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Ab initio solution of the many-electron Schrödinger equation with deep neural networks
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Given access to accurate solutions of the many-electron Schrödinger equation, nearly all chemistry could be
derived from first principles. Exact wave functions of interesting chemical systems are out of reach because they
are NP-hard to compute in general, but approximations can be found using polynomially scaling algorithms.
The key challenge for many of these algorithms is the choice of wave function approximation, or Ansatz, which
must trade off between efficiency and accuracy. Neural networks have shown impressive power as accurate
practical function approximators and promise as a compact wave-function Ansatz for spin systems, but problems
in electronic structure require wave functions that obey Fermi-Dirac statistics. Here we introduce a novel deep
learning architecture, the Fermionic neural network, as a powerful wave-function Ansatz for many-electron
systems. The Fermionic neural network is able to achieve accuracy beyond other variational quantum Monte
Carlo Ansatz on a variety of atoms and small molecules. Using no data other than atomic positions and charges,
we predict the dissociation curves of the nitrogen molecule and hydrogen chain, two challenging strongly
correlated systems, to significantly higher accuracy than the coupled cluster method, widely considered the most
accurate scalable method for quantum chemistry at equilibrium geometry. This demonstrates that deep neural
networks can improve the accuracy of variational quantum Monte Carlo to the point where it outperforms other
ab initio quantum chemistry methods, opening the possibility of accurate direct optimization of wave functions
for previously intractable many-electron systems.
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I. INTRODUCTION

The success of deep learning in artificial intelligence [1,2]
has led to an outpouring of research into the use of neural
networks for quantum physics and chemistry. Many of these
methods train a deep neural network to predict properties of
novel systems by use of supervised learning on a dataset com-
piled from existing computational methods—typically density
functional theory (DFT) [3,4], exact solutions on a lattice
[5], or coupled cluster with single, double and perturbative
triple excitations [CCSD(T)] [6,7]. Yet all of these methods
have drawbacks. Even CCSD(T), which is generally much
more accurate than DFT, has difficulties with bond break-
ing and transition states [8]. While methods exist that are
even more accurate, most suffer from impractical scaling
(in the worst case exponential) [9] or require complicated
system-dependent tuning, making them difficult to apply “out-
of-the-box” to new systems. Here we focus instead on ab
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initio methods that use deep neural networks as approximate
solutions to the many-electron Schrödinger equation with-
out the need for external data. We are able to achieve very
high accuracy on a number of small but challenging systems,
all with the same neural network architecture, suggesting
that our method could be a promising “out-of-the-box” so-
lution for larger systems for which existing approaches are
insufficient.

The ground-state wave function ψ (x1, x2, . . . , xn) and en-
ergy E of a chemical system with n electrons may be found
by solving the time-independent Schrödinger equation,

Ĥψ (x1, . . . , xn) = Eψ (x1, . . . , xn), (1)

Ĥ = − 1

2

∑
i

∇2
i +

∑
i> j

1

|ri − r j |

−
∑

iI

ZI

|ri − RI | +
∑
I>J

ZI ZJ

|RI − RJ | ,

where xi = {ri, σi} are the coordinates of electron i, with ri ∈
R3 the position and σi ∈ {↑,↓} the spin, ∇2

i is the Laplacian
with respect to ri, and RI and ZI are the position and atomic
number of nucleus I . We work in the Born-Oppenheimer
approximation [10], where the nuclear positions are fixed
input parameters, and Hartree atomic units are used through-
out. The Schrödinger differential operator is spin independent
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but the electron spin matters because the wave function
must obey Fermi-Dirac statistics—it must be antisymmetric
under the simultaneous exchange of the position and spin
coordinates of any two electrons: ψ (. . . , xi, . . . , x j, . . .) =
−ψ (. . . , x j, . . . , xi, . . .).

Many approaches in quantum chemistry start from a finite
set of one-electron orbitals φ1, . . . , φN and approximate the
many-electron wave function as a linear combination of an-
tisymmetrized tensor products (Slater determinants) of those
functions:

∑
P

sign(P )
∏

i

φk
i (xPi ) =

∣∣∣∣∣∣∣
φk

1 (x1) . . . φk
1 (xn)

...
...

φk
n (x1) . . . φk

n (xn)

∣∣∣∣∣∣∣
= det

[
φk

i (x j )
] = det[�k], (2)

ψ (x1, . . . , xn) =
∑

k

ωk det[�k], (3)

where {φk
1, . . . , φ

k
n} is a subset of n of the N orbitals, the sum

in Eq. (3) is taken over all permutations P of the electron
indices, and the sum in Eq. (4) is over all subsets of n orbitals.
The difficulty is that the number of possible Slater deter-
minants rises exponentially with the system size, restricting
this “full configuration-interaction” (FCI) approach to tiny
molecules, even with recent advances [11].

To address problems of practical interest, a more compact
representation of the wave function is needed. The choice
of function class used to approximate the wave function is
known as the wave-function Ansatz. For most applications of
quantum Monte Carlo (QMC) methods to quantum chemistry,
the default choice is the Slater-Jastrow Ansatz [12], which
takes a truncated linear combination of Slater determinants
and adds a multiplicative term—the Jastrow factor—to cap-
ture close-range correlations. The Jastrow factor is normally a
product of functions of the distances between pairs and triplets
of particles. Additionally, a backflow transformation [13] is
sometimes applied before the orbitals are evaluated, shifting
the position of every electron by an amount dependent on
the positions of nearby electrons. There are many alternative
Ansatz [14,15], but for continuous-space many-electron prob-
lems in three dimensions the Slater-Jastrow-backflow form
remains the default.

Here, we greatly improve the accuracy of the Slater-
Jastrow-backflow variational quantum Monte Carlo (VMC)
method by using a neural network we dub the Fermionic
Neural Network, or FermiNet, as a more flexible Ansatz.
This avoids the use of a finite basis set, a significant source
of error for other Ansatz, and models higher-order electron-
electron interactions compactly. The use of neural networks as
a compact wave-function Ansatz has been studied before for
spin systems [16–20] and many-electron systems on a lattice
[19,21] as well as small systems of bosons in continuous
space [22]. Applications of neural network Ansatz to chemical
systems have been limited to date, presumably due to the
complexity of Fermi-Dirac statistics. Existing work has been
restricted to very small numbers of electrons [23], or has been
of very low accuracy [24]. Unlike these other approaches, we
use the Slater determinant as the starting point for our Ansatz,

and then extend it by generalizing the single-electron or-
bitals to include generic exchangeable nonlinear interactions
of all electrons. In a conventional backflow transformation,
the electron positions r j at which the one-electron orbitals in
the Slater determinants are evaluated are replaced by collec-
tive coordinates r j + ∑

i( �= j) η(ri j )(ri − r j ), but the orbitals
remain functions of a single three-dimensional variable. The
FermiNet wave function goes much further, replacing the
one-electron orbitals φk

i (x j ) by functions of 3n independent
variables. Every “orbital” in every determinant now depends
both on x j and (in a general symmetric way) on the position
and spin coordinates of every other electron.

Our approach is similar in spirit to the neural network
backflow transform [21] that has been applied to discrete
systems. Certain simplifications in the discrete case allow the
use of conventional neural networks, while the continuous
case requires a novel architecture to handle antisymmetry
constraints, boundary conditions and cusps. The closest prior
work we are aware of in continuous space is the iterative
backflow transform [25,26], which has been applied to su-
perfluid 3He. While that work uses intermediate layers of
the same dimensionality as the input, the FermiNet can use
intermediate layers of arbitrary dimensionality, increasing the
representational capacity [27].

The FermiNet is not only an improvement over exist-
ing Ansatz for VMC, but is competitive with and in some
cases superior to more sophisticated quantum chemistry algo-
rithms. Projector methods such as diffusion quantum Monte
Carlo (DMC) [12] and auxiliary field quantum Monte Carlo
(AFQMC) [28] generate stochastic trajectories that sample the
ground-state wave function without the need for an explicit
representation, although accurate explicit trial wave functions
are still required for good performance and numerical sta-
bility. We find the FermiNet is competitive with projector
methods on all systems investigated, in contrast with the con-
ventional wisdom that VMC is less accurate. Coupled cluster
methods [8] use an Ansatz that multiplies a reference wave
function by an exponential of a truncated sum of creation
and annihilation operators. This proves remarkably accurate
for equilibrium geometries, but conventional reference wave
functions are insufficient for systems with many low-lying
excited states. We evaluate the FermiNet on a variety of
stretched systems and find that it outperforms coupled cluster
in all cases.

II. FERMIONIC NEURAL NETWORKS

A. Fermionic neural network architecture

To construct an expressive neural network Ansatz, we note
that nothing requires the orbitals in the matrix in Eq. (3) to
be functions of the coordinates of a single electron. The only
requirement for the determinant of a matrix-valued function of
x1, x2, . . ., xn to be antisymmetric is that exchanging any two
input variables, xi and x j , exchanges two rows or columns of
the output matrix, leaving the rest invariant. This observation
allows us to replace the single-electron orbitals φk

i (x j ) by
multielectron functions φk

i (x j ; x1, . . . , x j−1, x j+1, . . . , xn) =
φk

i (x j ; {x/ j}), where {x/ j} denotes the set of all electron states
except x j , so long as these functions are invariant to any
change in the order of the arguments after x j . In theory, a
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FIG. 1. The Fermionic neural network (FermiNet). Top: Global architecture. Features of one or two electron positions are inputs to different
streams of the network. These features are transformed through several layers, a determinant is applied, and the wave function at that position
is given as output. Bottom: Detail of a single layer. The network averages features of electrons with the same spin together, then concatenates
these features to construct an equivariant function of electron position at each layer.

single determinant made up of these permutation-equivariant
functions is sufficient to represent any antisymmetric function
(see Appendix B); however, the practicality of approximat-
ing an antisymmetric function will depend on the choice
of permutation-equivariant function class; we hence use a
small linear combination of nk determinants in this work.
The construction of a set of these permutation-equivariant
functions with a neural network is the main innovation of
the FermiNet. We emphasize that determinants constructed
from permutation-equivariant functions are substantially more
expressive than conventional Slater determinants. Figure 1
contains a schematic of the network and Algorithm I pseu-
docode for evaluating the network.

