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Despite previous extensive analysis of open quantum systems described by the Lindblad equation, it is
unclear whether correlated topological states, such as fractional quantum Hall states, are maintained even in
the presence of the jump term. In this paper, we introduce the pseudospin Chern number of the Liouvillian
which is computed by twisting the boundary conditions only for one of the subspaces of the doubled Hilbert
space. The existence of such a topological invariant elucidates that the topological properties remain unchanged
even in the presence of the jump term, which does not close the gap of the effective non-Hermitian Hamiltonian
(obtained by neglecting the jump term). In other words, the topological properties are encoded into an effective
non-Hermitian Hamiltonian rather than the full Liouvillian. This is particularly useful when the jump term can
be written as a strictly block-upper (-lower) triangular matrix in the doubled Hilbert space, in which case the
presence or absence of the jump term does not affect the spectrum of the Liouvillian. With the pseudospin
Chern number, we address the characterization of fractional quantum Hall states with two-body loss but without
gain, elucidating that the topology of the non-Hermitian fractional quantum Hall states is preserved even in
the presence of the jump term. This numerical result also supports the use of the non-Hermitian Hamiltonian
which significantly reduces the numerical cost. Similar topological invariants can be extended to treat correlated
topological states for other spatial dimensions and symmetry (e.g., one-dimensional open quantum systems with
inversion symmetry), indicating the high versatility of our approach.

DOI: 10.1103/PhysRevResearch.2.033428

I. INTRODUCTION

Recent extensive studies of non-Hermitian systems
discovered a variety of novel topological phenomena for
noninteracting cases [1–4]. For instance, non-Hermiticity
enriches topological properties [5]; it increases the number
of symmetry classes and results in two types of the gap,
the point-gap [6] and the line-gap [7]. Furthermore,
non-Hermiticity may break down the diagonalizability of
the Hamiltonian, which results in non-Hermitian band
touching [7–15], such as exceptional points [7,8], symmetry-
protected exceptional rings [9–13], and so on. In addition,
non-Hermitian systems can also show the intriguing bulk-
boundary correspondence [16–24]; certain topological prop-
erties result in the non-Hermitian skin effect which results in
extreme sensitivity to the boundary conditions [25–28]. So far,
the above non-Hermitian phenomena for the noninteracting
case were reported in various platforms [8,29–50].
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Among them, open quantum systems [51–58] also pro-
vide a unique platform of the following intriguing issue: the
interplay between correlations and non-Hermitian topology
[59–65]. Such systems interact with the environment and may
lose energy or particles. Correspondingly, the time evolution
of the density matrix is governed by the Lindblad equation
where the coupling between the system and the environment
is described by the Lindblad operators Lα (α = 1, 2, . . .).
In the previous works [59–65], by focusing on the special
time evolution, the correlated topological states were analyzed
for the effective non-Hermitian Hamiltonian Heff := H0 −
i
2

∑
α L†

αLα , where H0 is the Hermitian Hamiltonian of the
system; for the short-time dynamics before the occurrence of a
jump of the states by Lindblad operators, one can see that the
dynamics of the density matrix is described by the effective
non-Hermitian Hamiltonian Heff . Recently, it was pointed out
that, for noninteracting fermions, the topological properties
can survive even beyond the above special dynamics [66].
This is because the gap of the Liouvillian is maintained even
when the quantum jump is taken into account.

In spite of the above significant progress in topological per-
spective on open quantum systems, it is still unclear whether
the topological properties for correlated states survive even in
the presence of quantum jumps. To clarify the stability of cor-
related topological phases described by Heff against the jump
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term, topological invariants having the following properties
should be introduced: (i) they are quantized as long as the gap
of the Liouvillian opens; (ii) in the absence of the jump term,
they are reduced to the invariants characterizing the topology
of the effective non-Hermitian Hamiltonian Heff .

In this paper, to characterize the correlated states, we
introduce a topological invariant having the above two prop-
erties by doubling the Hilbert space. Specifically, we define
the pseudospin Chern number characterizing the correlated
topological states for two-dimensional systems without sym-
metry [67]. This topological invariant can be computed by
twisting the boundary conditions for one of the subspaces of
the doubled Hilbert space, which is reminiscent of the spin
Chern number [68–70]. By computing the pseudospin Chern
number, we demonstrate that, even in the presence of the jump
term, the topological properties of non-Hermitian fractional
quantum Hall (FQH) states survive for an open quantum sys-
tem with two-body loss but without gain. Our results justify
the use of the effective non-Hermitian Hamiltonian to topo-
logically characterize the full Liouvillian whose gap does not
close even in the presence of the jump term. This is particu-
larly useful for systems where the jump term can be written as
a block-upper-triangular matrix in the doubled Hilbert space;
in such cases, both the spectral and topological properties are
encoded into the effective non-Hermitian Hamiltonian which
significantly reduces the numerical cost. We also note that our
approach can be extended to characterize correlated topologi-
cal states for other cases of spatial dimensions and symmetry,
indicating the high versatility of our approach.

The rest of this paper is organized as follows. In Sec. II,
we briefly review how the effective non-Hermitian Hamilto-
nian Heff is obtained and provide a detailed description of
topological properties which we will discuss in this paper. In
Sec. III, we introduce the pseudospin Chern number of the
Liouvillian. As an application, we demonstrate that for the
system with two-body loss but without gain, the topologi-
cal properties of non-Hermitian FQH states are not affected
by the jump term in Sec. IV, which is followed by a short
summary. The Appendices are devoted to the topological char-
acterization of one-dimensional open quantum systems with
inversion symmetry, topological degeneracy for open quan-
tum systems conserving the number of particles, and technical
details.

II. EFFECTIVE NON-HERMITIAN HAMILTONIAN
FOR OPEN QUANTUM SYSTEMS

A. Lindblad equation and the effective
non-Hermitian Hamiltonian

In this section, we briefly review the time-evolution of open
quantum systems and concretely explain topological proper-
ties on which we will focus in this paper.

First, we note that for open quantum systems, the dynamics
is governed by the Lindblad equation

i
∂

∂t
ρ = L [ρ] := L0[ρ] + LJ[ρ], (1a)

where

L0[ρ] := [H0, ρ] − i

2

∑
α

{ρ, L†
αLα}, (1b)

LJ[ρ] := i
∑

α

LαρL†
α. (1c)

Here the Lindblad operators are denoted by a set of Lα

(α = 1, 2, . . .) which describes the dissipation arising from
coupling to the environment. The density matrix of the sys-
tem is denoted by ρ(t ). The superoperator L [ · ] (LJ[ · ]) is
referred to as the Liouvillian (the jump term). For the details of
the superoperators, see Appendix A. The operator H0 denotes
the Hamiltonian for the system (H0 = H†

0 ). For arbitrary op-
erators A and B, the commutator (anticommutator) is written
as [A, B] ({A, B}).

In some previous works [6,56,59–64] on open quantum
systems, topological phenomena were studied for the effective
non-Hermitian Hamiltonian

Heff = H0 − i

2

∑
α

L†
αLα, (2)

by focusing on the dynamics before occurrence of a jump of
the state by LJ, which is described by i∂tρ(t ) = Heffρ(t ) −
ρ(t )H†

eff . For instance, the Chern number CHeff is computed
with the right and left eigenvectors of the non-Hermitian
Hamiltonian Heff for a two-dimensional system without sym-
metry [59].

Here, to elucidate effects of the jump term, let us consider
the operator L (λ) interpolating between L0 and L0 + LJ;
L (λ) := L0 + λLJ (0 � λ � 1). With a slight abuse of ter-
minology, we also call L (λ) “Liouvillian” [71]. When the
gap-closing of the “Liouvillian” L (λ) does not occur for an
arbitrary value of λ, the topological properties are expected to
be maintained. [The gap is defined in Eq. (6)]. However, it re-
mains unclear whether there exists a topological invariant that
characterizes the topological properties even in the presence
of the jump term.

Previous works [51–55] addressed how the presence of
the jump term affects the topological characterization of open
quantum systems in noninteracting cases. We note, however,
that topological invariants introduced in these previous works
can change without the gap closing in the spectrum of the
Liouvillian L = L0 + LJ. For instance, the topological char-
acterizations proposed in Refs. [51,52,54] require the gap in
the spectrum of the density matrix, which is not necessary in
our framework.

B. Vectorized density matrices in the doubled Hilbert space

For later use, we define “eigenvalues” and “eigenvectors”
of the Liouvillian L which can be thought of as a non-
Hermitian matrix in a doubled Hilbert space, Ket ⊗ Bra. With
the following isomorphism, the density matrix is mapped to a
vector in the doubled Hilbert space [72–84]:

ρ =
∑

i j

ρi j |φi〉〈φ j | ↔ |ρ〉〉 =
∑

i j

ρi j |φi〉〉K ⊗ |φ j〉〉B, (3)
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where |φ〉’s are states in the original Hilbert space (or Ket
space) generated by acting on the vacuum with creation opera-
tors in the real space. The coefficient ρi j is a complex number.
Here, to distinguish elements of the doubled Hilbert space
from those of the original Hilbert space, we denote a vector
in the subspace Ket (Bra) as |φi〉〉K (B).

The inner product of the vectorized matrices, called the
Hilbert-Schmidt inner product, is defined as

〈〈A|B〉〉 = tr(A†B) :=
∑

i j

A†
i jB ji. (4)

With the above isomorphism, LαρL†
α is represented as Lα ⊗

L∗
α|ρ〉〉. Therefore, the Liouvillian L can be represented as

a non-Hermitian matrix L whose left and right eigenvectors
L〈〈ρn| and |ρn〉〉R are defined as

L|ρn〉〉R = |ρn〉〉R�n, L〈〈ρn|L = �nL〈〈ρn|, (5)

with the eigenvalues �n, n = 1, 2, . . ., (for more details, see
Appendix A). The gap between eigenstates |ρn〉〉R and |ρn′ 〉〉R

can be defined as [85]

� = Im(�n − �n′ ). (6)

By L(λ) := L0 + λLJ, we denote the “Liouvillian” in
the doubled Hilbert space which interpolates between the
two cases, L(0) = L0 = Heff ⊗ 1l − 1l ⊗ H∗

eff and L(1) =
L = L0 + LJ with LJ = i

∑
α Lα ⊗ L∗

α .

