant for extract-
ing useful information about the Kondo screening.

The outcome of the present study therefore changes the
conventional interpretation of the Kondo effect in the pro-
totypical Co-adatom systems, once a realistic interaction
tensor is properly taken into account. Since the whole 3d
shell is involved in the Kondo screening, one neither has a
Nevidomskyy-Coleman scenario with the screening of a S =
1 spin at low temperatures nor two independent S = 1/2 spin
Kondo replicas in the (dxy, dz2 ) subspace. The most appropri-
ate way of describing the Kondo effect in Co adatoms on a
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Cu(001) surface is, as a matter of fact, a multiorbital entangled
correlated state. While two of the five 3d orbitals have the
largest magnetic moment and a favorable hybridization to
the substrate in order to display clear Kondo peaks, they are
not decoupled enough from the other orbitals to allow for an
effective two-orbital description of the Co 3d shell.

Finally, we note that some details of the calculations may
differ from other results in the literature. For instance, Ja-
cob [14] and Baruselli et al. [16] consider STM geometries,
where the STM tip also consists of a Cu pyramid grown in
the (001) direction—or the (111) direction when consider-
ing Co/Cu(111). In some cases [8,14,47], besides the Co-Cu
adsorption distance, also the atomic positions of some Cu
atoms of the surface layer are relaxed. Despite these effects
possibly being important, we are confident that the differences
observed within the different parametrization of the Coulomb
interaction influence the Kondo screening in a more funda-
mental way than the details of the DFT calculations.

To conclude, we revisited the prototypical Co/Cu(001)
Kondo problem under a new light. We established how the
parametrization of the Coulomb tensor affects the screening
of the impurity magnetic moment, and we highlight the active
role of the whole Co 3d shell in the Kondo effect. Our analysis
is likely relevant and can be extended to other Kondo systems
with transition metal adatoms.
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APPENDIX A: DETAILS AND PHYSICAL IMPLICATIONS
OF THE k-MESH CONVERGENCE OF THE Cu(001)

SURFACE

Throughout our study, we realized that the physical picture
of Co/Cu(001) delicately depends on the size of the k mesh
of the Brillouin zone. In Fig. 10 we show the orbital-resolved
hybridization function �(ıωn) describing the embedding of
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FIG. 10. Real and imaginary parts of the hybridization function
of the Co dxy (a) and dz2 (b) orbitals in the Matsubara representation:
ωn = (2n + 1)π/β, with an infrared cutoff ∝β = 1000 eV−1. When
evaluated on different k-mesh sampling of the Brillouin zone, �(ıωn)
shows a slow convergence with the mesh size, in particular for the dz2

orbital.

the Co adatom on the Cu surface. We compare the results
obtained for different k meshes (all centered around the �

point). We find that �(ıωn) displays a slow convergence with
the size of the k mesh, in particular for the dz2 orbital. For
the sparsest mesh considered, i.e., 4 × 4 × 1 k points, �(ıωn)
at low frequencies displays a qualitatively different behavior
for the dz2 orbital when compared to more accurate meshes
(with up to 100 × 100 × 1 k points), while for the dxy orbital
the differences are mainly quantitative. Since the differences
are observed at relatively low energy scales, it is possible
that this effect may be overlooked in calculations with a
low energy resolution, or with a large smearing parameter
η in the hybridization function �(ω + ıη). Differences be-
tween the 40 × 40 × 1 and 100 × 100 × 1 k-point meshes can
be observed on energy scales <0.01 eV, which corresponds
approximatively to the lowest Matsubara frequency for the
lowest temperatures of our QMC calulations, β = 350 eV−1

(shaded area in Fig. 10).
However, here we show that this seemingly technical detail

can have drastic consequences on the physical description of
the system. For instance, we can consider the temperature
evolution of the lowest Matsubara frequency ω0 of the elec-
tronic self-energy, which in a Fermi liquid should scale as
Im�(ıω0) ∝ T (see, e.g., Refs. [41,50]). In Fig. 11 we show
Im�(ıω0) for both the dxy and dz2 orbitals within the density-
density approximation. The Fermi liquid scaling seems to
be recovered at low-enough temperatures for the sparsest
4 × 4 × 1 k mesh, for both orbitals. For denser k meshes, and
in particular for the 100 × 100 × 1 one, the self-energy of the
dz2 orbital displays a clear non-Fermi liquid behavior, which
we follow down to T ≈ 33 K.

