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The concept of self-testing (or rigidity) refers to the fact that for certain Bell inequalities the maximal violation
can be achieved in an essentially unique manner. In this work we present a family of Bell inequalities which are
maximally violated by multiple inequivalent quantum realizations. We completely characterize the quantum
realizations achieving the maximal violation and we show that each of them requires a maximally entangled
state of two qubits. This implies the existence of a new, weak form of self-testing in which the maximal violation
allows us to identify the state, but does not fully determine the measurements. From the geometric point of view
the set of probability points that saturate the quantum bound is a line segment. We then focus on a particular
member of the family and show that the self-testing statement is robust, i.e., that observing a nonmaximal
violation allows us to make a quantitative statement about the unknown state. To achieve this we present
a new construction of extraction channels and analyze their performance. For completeness we provide two
independent approaches: analytical and numerical. The noise robustness, i.e., the amount of white noise at which
the bound becomes trivial, of the analytical bound is rather small (≈0.06%), but the numerical method takes us
into an experimentally relevant regime (≈5%). We conclude by investigating the amount of randomness that can
be certified using these Bell violations. Perhaps surprisingly, we find that the qualitative behavior resembles the
behavior of rigid inequalities such as the Clauser-Horne-Shimony-Holt inequality. This shows that rigidity is not
strictly necessary for device-independent applications.
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I. INTRODUCTION

In his seminal work Bell showed that performing measure-
ments on spatially separated quantum systems may give rise
to correlations inconsistent with any local-realistic description
of the world [1] (see Ref. [2] for a comprehensive review).
While the initial motivation for studying Bell nonlocality
and performing Bell experiments was to demonstrate, beyond
any reasonable doubt, that the world is nonclassical, we
now understand that Bell nonlocality can be used in a more
constructive manner. If we assume that the systems under
consideration are governed by quantum mechanics, one can
use the observed correlations to draw conclusions about their
inner workings, a phenomenon known as device-independent
certification of quantum devices. Quite surprisingly, in some
cases one can almost completely determine the state and
measurements under consideration. First such statements can
be traced back to the early works of Tsirelson [3,4], Summers
and Werner [5], and Popescu and Rohrlich [6], and this
phenomenon is now referred to as self-testing [7,8] or rigidity
[9]. The simplest and most well-known example concerns
the famous Clauser-Horne-Shimony-Holt (CHSH) inequality
[10]: if we observe the maximal violation of the CHSH
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inequality, we must be measuring a maximally entangled state
of two qubits using anticommuting observables [3–6].

In a tomographic scenario we use a trusted measurement
device to characterize an unknown quantum state (or vice
versa) and in such a scenario a complete description of the
unknown object can be obtained. In a device-independent
scenario we trust neither the state nor the measurements,
which imposes certain limitations on how much information
we can hope to extract. As we have no information about the
dimension of our system, we can never rule out the presence of
additional degrees of freedom on which the measurements act
trivially. Similarly, since there are no preferred local reference
frames, we can only hope to characterize the system up to
local unitaries. These two ambiguities are always present in
the device-independent setting and any self-testing statement
must account for them. A third ambiguity arises when the
quantum realization is chiral; i.e., it is not unitarily equivalent
to its own transpose (we take the transpose in some fixed
product basis). For instance the ordered set of three observ-
ables given by the Pauli matrices (X, Y, Z) is not unitarily
equivalent to (XT, YT, ZT). Several scenarios involving chiral
realizations have been studied [11–14], and there the trans-
pose ambiguity must be explicitly added to the list of allowed
equivalences. Since we consider the transpose to be as natural
and well understood as the other two equivalences, we still
refer to such a characterization as self-testing.

By now several classes of self-testing statements have been
derived [13–28], and all of them exhibit the same structure:
observing some strongly nonclassical correlations implies that
particular local measurements are performed on a specific
entangled state (up to the equivalences mentioned above). In
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some cases these statements have been made robust, which
allows us to draw nontrivial conclusions in the presence of
a realistic level of noise [29–34]. See Ref. [35] for a recent
review on self-testing.

In addition to its foundational importance self-testing has
immediate applications to cryptography: if the Bell violation
alone essentially determines the quantum realization, one
can certify that the randomness generated in the experiment
is intrinsically quantum and cannot be known to an exter-
nal eavesdropper. This is precisely the idea behind device-
independent cryptography [36–40] (see Refs. [41–43] for re-
views on various aspects of device-independent cryptography
and randomness in quantum physics).