III. PSEUDOSPIN CHERN NUMBER FOR
THE LIOUVILLIAN

To clarify whether the topological properties for Heff are
maintained even in the presence of the jump term, we in-
troduce the pseudospin Chern number for two-dimensional
systems without symmetry.

We note that our approach can be extended to characterize
correlated topological states for other spatial dimensions and
symmetry [e.g., one-dimensional systems with inversion sym-
metry, (see Appendix B)], although we limit our discussion to
the Chern number for the sake of concreteness.

A. Definition

Suppose that the gap of the “Liouvillian” L(λ) is main-
tained for 0 � λ � 1 (in the case of topological ordered
states [86], also suppose that the topological degeneracy is
maintained, i.e., the above gap separates the topologically
degenerate states from the others), the topological properties
are considered to be maintained which are characterized by
the topological invariant computed from the eigenvectors of
Heff for λ = 0.

The above topological properties can be characterized by
the pseudospin Chern number Cps = (CKK − CBB)/2 where
Cσσ (σ = K, B) is defined as

Cσσ :=
∫

dθxdθy

2π
ImFσσ (θx, θy), (7a)

Fσσ := εμν

∑
n

L〈〈∂σ
μρn|∂σ

ν ρn〉〉R. (7b)

Here the summation
∑

n is taken over degenerate states;
we supposed that the eigenvectors of the “Liouvillian” L(λ)

show N2
d -fold degeneracy for arbitrary λ, which means that

the eigenstates of Heff show the Nd -fold degeneracy [such
degeneracy is indeed observed for FQH states with two-body
loss (Sec. IV B 2)]. The symbol εμν denotes the antisymmetric
tensor with εxy = −εyx = 1. The summation is taken for re-
peated indices μ and ν [μ(ν) = x, y]. Vectors |ρn〉〉R and L〈〈ρn|
are right and left eigenvectors of L(λ) [see Eq. (5)] which
satisfy the biorthogonal normalization condition; |ρn〉〉R and
L〈〈ρn′ |, satisfy L〈〈ρn′ |ρn〉〉R = δn′n for arbitrary integers, n and
n′. In addition, we imposed the twisted boundary conditions
with (θx, θy) only for the space specified by σ [69,87,88].
The periodic boundary conditions are imposed on the other
space. The operator ∂σ

μ denotes the corresponding differen-
tial operator acting only on the space specified by σ . For
instance, the action of ∂K

μ on a state |�〉〉K ⊗ |�′〉〉B reads
(∂K

μ |�〉〉K ) ⊗ |�′〉〉B.
As proven in Sec. III B, the pseudospin Chern number Cps

elucidates that as long as the gap of the “Liouvillian” L(λ)
opens, the topological properties of Heff are maintained even
in the presence of the jump term. We note that when the
pseudospin Chern number changes, the gap-closing should
occur in the parameter space of (θx, θy).

The effective non-Hermitian Hamiltonian Heff is particu-
larly useful when LJ and L0 can be written in block-upper-
triangular and block-diagonal forms, respectively. This is
because in such cases, the effective non-Hermitian Hamil-
tonian governs not only topological properties but also the
spectrum of the full Liouvillian [89,90] (see Appendix C),
which significantly reduces the numerical cost.

B. Properties of the pseudospin Chern number

The pseudospin Chern number elucidates that even in the
presence of the jump term, topological properties of Heff re-
main unchanged as long as the gap of the “Liouvillian” L(λ)
opens. To see this, we note the following three facts.

(i) The pseudospin Chern number is quantized even in the
presence of the jump term, provided that the gap-closing of
L does not occur in the space of (θx, θy). The quantization of
Cσσ can be proven by extending the argument in Refs. [87,91]
(for more details, see Appendix D). We note that introducing
a perturbation does not change Cps as long as the gap is open.
This can be seen by noting that Cσσ under the gap condition
is continuous as a function of the strength of the perturbation,
while its value is quantized.

(ii) In the absence of the jump term, CKK is rewritten as

CKK = NdCHeff , (8)

with

CHeff =
∫

dθxdθy

2π
Im f (θx, θy), (9a)

f (θx, θy) = εμν

∑
n1

L〈∂μ�n1 |∂ν�n1〉R. (9b)

Equation (8) is proven in Sec. III B 1. We note that CHeff ,
defined in Eq. (9), is nothing but the Chern number of Heff

[59].
(iii) In the absence of the jump term, the Chern number

obtained by twisting the boundary conditions only for the
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subspace Bra (CBB) satisfies

CBB = −CKK , (10)

which is proven in Sec. III B 2. This relation also indicates that
for λ = 0, the total Chern number computed by twisting the
boundary conditions both for the subspaces Bra and Ket (i.e.,
Ctot = CKK + CBB) vanishes even when the eigenstates of Heff

show topologically nontrivial properties.
Based on the fact (i), we can see that the pseudospin

Chern number is quantized as long as the gap opens. In addi-
tion, (ii) and (iii) indicate that the pseudospin Chern number
Cps = (CKK − CBB)/2 characterizes the topological properties
described by the Hamiltonian Heff for λ = 0. Therefore, Cps

elucidates that as long as the gap opens, the topology of Heff

is maintained even in the presence of the jump term. The
effective non-Hermitian Hamiltonian is particularly useful for
systems with loss but without gain or vice versa because
both the spectral and topological properties are encoded into
the effective Hamiltonian Heff which significantly reduces the
numerical cost.

In the rest of this section, we prove Eqs. (8) and (10).

1. Proof of Eq. (8)

First, we make the identification [92]

|ρn〉〉R ↔ |�n1〉RR〈�n2 |, L〈〈ρn| ↔ |�n2〉LL〈�n1 |, (11)

where |ρn〉〉R and L〈〈ρn| are right and left eigenvectors of L0

L0|ρn〉〉R = (En1 − E∗
n2

)|ρn〉〉R, (12)

L〈〈ρn|L0 = L〈〈ρn|(En1 − E∗
n2

), (13)

respectively. Vectors |�n1〉R and L〈�n2 | denote the right and
left eigenstates of Heff which satisfy L〈�n2 |�n1〉R = δn2n1 . The
subscript n denotes the set of integers, n1 and n2, labeling the
eigenstates, |�n1〉R and L〈�n2 |.

We recall that for the computation of the Chern number
CKK , the twisted boundary conditions are imposed only on
the subspace Ket. In this case, the derivative ∂K

μ acts only on
the states in the subspace Ket. Keeping this fact in mind, we
obtain the Berry connection AKμ and the Berry curvature FKK

as

AKμ :=
∑

n

L〈〈ρn|∂K
μ |ρn〉〉R

=
∑
n1n2

tr[|�n2〉LL〈�n1 |∂μ�n1〉RR〈�n2 |]

=
∑
n1n2

R〈�n2 |�n2〉LL〈�n1 |∂μ�n1〉R

= Nd

∑
n1

L〈�n1 |∂μ�n1〉R, (14a)

and

FKK := εμν∂μAKν = Ndεμν

∑
n1

L〈∂μ�n1 |∂ν�n1〉R. (14b)

Thus, we end up with Eq. (8).

2. Proof of Eq. (10)

For the computation of the Chern number CBB, we impose
the twisted boundary conditions only on the subspace Bra,
meaning that the derivative ∂B

μ acts only on the states in the
subspace Bra. Keeping this in mind, we can see that the Berry
connection ABμ is equal to A∗

Kμ,

ABμ :=
∑

n

L〈〈ρn|∂B
μ|ρn〉〉R = Nd

∑
n2

R〈∂μ�n2 |�n2〉L = A∗
Kμ,

(15)

which yields FBB := εμν∂μABν = F ∗
KK .

Because the Chern number CBB is an integral of Im[FBB],
we obtain Eq. (10).

Equation (15) also indicates that the total Chern number
computed by twisting the boundary conditions both for the
subspaces Bra and Ket (i.e., Ctot = CKK + CBB) vanishes; the
Berry connection Aμ obtained by twisting the boundary con-
ditions both for the subspace satisfies ImAμ = 0, meaning that
the relation of ImF := εμν∂μImAν vanishes.

IV. APPLICATION TO THE FQH STATES FOR AN OPEN
QUANTUM SYSTEM WITH TWO-BODY LOSS

By numerically computing the pseudospin Chern number,
we elucidate that even in the presence of the jump term,
the topology of FQH states survives for the following open
quantum system with two-body loss.

Let us consider an open quantum system of spinless
fermions on a square lattice. We denote by c†

i and ci the
creation and the annihilation operators of a spinless fermion
at site i, respectively. The number operator at i is defined as
ni := c†

i ci. The system is described by the following Hamilto-
nian and the Lindblad operators:

H0 =
∑
〈i j〉

hi jc
†
i c j + VR

∑
〈i j〉

nin j, (16a)

Liμ = √
γ cici+eμ

, (16b)

where eμ denotes the unit vector in the μ-direction (μ = x, y).
The Lindblad operators L’s describe two-body loss (γ > 0).
The strength of the nearest-neighbor interaction VR is a real
number. The summation

∑
〈i j〉 is taken over pairs of neighbor-

ing sites i and j. The matrix element hi j = t0ei2πφi j with real
numbers φi j and t0 describes hopping between neighboring
sites i and j under the gauge field. For the definition of the
phase factor φi j , see Fig. 1 where the string gauge is taken
[93]. The number of the flux quanta penetrating the entire
system is written as Nφ := φLxLy, where Lx and Ly denote the
number of sites along the x- and the y-directions, respectively.
This model is considered to be relevant to cold atoms. The
Abelian gauge field can be introduced by rotating the system
[94–98] or by optically synthesized gauge fields [99–112].
The Feshbach resonance [113,114] induces inelastic scatter-
ing of two-body loss [115–119].