Finally, in Fig. 12 we compare Im�(ıω0) obtained within
all parametrizations of the Coulomb tensor. We note that only
the full Coulomb case seems to be compatible with a linear
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FIG. 11. Temperature evolution of Im�(ıω0) for the Co dxy and
dz2 orbitals within the density-density approximation. A sparse 4 ×
4 × 1 k mesh suggests the onset of a Fermi-liquid regime at rela-
tively high temperature, whereas strongly non-Fermi liquid features
emerge for denser meshes.

behavior, although this feature alone is not enough to confirm
the onset of a Fermi liquid state at low temperatures. This
observation is important because, in the literature, calcula-
tions for Co/Cu(001) performed without including the full
Coulomb tensors [14,16] indicated the Kondo screening to
be the most effective for the dz2 orbital. Our calculations
show that, with an accurate-enough description of the hy-
bridization between the Co adatom and the Cu surface, and at
low-enough temperatures, the density-density approximation
does not confirm this picture. It is instead necessary to take
into account more realistic forms of the Coulomb interaction
to obtain estimates of the Kondo scale comparable with the
experimental observations.

APPENDIX B: COULOMB TENSOR

The full Coulomb interaction Hamiltonian for the impurity
model is given by

ĤC = 1

2

∑
mm′m′′m′′′

∑
σσ ′

Ui jkl d̂
†
mσ d̂†

m′σ ′ d̂m′′′σ ′ d̂m′′σ , (B1)

where Umm′m′′m′′′ is the Coulomb tensor, labeled by the orbital
momentum quantum number m = −�, . . . , 0, . . . , � (in this
case, � = 2 for the Co 3d shell). For a spherically symmet-
ric atom, the Coulomb tensor can be expressed as follows
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FIG. 12. Temperature evolution of Im�(ıω0) for the Co dxy and
dz2 orbitals and different parametrization schemes of the Coulomb
interaction for the 100 × 100 × 1 k mesh.

[29,31]:

Umm′m′′m′′′ =
2�∑

k=0

ak (mm′; m′′m′′′)F k, (B2)

where the coefficients ak and the Slater parameters F k are
given by integrals of spherical harmonics and the radial part
of the wave function, respectively. Their expressions are well
known and can be found, e.g., in Refs. [29,31,33]. In the
basis of the spherical harmonics, the Coulomb tensor in-
cludes all two-, three-, and four-index interaction terms which
separately fulfill the conservation of both spin and angular
momentum [29]. The first condition is encoded in the choice
of the spin indices of Hamiltonian (B1), while the latter reads
m + m′ = m′′ + m′′′.

For actual calculations it is convenient to rotate the
Coulomb tensor Umm′m′′m′′′ → Ui jkl from spherical to cubic
harmonics. The corresponding transformation (m > 0) for the
basis functions is given by

Km
� = 1√

2

[
(−1)mY m

� + Y −m
�

]
,

K0
� = Y �

0 ,

K−m
� = 1

ı
√

2

[
(−1)mY m

� − Y −m
�

]
.

(B3)

In the case of the Co 3d shell we label the cubic harmon-
ics as (K−2

2 , K−1
2 , K0

2 , K1
2 , K2

2 ) = (dxy, dxz, dz2 , dyz, dx2−y2 ). A
data file containing the full Coulomb tensor in this basis,
which we used in all of our numerical calculations, is also
provided as Supplemental Material [51].

1. One- and two-index interaction terms

The terms of the Coulomb tensor Ui jkl which contain only
two different indices can be classified as follows: the density-
density terms, which include the intraorbital interaction Uiiii

(existing only for σ 	= σ ′ due to the Pauli exclusion princi-
ple) and the interorbital interaction Ui ji j = (Uiiii + Uj j j j )/2 −
2Ui j ji, where Ui j ji represents the Hund’s exchange coupling
for parallel spin configurations [14]. Other additional ex-
change terms, for opposite spin configurations, account for
spin-flip and pair hopping processes, with values Ui j ji and
Uii j j , which are the same as the density-density exchange in
the cubic harmonics basis.