In this work we prove the existence of a new, weak form of
self-testing. We study a 1-parameter family of Bell inequal-
ities and show that observing the maximal violation certifies
the presence of a maximally entangled state of two qubits even
though the measurements cannot be uniquely determined.
To understand how this phenomenon is affected by noise,
we focus on a particular member of the family and derive
an analytic robust self-testing result for the state. Since the
analytic statement can only tolerate a small amount of noise,
we also compute numerical bounds using the “swap method”
[29,30], which turn out to be significantly stronger. Finally,
we study the amount of randomness that can be certified from
the observed violation.

II. A FAMILY OF BELL FUNCTIONALS

Given a measurement with two outcomes {F0, F1} we as-
sociate the outcomes with values ±1, which gives rise to the
observable A := F0 − F1. We denote the observables of Alice
and Bob by Ax and By, respectively. In the bipartite scenario
with three settings and two outcomes we consider a family of
Bell functionals defined as

β := 〈A0B0〉 + 〈A0B1〉 + α〈A0B2〉 + 〈A1B0〉
+ 〈A1B1〉 − α〈A1B2〉 + α〈A2B0〉 − α〈A2B1〉, (1)

where α ∈ [0, 2] is a parameter and 〈AxBy〉 denotes the ex-
pectation value of the product of the outcomes. Note that
for α = 1 this is precisely the correlation part of the I3322

Bell functional [44,45]. It is easy to check that for this
Bell functional the largest value achievable by local-realistic
models equals βL = 4 max{1, α}, whereas quantum systems
can achieve the value of βQ = 4 + α2. For our purposes we
are only interested in Bell functionals that satisfy βL < βQ

(Bell functionals satisfying βL = βQ cannot be used to certify
quantum properties as they do not allow us to rule out a
local-realistic description of the system), so from now on we
restrict our attention to the case of α ∈ (0, 2). It turns out
that in those cases the quantum value can be achieved in
multiple (inequivalent) ways: a 1-parameter family of quan-
tum realizations for α = 1 was presented in Ref. [46] and
can be straightforwardly generalized to all α ∈ (0, 2). This
family is based on the maximally entangled state of two qubits
|�+〉 = 1√

2
(|00〉 + |11〉) and gives rise to a line segment in

the space of probability distributions. Hence, it serves as a
simple example of a nontrivial (in the sense that βL < βQ)

Bell functional that does not have a unique maximizer in the
quantum set.

Until this work it was not known whether this Bell func-
tional (1) admits additional maximizers that do not belong
to the line segment and (2) exhibits some weak form of
self-testing. In this work we answer both of these questions.

III. EXACT SELF-TESTING

Writing out the Bell operator gives

W = A0 ⊗ (B0 + B1 + αB2)

+ A1 ⊗ (B0 + B1 − αB2) + αA2 ⊗ (B0 − B1). (2)

Since the Bell functional contains only correlators, the quan-
tum value can be computed by solving a semidefinite program
[47] and the dual solution can be turned into a sum-of-squares
decomposition of the Bell operator [48]. Indeed, it is easy to
verify that

2W = (
2A2

0 + 2A2
1 + α2A2

2

) ⊗ 1 + 1 ⊗ (
B2

0 + B2
1 + α2B2

2

)

−
2∑

j=0

L2
j ,

where

L0 = (A0 + A1) ⊗ 1 − 1 ⊗ (B0 + B1),

L1 = (A0 − A1) ⊗ 1 − α1 ⊗ B2,

L2 = αA2 ⊗ 1 − 1 ⊗ (B0 − B1).

Since we do not a priori assume that the measurements are
projective, we do not replace A2

x and B2
y by identity operators.

Nevertheless, we still have A2
x � 1, B2

y � 1, which immedi-
ately implies that W � (4 + α2) 1 ⊗ 1. To see that this bound
can be saturated consider the maximally entangled two-qubit
state |�+〉 and the observables

A0 = B0 = cos θαX + sin θαZ,

A1 = B1 = cos θαX − sin θαZ,

A2 = B2 = Z,

where θα := arcsin(α/2) [note that the range α ∈ (0, 2) cor-
responds to θα ∈ (0, π/2)]. Our goal now is to characterize
all quantum realizations that achieve the maximal quantum
value. To do so we use a method proposed originally in
Ref. [6], which proceeds in 4 steps: (1) find algebraic relations
satisfied by the local observables, (2) explicitly characterize
the local observables, (3) construct the Bell operator, and (4)
diagonalize it.