We address the characterization of non-Hermitian FQH
states by the following steps. First, we rewrite the fermionic
open quantum system as a closed fermionic system by identi-
fying the Liouvillian as a non-Hermitian Hamiltonian via the
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FIG. 1. Sketch of the model under the periodic boundary condi-
tions. Gray and black circles denote the sites; each site illustrated
with a gray circle is identified with the corresponding site illustrated
with a black circle on the opposite side. To describe the Abelian
gauge field, we took the string gauge [93]. Green arrows illustrate the
phase φi j . For hopping parallel to an arrow, φi j takes the value shown
in the figure. When the fermion hops in the opposite direction, φi j

takes the values so that φi j = −φ ji is satisfied. The number of the flux
quanta penetrating the entire system is written as Nφ = φLxLy, where
Lx and Ly denote the number of sites along the x- and the y-directions,
respectively. When φ is multiple of 1/Lx , the string gauge is reduced
to the Landau gauge.

isomorphism [see Eq. (3)]. Second, by numerically diagonal-
izing the mapped fermionic model (18), we elucidate that the
topological properties are maintained; the topological degen-
eracy and the pseudospin Chern number are independent of
the jump term.

A. Mapping the fermionic open quantum system
to a closed bilayer system

First, based on the isomorphism [see Eq. (3)], we show that
the systems of spinless fermions with two-body loss can be
written as a closed bilayer fermionic system with interlayer
couplings.

With the isomorphism, an annihilation operator ci is
mapped to a creation operator c̄†

i for the subspace Bra;
ρci ↔ c̄†

i |ρ〉〉 with {c̄i, c̄†
j } = δi j for an arbitrary ρ. Here

a subtlety arises; commutation relations [ci, c̄ j] = [ci, c̄†
j ] =

0 should hold because the relation c̄†
i |φ j1〉〉K ⊗ |φ j2〉〉B =

|φ j1〉〉K ⊗ (c̄†
i |φ j2〉〉B) [120] holds for arbitrary states |φ j1〉〉K ⊗

|φ j2〉〉B.
We note, however, that the above commutation relations

can be rewritten as the anticommutation relations by introduc-
ing the following operators [121,122]:

dia = ci, dib = c̄iPf a, (17)

where Pf a := (−1)
∑

i d†
iadia . Namely, with the operators d†

iσ

(σ = a, b), we have {diσ , d jσ ′ } = 0 and {diσ , d†
jσ ′ } = δσσ ′δi j .

Here, the operators with σ = a (σ = b) act on the subspace
Ket (Bra).

FIG. 2. Spectrum of the “Liouvillian” L(λ) := L0 + λLJ for
λ = 0 (colored dots) and λ = 1 (black dots). Explicit forms of L0

and LJ are written in Eq. (18). The spectra are exactly on top of
each other, which is expected from the fact that LJ and L0 can be
written in block-upper-triangular and block-diagonal forms, respec-
tively [89,90] (see Appendix C). Panel (b) is a magnified version
of the range 0 � Im�n � 0.07 in panel (a). Parameters are set to
VR = cos(0.4π ), γ = 2 sin(0.4π ), t0 = 1, and Lx = Ly = 6. Total
number of flux is Nφ = φLxLy = 6. The data for λ = 0 (colored
dots) are obtained by diagonalizing L0 for the subspace labeled
by (Na, Nb) = (0, 0), (2,2), (4,4), or (6,6). For (Na, Nb) = (2, 2),
the filling of each layer is 1/3. While the jump term mixes the
subspaces labeled by (Na, Nb) and (Na + 2, Nb + 2), the “Liouvil-
lian” can still be block-diagonalized into subsectors labeled by
(Na − Nb, (−1)Na ). The black dots are obtained for the subspace
labeled by (Na − Nb, (−1)Na ) = (0, 1). The Laughlin states with the
filling factor ν = 1/3 are denoted by the dots marked with the arrow
in panel (b). We note that the Laughlin states denoted with the arrow
have a finite lifetime while the vacuum is a nonequilibrium steady
state (i.e., its lifetime is infinite).

In terms of the operators d†
iσ , the Lindblad equation, which

is defined with the Hamiltonian H0 (16) and the Lindblad
operators (16 b), is rewritten as

i∂t |ρ〉〉 = L|ρ〉〉 = (L0 + LJ )|ρ〉〉, (18a)

L0 =
∑
〈i j〉σ

d†
iσ hi jσ d jσ +

∑
〈i j〉σ

Vσ niσ n jσ , (18b)

LJ = −iγ
∑
〈i j〉

diad jad jbdib, (18c)

with hi ja = hi j and hi jb = −h∗
i j . The number operator is de-

fined as niσ := d†
iσ diσ . Here Vσ = sgn(σ )VR − i γ

2 with sgn(σ )
taking 1 (−1) for σ = a (σ = b).

The above equation indicates that an open quantum system
of spinless fermions can be mapped to a closed bilayer system
whose Hamiltonian corresponds to L defined in Eq. (18). Here
we regarded d†

iσ (σ = a, b) as an operator creating a spinless
fermion at site i of layer σ .

B. Numerical results

1. Overview

We analyze the above bilayer system (18) by introducing a
parameter λ (0 � λ � 1), L(λ) := L0 + λLJ. Employing the
pseudopotential approach (see Sec. IV B 2 and Appendix E),
we obtain the spectrum and the pseudospin Chern number
which are shown in Figs. 2 and 3. As discussed in Sec. IV B 3,
these figures indicate that the topological properties of the
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FIG. 3. The pseudospin Chern number as a function of λ for the
Laughlin states with 9-fold degeneracy indicated by dots marked
with the blue arrow in Fig. 2(b) (for details of the computation, see
Secs. IV B 2 and IV B 3). The parameters are set to the same values
as those of Fig. 2. For the computation of the Chern number, we
employed the method proposed in Ref. [123].

non-Hermitian FQH states remain unchanged even in the
presence of the jump term; the topological degeneracy and
the pseudospin Chern number are not affected by the jump
term.

Because the open quantum system loses but does not gain
particles, the vacuum (|ρ〉〉 = |0〉〉a ⊗ |0〉〉b with |0〉〉σ being the
state annihilated by all diσ ) has an infinite lifetime, which is
consistent with Fig. 2. Namely, the Laughlin states, which are
indicated by dots marked with the arrow, are no longer the
states with the longest lifetime. We note, however, that the
topology of the Laughlin states is maintained even in the pres-
ence of the jump term. Such topological states are considered
to be experimentally accessible by observing the transient
dynamics of cold atoms. The realization of Laughlin states in
cold atoms was theoretically proposed [96,99,100]. Following
these proposals, one can prepare the Laughlin state as the
initial state for a sufficiently deep trap potential. Suddenly
making the trap potential shallower results in two-body loss.
Furthermore, the non-Hermitian FQH states become the first
decay modes by tuning the gauge field so that Nφ = φLxLy =
6 is satisfied.

As we see below, our numerical results demonstrate that
both the spectral and the topological properties are encoded
into the effective non-Hermitian Hamiltonian if LJ and L0 are
written in block-upper-triangular and block-diagonal forms,
respectively. The analysis of Heff is numerically less demand-
ing than that of the full Liouvillian L = L0 + LJ.

2. Results in the absence of the jump term

First, we discuss the case of L(0) = L0 which can be
understood from the previous work [59] for the effective non-
Hermitian Hamiltonian Heff .

Let En1 (n1 = 1, 2, . . .) be eigenvalues of Heff . Because the
state with the minimum real-part of the energy ReEn1 also
shows the longest lifetime, 1/ImEn1 , the pseudopotential ap-
proach is employed where the creation operator c†

i is replaced
to f †

i = ∑′
n1

ϕ∗
in1

a†
n1

(for more details, see Appendix E).
Here ϕin1 denotes a state in the lowest Landau level;∑

j hi jϕ jn1 = ϕin1εn1 with the energy εn1 ∈ R. The operator
a†

n1
creates a fermion with a state in the lowest Landau level.

The summation
∑′

n1
is taken over states in the lowest Landau

level. Diagonalizing Heff for the filling factor ν = 1/3 for the
lowest Landau level, we can observe the 3-fold degeneracy
for the states with the longest lifetime [59,124], which is the
topological degeneracy of the Laughlin states for ν = 1/3. We
note that the number of fermions is conserved in the absence
of the jump term. For these 3-fold-degenerate states, the Chern
number defined in Eq. (9) takes one (CHeff = 1) [59,87,125],
which indicates the robustness of the topology against the
non-Hermiticity.

With the above facts, we can understand the results of L0

which can be block-diagonalized into each subsector labeled
by (Na, Nb) with Nσ denoting the total number of fermions
in layer σ = a, b. In Fig. 2, the colored dots represent the
spectrum of L0 which is given by �n = En1 − E∗

n2
with En1(2)

denoting the eigenvalues of Heff . The states indicated by dots
marked with the arrow correspond to the Laughlin states at
the filling factor ν = 1/3. Here we note that these states show
9-fold degeneracy (N2

d = 9) because there is topologically
protected 3-fold degeneracy (Nd = 3) for each of the two lay-
ers. We also note that the data for Na = 4 are similar to those
of Na = 2, which is attributed to the pseudopotential approach
projecting creation operators onto the states in the lowest
Landau level [126]. Figure 3 shows that the pseudospin Chern
number for these 9-fold degenerate states takes three at λ = 0,
which is consistent with CHeff = 1. Namely, Cps = NdCHeff = 3
holds with Nd = 3 [see Eq. (8)].

3. Results in the presence of the jump term

Let us now analyze the case for a finite value of λ (0 < λ �
1). We show the following: (i) the topological degeneracy is
maintained; (ii) the pseudospin Chern number remains one for
the non-Hermitian FQH states.

The topological degeneracy (9-fold degeneracy) survives
even in the presence of the jump term. This is because
the spectrum is not affected by the jump term LJ when LJ

and L0 can be written in block-upper-triangular and block-
diagonal forms, respectively [89,90] (see Appendix C); for
the open quantum system with two-body loss but without
gain, the jump term LJ maps states in the subspace labeled by
(Na + 2, Nb + 2) to those in subspaces labeled by (Na, Nb),
while L0 is block-diagonalized for subspaces labeled by
(Na, Nb). The numerical data for two-body loss also support
the above independence of the spectrum. In Fig. 2, we can
see that the eigenvalues of L0 (colored dots) and those of
L = L0 + LJ (black dots) are exactly on top of each other.
We note that the spectrum of L is obtained for the subsector
labeled by Na − Nb and (−1)Na where the “Liouvillian” L(λ)
is block-diagonalized. The above numerical data show that the
topological degeneracy survives even in the presence of the
jump term, which is expected on general grounds.