The Fermionic neural network takes features of single
electrons and pairs of electrons as input. As input to the single-
electron stream of the network, we include both the difference
in position between each electron and nucleus ri − RI and
the distance |ri − RI |. The input to the two-electron stream
is similarly the differences ri − r j and distances |ri − r j |.
Adding the absolute distances between particles directly as
input removes the need to include a separate Jastrow factor
after a determinant. As the distance is a nonsmooth func-
tion at zero, the neural network is capable of expressing the
nonsmooth behavior of the wave function when two particles
coincide—the wave-function cusps. Accurately modeling the
cusps is critical for correctly estimating the energy and other
properties of the system. The quality of the wave-function

cusps for the helium atom are investigated in Appendix F. We
denote the concatenation of all features for one electron h0

i ,
or h0α

i if we explicitly index its spin α ∈ {↑,↓}; the features
of two electrons are denoted h0

i j or h0αβ
i j . If the system has n↑

spin-up electrons and n↓ spin down electrons, then without
loss of generality we can reorder the electrons so that σ j =↑
for j ∈ 1, . . . , n↑ and σ j =↓ for j ∈ n↑ + 1, . . . , n.

To satisfy the overall antisymmetry constraint for a
fermionic wave function, intermediate layers of the Fermionic
Neural Network must mix information together in a
permutation-equivariant way. Permutation-equivariant neural
network layers like self-attention have gained success in re-
cent years in natural language processing [29] and protein
folding [30], but we pursue a simpler yet effective ap-
proach. Permutation-equivariant layers have also been widely
adopted in the computational chemistry and machine learn-
ing community for modeling energies and force fields from
atomic configurations [3,31,32]. The Fermionic Neural Net-
work shares some architectural details with these models, such
as the use of pairwise distances as inputs and parallel streams
of feature vectors, one per particle, through the network, but
is tailored specifically for mapping electronic configurations
to wave-function values with fixed atomic positions, rather
than mapping atomic positions to total energies and other
properties.

In our intermediate layers, we take the mean of activations
from different streams of the network, concatenate these mean
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Algorithm 1: FermiNet evaluation.

Require: walker configuration {r↑
1 , · · · , r↑

n↑ , r↓
1 , · · · , r↓

n↓ }
Require: nuclear positions {RI}
1: for each electron i, α do
2: h	α

i ← concatenate(rα
i − RI , |rα

i − RI | ∀ I )
3: h	αβ

i j ← concatenate(rα
i − rβ

j , |rα
i − rβ

j | ∀ j, β )
4: end for
5: for each layer 	 ∈ {0, L − 1} do

6: g	↑ ← 1
n↑

∑n↑
i h	↑

i

7: g	↓ ← 1
n↓

∑n↓
i h	↓

i

8: for each electron i, α do

9: g	α↑
i ← 1

n↑
∑n↑

j h	α↑
i j

10: g	α↓
i ← 1

n↓
∑n↓

j h	α↓
i j

11: f	α
i ← concatenate(h	α

i , g	↑, g	↓, g	α↑
i , g	α↓

i )
12: h	+1α

i ← tanh (matmul(Vl , f	α
i ) + bl ) + h	α

i

13: h	+1αβ

i j ← tanh (matmul(Wl , h	αβ

i j ) + cl ) + h	αβ

i j

14: end for
15: end for
16: for each determinant k do
17: for each orbital i do
18: for each electron j, α do
19: e ← envelope(rα

j , {rα
i − RI})

20: φi(rα
j ; {rα

/ j}; {rᾱ}) = (dot(wkα
i , hLα

j ) + gkα
i )e

21: end for
22: end for
23: Dk↑ ← det [φk↑

i (r↑
j ; {r↑

/ j}; {r↓})]
24: Dk↓ ← det [φk↓

i (r↓
j ; {r↓

/ j}; {r↑})]
25: end for
26: ψ ← ∑

k ωkDk↑Dk↓

activations together and append them to the single-electron
streams of the network. For a single layer this is a purely linear
operation, but when combined with a nonlinear activation
function after each layer it becomes a flexible architecture for
building permutation-equivariant functions [33]. Information
from both the other one-electron streams and the two-electron
streams are fed into the one-electron streams. However, to
reduce the computational overhead, no information is trans-
ferred between two-electron streams—these are multilayer
perceptrons running in parallel. If the outputs of the one-
electron stream at layer 	 with spin α are denoted h	α

i and
outputs of the two-electron stream are h	αβ

i j , then the input
to the one-electron stream for electron i with spin α at layer
	 + 1 is

⎛
⎝h	α

i ,
1

n↑

n↑∑
j=1

h	↑
j ,

1

n↓

n↓∑
j=1

h	↓
j ,

1

n↑

n↑∑
j=1

h	α↑
i j ,

1

n↓

n↓∑
j=1

h	α↓
i j

⎞
⎠

= (
h	α

i , g	↑, g	↓, g	α↑
i , g	α↓

i

) = f	α
i , (4)

which is the concatenation of the mean activation for spin up
and down parts of the one and two electron streams, respec-
tively. This concatenated vector is then input into a linear layer
followed by a tanh nonlinearity. A residual connection is also

added between layers of the same shape, for both one and two
electron streams:

h	+1α
i = tanh

(
V	f	α

i + b	
) + h	α

i ,

h	+1αβ
i j = tanh

(
W	h	αβ

i j + c	
) + h	αβ

i j . (5)

After the last intermediate layer of the network, a final
spin-dependent linear transformation is applied to the acti-
vations, and the output is multiplied by a weighted sum of
exponentially decaying envelopes, which enforces the bound-
ary condition that the wave function goes to zero far away
from the nuclei:

φkα
i

(
rα

j ;
{
rα
/ j

}
;
{
rᾱ

}) = (
wkα

i · hLα
j + gkα

i

)
×

∑
m

π kα
im exp

( − ∣∣�kα
im

(
rα

j − Rm
)∣∣),

(6)

where ᾱ is ↓ if α is ↑ or vice versa, hLα
j is an output from the

Lth (final) layer of the intermediate single-electron features
network for electrons of spin α, and wkα

i (gkα
i ) are the weights

(biases) of the final linear transformation for determinant
k. The learned parameters π kα

im and �kα
im ∈ R3×3 control the

anisotropic decay to zero far from each nucleus. The functions
{φkα

i (rα
j )} are then used as the input to multiple determinants,

and the full wave function is taken as a weighted sum of these
determinants:

ψ (r↑
1 , . . . , r↓

n↓ ) =
∑

k

ωk
(

det
[
φ

k↑
i (r↑

j ; {r↑
/ j}; {r↓})

]
× det

[
φ

k↓
i (r↓

j ; {r↓
/ j}); {r↑}; ]). (7)

Equation (8) uses the fact that the full determinant det[�] =
det [φi(x j ; {x/ j})] may be replaced by a product of spin-up
and spin-down terms if we choose φi(x j ; {x/ j}) = 0 if i ∈
1 . . . n↑ and j ∈ n↑ + 1, . . . , n or i ∈ n↑ + 1, . . . , n and j ∈
1, . . . , n↑. Then the matrix � is block-diagonal and

det[�] = det[φi(x j ; {x/ j})]

= det[φ↑
i (r↑

j ; {r↑
/ j}; {r↓})] det[φ↓

i (r↓
j ; {r↓

/ j}; {r↑})]. (8)

The new wave function is only antisymmetric under exchange
of electrons of the same spin, {r↑} or {r↓}, but neverthe-
less yields correct expectation values of spin-independent
observables and the fully antisymmetric wave function can
be reconstructed if required. This factorization allows spin-
dependence to be handled explictly rather than as input to the
network.

The linear combination of determinants in Eq. (8) bears
some resemblance to Ansatz used in truncated configura-
tion interaction methods like CI singles and doubles (CISD),
which are known to have issues with size-consistency, thus
it is natural to wonder if the FermiNet also has these issues.
The determinants in the FermiNet are very different from
conventional Slater determinants, as they allow for essentially
arbitrary correlations between electrons in each orbital φkα

i .
We prove in Appendix B that a single determinant of this form
is in theory general enough to represent any antisymmetric
function, though in practice we require a small number of
determinants to reach high accuracy. This may be due to
the limitations of finite-size neural networks in representing
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functions of the type described in Appendix B. In all our ex-
periments on N2 and the hydrogen chain (Secs. III D and III E,
Table VI), the FermiNet was able to learn a size-consistent
solution.