Let ρAB be an arbitrary bipartite state ρAB and Ax, By

be arbitrary binary observables. Since the form of the local
observables outside of the reduced states ρA and ρB has no
influence on the statistics, no statements can be made about
how these operators act outside of the support of these local
states. A convenient solution is to disregard the additional,
unused dimensions by truncating the local Hilbert spaces until
the reduced states are supported on the entire local space.
Such a procedure ensures that the reduced states ρA and
ρB are full-rank, which we assume throughout this work. If
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this realization achieves 〈W, ρAB〉 = 4 + α2, where 〈A, B〉 :=
tr(A†B) is the Hilbert-Schmidt inner product, we deduce that〈

A2
x, ρA

〉 = 1 and
〈
B2

y , ρB
〉 = 1 (3)

for x, y ∈ {0, 1, 2} and moreover that〈
L2

j , ρAB
〉 = 0 (4)

for j ∈ {0, 1, 2}. Since the reduced states are full rank Eq. (3)
implies that all the measurements are projective, i.e., A2

x = 1
and B2

y = 1. Conditions given in Eq. (4), on the other hand,
impose some constraints on how the observables of Alice
and Bob act on the state. Since 〈L2

j , ρAB〉 = ||Ljρ
1/2
AB ||2F , where

|| · ||F is the Frobenius norm ||A||F := √〈A, A〉, the equality
〈L2

j , ρAB〉 = 0 implies that the operator Ljρ
1/2
AB vanishes. As

an immediate consequence we obtain LjρAB = 0 for all j ∈
{0, 1, 2}. These conditions involve the observables of both
parties, but we can use projectivity deduced earlier to elimi-
nate one of them. By elementary algebraic manipulations (see
Appendix A for details) we show that L1ρAB = 0 implies

{A0, A1} = (2 − α2)1. (5)

Furthermore, equality (L0 + L2)ρAB = 0 implies

{A0 + A1, A2} = 0. (6)

It is well known that the commutation relation given in Eq. (5)
combined with A2

0 = A2
1 = 1 implies a particular form of A0

and A1 (see Ref. [12] for an elementary proof). The Hilbert
space of Alice must be of the form HA ≡ C

2 ⊗ C
dA for some

dA ∈ N, and up to a local unitary the observables can be
written as

A0 = (cos θαX + sin θαZ) ⊗ 1,

A1 = (cos θαX − sin θαZ) ⊗ 1.

Then, Eq. (6) implies that

A2 =
dA∑
j=1

(cos u jY + sin u jZ) ⊗ |a j〉〈a j |,

where u j ∈ [0, 2π ) and {|a j〉}dA
j=1 forms an orthonormal basis

on C
dA . It is convenient to think of this arrangement of

observables as a direct sum of 2 × 2 subspaces where each
subspace is characterized by an angle u j ∈ [0, 2π ).

Since the Bell functional is symmetric with respect to
swapping Alice and Bob, the Hilbert space of Bob must
also decompose as HB ≡ C

2 ⊗ C
dB for some dB ∈ N and

the observables must be of the same form. However, it is
convenient to write them down in a slightly different manner:

B0 =
dB∑

k=1

[cos θαX + sin θα (− cos vkY+ sin vkZ)] ⊗ |bk〉〈bk |,

B1 =
dB∑

k=1

[cos θαX − sin θα (− cos vkY + sin vkZ)] ⊗ |bk〉〈bk |,

B2 = Z ⊗ 1,

where vk ∈ [0, 2π ) and {|bk〉}dB
k=1 forms an orthonormal basis

on C
dB .