The pseudospin Chern number should not be affected by
the jump term, as the gap-closing does not occur. Indeed,
Fig. 3 indicates that the pseudospin Chern number takes three
for an arbitrary value of λ (0 � λ � 1). Noting the relation
Cps = 3CHeff [see Eq. (8)], we conclude that topological prop-
erties of Heff remain unchanged even in the presence of the
jump terms. Figure 3 is obtained by employing the method
proposed in Ref. [123].
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In the above, we confirmed that the topological properties
of the Laughlin state are maintained even in the presence of
the jump term. Furthermore, the above results elucidate that
both the spectral and the topological properties are encoded
into the effective non-Hermitian Hamiltonian if LJ and L0 are
written in block-upper-triangular and block-diagonal forms,
respectively.

We close this section with a remark on the topological
degeneracy; for another type of Lindblad operator preserv-
ing the charge U(1) symmetry, e.g., the Lindblad operators
describing dephasing noise [78,79,81,127,128], 3-fold topo-
logical degeneracy can be observed (for more details, see
Appendix F).

V. SUMMARY

Despite the previous extensive analysis of open quantum
systems, it is unclear whether correlated topological states,
such as FQH states, are maintained even in the presence of
the jump term.

In this paper, we introduced the pseudo-spin Chern number
computed from the vectorized density matrices in the doubled
Hilbert space Ket ⊗ Bra which is akin to the spin-Chern num-
ber. The presence of such a topological invariant elucidates
that, as long as the gap of “Liouvillian” L(λ) = L0 + λLJ

opens for 0 � λ � 1, the topology of the full Liouvillian L(1)
is encoded into Heff . The effective Hamiltonian is particularly
useful for systems where LJ and L0 can be written in block-
upper-triangular and block-diagonal forms, respectively. This
is because in such systems both the spectral and topological
properties are encoded into the effective Hamiltonian.

As an application, we addressed the topological charac-
terization of the non-Hermitian FQH states in open quantum
systems with two-body loss but without gain. Our numerical
results have elucidated that even in the presence of the jump
term, topological properties (i.e., the pseudospin Chern num-
ber and 9-fold topological degeneracy) of the non-Hermitian
FQH states are not affected by the jump term. This fact also
reduces the numerical cost because the analysis of Heff is
numerically less demanding than that of the full Liouvillian
L = L0 + LJ.

We note that similar topological invariants can be intro-
duced to characterize correlated topological states for other
spatial dimensions and symmetry [e.g., a one-dimensional
open quantum systems with inversion symmetry (see Ap-
pendix B)], indicating the high versatility of our approach.
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APPENDIX A: DETAILS OF THE ISOMORPHISM
DEFINED IN Eq. (3)

With the isomorphism [see Eq. (3)], the action of the Li-
ouvillian L [ · ] on a density matrix is mapped to a vector as
follows:

L [ρ(t )] ↔ L|ρ(t )〉〉, (A1a)

with

L = L0 + LJ, (A1b)

L0 = (Heff ⊗ 1l − 1l ⊗ H∗
eff ), (A1c)

LJ = i
∑

α

Lα ⊗ L∗
α. (A1d)

Here 1l denotes the identity operator.
To see this, we first note that the isomorphism [see Eq. (3)]

maps the density matrix ρ ∈ EndC (H), which act on the
Hilbert space H, to the vector in the doubled Hilbert space
|ρ〉〉 ∈ Ket ⊗ Bra. Correspondingly, the superoperator L ∈
EndC[EndC (H)] is mapped to a non-Hermitian matrix L. In
particular, we have

AρB =
∑
i ji′ j′

Ai′iρi jB j j′ |φi′ 〉〈φ j′ |

↔
∑
i ji′ j′

(Ai′i ⊗ BT
j′ j )ρi j |φi′ 〉〉K ⊗ |φ j′ 〉〉B = A ⊗ BT |ρ〉〉,

(A2)

where Ai j := 〈φi|A|φ j〉, Bi j := 〈φi|B|φ j〉 with |φ j〉 being the
set of states generated by acting on the vacuum with creation
operators in the real space [e.g., for spinless fermions, |φi〉
is generated by acting with the creation operators c†

j ( j =
1, 2, . . .) on the vacuum]. By making use of the above relation,
we have

ρH†
eff ↔ 1l ⊗ (H†

eff )T |ρ〉〉, (A3a)

LαρL†
α ↔ Lα ⊗ (L†

α )T |ρ〉〉. (A3b)

Therefore, we can see that the Liouvillian L [ρ(t )] is
mapped to a non-Hermitian matrix L as shown in Eq. (A1).

APPENDIX B: CHARACTERIZATION OF
ONE-DIMENSIONAL OPEN QUANTUM SYSTEMS

WITH INVERSION SYMMETRY

In Sec. III, we introduced the pseudospin Chern num-
ber to characterize topological properties maintained even
in the presence of the jump term for two-dimensional open
quantum systems without symmetry. The pseudospin Chern
number can be computed by twisting the boundary condition
either Ket or Bra space. We show that this approach can be
straightforwardly applied to one-dimensional open quantum
systems with inversion symmetry, in which case the Berry
phase is quantized to 0 or π . The presence of such a quan-
tized topological invariant elucidates that the topology of the
full Liouvillian is encoded into Heff when LJ and L0 can be
written in block-upper-triangular and block-diagonal forms,
respectively. This fact is particularly useful for systems with
loss but without gain as demonstrated in Sec. IV.
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As an application to one-dimensional open quantum sys-
tems with dissipation, we analyze the Su-Schrieffer-Heeger
(SSH) model with dephasing noise whose topology has not
been characterized so far.

1. Berry phase for open quantum systems

a. Definition

Let L(θ ) be a one-parameter family of Liouvillian depend-
ing smoothly on θ and periodic in θ , i.e., L(θ + 2π ) = L(θ ).
Here, θ dependence is introduced only for the subspace Ket.
We assume that there exists a θ -independent operator I such
that I2 = 1 and IL(θ )I = L(−θ ). The Berry phase introduced
in this section is available regardless of whether the particles
are fermions or bosons.

Suppose that the right and left vectors of the Liouvil-
lian, |ρn(θ )〉〉R and L〈〈ρn(θ )|, are nondegenerate. In this case,
choosing the gauge so that |ρn(θ + 2π )〉〉R = |ρn(θ )〉〉R and
L〈〈ρn(θ + 2π )| = L〈〈ρn(θ )| are satisfied, we can define the
following Berry phase:

χKn =
∫ π

−π

dθ ImAKn(θ ), (B1a)

AKn(θ ) = L〈〈ρn(θ )|∂K
θ |ρn(θ )〉〉R. (B1b)

Here ∂K
θ denotes the derivative with respect to θ which acts

only on the subspace Ket; for instance, the action of ∂K
θ

on a state |�〉〉K ⊗ |� ′〉〉B reads (∂K
θ |�〉〉K ) ⊗ |� ′〉〉B. We im-

posed the biorthogonal normalization condition on the right
and left eigenvectors of L(θ ); |ρn(θ )〉〉R and L〈〈ρn′ (θ )| satisfy
L〈〈ρn′ (θ )|ρn(θ )〉〉R = δn′n for arbitrary integers, n and n′.

b. Properties of the Berry phase χKn

The Berry phase χKn elucidates that as long as the gap of
the “Liouvillian” L(λ) opens for 0 � λ � 1, the topological
properties of Heff are maintained even in the presence of the
jump term, which follows from the following two facts.

(i) The Berry phase is quantized,

eiχKn =
∏

θ0=0,π

L〈〈ρn(θ0)|I|ρn(θ0)〉〉R ∈ {−1, 1}, (B2)

where the right eigenvector |ρn(θ0)〉〉R is also a right eigenvec-
tor of I with an eigenvalue ±1 for θ0 = 0 or π . Equation (B2)
is proven in Appendix B 1 c.

(ii) In the absence of the jump term, χKn is written as

χKn =
∫ π

−π

dθ ImL
〈
�n1

∣∣ ∂

∂θ

∣∣�n1

〉
R, (B3)

where |�n1〉R and L〈�n1 | (n1 = 1, 2, . . .) are the right and left
eigenvectors of Heff (θ ),

Heff (θ )|�n1 (θ )〉R = En1 (θ )|�n1 (θ )〉R, (B4a)

L〈�n1 (θ )|Heff (θ ) = L〈�n1 (θ )|En1 (θ ), (B4b)

with the eigenvalue En1 (θ ) ∈ C. Equation (B4) is proven in
Appendix B 1 c.

Equation (B3) indicates that χKn is reduced to the Berry
phase for Heff in the absence of the jump term. In addition,
Eq. (B2) indicates that as long as the gap opens, χKn does
not change its value even when the jump term is introduced.

Therefore, the Berry phase χKn elucidates that as long as the
gap of the “Liouvillian” L(λ) opens for 0 � λ � 1, the topo-
logical properties of Heff are maintained even in the presence
of the jump term.

In particular, this fact indicates that the topology of the
full Liouvillian is encoded into Heff when LJ and L0 can be
written in block-upper-triangular and block-diagonal forms,
respectively. An example of such systems is an open quantum
system with loss but without gain, as we have seen in Sec. IV
where the two-dimensional system is analyzed.

We note that Berry phases for non-Hermitian systems are
defined in several contexts [129,130]. However, it remains
unsolved whether there exists a topological invariant that char-
acterizes the topological properties even in the presence of the
jump term.