B. Wave-function optimization

As in the standard setting for wave-function optimization
for variational Monte Carlo, we sought to minimize the energy
expectation value of the wave-function Ansatz:

L(θ ) = 〈ψθ |Ĥ |ψθ 〉
〈ψθ |ψθ 〉 =

∫
dX ψ∗

θ (X)Ĥψθ (X)∫
dX ψ∗

θ (X)ψθ (X)
,

where θ are the parameters of the Ansatz, Ĥ is the Hamilto-
nian of the system as given in Eq. (1), and X = (x1, . . . , xn)
denotes the full state of all electrons. As Ĥ is time-reversal
invariant and Hermitian, its eigenfunctions and eigenvalues
are real. If the minimization is taken over all real normaliz-
able functions, then the minimum of the energy occurs when
ψθ (X) is the ground-state eigenfunction of Ĥ ; for a more
restricted Ansatz, the minimum lies above the ground-state
eigenvalue. When samples from the probability distribution
defined by the wave-function Ansatz p(X) ∝ ψ2

θ (X) are avail-
able, unbiased estimates of the gradient of the energy with
respect to θ can be computed as follows:

EL(X) = ψ−1(X)Ĥψ (X),

∇θL = Ep(X)[(EL − Ep(X)[EL])∇θ log|ψ |], (9)

where EL is the local energy and we have dropped the de-
pendence of ψ on θ for clarity. Recent developments [28,35–
37], including investigating first-order stochastic opitimiza-
tion methods from the machine learning community [38,39],
have enabled optimization of conventional wave functions
with large parameter sets. We use a second-order method
which can exploit the structure of the neural network.

For all wave-function Ansätze used in this paper, the de-
terminants were computed in the log domain, and the final
network output gave the log of the absolute value of the wave
function, along with its sign. The local energy was computed
directly in the log domain using the formula:

EL(X) = ψ−1(X)Ĥψ (X)

= −1

2

∑
i

[
∂2log|ψ |

∂r2
i

∣∣∣∣
X

+
(

∂log|ψ |
∂ri

∣∣∣∣
X

)2
]

+ V (X),

where V (X) is the potential energy of the state X and the
index i runs over all 3N dimensions of the electron position

vector. To optimize the wave function, we used a modified
version of Kronecker-factored approximate curvature (KFAC)
[40], an approximation to natural gradient descent [41] appro-
priate for neural networks. Natural gradient descent updates
for optimizing L with respect to parameters θ have the form
δθ ∝ F−1∇θL(θ ), where F is the Fisher Information Matrix
(FIM):

Fi j = Ep(X)

[
∂logp(X)

∂θi

∂logp(X)

∂θ j

]
.

This is equivalent to stochastic reconfiguration [42] when the
probability density is unnormalized (see Appendix C) and
closely related to the linear method of Toulouse and Umrigar
[43].

For large neural networks with thousands to millions of
parameters, solving the linear system Fδθ = ∇θL becomes
impractical. KFAC ameliorates this with two approximations.
First, any terms Fi j are assumed to be zero when θi and θ j

are in different layers of the network. This makes the FIM
block-diagonal and significantly more efficient to invert. The
second approximation is based on the structure of the gradient
for a linear layer in a neural network. If W	 is the weight matrix
for layer 	 of a network, then the block of the FIM for that
weight is, in vectorized form,

Ep(X)

[
∂logp(X)

∂vec(W	)

∂logp(X)

∂vec(W	)

T ]

= Ep(X)[(a	 ⊗ e	)(a	 ⊗ e	)T ], (10)

where a	 are the forward activations and e	 are the backward
sensitivities for that layer. KFAC approximates the inverse
of this block as the Kronecker product of the inverse second
moments:

Ep(X)[(a	 ⊗ e	)(a	 ⊗ e	)T ]−1 ≈ Ep(X)[a	aT
	 ]−1

⊗ Ep(X)[e	eT
	 ]−1. (11)

Further details can be found in Martens and Grosse (2015)
[40].

The original KFAC derivation assumed the density to
be estimated was normalized, but we wish to extend it to
stochastic reconfiguration for unnormalized wave functions.
In Appendix C, we show that if we only have access to an un-
normalized wave function, terms in the FIM can be expressed
as

Fi j ∝ Ep(X)[(Oi − Ep(X)[Oi])(O j − Ep(X)[O j])],

where Oi = ∂log|ψ |
∂xi

. The terms in the FIM for the weights of a
linear neural network layer would then be

Ep(X)

[
∂logp(X)

∂vec(W	)

∂logp(X)

∂vec(W	)

T ]
∝ Ep(X)[(a	 ⊗ e	 − Ep(X)[a	 ⊗ e	])(a	 ⊗ e	 − Ep(X)[a	 ⊗ e	])T ]

= Ep(X)[(a	 ⊗ e	)(a	 ⊗ e	)T ] − Ep(X)[a	 ⊗ e	]Ep(X)[a	 ⊗ e	]T .

We use a similar approximation for the inverse to that of conventional KFAC, replacing the uncentered second moments with
mean-centered covariances:

Ep(X)

[
∂logp(X)

∂vec(W	)

∂logp(X)

∂vec(W	)

T ]
≈ Ep(X)

[
â	âT

	

]−1 ⊗ Ep(X)
[
ê	êT

	

]−1
, (12)
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FIG. 2. Comparison of the FermiNet against the Slater-Jastrow Ansatz, with and without backflow. (a) First-row atoms with a single
determinant. Baseline numbers are from Chakravorty et al. [34]. The Slater-Jastrow neural network yields slightly lower energies than VMC
with a conventional Slater-Jastrow Ansatz, while the FermiNet is substantially more accurate. (b) The CO and N2 molecules (bond lengths
2.17328 a0 and 2.13534 a0, respectively) with increasing numbers of determinants. All-electron CCSD(T)/CBS results are used as the baseline.
No matter how many determinants are used, the FermiNet far exceeds the accuracy of the Slater-Jastrow Net.

where

â	 = a	 − Ep(X)[a	], ê	 = e	 − Ep(X)[e	].

We illustrate the advantage of using KFAC over more com-
monly used stochastic first-order optimization methods for
neural networks in Fig. 3.

III. RESULTS

Here we evaluate the performance of the FermiNet on a
variety of problems in chemistry and electronic structure. Fur-
ther details on the exact architectures and training procedures
for the FermiNet and baselines can be found in Appendix A.

A. Slater-Jastrow versus FermiNet Ansatz

To demonstrate the expressive power of the FermiNet, we
first investigated its performance relative to the more conven-
tional Slater-Jastrow and Slater-Jastrow-backflow Ansatz with
varying numbers of determinants:

�SJ = eJ ({ri})
∑

k

ωk det
[
φ

k↑
i (r↑

j )
]

det
[
φ

k↓
i (r↓

j )
]
, (13)

�SJB = eJ ({ri})
∑

k

ωk det
[
φ

k↑
i (q↑

j )
]

det
[
φ

k↓
i (q↓

j )
]
, (14)

where {φkα
i (r j )} is a set of single-particle orbitals, typically

obtained from a Hartree-Fock or density functional theory
calculation, and the Jastrow factor, J is a function of the elec-
tron and nuclear coordinates. The Slater-Jastrow-backflow
wave-function Ansatz replaces the electron coordinates in
the orbitals with a set of collective coordinates, given by
qi = ri + ξi({r j}), where the backflow functions ξi depend
on electron and nuclear coordinates and contain additional
optimizable parameters.

In addition to conventional Slater-Jastrow and Slater-
Jastrow backflow wave functions, we also compare against

neural network versions. Rather than using Hartree-Fock or-
bitals, a closed-form Jastrow factor, and a backflow transform
with only a few free parameters, our Slater-Jastrow-backflow
network uses residual neural networks to represent the one-
electron orbitals, Jastrow factor and backflow transform,
making it much more flexible. The determinant part of the
Slater-Jastrow network amounts to removing the two-electron
stream and interactions between the one-electron streams
from FermiNet. We used the conventional backflow trans-
formation [Eq. (A4)], in which the orbitals depend on a
single three-dimensional linear combination of electron posi-
tion vectors and a nonlinear function of interparticle distances.
Further details are provided in Appendix A 2.

To fairly compare our calculations against previous work,
we first looked at single-determinant Ansatz for first-row
atoms. Figure 2(a) compares the FermiNet results with num-
bers already available in the literature [44]. The neural
network Slater-Jastrow Ansatz already outperforms the num-
bers from the literature by a few milli-Hartrees (mEh), which
could be due to the lack of basis set approximation error
when using a neural network to represent the orbitals and a
flexible Jastrow factor. The FermiNet cuts the error relative
to the Slater-Jastrow Ansatz without backflow by almost an
order of magnitude, and more than a factor of two relative
to the Slater-Jastrow-backflow Ansatz. Just a single FermiNet
determinant is sufficient to come within a few mEh of chem-
ical accuracy, defined as 1 kcal/mol (1.594 mEh), which is
the typical standard for a quantum chemical calculation to be
considered “correct.”

Not only is the FermiNet a significant improvement over
the Slater-Jastrow Ansatz with one determinant, but only a few
FermiNet determinants are necessary to saturate performance.
Figure 2(b) shows the Slater-Jastrow network and FermiNet
energies of the nitrogen and carbon monoxide molecules as
functions of the number of determinants. As FCI calculations
are impractical for these systems, we compare against the
unrestricted coupled cluster singles, doubles, and perturbative
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triples method [CCSD(T)] in the complete basis set (CBS)
limit to provide a comparable baseline for both systems. As
the Slater-Jastrow network optimizes all orbitals separately,
the results from the Slater-Jastrow network should be a lower
bound on the performance of a Slater-Jastrow Ansatz with
a given number of determinants. As expected, the Slater-
Jastrow network is still far from the accuracy of CCSD(T) at
64 determinants. The 64-determinant FermiNet, in contrast,
comes within a few mEh of CCSD(T). While the Slater-
Jastrow-backflow Ansatz with large numbers of determinants
did not completely converge, the trend is clear that the Fer-
miNet cuts the error roughly in half. The FermiNet energies
begin to plateau after only a few tens of determinants, suggest-
ing that large linear combinations of FermiNet determinants
are not required. Despite recent advances in optimal deter-
minant selection [48,49], conventional Slater-Jastrow VMC
calculations typically require tens of thousands of determi-
nants for systems of this size and rarely match CCSD(T)
accuracy even then.