Having characterized the local observables we are ready to
write down the Bell operator. It is convenient to reorder the
registers and write it as

W =
dA∑
j=1

dB∑
k=1

R(u j, vk ) ⊗ |a j〉〈a j | ⊗ |bk〉〈bk |,

where R(u, v) is the two-qubit Bell operator corresponding
to angle u for Alice and v for Bob. To characterize the
states which give rise to the maximal violation we must find
out for which choices of u and v the value λ = 4 + α2 is
an eigenvalue of W and what the corresponding eigenspace
is. Since |a j〉〈a j | ⊗ |bk〉〈bk | are orthogonal projectors, the
spectrum of W is simply the union of the spectra of R(uj, vk ).
The two-qubit operator R(u, v) can be diagonalized explicitly
and the only eigenvalue that can attain the maximal value of
4 + α2 is given by

λmax(R(u, v)) = 4 + α2
[
2 cos

(u − v

2

)
− 1

]
,

where we have eliminated θα using the relation α = 2 sin θα .
The eigenvalue λ = 4 + α2 appears iff u = v; the corre-
sponding eigenspace is 1-dimensional and one can check
that thanks to the particular choice of Bob’s observables the
corresponding eigenvector is always |�+〉. The fact that in
this continuous family of two-qubit realizations parametrized
by angle u ∈ [0, 2π ) the optimal state does not depend on
the angle allows us to conclude that any state ρAB satisfying
〈W, ρAB〉 = 4 + α2 must up to local unitaries be of the form

ρAB = �+
A′B′ ⊗ σA′′B′′ ,

where σA′′B′′ is a normalized state satisfying

〈σA′′B′′ , |a j〉〈a j | ⊗ |bk〉〈bk |〉 = 0

whenever u j 
= vk (the state σA′′B′′ is only supported on the
subspaces where Alice and Bob perform “matching” mea-
surements). In other words, every quantum realization that
achieves the maximal quantum value is basically a convex
combination of the two-qubit realizations presented above.

We are now able to characterize all the probability dis-
tributions which saturate the quantum value, and it suffices
to compute the statistics corresponding to the two-qubit re-
alizations. Since the state is maximally entangled, we have
〈Ax〉 = 〈By〉 = 0, while the correlators are given by

〈A0B0〉 = 〈A1B1〉 = 1 − α2

4
(1 − sin u),

〈A0B1〉 = 〈A1B0〉 = 1 − α2

4
(1 + sin u),

〈A0B2〉 = 〈A2B0〉 = α

2
,

〈A1B2〉 = 〈A2B1〉 = −α

2
,

〈A2B2〉 = sin u.

It is clear that this set, which is an exposed face of the quantum
set of correlations, is simply a line segment and that the
extremal points correspond to u = π/2 and u = 3π/2. Note
also that choosing u = x and u = π − x leads to identical
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statistics, because the corresponding realizations are related
by a transpose.

It is natural to ask whether a stronger self-testing statement
can be made if instead of looking at the Bell value we consider
the entire statistics. It is easy to see that the extremal points
of the line segment are self-tests in the usual sense; i.e., the
exact form of observables can be deduced (in fact, since they
are extremal points of the quantum set of correlators, this
follows already from the work of Tsirelson [3]). The points
in the interior, on the other hand, cannot be self-tests in the
usual sense, since they are not extremal in the quantum set.
Moreover, it is easy to see that each interior point can be
achieved in at least two inequivalent ways: (1) by a particular
two-qubit realization corresponding to a specific value of u
or (2) as a convex combination of the two extremal points.
Nevertheless, all such points certify the maximally entangled
state of two qubits.

IV. ROBUST SELF-TESTING

To study the case of nonmaximal violation we focus on
the Bell functional which corresponds to α = √

2. This is a
convenient choice because in this case all the ideal realizations
employ a pair of anticommuting observables. Here we present
a robust self-testing of the observables and the state (see
Appendices B and C for derivations). For the following two
theorems we assume that W is a Bell operator obtained by
setting α = √

2 in Eq. (2).
In the exact case we have concluded that A2

x = 1,
{A0, A1} = 0, and {A0 + A1, A2} = 0. The sum-of-squares de-
composition implies that these algebraic relations are approx-
imately satisfied if a near-maximal violation is observed.

Theorem 1. If 〈W, ρAB〉 � 6 − ε, then the measurements
are nearly projective: 〈

A2
x, ρA

〉
� 1 − ε

for x ∈ {0, 1, 2}. Moreover, the following pairs of operators
approximately anticommute:

〈{A0, A1}2, ρA〉 � 4(3 + 2
√

2)ε,

〈{A0 + A1, A2}2, ρA〉 � 8(9 + 4
√

2)ε.