In the rest of this section, we prove Eqs. (B2) and (B3).

c. Proof of Eqs. (B2) and (B3)

Proof of Eq. (B2). For the inversion symmetric system
satisfying IL(θ )I−1 = L(−θ ), the following relation holds:

I|ρn(−θ )〉〉R = |ρn(θ )〉〉Rcn(θ ), (B5a)

L〈〈ρn(−θ )|I = c−1
n (θ )L〈〈ρn(θ )|, (B5b)

with a continuous function cn(θ ) taking a complex value
cn(θ ) 
= 0. We recall the assumption that the right and left
eigenvectors are nondegenerate. By using the above relation,
we can obtain

AKn(−θ ) = L〈〈ρn(−θ )|∂K
−θ |ρn(−θ )〉〉R

= −L〈〈ρn(−θ )|∂K
θ |ρn(−θ )〉〉R

= −L〈〈ρn(−θ )|I∂K
θ I|ρn(−θ )〉〉R

= −c−1
n (θ )L〈〈ρn(θ )|∂K

θ |ρn(θ )〉〉Rcn(θ )

= −AKn(θ ) − c−1
n (θ )

∂

∂θ
cn(θ ). (B6)

This relation simplifies the integral in Eq. (B1a),

χKn =
∫ 0

−π

dθ ImAKn(θ ) +
∫ π

0
dθ ImAKn(θ )

=
∫ π

0
dθ Im[AKn(−θ ) + AKn(θ )]

= −
∫ π

0
dθ Imc−1

n (θ )
∂

∂θ
cn(θ )

= −Im[log cn(π ) − log cn(0)]. (B7)

Equation (B5) indicates that |ρn(0)〉〉R [|ρn(π )〉〉R] is a right
eigenvector of I with eigenvalue cn(0) [cn(π )]. Namely, cn(0)
and cn(π ) take 1 or −1. Therefore, combining this fact and
Eq. (B7), we obtain Eq. (B2) which indicates the quantization
of the Berry phase χKn.

Proof of Eq. (B3). In the absence of the jump term, we can
see the following correspondence:

|ρn〉〉R ↔ |�n1〉RR〈�n1 |, L〈〈ρn| ↔ |�n1〉LL〈�n1 |. (B8)

Here we recall the assumption that the states are non-
degenerate. By using the above correspondence, χKn is written
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as

χKn =
∫ π

−π

dθ Imtr
(|�n1〉LL〈�n1 |∂K

θ |�n1〉RR〈�n1 |
)

=
∫ π

−π

dθ ImL〈�n1 |
∂

∂θ
|�n1〉R, (B9)

which is the desired Eq. (B3).

2. SSH model with dephasing noise

In the above, we introduced the Berry phase for the doubled
Hilbert space [see Eq. (B1)]. In particular, the Berry phase
elucidates that both the spectral and topological properties of
the Liouvillian are encoded into the effective non-Hermitian
Hamiltonian Heff for open quantum systems whose jump term
can be written in a block-upper-triangular form. This is be-
cause such a jump term does not affect the spectrum.

In this section, instead of the detailed analysis of such
an open quantum system, we address the topological charac-
terization of a one-dimensional system with dephasing noise
[78,79,81,127,128], demonstrating that our topological invari-
ant works even when the jump term affects the spectrum of
the Liouvillian. Specifically, we analyze the SSH model with
dephasing noise whose topological properties have not been
analyzed so far. Our analysis elucidates that a nonequilibrium
steady state is characterized by the Berry phase taking π in
the presence of the jump term although the gap is closed in
the absence of the jump term.

a. Mapping the open quantum system to a closed system

Consider the SSH model with dephasing noise described
by the Lindblad equation (1a) with

H0 =
L−1∑
j=0

tc†
j+1Ac jB + t ′c†

jAc jB + H.c., (B10a)

Ljα =
√

γ

2
(c†

jαc jα − c jαc†
jα ) = √

γ

(
c†

jαc jα − 1

2

)
. (B10b)

Here, c†
jα (c jα) creates (annihilates) a spinless fermion at sub-

lattice α = A, B of site j. Hopping integrals t and t ′ take real
values, and γ is a positive number. The number of unit cells is
L. We imposed the periodic boundary condition c†

Lα = c†
0α .

The above open quantum system is mapped to the closed
system, which has been discussed for the specific choice of t ′
(t ′ = t) [79,83]. The Liouvillian reads

L = L0 + LJ, (B11a)

L0 =
∑
ασ

L−1∑
j=0

(td†
j+1Aσ d jBσ + t ′d†

jAσ d jBσ + H.c.) − iγ L

2
,

(B11b)

LJ = −iγ
∑

α

L−1∑
j=0

(
n jα↑ − 1

2

)(
n jα↓ − 1

2

)
. (B11c)

Here we used σ =↑ (σ =↓) to specify the subspace Ket (Bra).
We denote by d†

jασ the creation operator of a fermion with spin
σ =↑,↓ at sublattice α = A, B of site j. The number operator
is defined as n jασ := d†

jασ d jασ .

Now, we derive Eq. (B11). With the isomorphism [see
Eq. (3)], the following relations hold for an arbitrary density
matrix ρ:

ρ
(
c†

iαciα − 1
2

)(
c†

iαciα − 1
2

)
↔ (

c̄†
iα c̄iα − 1

2

)(
c̄†

iα c̄iα − 1

2

)|ρ〉〉, (B12a)(
c†

iαciα − 1
2

)
ρ
(
c†

iαciα − 1
2

)
↔ (

c†
iαciα − 1

2

)(
c̄†

iα c̄iα − 1
2

)|ρ〉〉, (B12b)

where ciα (c̄iα) acts on the vectors in the subspace Ket (Bra).
Thus, introducing the following operators:

diα↑ = ciα, (B13a)

diα↓ = c̄iα (−1)
∑

iα d†
iα↑diα↑ , (B13b)

the Liouvillian can be written as

L = L0 + LJ, (B14a)

L0 =
∑
ασ

L−1∑
j=0

sgn(σ )(td†
j+1Aσ d jBσ + t ′d†

jAσ d jBσ + H.c.)

− iγ L

2
,

LJ = iγ
∑

jα

(
n jα↑ − 1

2

)(
n jα↓ − 1

2

)
, (B14b)

with sgn(σ ) taking 1 (−1) for σ =↑ (↓).
Further applying the particle-hole transformation only for

down-spin states

d†
iα↓ → diα↓, (B15)

we end up with Eq. (B11).
Here we define the Liouvillian L(θ ) for the SSH model

which is necessary to compute the Berry phase. Twisting the
hopping between sites j = 0 and j = 1 only for the subspace
specified with σ =↑, the Liouvillian L(θ ) is written as

L(θ ) = L0(θ ) + LJ, (B16a)

L0(θ ) =
∑
ασ

(
L−1∑
j=1

td†
j+1Aσ d jBσ + teiθσ d†

1Aσ d0Bσ + H.c.

)

+ t ′ ∑
jασ

(
d†

jAσ d jBσ + H.c.
) − iγ L

2
, (B16b)

with θσ = θ [1 + sgn(σ )]/2.

b. Results for t ′ = 0

By analyzing a simple case for t ′ = 0, we show that in
the bulk, the nonequilibrium steady state (i.e., the states with
an infinite lifetime) is characterized by the Berry phase π .
Correspondingly, for the open boundary condition, the edge
states result in the charge polarization only at edges. We note
that the gap is closed in the absence of the jump term.

(i) Bulk properties. Let us consider the “Liouvillian”
L(λ) = L0 + λLJ under the periodic boundary condition.
Here L0 and LJ are defined in Eq. (B11). This model preserves
the total number of particles for each spin.
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For t ′ = 0, the problem is reduced to a two-site Hubbard
model with the pure-imaginary interaction

L2site(λ) = t
∑

σ

d†
1Aσ d0Bσ + H.c.

− iλγ

[(
n1A↑ − 1

2

)(
n1A↓ − 1

2

)

+
(

n0B↑ − 1

2

)(
n0B↓ − 1

2

)]
− iγ

2
. (B17)

Here let us focus on the half-filled case where the dynamics
can be understood by diagonalizing L2site(λ) for the subsector
labeled by (N↑, N↓) = (1, 1) with Nσ := n1Aσ + n0Bσ .

First, we define the basis

{| + 1〉〉, | + 2〉〉, | − 1〉〉, | − 2〉〉}, (B18)

spanning the subspace labeled by (N↑, N↓) = (1, 1). Here
|±1〉〉 and |±2〉〉 are defined as

|±1〉〉 := 1√
2

(
d†

1A↑d†
1A↓ ± d†

0B↑d†
0B↓

)|0〉〉, (B19a)

|±2〉〉 := 1√
2

(
d†

1A↑d†
0B↓ ± d†

0B↑d†
1A↓

)|0〉〉, (B19b)

with the vacuum |0〉〉 satisfying d1Aσ |0〉〉 = 0 and d0Bσ |0〉〉 = 0
for σ =↑,↓.

In this basis, L2site(λ) is represented as

L2site(λ) =
(
L+(λ) 0

0 L−(λ)

)
, (B20a)

L+(λ) =
(−iγ (1 + λ)/2 2t

2t −iγ (1 − λ)/2

)
, (B20b)

L−(λ) =
(−iγ (1 + λ)/2 0

0 −iγ (1 − λ)/2

)
. (B20c)

Diagonalizing the matrix L2site(λ), we can see that the
eigenvalues are written as

�+a = [−iγ +
√

16t2 − λ2γ 2]/2, (B21a)

�+b = [−iγ −
√

16t2 − λ2γ 2]/2, (B21b)

�−a = −iγ (λ + 1)/2, (B21c)

�−b = iγ (λ − 1)/2. (B21d)

In Fig. 4, the spectrum of “Liouvillian” L2site(λ) is plotted
for 0 � λ � 1. For 4t � γ , an exceptional point appears with
increasing λ. However, regardless of the value of γ , the eigen-
state with eigenvalue �−b is the longest lifetime. In particular,
for λ = 1, it is a nonequilibrium steady state, i.e., the lifetime
becomes infinite. From Eq. (B20), we can see that the corre-
sponding left and right eigenstates are L〈〈ρ2site,g| = 〈〈−2| and
|ρ2site,g〉〉R = |−2〉〉.