B. Equilibrium geometries

Tables I and II show that the same 16-determinant Fer-
miNet with the same training hyperparameters generalizes
well to a wide variety of atoms and diatomic and small organic
molecules, while Fig. 3 shows the optimization progress over
time for many of these systems. As a baseline, we used a
combination of experimental and exact computational results
where available [34,46,47], and all-electron CBS CCSD(T)
otherwise. On all atoms, as well as LiH, Li2, methane and
ammonia, the FermiNet error was within chemical accuracy.
In comparison, energies from VMC using a conventional
Slater-Jastrow-backflow Ansatz for first-row atoms [44] are
uniformly worse than the FermiNet, despite using at least
an order of magnitude more determinants. The VMC-based
FermiNet energies are more comparable in quality to diffusion
Monte Carlo (DMC), which is typically much more accurate
than VMC. On molecules as large as ethene (C2H4) we re-
cover over 99% of the correlation energy, while for larger
systems like methylamine (CH3NH2), ozone (O3), ethanol
(C2H5OH) and bicyclobutane (C4H6) the percentage of cor-
relation energy recovered declines gradually to ∼97%—still
remarkably good for a variational calculation. Bicyclobutane
is an especially challenging system due to its high ring strain
and large number of electrons.

We also compare against CCSD(T) in a finite basis set
in Table II, and find that in all cases the FermiNet is more
accurate than CCSD(T) in the largest basis set we could
practically run calculations on (quintuple ζ for most systems,
quadruple ζ for large systems). This suggests that a compa-
rable extrapolation of FermiNet results could match or even
exceed the accuracy of CCSD(T). As the FermiNet works
directly in the continuum and does not depend on a basis set,
the natural equivalent would be extrapolation to the limit of
infinitely wide layers in the one-electron stream. Our analysis
of the FermiNet with different numbers of layers and layer
widths in Sec. IV C shows that the error appears to decrease
polynomially with layer width.

We also computed the first ionization potentials, E (X +) −
E (X ) for element X , and electron affinities, E (X ) − E (X −),
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TABLE II. Ground-state energy at equilibrium geometry for diatomics and small molecules. The percentage of correlation energy captured
by the FermiNet relative to the exact energy (where available) or CCSD(T)/CBS is given in the rightmost column. If no citation is provided,
then the number was from our own calculation. Geometries for larger molecules are given in Appendix G.

CCSD(T) (Eh) HF (Eh)

Molecule Bond length (a0) FermiNet (Eh) aug-cc-pCVQZ aug-cc-pCV5Z CBS CBS Exact (Eh) % corr

LiH 3.015 −8.07050(1) −8.0687 −8.0697 −8.070696 −7.98737 −8.070548 [46] 99.94(1)
Li2 5.051 −14.99475(1) −14.9921 −14.9936 −14.99507 −14.87155 −14.9954 [47] 99.47(1)
NH3 − −56.56295(8) −56.5535 −56.5591 −56.5644 −56.2247 − 99.57(2)
CH4 − −40.51400(7) −40.5067 −40.5110 −40.5150 −40.2171 − 99.66(3)
CO 2.173 −113.3218(1) −113.3047 −113.3154 −113.3255 −112.7871 − 99.32(3)
N2 2.068 −109.5388(1) −109.5224 −109.5327 −109.5425 −108.9940 −109.5423 [47] 99.36(2)
Ethene − −78.5844(1) −78.5733 −78.5812 −78.5888 −78.0705 − 99.16(2)
Methylamine − −95.8554(2) −95.8437 − −95.8653 −95.2628 − 98.36(3)
Ozone − −225.4145(3) −225.3907 −225.4119 −225.4338 −224.3526 − 98.42(3)
Ethanol − −155.0308(3) −155.0205 − −155.0545 −154.1573 − 97.36(4)
Bicyclobutane − −155.9263(6) −155.9216 − −155.9575 −154.9372 − 96.94(5)

for first-row atoms (Table I) and compare to experimental
data [45] with relativistic effects removed. Agreement with

FIG. 3. Optimization progress for first-row atoms, H2, LiH and
the hydrogen chain with KFAC (blue) vs. ADAM (orange). The
qualitative advantage of KFAC is clear. For clarity, the median en-
ergy over the last 10% of iterations is shown. Note that the small
overshoot with KFAC between 103 and 104 iterations is due to the
slow equilibration of the MCMC chain and goes away with a larger
Metropolis-Hastings proposal step size.

experiment is excellent (mean absolute error of 0.09 mEh

for ionization potentials and 0.66 mEh for electron affinities),
demonstrating that the FermiNet Ansatz is capable of repre-
senting charged and neutral species with similar accuracy.

There are many possible causes for the decline in the
percent of correlation energy recovered for large systems like
bicyclobutane. It may be that the FermiNet has issues with
size-extensivity for larger systems. However, the FermiNet
outperforms CCSD(T) in a fixed basis set, and the exponential
Ansatz used by coupled cluster is size extensive, suggesting
that the issue may instead be the finite width of our neural
network layers. In fact, our results are with a fixed-width net-
work, while the total number of basis functions grows with the
system size for coupled cluster, meaning the coupled cluster
Ansatz becomes more expressive for larger systems while the
FermiNet stays fixed. Other avenues for improvement include
increasing the batch size/number of walkers, improving the
MCMC chain mixing and optimization efficiency, and in-
creasing the number of determinants.

C. The H4 rectangle

While CCSD(T) is exceptionally accurate for equilibrium
geometries, it often fails for molecules with low-lying excited
states or stretched, twisted or otherwise out-of-equilibrium
geometries. Understanding these systems is critical for pre-
dicting many chemical properties. A model system small
enough to be solved exactly by FCI for which coupled cluster
fails is the rectangle of four hydrogen atoms, parametrized by
the distance R of the atoms from the center and the angle θ

between neighboring atoms [50]. FCI shows that the energy
varies smoothly with θ and is maximized when the atoms
are at the corners of a square (θ = 90o). The coupled clus-
ter results are nonvariational, predicting energies too low by
several milli-Hartree, and qualitatively incorrect, predicting
an energy minimum with a nonanalytic downward-facing cusp
at 90o, caused by a crossing of two Hartree-Fock states with
different symmetries [51]. Figure 4 shows that the FermiNet
does not suffer from the same errors as coupled cluster and
is in essentially perfect agreement with FCI. We attribute the
small discrepancy between the FermiNet and FCI energies to
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FIG. 4. The H4 rectangle, R = 3.2843a0. Coupled cluster meth-
ods incorrectly predict a cusp and energy minimum at � = 90◦,
while the FermiNet approach agrees with exact FCI results.

errors arising from the basis set extrapolation used for the FCI
energies.

D. The nitrogen molecule

A problem more relevant to real chemistry that troubles
coupled cluster methods is the dissociation of the nitrogen
molecule. The triple bond is challenging to describe accu-
rately and the stretched N2 molecule has several low-lying
excited states, leading to errors when using single-reference
coupled cluster methods [52]. Experimental values for the
dissociation potential have been reconstructed from spectro-
scopic measurements using the Morse/long-range potential
[53]. These closely match calculations using the r12-MR-
ACPF method [54], which is highly accurate but scales
factorially. A comparison between unrestricted CCSD(T),
the FermiNet, and these high-accuracy methods is given in
Fig. 5. The total FermiNet error is significantly smaller than
UCCSD(T), and in the region of largest UCCSD(T) error the
FermiNet reaches accuracy comparable to r12-MR-ACPF but
scales much more favorably with system size. Increasing the
number of determinants in the FermiNet improves perfor-
mance up to a point but not beyond 32 determinants, again
suggesting that the bottleneck to performance is not size-
consistency. While coupled cluster could in theory be made
more accurate by extending to full triples or quadruples, or us-
ing multireference methods, CCSD(T) is generally considered
the largest coupled cluster approximation that can reasonably
scale beyond small molecules. This shows that, without any
specific tuning to the system of interest, the FermiNet is a
clear improvement over single-reference coupled cluster for
modeling a strongly correlated real-world chemical system.

E. The hydrogen chain

Finally, we investigated the performance of the FermiNet
on the evenly spaced linear hydrogen chain. The hydrogen
chain is of great interest as a system that bridges model
Hamiltonians and real material systems and may undergo an

FIG. 5. The dissociation curve for the nitrogen triple-bond. The
difference from experimental data [53] is given in the main panel.
In the region of largest UCCSD(T) error, the FermiNet prediction is
comparable to highly accurate r12-MR-ACPF results [54].

insulator-to-metal transition as the separation of the atoms is
decreased. Consequently, results obtained using a wide range
of many-electron methods have been rigorously evaluated and
compared [55]. We compare the performance of the FermiNet
against many of these methods in Fig. 6. Of the two projector
QMC methods studied by Motta et al., AFQMC gave slightly
better results than lattice regularized DMC and so we omit the
latter for clarity. Without changing the network architecture
or hyperparameters, we are again able to outperform coupled

FIG. 6. The H10 chain. All energies except the FermiNet are
taken from Motta et al. (2017) [55]. The absolute energies (inset)
cannot be distinguished by eye. The difference from highly accurate
MRCI+Q+F12 results are shown in the main panel, where the
shaded region indicates an estimate of the basis-set extrapolation er-
ror. The errors in the coupled cluster and conventional VMC energies
are large at medium atomic separations but the FermiNet remains
comparable to AFQMC at all separations. See also Appendix E for
data on larger separations.
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FIG. 7. Electron dimerization in the hydrogen chain. The gap
between alternating minima of the density shrinks with increasing
nuclear separation.

cluster methods and conventional VMC and obtain results
competitive with state-of-the-art approaches.