By symmetry, analogous statements hold for the observ-
ables of Bob. Note that these statements remain nontrivial
even under a macroscopic amount of noise (e.g., the triv-
ial bound for the second quantity reads 〈{A0, A1}2, ρA〉 � 4,
which is saturated by all projective measurements whose
operators commute).

A complete characterization of the optimal arrangements
derived above allows us to propose suitable extraction chan-
nels and what is novel is the fact that one of the extraction
channels must depend on all three observables.

Theorem 2. If 〈W, ρAB〉 � 6 − ε, then there exist local
extraction channels �A and �B such that

F ((�A ⊗ �B)(ρAB),�+
A′B′ ) � 1 − 1

4

(
18 + 11

√
2
)√

ε.

This statement is not particularly robust to noise: the right-
hand side exceeds the trivial value of 1

2 only if ε � 0.0035. To
obtain stronger results we have employed the swap method
and the results are presented in Fig. 1. The lower bound on

FIG. 1. The blue line represents a lower bound on the fidelity of
the extracted two-qubit state computed using the swap method as a
function of the observed violation. The gray lines correspond to the
trivial upper and lower bounds.

the fidelity of the extracted state is essentially a straight line
and strongly resembles the best currently known bound for the
CHSH inequality (cf. Fig. 1 in Ref. [33]).

V. CERTIFYING RANDOMNESS

We have so far focused solely on certifying quantum
properties such as anticommutation of observables or the
presence of a particular quantum state. The next natural
question concerns the randomness that can be certified from
the Bell violation against an external eavesdropper Eve. If we
observe the maximal violation, we can draw conclusions from
the complete characterization of optimal quantum realizations
derived above. Contrary to the usual scenario we can no longer
argue that Eve is completely decoupled from the degrees of
freedom on which the measurements of Alice and Bob act
nontrivially. Nevertheless, if we only care about the random-
ness produced by a single observable of a single party, we can
still guarantee maximal randomness, because all the optimal
realizations involve rank-1 projective measurements acting
on a qubit which is maximally entangled with the trusted
party. To examine what happens in the presence of noise
we have performed numerical calculations for the case α =
1. Perhaps surprisingly, we have found that the qualitative
behavior resembles closely that of standard rigid inequalities.
To make a fair comparison with the CHSH inequality suppose
that in both cases the ideal measurements are performed on
the isotropic two-qubit state σ (η) := (1 − η)�+ + η1 ⊗ 1/4,
where η ∈ [0, 1] is a noise parameter. In Fig. 2 we compare
our numerical results with the well-known analytic trade-off
for the CHSH inequality [40] (see Appendix D for details).

VI. CONCLUSIONS AND OUTLOOK

Self-testing is an active research field and a particularly
interesting direction is to explore its powers and limitations
by deriving new types of self-testing statements or impossi-
bility results. For instance we have recently learned that one
can self-test quantum channels [49], entangled measurements
[50,51], and quantum instruments [52], or that one can extend
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FIG. 2. Comparison of the randomness certification power of the
new inequality (solid blue line) and the CHSH inequality (dashed red
line). We plot upper bounds on the probability that Eve successfully
guesses the outcome of the A0 measurement as a function of the noise
parameter η.

the concept of self-testing to prepare-and-measure scenarios
[53–58]. In this work we derive a new type of self-testing
statement which allows us to certify the state but not the
measurements.

Until now self-testing of the state or randomness certi-
fication have only been shown for rigid Bell inequalities,
and so one might have conjectured rigidity to be necessary
for these purposes. In this work we show that the nonrigid
nature of a Bell inequality does not prevent it from being a
robust self-test of a quantum state or an efficient certificate
for randomness.

The first question that follows from our work is whether
there exist applications in which rigidity is actually strictly
necessary. Can we find a natural and operational task in
which nonrigid inequalities exhibit a qualitatively different
behavior? A different direction would be to look for even
weaker forms of self-testing. The Bell inequalities considered
in this work do not certify the entire quantum realization, but
at least uniquely determine the state. We are not aware of
any bipartite Bell inequalities which are maximally violated
by multiple inequivalent states, but if they exist, could they
be used to make some even weaker form of self-testing state-
ments? More generally, can we think of other natural general-
izations of the concept of self-testing and device-independent
certification?