For the state |ρ2site,g〉〉R, the Berry phase takes π . To see this,
first, we note that twisting the hopping t only for the subsector
with σ =↑ [see Eq. (B16)] can be accomplished by applying
the operator eiθn1A↑ [131];

L2site(θ, λ) = eiθn1A↑L2site(λ)e−iθn1A↑ , (B22)

with −π � θ < π . Here we note that Eq. (B22) holds only
for t ′ = 0. Equation (B22) indicates that the eigenstates of

FIG. 4. (a)–(c) [(d)–(f)]: The spectrum of the “Liouvillian” L(λ)
for γ = 3t and (γ = 5t ). These data are obtained for t = 1. Panels
(a) and (d) [(b) and (e)] show the real (imaginary) part of the eigen-
values as functions of λ. Panels (c) and (f) show the parametric plot
of the spectrum for 0 � λ � 1. As λ increases from λ = 0 to 1, the
eigenvalues flow along the allows. The data for λ = 0 (λ = 1) are
plotted as triangles (squares). We note that at λ = 1, the exceptional
point can be observed with increasing γ .

L2site(θ, λ) can be obtained from those of L2site(λ); for in-
stance, the eigenstate with the longest lifetime for L2site(θ, λ)
is given by

|ρ2site,g(θ )〉〉R = eiθn1A↑ |−2〉〉, (B23a)

L〈〈ρ2site,g(θ )| = 〈〈−2|e−iθn1A↑ . (B23b)

Therefore, computing the eigenvalue of I ,

I|ρ2site,g(0)〉〉R = I
1√
2

(d†
1A↑d†

0B↓ − d†
0B↑d†

1A↓)|0〉〉

= 1√
2

(d†
0B↑d†

1A↓ − d†
1A↑d†

0B↓)|0〉〉

= −|ρ2site,g(0)〉〉R, (B24a)

I|ρ2site,g(π )〉〉R = I
1√
2

(−d†
1A↑d†

0B↓ − d†
0B↑d†

1A↓)|0〉〉

= 1√
2

(−d†
0B↑d†

1A↓ − d†
1A↑d†

0B↓)|0〉〉

= |ρ2site,g(π )〉〉R, (B24b)

byields the Berry phase χ↑g = π . Here we used Eq. (B2). We
note that the same result can be obtained by direct evaluation
of the integral in Eq. (B1) [132].

Corresponding to the Berry phase taking π , one may
expect the emergence of edge states [133,134] which is dis-
cussed at the end of this section. Here, for comparison, we
discuss expectation values under the periodic boundary con-
dition. First, we note that the state is written as

|ρ2site,g〉〉 → ρ2site,g = 1
2 (c†

1A|0〉〈0|c1A + c†
0B|0〉〈0|c0B),

(B25)
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which we see below. Here we normalized the density matrix
so that trρ2site,g = 1 holds. Thus we obtain

tr(n1Aρ2site,g) = 1
2 , tr(n0Bρ2site,g) = 1

2 . (B26)

Equation (B25) can be seen by a straightforward calcula-
tion. As we applied the particle-hole transformation [see
Eq. (B15)], |ρ2site,g〉〉 = | − 2〉〉 is mapped as

|−2〉〉 → 1√
2

(d†
1A↑d0B↓ − d†

0B↑d1A↓)d†
1A↓d†

0B↓|0〉〉

= − 1√
2

(d†
1A↑d†

1A↓ + d†
0B↑d†

0B↓)|0〉〉, (B27)

which can be rewritten in terms of ciα and c̄iα as follows:

|−2〉〉 → 1√
2

Pf c(c†
1Ac̄†

1A + c†
0Bc̄†

0B)|0〉〉, (B28)

where Pf c := (−1)c†
1Ac1A+c†

0Bc0B . By normalizing the density
matrix so that tr(ρ2site,g) = 1 holds, we obtain Eq. (B25).
In the above, we saw that Eq. (B26) holds for the periodic
boundary condition.

(ii) Edge properties. Now, let us analyze the system with
edges. We impose the open boundary condition; sites i = 0
and i = L − 1 are decoupled. We again restrict ourselves to
the half-filled case. For t ′ = 0, each boundary site is iso-
lated from the bulk. The “Liouvillian” at the edge j = 0 is
written as Ledge(λ) = −iλγ (n0A↑ − 1

2 )(n0A↓ − 1
2 ) − iγ

4 . The
right eigenvectors and corresponding eigenvalues are easily
obtained and written as

|0〉〉, �0 = − iγ

4
(1 + λ), (B29a)

d†
0A↑|0〉〉, �↑ = − iγ

4
(1 − λ), (B29b)

d†
0A↓|0〉〉, �↓ = − iγ

4
(1 − λ), (B29c)

d†
0A↑d†

0A↓|0〉〉, �↑↓ = − iγ

4
(1 + λ). (B29d)

Here we note that the states with the longest lifetime are
doubly degenerate. Taking into account two edges, we obtain
the edge state with an infinite lifetime,

|ρedge,g〉〉 = (ad†
0A↑d†

L−1B↓ + bd†
L−1B↑d†

0A↓)|0〉〉, (B30)

with real numbers a and b satisfying a2 + b2 = 1. We note
that d†

0A↑d†
L−1B↑|0〉〉 is also an eigenstate with the zero eigen-

value. However, we discard this states because we restrict
ourselves to the half-filled case, (N↑, N↓) = (1, 1) with Nσ =
n0Aσ + nL−1Bσ .

As shown below, |ρedge,g〉〉 can be rewritten as

|ρedge,g〉〉 → ρedge,g = (a′c†
0A|0〉〈0|c0A − b′c†

L−1B|0〉〈0|cL−1B),

(B31)

with a′ and b′ are real numbers satisfying a′ − b′ = 1. Here
we renormalized the states so that tr(ρedge,g) = 1 holds. There-
fore, we obtain

tr(n0Aρedge,g) = a′, tr(nL−1Bρedge,g) = −b′. (B32)

This result means that the polarization is observed only at
each edge. Namely, we have

tr[(n0A − n0B)ρedge,g] = a′ − 1
2 , (B33a)

at j = 0, while we have

tr[(n jA − n jB)ρedge,g] = 0, (B33b)

for the bulk ( j = 1, . . . , L − 2) [see Eq. (B26)].
Equation (B31) can be obtained in a similar way to the

analysis of the bulk [see Eq. (B25)]. As we applied the
particle-hole transformation [see Eq. (B15)] the state |ρedge,g〉〉
is mapped as

|ρedge,g〉〉 → (ad†
0A↑dL−1B↓ + bd†

L−1B↑d0A↓)d†
0A↓d†

L−1B↓|0〉〉
= (−ad†

0A↑d†
0A↓ + bd†

L−1B↑d†
L−1B↓)|0〉〉, (B34)

which can be rewritten in terms of ciα and c̄iα as follows:

|ρedge,g〉〉 → Pf c(ac†
0Ac̄†

0A − bc†
L−1Bc̄†

L−1B)|0〉〉, (B35)

where Pf c := (−1)c†
0Ac0A+c†

L−1BcL−1B . By normalizing the density
matrix so that tr(ρedge,g) = 1 holds, we obtain Eq. (B31).

In the above, for t ′ = 0, the Berry phase χ↑g of the nonequi-
librium steady states takes π . Correspondingly, while the
charge distribution of the bulk is uniform, each edge shows
the charge polarization.

We recall that the topological properties remain unchanged
as long as the gap does not close. This fact means that for
small but finite t ′, the Berry phase should take π inducing the
edge polarization.

APPENDIX C: SPECTRUM OF A
BLOCK-UPPER-TRIANGULAR MATRIX

The spectrum of the “Liouvillian” L(λ) = L0 + λLJ is
independent of λ (0 � λ � 1) when LJ (L0) is a block-upper-
triangular (block-diagonal) matrix [89,90].

To see this, let us consider the following square matrix of a
block-upper-triangular form

L(λ) =

⎛
⎜⎝
L(0,0) λLJ(0,2) 0

0 L(2,2) λLJ(2,4)

0 0 L(4,4)

⎞
⎟⎠, (C1)

where L(0,0), L(2,2), and L(4,4) are non-Hermitian square ma-
trices. Matrices LJ(0,2) and LJ(2,4) are non-Hermitian and not
necessarily square matrices. The spectrum of L(λ) is indepen-
dent of λ, which can be seen as follows.

First, we note that an arbitrary eigenvalue � of L(λ) in
Eq. (C1) is determined by the characteristic equation

det

⎡
⎢⎣

⎛
⎜⎝
L(0,0) λLJ(0,2) 0

0 L(2,2) λLJ(2,4)

0 0 L(4,4)

⎞
⎟⎠ − �1l

⎤
⎥⎦ = 0. (C2)

Regardless of the value of λ, the above equation is rewrit-
ten as [135] det(L(0,0) − �1l)det(L(2,2) − �1l)det(L(4,4) −
�1l) = 0, which indicates that the spectrum of the matrix L(λ)
is independent of λ.

The above argument can be straightforwardly extended to
a generic case. Thus, we can conclude that the spectrum of the
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“Liouvillian” L(λ) = L0 + λLJ is independent of λ when LJ

(L0) is a block-upper-triangular (block-diagonal) matrix.

APPENDIX D: QUANTIZATION OF THE PSEUDOSPIN
CHERN NUMBER

The pseudospin Chern number is quantized even in the
presence of the jump term. To see this, we show that Cσσ (σ =
K, B) defined in Eq. (7) is quantized. We note that the quan-
tization of a many-body Chern number for non-Hermitian
systems is proven [59] by extending the proof in the Hermitian
case [87,91]. We note, however, that, quantization of the non-
Hermitian many-body Chern numbers (CKK and CBB), which
are computed by twisting the boundary condition only for a
subsector of the Hilbert space, has not been proven yet. Thus
this section is devoted to its proof.

Consider “Liouvillian” L(θx, θy, λ) with 0 � θx(y) < 2π

and 0 � λ � 1, which is obtained by twisting the boundary
condition only for the subspace specified by σ . Because taking
the unique gauge may not be allowed, we divide the two-
dimensional space (θx, θy) into two regions, I and II, so that
the eigenstates are single-valued and are smoothly defined in
each region. We note in passing that one can treat the case,
where the space (θx, θy) needs to be divided into more than
three regions, on an equal footing.