IV. ANALYSIS

Here we provide an analysis of the performance of the
FermiNet, looking at scaling with system size, network size,
and visualising quantities beyond just total energy of the
system.

A. Electron densities

One advantage of VMC over other ab initio electronic
structure methods is the ease of evaluating expectation values
of arbitrary observables. For instance, forces are significantly
easier to calculate with VMC than projector QMC methods
[56]. To illustrate the quality of the FermiNet Ansatz for
observables other than energy, we analyzed the one- and two-
electron densities. The electron-electron and electron-nuclear
cusps for the helium atom are investigated in Appendix F.

For the hydrogen chain, we computed the one-electron
density n(r) at different nuclear separations, shown in Fig. 7.
Consistent with many other electronic structure methods [57],
we found that the electron density undergoes a dimerization—
the density clusters around pairs of nuclei—and the effect
becomes stronger with less separation between nuclei. Dimer-
ization is a hallmark of electronic structure in insulators, and
understanding when and where it occurs helps understand
metal-insulator phase transitions in materials.

Additionally, we investigated the two-electron density
n(r, r′) for the neon atom (Fig. 8). Understanding the behavior
of the two-electron density is important for many-electronic
structure methods, for instance for analyzing functionals for
DFT [58]. What is interesting about the two-electron density
is how it differs from the product of one-electron densities,
n(r)n(r′). This can be expressed in terms of the exchange-
correlation hole, nxc(r, r′), defined such that n(r, r′) =
[n(r) + nxc(r, r′)]n(r′), or in terms of the pair-correlation
function, g(r, r′), defined by n(r, r′) = n(r)g(r, r′)n(r′). As
most of the density is concentrated near r = 0, nxc(r, r′) is

very strongly peaked near r = 0, obscuring its other features.
We therefore show nxc (r,r′ )

n(r) = 1 − g(r, r′) in Fig. 8. This be-
haves as expected when r is close to r′, showing that, at least
for first- and second-order statistics, the FermiNet Ansatz is
smooth and well-behaved.

B. Scaling and computation time

One of our main claims about the FermiNet is that it
scales favorably compared to other ab initio quantum chem-
istry methods. The ability to run at all on systems the size
of bicyclobutane proves the FermiNet scales more favorably
than exact methods like FCI, but the scaling relative to other
approximate methods is a more subtle question. Both the size
of the FermiNet (number of hidden units, number of layers,
number of determinants) and the number of training iterations
required to reach a certain level of accuracy are unknown,
and likely depend on the system being studied. What can
be quantified is the computational complexity of a single
iteration of training, which can be seen as a lower bound on
the computational complexity of training the FermiNet to a
certain level of accuracy.

For a system with Ne electrons, Na atoms and a FermiNet
with L hidden layers, n1 (n2) hidden units per one-electron
(two-electron) layer and nk determinants, evaluating the
one-electron stream of the network scales as O{Ne[Na +
L(n2

1 + n1n2)]}, evaluating the two-electron stream scales as
O(N2

e Ln2
2), evaluating the orbitals and envelope scales as

O[N2
e nk (n1 + Na)], and evaluating the determinants scales

as O(N3
e nk ), so the determinant calculation should dominate

as Ne grows for a fixed network architecture determined by
{L, n1, n2, nk}. While evaluating the gradient of a function has
the same asymptotic complexity as evaluating the function,
evaluating the local energy scales with an additional multi-
plicative factor of Ne, as computing the Laplacian has the
same complexity as computing the Hessian with respect to
the inputs, giving an asymptotic complexity of O(N4

e nk ) as
Ne grows. A Markov chain Monte Carlo (MCMC) step for
sampling from ψ2 also has the same asymptotic complexity
as network evaluation for all-electron moves, or similar com-
plexity to Laplacian calculation for single-electron moves if
all electrons are moved in each loop of training.

The number of total parameters scales as O(Nan1 + L(n2
1 +

n1n2 + n2
2) + Nenk (n1 + Na) + nk ) (see Table IV for the ex-

act shapes for each parameter). Note that, other than the
orbital shaping and envelope parameters, there is no direct
dependence on Ne. KFAC requires a matrix inversion for
each Kronecker-factorized block of the approximate FIM,
which scales as O(m3 + n3) for a linear layer with m in-
puts and n outputs. For the FermiNet, this works out to a
scaling of O[N3

a n3
1 + L(n3

1 + n3
2) + (Nenkn1)3 + (NenkNa)3 +

n3
k )]. Combining the MCMC steps, local energy calculation

and KFAC update together gives an overall quartic asymptotic
scaling with system size for a single step of wave-function op-
timization. We emphasize that the analysis here treats system
size, network size and number of samping steps indepen-
dently, and that the exact dependence of network size and
sampling parameters on system size to achieve constant ac-
curacy requires further investigation.
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FIG. 8. The pair-correlation function 1 − g(r, r′) for the neon atom, where n(r, r′) = n(r)g(r, r′)n(r′). Different columns show the hole
for electrons of the same spin (left), different spins (middle), or all electrons (right). Different rows show the hole when r′ is between 0 and
0.3 Bohr radii from the nucleus.
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FIG. 9. Comparison of the runtime for one optimization iteration
on atoms up to zinc. Polynomial regressions up to fourth order are
fit to the data. The small difference between the cubic and quartic fit
suggests that the determinant computation is not the dominant factor
at this scale.

We give an empirical analysis of the scaling of iteration
time in Fig. 9 on atoms from lithium to zinc, using the default
training configuration with 8 GPUs. For larger atoms, we were
not able to run optimization to convergence, but we were able
to execute enough updates to get an accurate estimate of the
timing for a single iteration consisting of 10 MCMC steps,
a local energy and gradient evaluation and a KFAC update.
Fitting polynomials of different order to the curve, we find a
cubic fit is able to accurately match the scaling, suggesting
that for systems of this size the computation is dominated
by the O(N2) evaluation of the two-electron stream of the
FermiNet, while the determinant only becomes dominant for
much larger systems.

C. Feature ablation and network architectures

There are many free parameters in the FermiNet architec-
ture that must be chosen to maximize accuracy for a given
amount of computation. To illustrate the effect of different
architectural choices, we removed many features, layers and
hidden units from the FermiNet and investigated how the per-
formance decayed. The FermiNet has 4 distinct input features:
the nuclear coordinates riI = ri − RI and nuclear distances
|riI |, which are inputs to the one-electron stream, and the inter-
electron coordinates ri j = ri − r j and interelectron distances
|ri j |, which are inputs to the two-electron stream. We com-
pared the accuracy of the FermiNet with and without these
features on the oxygen atom in Table III. All networks in-
cluded the nuclear coordinates. Without the nuclear distances,
the network became unstable and training crashed, possibly
due to the inability to accurately capture the electron-nuclear
cusp conditions. When including interelectron features, most

TABLE III. Performance of the FermiNet on the oxygen atom
with input features removed. All configurations without the electron-
nuclear distances |riI | were numerically unstable and diverged. All
numbers are relative to Chakravorty (1993) [34].

�E (mEh) Without ri j With ri j

Without |ri j | 89.7 28.4
With |ri j | 1.2 0.8

of the increase in accuracy was due to the distances |ri j |,
while the coordinates ri j also improved accuracy, though not
by as large an amount. This shows that all input features
contributed towards stability and accuracy, especially the dis-
tance features. Even though a smooth neural network can
approximate the nonsmooth cusps to high precision (although
not perfectly), by including distances, which are nonsmooth
at zero, we can make the wave function significantly easier to
approximate.

To understand the effect of the size and shape of the
network, we compared the FermiNet with different numbers
of layers and hidden units on the hydrogen chain H10. The
results are presented in Fig. 10. When increasing the number
of layers, the overall accuracy increases as more layers are
added, but the difference from three to four layers is only
on the order of 1 mEh, suggesting that the gains from ad-
ditional layers would be minor. When adding more hidden
units to the one-electron stream but keeping 32 units in the
two-electron stream, the accuracy increases uniformly with
more units. Based on a linear regression of the log-errors rel-
ative to MRCI+Q+F12, and using bootstrapping to generate
error bars, the error scales with the number of hidden units
in the one-electron stream as O(N−0.395±0.067). This means
we would expect around 760 hidden units to be needed to
reach chemical accuracy on the hydrogen chain. For the two-
electron stream, the improvement with more units quickly
saturates. In fact, going from 16 to 32 hidden units seems to
make the results slightly noisier. This suggests that increasing
the width of the one-electron stream, more than increasing
the width of the two-electron stream or the total depth, is the
most promising route to increasing overall accuracy of the
FermiNet.