It is possible to take all previous terms into account in a rel-
atively compact form, giving rise to the Kanamori interaction
Hamiltonian [see also Eqs. (4) and (5)]

ĤK =
∑

i

Uiin̂i↑n̂i↓ +
∑
i 	= j

∑
σσ ′

(Ui j − Ji jδσσ ′ )n̂iσ n̂ jσ ′

+
∑
i 	= j

Ji j (d̂
†
i↑d̂†

j↓d̂i↓d̂ j↑ − d̂†
i↑d̂†

i↓d̂ j↑d̂ j↓),
(B4)

which is defined in terms of the two-index interactions Uii =
Uiiii, Ui j = Ui ji j , and Ji j = Ui j ji. One can reduce to only two
parameters, U and J , by expressing the interaction in terms of
the Slater integrals F 0, F 2, and F 4, as

U0 = F 0 + 8

7

1

14
(F 2 + F 4), (B5)
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TABLE II. Intra- and interorbital interactions of density-density
type in the spherically symmetric Coulomb tensor.

Ui ji j dxy dxz dz2 dyz dx2−y2

dxy U0 U0 − 2J1 U0 − 2J2 U0 − 2J1 U0 − 2J3

dxz U0 U0 − 2J4 U0 − 2J1 U0 − 2J1

dz2 U0 U0 − 2J4 U0 − 2J2

dyz U0 U0 − 2J1

dx2−y2 U0

J1 = 1

49

(
3F 2 + 20

9
F 4

)
, (B6)

J2 = −2
5

7

1

14
(F 2 + F 4) + 3J1, (B7)

J3 = 6
5

7

1

14
(F 2 + F 4) − 5J1, (B8)

J4 = 4
5

7

1

14
(F 2 + F 4) − 3J1, (B9)

and identifying U = F 0 and J = 1
14 (F 2 + F 4) with an almost

constant ratio F 4/F 2 ≈ 0.625 for 3d ions [52]. See also, e.g.,
Refs. [32,33] for a related discussion.

All two-index terms in the basis of the 3d cubic harmonics
are summarized in Tables II and III, for reference. In Fig. 13
we show a schematic representation of all possible two-index
interaction terms (excluding permutations) for the 3d shell in
the basis of the cubic harmonics.

For our spherically symmetric calculations of the
Co/Cu(001) system, we set U = 4.0 eV and J = 0.9 eV,
which characterize the interaction matrix with Slater integrals
F 0 = 4.0 eV, F 2 
 7.75 eV, and F 4 
 4.85 eV, and result
in the interaction parameters U0 = 5.02 eV, J1 = 0.69 eV,
J2 = 0.80 eV, J3 = 0.39 eV, and J4 = 0.49 eV.

In the case of a nonspherical Coulomb tensor, some sym-
metries between the interaction terms are lifted. For instance,
symmetries between all pairs of dxy, dxz, and dyz orbitals,
or between the dz2 and any of the two planar orbitals (dxy

and dx2−y2 ). Moreover, the intraorbital term Uiiii becomes or-
bital dependent. The nonspherical interaction parameters for
Co/Cu(001) have been evaluated with the constrained random
phase approximation, in e.g., Ref. [14].

TABLE III. Hund’s exchange couplings of density-density and
Kanamori type in the spherically symmetric Coulomb tensor.

Ui j ji dxy dxz dz2 dyz dx2−y2

dxy J1 J2 J1 J3

dxz J4 J1 J1

dz2 J4 J2

dyz J1

dx2−y2

(a)

(b)

(c)

(d)

(e)

FIG. 13. Schematic representation of the two-index interaction
terms (excluding permutations) for the 3d shell in the basis of the cu-
bic harmonics. The white and black spins denote the initial and final
configurations connected by the operator, respectively. The terms are
(a) intraorbital interaction, (b), (c) interorbital interactions, including
the Hund’s exchange for parallel spin configurations, (d) spin flip,
and (e) pair hopping.

2. Three- and four-index interaction terms

Even though the Kanamori parametrization restores the
rotational invariance of the Coulomb tensor (in the spheri-
cal approximation) and provides an exact parametrization for
two- and three-orbital models, it does not contain all possible
interaction terms allowed for the whole 3d shell.