In each region, the Berry curvature is rewritten as

Fσσ = ∂σ
x As

σy − ∂σ
y As

σx, (D1a)

As
σμ :=

∑
n

L
〈〈
ρs

n

∣∣∂σ
μ

∣∣ρs
n

〉〉
R, (D1b)

with μ = x, y. Here, |ρs
n〉〉R and L〈〈ρs

n| are right and left eigen-
states of L(θx, θy, λ) for region s = I, II. The summation

∑
n

is taken over degenerate states. By making use of Stokes’
theorem, Cσσ defined in Eq. (7) can be written as

Cσσ = 1

2π

∮
dθμ Im

(
AI

σμ − AII
σμ

)
= 1

2π

∮
dθμ Im∂μ log(detM ) ∈ Z. (D2)

Here the integral is taken over the boundary of two regions,
I and II, and M is an invertible matrix. From the first to the
second line, we used the following relation:

AI
σμ = AII

σμ +
∑
nm

M−1
nm ∂σ

μMmn. (D3)

This relation is obtained by noting that relations |ρI
n〉〉R =∑

m |ρII
m〉〉RMmn and L〈〈ρI

n| = ∑
m M−1

nm L〈〈ρII
m| hold because

both of the gauges are available on the boundary of two
regions I and II. We recall that the biorthogonal normalization
condition is imposed on the right and left eigenvectors.

Equation (D2) indicates the quantization of Cσσ . We note
that Eq. (D2) holds as long as the gap-closing does not occur
in the parameter space (θx, θy).

We note that introducing a perturbation does not change
Cσσ as long as the gap is open [136]. This is because Cσσ is
continuous as a function of the strength of the perturbation
maintaining the gap, while Cσσ is quantized [see Eq. (D2)].

We close this section by noting that Eq. (7) is written as
Cσσ = 1

2π i

∫
dθxdθy Fσσ . This is because the integral of the

real part of the Berry curvature vanishes; the real part of a
complex function log z with z ∈ C is single-valued.

APPENDIX E: LIOUVILLIAN WITH THE
PSEUDOPOTENTIAL APPROXIMATION

Here, with the pseudopotential approximation, we see that
the Liouvillian (18) can be written as

L �
∑
i jσ

hi jσ f †
iσ f jσ +

∑
〈i j〉σ

Vσ f †
iσ f †

jσ f jσ fiσ

− iγ
∑
〈i j〉

fia f ja f jb fib, (E1a)

where

f †
ia :=

∑′
n1

ϕ∗
in1

a†
n1a, f †

ib :=
∑′

n1
ϕin1 a†

n1b. (E1b)

Here hi jσ and Vσ are defined just below Eq. (18). The operator
a†

n1σ
creates the fermion in state ϕin1 of the lowest Landau level

for layer σ (σ = a, b). The creation and the annihilation op-
erators satisfy {an1σ , a†

n2σ ′ } = δn1n2δσσ ′ and {an1σ , an2σ ′ } = 0.
The summation

∑′
n1

is taken over the states in the lowest
Landau level.

In the following, we derive Eq. (E1a). First, we note that
the anticommutation relation between a†

n1a and a†
n1b is due

to the introduction of the operator for the fermion num-
ber parity. Namely, we can see that ρa†

n1
is mapped as

ān1 |ρ〉〉. The annihilation operator ān1 acts on a state in sub-
space Bra. The operators ā’s commute with the operators a’s
and a†’s, [ān1 , a†

n2
] = [ān1 , an2 ] = 0. Thus, introducing oper-

ators a†
n1a := a†

n1
and a†

n1b := ā†
n1

Pf a [Pf a = (−1)
∑′

n1
a†

n1aan1a ],

we have the anticommutation relation between a†
n1a and a†

n2b.
Second, we note that with the pseudopotential approxima-

tion, the operators can be written as follows:

H0 �
∑

i j

hi j f †
i f j + VR

∑
〈i j〉

f †
i f †

j f j fi,

∑
α

L†
αLα = γ

∑
〈i j〉

c†
j c

†
i cic j � γ

∑
〈i j〉

f †
i f †

j f j fi,

∑
α

LαρL†
α = γ

∑
〈i j〉

cic jρc†
j c

†
i � γ

∑
〈i j〉

fi f jρ f †
j f †

i .

With the isomorphism [see Eq. (3)], these terms can be
identified as follows:

ρhi j ( f †
i f j ) ↔ hi j f †

jb f †
ib|ρ〉〉 = (h∗

ji ) f †
jb f †

ib|ρ〉〉,
ρ f †

i f †
j f j fi ↔ f †

ib f †
jb f jb fib|ρ〉〉,

fi f jρ f †
j f †

i ↔ fia f ja fib f jb|ρ〉〉 = − fia f ja f jb fib|ρ〉〉.
Here we assumed i 
= j. By taking into account the above
relations, we get Eq. (E1a).

APPENDIX F: TOPOLOGICAL DEGENERACY
FOR ANOTHER TYPE OF DISSIPATION

By a topological argument, we show that the system with
the filling factor ν (ν−1 = 1, 3, 5, . . .) shows at least ν−1-fold
topological degeneracy in the spectrum of the Liouvillian
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when the Lindblad operators preserve charge U(1) symmetry.
We consider fermions in the square lattice (see Fig. 1) with
Lx = Ly = L and φ = 1/L. In this case, the number of states
in the lowest Landau level is Nφ = L = φ−1 (i.e., the filling
factor is ν := Na/Nφ = φNa).

First, let us consider the eigenvectors of the kinetic terms
under the Landau gauge∑

j

hi jϕ jn1 (ky) = ϕin1 (ky)εn1 , (F1)

with n1 = 1, . . . , dim h. Here we note that the Hamiltonian
hi j is invariant under the translation along the y-direction,
meaning that the Landau state ϕ jn1 can also be labeled by
momentum along the y-direction ky:

Ty

∣∣ϕn1 (ky)
〉 = e−iky

∣∣ϕn1 (ky)
〉
, (F2)

with Ty being the translation operator along the y-direction. In
addition, for Lx = Ly = L and φ = 1/L, the following relation
holds [137]:

U
∣∣ϕn1 (ky)

〉 = ∣∣ϕn1 (ky − 2πφ)
〉
, (F3a)

with

Uc†
jx jy

U † = e−2π iφ jy c†
jx jy

. (F3b)

With the isomorphism [see Eq. (3)], we obtain the following
relations corresponding to Eqs. (F2) and (F3):

Tyσ

∣∣ϕn1 (ky)
〉〉
σ

= e−isgn(σ )ky
∣∣ϕn1 (ky)

〉〉
σ
, (F4)

and

Uσ

∣∣ϕn1 (ky)
〉〉
σ

= ∣∣ϕn1 (ky − 2πφ)
〉〉
σ
, (F5a)

Uσ d†
jx jyσ

U †
σ = e−2π iφsgn(σ ) jy d†

jx jyσ
. (F5b)

Here σ = a (σ = b) specifies the subspace Ket (Bra). The
operator d†

jx jyσ
is the creation operator defined in Eq. (17)

where the set of the subscripts jx and jy is denoted by j. Here
Tyσ and Uσ are defined as

Tya = Ty ⊗ 1l, Tyb = 1l ⊗ T ∗
y , (F6)

Ua = U ⊗ 1l, Ua = 1l ⊗ U ∗. (F7)

With the above relation, we can see that the system shows
robust topological degeneracy when the following conditions
are satisfied:

Uσ LασU †
σ = Lασ , (F8)

TyaTybL(TyaTyb)† = L, (F9)

with Lαa = Lα ⊗ 1l and Lαb = 1l ⊗ LT
α .

To see the robust topological degeneracy, firstly, we note
that the Liouvillian can be block-diagonalized into sectors
each of which is labeled by the momentum Ky and the number
of fermions. By making use of Eq. (F5a), we can see the
relation between the matrices for each sector

〈〈�{n}(Ky)|L|�{n′}(K ′
y)〉〉

= 〈〈�{n}(Ky)|U †
a LUa|�{n′}(K ′

y)〉〉
= 〈〈�{n}(Ky + �K )|L|�{n′}(K ′

y + �K )〉〉. (F10)
Here |�{nσ }(Kyσ

)〉〉σ is defined as

|�{n}(Ky)〉〉 = ∣∣�{na}(Kya)
〉〉

a ⊗ ∣∣�{nb}(Kyb)
〉〉

b, (F11)∣∣�{nσ }(Kyσ )
〉〉
σ

= a†
n1k1σ

a†
n2k2σ

· · · a†
nN kN σ

|0〉〉σ , (F12)

with Ky = Kya − Kyb and Kyσ = ∑
l=1,...,Nσ

kyl . The opera-

tor a†
nl kl′σ

with l, l ′ = 1, 2, . . . creates a fermion in state
|ϕnl (kyl ′ )〉〉σ at layer σ = a, b (see Ref. [138]), and |0〉〉σ is the
vacuum being the state annihilated by all anl σ .

By noting the relation �K = −2πφNa = −2πν for Lx =
Ly = L and φ = 1/L, we see that for ν−1 = 1, 3, 5, . . .,
the Liouvillian L can be block-diagonalized into ν−1 sub-
sectors labeled by momentum Ky [see Eq. (F9)]; these
block-diagonalized matrices are identical to each other [see
Eq. (F10)].

Therefore, we can conclude that regardless of details of the
dissipation, the open quantum system shows at least ν−1-fold
degeneracy as long as both U(1) symmetry [Eq. (F8)] and
translational symmetry [Eq. (F9)] are preserved. Namely, in
the absence of accidental degeneracy, we have ν−1-fold de-
generacy which is topologically protected.

[1] Y. C. Hu and T. L. Hughes, Phys. Rev. B 84, 153101 (2011).
[2] K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Phys. Rev. B

84, 205128 (2011).
[3] M. Sato, K. Hasebe, K. Esaki, and M. Kohmoto, Prog. Theor.

Phys. 127, 937 (2012).
[4] E. J. Bergholtz, J. C. Budich, and F. K. Kunst,

arXiv:1912.10048.
[5] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys. Rev.

X 9, 041015 (2019).
[6] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S.

Higashikawa, and M. Ueda, Phys. Rev. X 8, 031079
(2018).