V. DISCUSSION

We have shown that antisymmetric neural networks can be
constructed and optimized to enable high-accuracy quantum
chemistry calculations of challenging systems. The Fermionic
Neural Network makes the simple and straightforward VMC
method competitive with DMC, AFQMC, and CCSD(T)
methods for equilibrium geometries and better than CCSD(T)
for many out-of-equilibrium geometries. Importantly, one net-
work architecture with one set of training parameters has been
able to attain high accuracy on every system examined. The
use of neural networks means that we do not have to choose
a basis set or worry about basis-set extrapolation, a common
source of error in computational quantum chemistry. There are
many possible applications of the FermiNet beyond VMC, for
instance as a trial wave function for projector QMC methods.
We expect further work investigating the tradeoffs of different
antisymmetric neural networks and optimization algorithms
to lead to greater computational efficiency, higher represen-
tational capacity, and improved accuracy on larger systems.
This has the potential to bring to quantum chemistry the same
rapid progress that deep learning has enabled in numerous
fields of artificial intelligence.
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FIG. 10. Effects of network architecture on FermiNet performance on the hydrogen chain H10 with separation R = 2.0a0. Each point
is one run of the same model. (a) Effect of network depth. The marginal improvement with 4 layers is small but not zero. (b) Effect of
number of hidden units in the one-electron stream. There is a continuous improvement with wider layers, with the error decreasing roughly as
O(N−0.395±0.067). (c) Effect of number of hidden units in the two-electron stream. The accuracy plateaus above 16 units.
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APPENDIX A: EXPERIMENTAL SETUP

1. FermiNet architecture and training

For all experiments, a Fermionic neural network with four
layers was used, not counting the final linear layer that out-
puts the orbitals. Each layer had 256 hidden units for the
one-electron stream and 32 hidden units for the two electron
stream. A tanh nonlinearity was used for all layers, as a
smooth function is needed to guarantee that the Laplacian is
well defined and nonzero everywhere. 16 determinants were
used where not otherwise specified. For comparison, the con-
ventional VMC results in Table I from Seth et al. (2011) [44]
use 50 configuration state functions (CSF). While the exact
number of determinants in a CSF will depend on the system,
generally this will be on the order of hundreds to thousands of
determinants. With this configuration of the FermiNet there
were approximately 700 000 parameters in the network, al-
though the exact number depends on the number of atoms
in the system due to the way we construct the input features
and exponentially decaying envelope. A breakdown of these
parameters are given in Table IV.

Before using the local energy as an optimization objective
we pretrained the network to match Hartree-Fock (HF) or-
bitals computed using PySCF [59]. There were two reasons
for this. First, we found that the numerical stability of the
subsequent local energy optimization was improved. On large
systems, the determinants in the Fermionic neural network

would often numerically underflow if no pretraining was used,
causing the optimization to fail. Pretraining with HF orbitals
as a guide meant that the main optimization started in a
region of relatively low variance, with comparatively stable
determinant evaluations and electron walkers in representative
configurations. Second, we found that time was saved by not
optimizing the local energy through a region that we knew to
be physically uninteresting, given that it had an energy higher
than that of a straightforward mean-field approximation. The
pretraining did not seem to strand the neural network in a
poor local optimum, as the energy minimization always gave
consistent results capturing roughly 99% of the correlation
energy. This is consistent with the conventional wisdom in the
machine learning community that issues with local minima
are less severe in wider, deeper neural networks. Further,
stochasticity in the optimization procedure helps break sym-
metry and escape bad minima.

The pretraining loss is

Lpre(θ ) =
∫ ⎧⎨

⎩
∑

α∈{↑,↓}

∑
i jk

[
φkα

i

(
rα

j ;
{
rα
/ j

}
; {rᾱ})

− φHF
iα

(
rα

j

)]2

⎫⎬
⎭ppre(X)dX,

where φHF
iα (rα

j ) denotes the value of the ith Hartree-Fock
orbital for spin α at the position of electron j, ᾱ is ↓ if
α is ↑ or vice versa, and φkα

i (rα
j ; {rα

/ j}; {rᾱ}) is the corre-
sponding entry in the input to the kth determinant of the
Fermionic neural network. We use a minimal (STO-3G) basis
set for the Hartree-Fock computation as we require only a
stable initialization in the rough vicinity of the mean-field
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TABLE IV. Network activations and parameters for FermiNet with L layers, nk many-electron determinants for a system of Na atoms and
Ne electrons. i, j index electrons in spin channels α, β ∈ {↑,↓}. Each layer contains n	

1 (n	
2) hidden units for the one-electron (two-electron)

stream. The quantity column shows the total number of each object.

Symbol Dimension Quantity Learnable Description

h0α
i 4Na Ne one-electron features

h0αβ

i j 4 N2
e two-electron features

h	α
i n	−1

1 (L − 1)Ne one-electron activations from layer 	 − 1

h	αβ

i j n	−1
2 (L − 1)N2

e two-electron activations from layer 	 − 1

f	α
i 3n	−1

1 + 2n	−1
2 LNe one-electron input for layer 	

V	 n	
1 × (3n	−1

1 + 2n	−1
2 ) L � weights for one-electron linear layer

b	 n	
1 L � biases for one-electron linear layer

W	 n	
2 × n	−1

2 L � weights for two-electron linear layer
c	 n	

2 L � biases for two-electron linear layer
wkα

i nL
1 nkNe � weights for final linear layer (orbital shaping)

gkα
i scalar nkNe � bias for final linear layer (orbital shaping)

π kα
im scalar nkNaNe � enevelope weight

�kα
im 3 × 3 nkNaNe � enevelope decay

ω nk 1 � weights in determinant expansion

solution, not an accurate mean-field result. The probability
distribution ppre(X) is an equal mixture of the product of
Hartree-Fock orbitals and the output of the Fermionic neural
network:

ppre(X) = 1

2

⎧⎨
⎩

∏
α∈{↑,↓}

∏
i

[
φHF

iα

(
rα

i

)]2 + ψ2(X)

⎫⎬
⎭.

We chose not to use the distribution from the Hartree-Fock
determinant because we wanted sample coverage at every
point where the orbitals were large, but in practice the differ-
ence to using the antisymmetrized distribution was marginal.
The inclusion of the neural network density helps to in-
crease the sampling probability in areas where the neural
network wave function is spuriously high. We approximate
the expectation for the loss by using MCMC to draw half the
samples in the batch from ψ2 and half from the product of
Hartree-Fock orbitals using MCMC.

Initial MCMC configurations were drawn from Gaussian
distributions centered on each atom in the molecule. Electrons
were assigned to atoms according to the nuclear charge and
spin polarization of the ground state of the isolated atom,
with the atomic spins orientated such that the total spin pro-
jection of the molecule was correct, which was possible for
systems studied here. We used ADAM with default param-
eters as the optimizer. After pretraining, we reinitialized the
electron walker positions and then had a burn in MCMC pe-
riod with target distribution ψ2 before we began local energy
minimization.

For the FermiNet, all code was implemented in TensorFlow
1 built with CUDA 9. All experiments for systems with less
than 20 electrons were run in parallel on 8 V100 GPUs,
while 16 GPUs were used for larger systems. With a smaller
batch size we were able to train on a single GPU but con-
vergence was significantly and disproportionately slower. For
instance, ethene converged after just 2 days of training with
8 GPUs, while several weeks were required on a single GPU.

Bicyclobutane, with 30 electrons, took roughly 1 month on
16 GPUs to train. We expect further engineering improve-
ments will reduce this number. Ten Metropolis-Hastings steps
were taken between every parameter update, and it typically
required O(105–106) parameter updates to reach conver-
gence (results in the paper used 2 × 105 parameter updates).
Conventional VMC wave-function optimization will perform
O(101–102) parameter updates and O(104–106) MCMC steps
between updates, so we require roughly the same number of
wave-function evaluations as conventional VMC. After net-
work optimization, we run O(105) MCMC steps and calculate
the mean local energy every 10 steps. The energy and associ-
ated standard error are estimated using a standard approach to
account for correlations [60].

Accurate and stable convergence was highly dependent on
the hyperparameters used; the default values for all exper-
iments are included in Table V. These hyperparameters do

TABLE V. Default hyperparameters for all experiments in the pa-
per. For bicyclobutane, the batch size was halved and the pretraining
iterations were increased by an order of magnitude.

Parameter Value

Batch size 4096
Training iterations 2e5
Pretraining iterations 1e3
Learning rate (1e4 + t )−1

Local energy clipping 5.0
KFAC Momentum 0
KFAC Covariance moving average decay 0.95
KFAC Norm constraint 1e-3
KFAC Damping 1e-3
MCMC Proposal std dev (per dimension) 0.02
MCMC Steps between parameter updates 10
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seem to be generalizable—we have observed good perfor-
mance on every system investigated. For some larger systems,
stability was improved by using more pretraining iterations.
Getting good performance from KFAC requires careful tun-
ing, and we found that the damping and norm constraint
parameters critically affect the asymptotic performance. If
the damping is too high, then KFAC behaves like gradient
descent near a local minimum and converges too slowly. If
the damping is reduced, then training quickly becomes unsta-
ble unless the norm constraint (a generalization of gradient
clipping) is lowered in tandem. Surprisingly, we found little
advantage to using momentum, and sometimes it even seemed
to reduce training performance, so we set it to zero for all
experiments.

To reduce the variance in the parameter updates, we
clipped the local energy when computing the gradients but
not when evaluating the total energy of the system. This
is a commonly used strategy to improve the accuracy of
QMC [61]. We computed the total variation of each batch,
1
N

∑
i |EL(Xi ) − ẼL|, where ẼL is the median local energy of

that batch. This is to the 	1 norm what the standard deviation
is to the 	2 norm, and we prefer it to the standard deviation as
it is more robust to outliers. We clip any local energies more
than five times further from the median than this total variation
and compute the gradient in Eq. (10) with the clipped energy
in place of EL. The aforementioned KFAC norm constraint
enforces gradient clipping in a manner which respects the
information geometry of the model.