In the basis of the spherical harmonics, there exist three-
index terms for the form Ummm′m′′ and Um′m′′mm such that
2m = m′ + m′′. All other terms, e.g., Umm′m′′m or Um′mmm′′ ,
can only conserve the angular momentum if m′ = m′′, giving
rise to two-index terms already included in the Kanamori
parametrization. These interactions can be interpreted in terms
of the creation or annihilation of an orbital pair. However,
once rotated in the cubic harmonics basis, besides the pair
creation (Uj jik) or annihilation (Uik j j) terms, one also obtains
terms associated to matrix elements Uji jk and Ujik j (σ = σ ′).
Similarly, in the only four-index terms Umm′m′′m′′′ that are al-
lowed, the pair of creation operators can only carry angular
momentum m + m′ = ±1 or m + m′ = 0 (m 	= 0), which is
mirrored by the annihilation operators m′′ + m′′′. These inter-
actions resemble hopping of unpaired electrons involving four
different orbitals both in the spherical and in the cubic har-
monics basis. In Fig. 14 we show a schematic representation
of three- and four-index interaction terms (excluding permu-
tations) for the 3d shell in the basis of the cubic harmonics.

A complete “analytic” parametrization of all possible
three- and four-index terms, in analogy to the standard one
for the two-index terms, is out of the scope of this work.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 14. Schematic representation of the three- and four-index
interaction terms (excluding permutations) for the 3d shell in the
basis of the cubic harmonics. The white and black spins denote the
initial and final configurations connected by the operator, respec-
tively. The terms are (a), (b) correction to the Hund’s exchange due
to an interorbital effective hopping, (c), (d) annihilation and creation
of an orbital pair, and (e), (f) two-unpaired-electrons hopping.

However, all the integrals ak are tabulated [29] and the numer-
ical values of the corresponding terms can be calculated in a
straightforward way for the 3d shell, given the Slater integrals
F 0, F 2, and F 4. For the values chosen here, we obtain three

independent parameters in the spherical approximation, which
we refer to as J5 = 0.18 eV, J6 = 0.35 eV, and J7 = 0.31 eV.
These interactions appear with both positive and negative sign
in the Coulomb tensor, and they are associated to three- and
four-index terms, so that a complete disentangling of these
contributions is a nontrivial task, even in the spherical approx-
imation. We provide a datafile with all elements of the full
Coulomb tensor Ui jkl , in the basis of the cubic harmonics, in
the Supplemental Material [51].

APPENDIX C: QUANTUM NUMBERS

It is worth mentioning that all calculations for the
Co/Cu(001) system have been performed with the full
Coulomb tensor, and the interaction Hamiltonian (i.e.,
density-density, Kanamori, or full Coulomb) is selected by re-
quiring the conservation of a specific set of quantum numbers.

Any spin-independent two-body interaction conserves the
electron number

∑
iσ n̂iσ and the spin projection Ŝz. The

density-density interaction conserves the electron number in
each spin-orbital n̂iσ . Instead, the Kanamori interaction con-
serves the quantity

∑
i 2i(n̂i↑ − n̂i↓)2, which represents the

pattern of orbital single occupations, also known as PS num-
ber [34], but relaxes the conservation of the electron number
on each orbital, regardless of spin, by allowing the spin-flip
exchange interaction term (see schematics in Fig. 13). In
general, three- and four-index interaction terms included in
the full Coulomb tensor conserve, e.g., neither the spin-orbital
occupation nor the PS number (see schematics in Fig. 14).

In the CT-QMC calculations for the simpler interaction
parametrizations using W2DYNAMICS [35], the level of sim-
plification was specified by requiring the conservation of the
appropriate quantum numbers. This causes the local state
space to be partitioned in such a way that terms of the
Coulomb tensor connecting states with different quantum
number values do not enter into the imaginary time evolution
[35].
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A. Katanin, A. Toschi, and G. Sangiovanni, Nat. Commun. 8,
16062 (2017).

[33] M. Karolak, Ph.D. thesis, Universität Hamburg, Hamburg,
Germany, 2013.

[34] N. Parragh, A. Toschi, K. Held, and G. Sangiovanni, Phys. Rev.
B 86, 155158 (2012).

[35] M. Wallerberger, A. Hausoel, P. Gunacker, A. Kowalski, N.
Parragh, F. Goth, K. Held, and G. Sangiovanni, Comput. Phys.
Commun. 235, 388 (2019).
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