[7] H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120, 146402
(2018).

[8] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick,
S.-L. Chua, J. D. Joannopoulos, and M. Soljacic, Nature 525,
354 (2015).

[9] J. C. Budich, J. Carlström, F. K. Kunst, and E. J. Bergholtz,
Phys. Rev. B 99, 041406(R) (2019).

[10] R. Okugawa and T. Yokoyama, Phys. Rev. B 99, 041202(R)
(2019).

[11] T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, Phys.
Rev. B 99, 121101(R) (2019).

[12] H. Zhou, J. Y. Lee, S. Liu, and B. Zhen, Optica 6, 190 (2019).
[13] K. Kawabata, T. Bessho, and M. Sato, Phys. Rev. Lett. 123,

066405 (2019).
[14] J. Carlström and E. J. Bergholtz, Phys. Rev. A 98, 042114

(2018).

033428-13

https://doi.org/10.1103/PhysRevB.84.153101
https://doi.org/10.1103/PhysRevB.84.205128
https://doi.org/10.1143/PTP.127.937
http://arxiv.org/abs/arXiv:1912.10048
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1038/nature14889
https://doi.org/10.1103/PhysRevB.99.041406
https://doi.org/10.1103/PhysRevB.99.041202
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1364/OPTICA.6.000190
https://doi.org/10.1103/PhysRevLett.123.066405
https://doi.org/10.1103/PhysRevA.98.042114


YOSHIDA, KUDO, KATSURA, AND HATSUGAI PHYSICAL REVIEW RESEARCH 2, 033428 (2020)

[15] J. Carlström, M. Stålhammar, J. C. Budich, and E. J.
Bergholtz, Phys. Rev. B 99, 161115(R) (2019).

[16] V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa
Torres, Phys. Rev. B 97, 121401(R) (2018).

[17] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz,
Phys. Rev. Lett. 121, 026808 (2018).

[18] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
[19] S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 136802

(2018).
[20] E. Edvardsson, F. K. Kunst, and E. J. Bergholtz, Phys. Rev. B

99, 081302(R) (2019).
[21] W. B. Rui, M. M. Hirschmann, and A. P. Schnyder, Phys. Rev.

B 100, 245116 (2019).
[22] K. Yokomizo and S. Murakami, Phys. Rev. Lett. 123, 066404

(2019).
[23] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P.

Xue, Nat. Phys. 16, 761 (2020).
[24] K. Kawabata, N. Okuma, and M. Sato, Phys. Rev. B 101,

195147 (2020).
[25] C. H. Lee and R. Thomale, Phys. Rev. B 99, 201103(R) (2019).
[26] K. Zhang, Z. Yang, and C. Fang, arXiv:1910.01131.
[27] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Phys. Rev.

Lett. 124, 086801 (2020).
[28] T. Yoshida, T. Mizoguchi, and Y. Hatsugai, Phys. Rev. Res. 2,

022062 (2020).
[29] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M.

Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N.
Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).

[30] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192
(2010).

[31] A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M.
Segev, Phys. Rev. A 84, 021806(R) (2011).

[32] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov,
D. N. Christodoulides, and U. Peschel, Nature 488, 167
(2012).

[33] T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
[34] A. U. Hassan, B. Zhen, M. Soljačić, M. Khajavikhan,
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Spielman, G. Juzeliūnas, and M. Lewenstein, Phys. Rev. Lett.
112, 043001 (2014).

[106] S. Keßler and F. Marquardt, Phys. Rev. A 89, 061601(R)
(2014).

[107] G. Jotzu, M. Messer, R. M. Desbuquois, M. Lebrat, T.
Uehlinger, D. Greif, and T. Esslinger, Nature 515, 237
(2014).

[108] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B.
Paredes, and I. Bloch, Nat. Phys. 10, 588 (2014).

[109] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N.
Goldman, Nat. Phys. 11, 162 (2015).

[110] S. Barbarino, L. Taddia, D. Rossini, L. Mazza, and R. Fazio,
New J. Phys. 18, 035010 (2016).

[111] F. N. Ünal, E. J. Mueller, and M. O. Oktel, Phys. Rev. A 94,
053604 (2016).

[112] C. Repellin and N. Goldman, Phys. Rev. Lett. 122, 166801
(2019).

[113] H. Feshbach, Ann. Phys. (NY) 5, 357 (1958).
[114] K. Baumann, N. Q. Burdick, M. Lu, and B. L. Lev, Phys. Rev.

A 89, 020701(R) (2014).
[115] F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch,

and S. Fölling, Nat. Phys. 10, 779 (2014).
[116] G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J.

Catani, M. Inguscio, and L. Fallani, Phys. Rev. Lett. 115,
265301 (2015).

[117] M. Höfer, L. Riegger, F. Scazza, C. Hofrichter, D. R.
Fernandes, M. M. Parish, J. Levinsen, I. Bloch, and S. Fölling,
Phys. Rev. Lett. 115, 265302 (2015).

[118] L. Riegger, N. Darkwah Oppong, M. Höfer, D. R. Fernandes,
I. Bloch, and S. Fölling, Phys. Rev. Lett. 120, 143601
(2018).

[119] Y. Ashida, S. Furukawa, and M. Ueda, Phys. Rev. A 94,
053615 (2016).

[120] Noting that c̄†
i′ ci|φ j1〉〉K ⊗ |φ j2 〉〉B = ci|φ j1〉〉K ⊗ (c̄†

i |φ j2 〉〉B)
holds, we have [ci, c̄†

i′ ] = 0.
[121] J. K. Freericks and E. H. Lieb, Phys. Rev. B 51, 2812 (1995).
[122] A similar procedure is taken in Ref. [121] where fermions

are mapped to bosons. We note that the introduction of dib

is innocuous, provided that Pf a commutes with L = L0 + LJ;
[Pf a,L] = 0.

[123] T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Japan 74,
1674 (2005).

[124] F. D. M. Haldane, Phys. Rev. Lett. 55, 2095 (1985).
[125] In the Hermitian case, it is well known that, for the 3-fold

degenerate FQH states, the many-body Chern number taking
one is a source of the fractional Hall conductance σxy = 1/3
(see Ref. [87]).

[126] With this approximation, we can see that the particle-hole
transformation maps the Hamiltonian Heff for ν = 2/3 to that
for ν = 1/3. Thus, supposing that En1 denotes the energy
eigenvalue for ν = 1/3, the energy eigenvalue for ν = 2/3 can
be written as En1 + E ′ with a complex number E ′.

[127] Z. Cai and T. Barthel, Phys. Rev. Lett. 111, 150403 (2013).
[128] M. van Caspel and V. Gritsev, Phys. Rev. A 97, 052106

(2018).
[129] S. Lieu, Phys. Rev. B 97, 045106 (2018).
[130] F. Dangel, M. Wagner, H. Cartarius, J. Main, and G. Wunner,

Phys. Rev. A 98, 013628 (2018).
[131] T. Hirano, H. Katsura, and Y. Hatsugai, Phys. Rev. B 78,

054431 (2008).
[132] By using Eq. (B23), we can compute the integral

as follows: χ↑g = ∫ π

−π
dθ ImL〈〈ρg(θ )|∂↑

θ |ρg(θ )〉〉R =∫ π

−π
dθ 〈〈−2|n1A↑| − 2〉〉 = π .

[133] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002
(2002).

[134] Y. Hatsugai, Solid State Comm. 149, 1061 (2009).

033428-15

https://doi.org/10.1103/PhysRevE.89.042140
https://doi.org/10.1103/PhysRevE.92.042143
https://doi.org/10.1103/PhysRevLett.117.137202
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevB.99.174303
https://doi.org/10.1103/PhysRevB.99.214306
https://doi.org/10.21468/SciPostPhys.8.3.044
http://arxiv.org/abs/arXiv:2004.01133
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.7566/JPSJ.87.063701
https://doi.org/10.1103/PhysRevA.89.052133
http://arxiv.org/abs/arXiv:2003.14202
https://doi.org/10.1016/0003-4916(85)90148-4
https://doi.org/10.1103/PhysRevLett.83.2246
https://doi.org/10.1103/PhysRevLett.80.2265
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevLett.94.086803
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1103/PhysRevA.86.031604
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1103/PhysRevA.70.041603
https://doi.org/10.1038/nature08609
https://doi.org/10.1038/nature09887
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1103/PhysRevA.89.061601
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys3171
https://doi.org/10.1088/1367-2630/18/3/035010
https://doi.org/10.1103/PhysRevA.94.053604
https://doi.org/10.1103/PhysRevLett.122.166801
https://doi.org/10.1016/0003-4916(58)90007-1
https://doi.org/10.1103/PhysRevA.89.020701
https://doi.org/10.1038/nphys3061
https://doi.org/10.1103/PhysRevLett.115.265301
https://doi.org/10.1103/PhysRevLett.115.265302
https://doi.org/10.1103/PhysRevLett.120.143601
https://doi.org/10.1103/PhysRevA.94.053615
https://doi.org/10.1103/PhysRevB.51.2812
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1103/PhysRevLett.55.2095
https://doi.org/10.1103/PhysRevLett.111.150403
https://doi.org/10.1103/PhysRevA.97.052106
https://doi.org/10.1103/PhysRevB.97.045106
https://doi.org/10.1103/PhysRevA.98.013628
https://doi.org/10.1103/PhysRevB.78.054431
https://doi.org/10.1103/PhysRevLett.89.077002
https://doi.org/10.1016/j.ssc.2009.02.055


YOSHIDA, KUDO, KATSURA, AND HATSUGAI PHYSICAL REVIEW RESEARCH 2, 033428 (2020)

[135] Here we used the following relation: det(A C
0 B) = detAdetB,

where A (B) is an N × N (M × M) matrix. The matrix C is
N × M.

[136] H. Katsura and T. Koma, J. Math. Phys. 57, 021903 (2016).
[137] For the derivation of Eq. (F3), see the Supplementary Material

of Ref. [59].

[138] The operators a†
nl kl′ a and a†

nl kl′ b are defined as a†
nl kl′ a := a†

nl kl′
and a†

nl kl′ b := ā†
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