To sample from ψ2(X) we used the standard Metropolis-
Hastings algorithm [12]. The proposed moves were Gaussian
distributed with a fixed, isotropic covariance. All electron
positions were updated simultaneously. While one-electron
moves are more common in VMC, prior work suggests that
all-electron moves are effective at the scale of system we
investigated [62] and the fact that our orbitals depend on
all electrons means that we cannot exploit fast determinant
updates with one-electron moves. We expect one-electron
moves will have a more noticeable impact for larger systems
and will investigate different MCMC strategies and param-
eters in future work. Typical acceptance rates were ∼0.95
for the smallest systems and ∼0.6 for the largest systems
investigated. Due to slow equilibration of the MCMC sam-
pling, the computed energy sometimes overshot the true value,
but always reequilibrated after a few thousand iterations. We
experimented with Hamiltonian Monte Carlo to give faster
mixing and lower bias in the gradients, but found this led
to significantly higher variance in the local energy and lower
overall performance.

2. Slater-Jastrow networks

For the baseline Slater-Jastrow network, an multilayer per-
ceptrons (MLP) with three hidden layers of 128 units were
used for the orbitals. The electron positions and electron-
nuclear vectors and distances were used as input features. The
output of the MLP was fed into a final linear layer to generate
the required orbitals and the same multiplicative envelope
employed in the Fermionic neural network was included; this
can be seen as an extension to the electron-nuclear Jastrow
factor. The Jastrow factor and backflow transform are of the

standard form [63]:

J ({r↑}, {r↓}, {R}) = J (e−n)({r↑}, {r↓}, {R})

+ J (e−e)({r↑}, {r↓})

+ J (e−e−n)({r↑}, {r↓}, {R}), (A1)

J (e−n)({r↑}, {r↓}, {R}) =
∑

α∈{↑,↓}

nα∑
i=1

Na∑
I

χ j (|rα
i − RI |),

J (e−e)({r↑}, {r↓}) =
∑

α,β∈{↑,↓}

nα∑
i=1

nβ∑
j=1

uαβ
(∣∣rα

i − rβ
j

∣∣),

J (e−e−n)({r↑}, {r↓}, {R}) =
∑

α,β∈{↑,↓}

nα∑
i=1

nβ∑
j=1

Na∑
I

,

f αβ

k

(∣∣rα
i − rβ

j

∣∣, ∣∣rα
i − RI

∣∣, ∣∣rβ
j − RI

∣∣), (A2)

for the Jastrow factor, and

r′
i = ri + ξ

(e−e)
i ({r j}) + ξ

(e−N )
i ({RI})

+ ξ
(e−e−N )
i ({r j}, {RI}), (A3)

ξ
(e−e)
i ({r j}) =

n∑
j �=i

η(|ri j |)ri j,

ξ
(e−N )
i ({RI}) =

Na∑
I

μ(|riI |)riI ,

ξ
(e−e−N )
i ({r j}, {RI}) =

n∑
j �=i

Na∑
I

�(|ri j |, |riI |, |r jI |)ri j

+ �(|ri j |, |riI |, |r jI |)riI , (A4)

for the backflow transform, where ri j = ri − r j and riI =
ri − RI . Here {χ j}, {uαβ}, { f αβ

k }, η, μ, � and � are all sep-
arate three-layer perceptrons with 64 hidden units. Residual
connections were used in all MLPs, which greatly improved
the stability of training. We found Slater-Jastrow-backflow
networks to be extremely unstable to train from random ini-
tial weights and hence used a fine-tuning approach where
the Slater-Jastow-backflow networks were initialized from an
optimized Slater-Jastrow network with the weights and biases
in the backflow MLPs randomly initialized close to zero. The
Slater-Jastrow and Slater-Jastrow-backflow networks were
otherwise optimized in the identical fashion to FermiNet.

3. Hartree-Fock and coupled cluster calculations

We used PySCF [59] to perform all-electron CCSD(T)
calculations on atoms and dimers (Table I). PSI4 [64] was
used to perform all-electron CCSD(T) calculations on all
other molecules, and and FCI calculations on H4. Cholesky
decomposition [65] was used to reduce the memory require-
ments for bicyclobutane, which we verified introduces an
error in the total energies of O(10−5) Hartrees with the aug-
cc-pCVTZ basis set. The H4 calculations used a cc-pVXZ (X
= T, Q, 5) basis set. All other CCSD(T) calculations used
aug-cc-pCVXZ (X = T, Q, 5) basis sets. An unrestricted
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Hartree-Fock reference was used for atoms and dimers, with
restricted Hartree-Fock used otherwise. We extrapolated en-
ergies to the CBS limit using standard methods [66,67].
CBS Hartree-Fock energies for Li, Be, and Li2 were taken
from aug-cc-pCV5Z calculations, in which the basis set error
was below 10−4 Hartrees. CBS Hartree-Fock energies for
other systems were obtained by fitting the function EHF(X ) =
EHF(CBS) + ae−bX , where X is the cardinality of the basis;
CCSD, CCSD(T) and FCI correlation energies were extrapo-
lated to the CBS by fitting the energies from quadruple- and
quintuple-zeta basis sets (triple- and quadruple-ζ for bicy-
clobutane) to the function Ec(X ) = Ec(HF) + aX −3. The total
energy is given by the sum of the Hartree-Fock energy and
correlation energy. To compare the dissociation potential of
N2 against experiment, we used the MLR4(6, 8) potential from
Le Roy et al. (2006) [53] which is based on fitting 19 lines of
the N2 vibrational spectrum.

APPENDIX B: UNIVERSALITY OF GENERALIZED
SLATER DETERMINANTS

Empirically, the accuracy of the FermiNet increases as the
number of determinants grows. This raises the question: In
theory, how many determinants are necessary to represent any
antisymmetric function ψ (x1, . . . , xn) when the elements of
the determinant are permutation-equivariant functions of the
form �i j = φi(x j ; {x/ j})? The answer, perhaps surprisingly,
is just one. The argument below is originally due to M. Hutter
(personal communication).

Define a unique ordering on the vectors x1, . . . , xn, for
instance, xi < x j if the first coordinate of xi is less than
the first coordinate of x j . Let π be the permutation such
that xπ (1) � xπ (2) � . . . � xπ (n), that is, π sorts the vectors
x1, . . . , xn, and let σ (π ) be the sign of the permuta-
tion π . Define φ1(x j ; {x/ j}) = 1 j=π (1)ψ (xπ (1), . . . , xπ (n) ) and
φi(x j ; {x/ j}) = 1 j=π (i) if i �= 1. Then each row of the matrix
has only one nonzero entry, and the determinant det[�i j] =
σ (π )ψ (xπ (1), . . . , xπ (n) ) = ψ (x1, . . . , xn).

The functions φi are not everywhere continuous, due to
the indicator functions 1 j=π (i), and therefore not learnable
by the FermiNet. This may partially explain why, despite the
theoretical universality of a single determinant, in practice we
still require multiple determinants to achieve high accuracy.
We should note that this construction is very similar to the
suggestion in Luo and Clark [21] that neural network back-
flow could be extended to continuous spaces by sorting the
input vectors and multiplying a neural network Ansatz by the
sign of the permutation. As the choice of ordering breaks
a natural symmetry of the system, and the Ansatz becomes
nonsmooth anywhere the ordering changes, we suspect such
an Ansatz would be less effective than the FermiNet; however,
it is appealingly simple.

APPENDIX C: EQUIVALENCE OF NATURAL GRADIENT
DESCENT AND STOCHASTIC RECONFIGURATION

Here we provide a derivation illustrating that stochastic
reconfiguration is equivalent to natural gradient descent for
unnormalized distributions. Though many authors have inves-
tigated extensions of the Fisher information metric to quantum

systems [68], this particular connection between methods
in machine learning and quantum chemistry seems not to
be widely appreciated by either community, though it was
pointed out in Nomura et al. (2017) [19].

We denote the density proportional to ψ2(X) by p(X), and
the normalizing factor by Z (θ ). In addition, let p̃(X) = ψ2(X)
denote the unnormalized density. In stochastic reconfigura-
tion, the entries of the preconditioner matrix M have the form

Mi j = Ep(X)[(Oi − Ep(X)[Oi])(O j − Ep(X)[O j])],

where

Oi(X) = ψ (X)−1 ∂ψ (X)

∂θi
= ∂log|ψ (X)|

∂θi
= 1

2

∂logp̃(X)

∂θi

and M is a metric for the parameter space [69]. The term
Ep(X)[Oi] can be expressed in terms of the normalizing factor:

Ep(X)[Oi] = 1

2
Ep(X)

[
∂logp̃(X)

∂θi

]

= 1

2

∫
∂log p̃(X)

∂θi
p(X)dX

= 1

2

∫
∂log p̃(X)

∂θi

p̃(X)

Z (θ )
dX

= 1

2

∫
1

p̃(X)

∂ p̃(X)

∂θi

p̃(X)

Z (θ )
dX

= 1

2Z (θ )

∫
∂ p̃(X)

∂θi
dX

= 1

2Z (θ )

∂

∂θi

∫
p̃(X)dX

= 1

2Z (θ )

∂Z (θ )

∂θi

= 1

2

∂logZ (θ )

∂θi
.

Plugging this into the expression for Mi j yields

Mi j = Ep(X)[(Oi − Ep(X)[Oi])(O j − Ep(X)[O j])]

= 1

4
Ep(X)

[(
∂log p̃(X)

∂θi
− ∂logZ (θ )

∂θi

)

×
(

∂logp̃(X)

∂θ j
− ∂logZ (θ )

∂θ j

)]

= 1

4
Ep(X)

[
∂logp(X)

∂θi

∂logp(X)

∂θ j

]
,

which, up to a constant, is the Fisher information metric for
p(X).

APPENDIX D: NUMERICALLY STABLE COMPUTATION
OF THE LOG DETERMINANT AND DERIVATIVES

For numerical stability, the Fermionic neural network out-
puts the logarithm of the absolute value of the wave function
(along with its sign), and we compute log determinants rather
than determinants. Even if some of the matrices are singular,
this is not an issue for numerical stability on the forward
pass, because these matrices will have zero contribution to the
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overall sum of determinants the network outputs:

log|ψ (r↑
1 , . . . , r↓

n↓ )| = log

∣∣∣∣∣
∑

k

ωk det[�k↑] det[�k↓]

∣∣∣∣∣.
We use the “log-sum-exp trick” to compute the sum—that is,
we subtract off the largest log determinant before exponentiat-
ing and computing the weighted sum, and add it back in after
the logarithm at the end. This avoids numerical underflow if
the log determinants are not well scaled.

Naively applying automatic differentiation frameworks to
compute the gradient and Laplacian of the log wave function
will not work if one of the matrices is singular. However, the
first and second derivatives are still well defined, and we show
how to express these derivatives in closed form appropriate for
reverse-mode automatic differentiation. Several of the results
used here, as well as the notation, are based on the collected
matrix derivative results of Giles (2008) [70].

From Jacobi’s formula, the gradient of the determinant of
a matrix is given by

∂ det(A)

∂A
= det(A)A−T = Adj(A)T = Cof(A),

where Cof(A) is the cofactor matrix of A. Let C = Cof(A).
Then, by the product rule, we can express the reverse-mode
gradient of Cof(A) as

Ā = A−T [Tr(C̄T Cof(A))I − C̄T Cof(A)],

where C̄ is the reverse-mode sensitivity. Unfortunately, this
expression becomes undefined if the matrix A is singular.
Even so, both the cofactor matrix and its derivative are still
well defined. To see this, we express the cofactor in terms
of the singular value decomposition of A. Let U�VT be the
singular value decomposition of A, then

Cof(A) = det(A)A−T

= det(U) det(�) det(V)U�−1VT .

Since U and V are orthonormal matrices, their determinant is
just the sign of their determinant. To avoid clutter, we drop
the det(U) and det(V) terms until the very end. Let σi be the
ith diagonal element of �, then we have det(�) = ∏

i σi, and
canceling terms in the expression, we get (up to a sign factor)

Cof(A) = U�VT ,

where � is a diagonal matrix with elements γi defined as

γi =
∏
j �=i

σ j,

because the σ−1
i term in �−1 cancels out one term in det(�).

The gradient of the cofactor is more complicated, but once
again terms cancel. Again neglecting a sign factor, the reverse-
mode gradient can be expanded in terms of the singular
vectors as

Ā = A−T [Tr(C̄T Cof(A))I − C̄T Cof(A)]

= U�−1VT [Tr(C̄T U�VT )I − C̄T U�VT ]

= U[Tr(C̄T U�VT )�−1 − �−1VT C̄T U�]VT

= U[Tr(M�)�−1 − �−1M�]VT ,

where M = VT C̄T U, and we have taken advantage of the in-
variance of the trace of matrix products to cyclic permutation
in the last line.

Now, in the expression inside the square brackets in the
last line, terms conveniently cancel that prevent the expression
from becoming undefined should σi = 0 for some singular
value. Denote this term �, the off-diagonal terms of � only
depend on the second term �−1M�:

�i j = −Mi jσ
−1
i γ j = −Mi jσ

−1
i

∏
k �= j

σk

= −Mi j

∏
k �=i, j

σk,

and the diagonal terms have the form

�ii = σ−1
i

∑
j

Mj jγ j − Miiσ
−1
i γi =

∑
j �=i

Mj jσ
−1
i γ j

=
∑
j �=i

Mj j

∏
k �=i, j

σk .

Putting this all together, we get

Ā = Sgn(det(U))Sgn(det(V))U�VT ,

with

�i j =
{∑

j �=i Mj jρi j, if i = j,
−Mi jρi j, otherwise,

ρi j =
∏

k �=i, j

σk,

M = VT C̄T U.

This allows us to compute second derivatives of the matrix
determinant even for singular matrices. To handle degenerate
matrices gracefully, we fuse everything from the computation
of the log determinant to the final network output into a single
TensorFlow operation, with a custom gradient and gradient-
of-gradient that includes the expression above.

APPENDIX E: NONINTERACTING HYDROGEN CHAINS

At sufficently large separations, two systems become non-
interacting. The energy of the combined system should be
equal to the sum of the energies of the individual systems.
We demonstrate this property for FermiNet on chains of well-
separated hydrogen atoms of up to 10 atoms (Table VI).

TABLE VI. Chains of N hydrogen atoms at equal separations.
The energy per atom is in excellent agreement with that of a single
hydrogen atom.

Energy / N (Eh)

N Separation: 10 a0 Separation: 15 a0

2 −0.5000023(9) −0.50000021(5)
4 −0.4999977(6) −0.4999991(2)
6 −0.499991(2) −0.499990(1)
8 −0.499985(3) −0.499993(2)
10 −0.499980(2) −0.499989(1)
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He2+
θ

He2+
x

FIG. 11. Evaluation of the FermiNet wave function for the he-
lium atom. The second electron is clamped at position (0.5, 0, 0)a0

and the first electron is moved along the path (x, 0, 0)a0, through
both the nucleus and the second electron (top), and along the path
(0.5 cos θ, 0.5 sin θ, 0)a0, through the second electron (bottom).

APPENDIX F: ELECTRON-ELECTRON
AND ELECTRON-NUCLEAR CUSPS

The derivatives of the wave function must be discontinuous
when two electrons or an electron and nucleus coincide to
cancel corresponding singularities in the Hamiltonian. Cap-
turing these cusps correctly, especially the electron-nuclear
cusp, is critical for accurately capturing correlation energy.
Assuming the wave function is nonzero at these points, the
cusp conditions specify the relationship between the wave
function and its derivative to be

lim
riI →0

(
∂�

∂riI

)
ave

= −Z�(riI = 0),

lim
ri j→0

(
∂�

∂ri j

)
ave

= 1

2
�(ri j = 0),

where riI (ri j) is an electron-nuclear (electron-electron) dis-
tance, ZI is the nuclear charge of the Ith nucleus and ave
implies a spherical averaging over all directions.

Figure 11 shows FermiNet correctly describes the cusps
for the helium atom. We estimate limr→0

∂ log |�|
∂r using Monte

Carlo integration over spherical surfaces of radius 10−5a0

centered on the helium nucleus and second electron, fixed
at 0.5a0 from the nucleus, and obtain, where r1 (r12) is the
distance between the first electron and the nucleus (second
electron),

(
∂ log |�|

dr1

)
r1=0,ave

= −1.9979(4),

(
∂ log |�|

dr12

)
r12=0,ave

= 0.4934(1),

in excellent agreement with the theoretical values.

APPENDIX G: MOLECULAR STRUCTURES

Molecular structures were taken from the G3 database[71]
where available. We reproduce the atomic positions for all
molecules studied in Tables VII–XIII.

TABLE VII. Atomic positions for ammonia (NH3).

Atom Position (a0)

N (0.0, 0.0, 0.22013)
H1 (0.0, 1.77583, −0.51364)
H2 (1.53791, −0.88791, −0.51364)
H3 (−1.53791, −0.88791, −0.51364)

TABLE VIII. Atomic positions for methane (CH4).

Atom Position (a0)

C (0.0, 0.0, 0.0)
H1 (1.18886, 1.18886, 1.18886)
H2 (−1.18886, −1.18886, 1.18886)
H3 (1.18886, −1.18886, −1.18886)
H4 (−1.18886, 1.18886, −1.18886)

TABLE IX. Atomic positions for ethene (C2H4).

Atom Position (a0)

C1 (0.0, 0.0, 1.26135)
C2 (0.0, 0.0, −1.26135)
H1 (0.0, 1.74390, 2.33889)
H2 (0.0, −1.74390, 2.33889)
H3 (0.0, 1.74390, −2.33889)
H4 (0.0, −1.74390, −2.33889)

TABLE X. Atomic positions for methylamine (CH3NH2).

Atom Position (a0)

C (0.0517, 0.7044, 0.0)
N (0.0517, −0.7596, 0.0)
H1 (−0.9417, 1.1762, 0.0)
H2 (−0.4582, −1.0994, 0.8124)
H3 (−0.4582, −1.0994, −0.8124)
H4 (0.5928, 1.0567, 0.8807)
H5 (0.5928, 1.0567, −0.8807)

TABLE XI. Atomic positions for ozone (O3).

Atom Position (a0)

O1 (0.0, 2.0859, −0.4319)
O2 (0.0, 0.0, 0.8638)
O3 (0.0, −2.0859, −0.4319)
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TABLE XII. Atomic positions for ethanol (C2H5OH).

Atom Position (a0)

C1 (2.2075, −0.7566, 0.0)
C2 (0.0, 1.0572, 0.0)
O (−2.2489, −0.4302, 0.0)
H1 (−3.6786, 0.7210, 0.0)
H2 (0.0804, 2.2819, 1.6761)
H3 (0.0804, 2.2819, −1.6761)
H4 (3.9985, 0.2736, 0.0)
H5 (2.1327, −1.9601, 1.6741)

TABLE XIII. Atomic positions for bicyclobutane (C4H6).

Atom Position (a0)

C1 (0.0, 2.13792, 0.58661)
C2 (0.0, −2.13792, 0.58661)
C3 (1.41342, 0.0, −0.58924)
C4 (−1.41342, 0.0, −0.58924)
H1 (0.0, 2.33765, 2.64110)
H2 (0.0, 3.92566, −0.43023)
H3 (0.0, −2.33765, 2.64110)
H4 (0.0, −3.92566, −0.43023)
H5 (2.67285, 0.0, −2.19514)
H6 (−2.67285, 0.0, −2.19514)
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