Note added. Recently we became aware of Ref. [59], which
investigates how self-testing and the geometry of the quantum
set are affected by liftings.
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APPENDIX A: EXACT SELF-TESTING

In the main text we have shown how to completely char-
acterize arrangements of local observables that are capable
of achieving the quantum value, but we have skipped some
elementary steps. In this Appendix we fill in the details of this
argument.

Writing out L1ρAB = 0 gives

[(A0 − A1) ⊗ 1]ρAB = α(1 ⊗ B2)ρAB.

The fact that all the measurements are projective implies that

α2ρAB = α2
(
1 ⊗ B2

2

)
ρAB = α[(A0 − A1) ⊗ B2]ρAB

= [(A0 − A1)2 ⊗ 1]ρAB.

Tracing out the register of Bob gives

α2ρA = (A0 − A1)2ρA.

Since the reduced state ρA is full rank, we can right-multiply
by ρ−1

A to obtain

α21 = (A0 − A1)2,

which can be rearranged to give

{A0, A1} = (2 − α2)1.

Similarly, writing out (L0 + L2)ρAB = 0 gives

[(A0 + A1 + αA2) ⊗ 1]ρAB = 2(1 ⊗ B0)ρAB,

which through an analogous argument leads to

(A0 + A1 + αA2)2 = 4 1.

Combining this with the relation derived above gives

{A0 + A1, A2} = 0.

We now choose the basis such that A0 and A1 are given by

A0 = (cos θαX + sin θαZ) ⊗ 1,

A1 = (cos θαX − sin θαZ) ⊗ 1.

To find all valid solutions for A2 we start by writing A2 as

A2 = 1 ⊗ T1 + X ⊗ TX + Y ⊗ TY + Z ⊗ TZ

for some Hermitian operators T1, TX, TY, TZ acting on C
dA .

Equality {A0 + A1, A2} = 0 immediately implies that T1 =
TX = 0. It is then easy to check that

A2
2 = 1 ⊗ (

T 2
Y + T 2

Z

) + iX ⊗ [TY, TZ].

The condition A2
2 = 1 implies that

T 2
Y + T 2

Z = 1 and [TY, TZ] = 0.

Since TY and TZ commute, there exists a basis in which
they are both diagonal, and let us denote such a basis by
{|a j〉}dA

j=1. The first condition implies that the eigenvalues of
TY and TZ can be expressed as cos u j and sin u j of some angle
u j ∈ [0, 2π ) and therefore

TY =
dA∑
j=1

cos u j |e j〉〈e j |, TZ =
dA∑
j=1

sin u j |e j〉〈e j |.

This immediately implies that

A2 =
dA∑
j=1

(cos u j Y + sin u j Z) ⊗ |e j〉〈e j |,

which is precisely the form given in the main text.
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APPENDIX B: EXTRACTION CHANNELS

In this Appendix we propose two explicit constructions of
extraction channels tailored to the case of α = √

2. The first
one is an extension of the standard swap isometry given in
Ref. [17], while the second one is a novel construction. The
reason why new constructions are necessary is the fact that at
least one of the extraction channels must depend on all three
observables. At this point we are only interested in certifying
the state, so we can without loss of generality assume that
the measurements of Alice and Bob are projective (mapping
nonprojective measurements onto projective ones can always
be seen as the first part of the extraction process).

1. Preliminaries

Let us start by proving two simple facts about binary
observables. Both proofs rely crucially on Jordan’s lemma,
which states that two Hermitian operators satisfying R2 =
S2 = 1 can be simultaneously block-diagonalized such that
the resulting blocks are of size at most 2 × 2.

Lemma 1. Let R, S be Hermitian operators acting on C
d

satisfying R2 = S2 = 1. Then, the operator

T := 1

4
√

2
[3(R + S) − (SRS + RSR)]

satisfies −1 � T � 1.
Proof. Thanks to Jordan’s lemma it suffices to consider

observables acting on C
2. Up to unitaries these can be

parametrized as

R = cos θ X + sin θ Z, S = cos θ X − sin θ Z, (B1)

for θ ∈ [0, π/2]. For these operators a direct calculation
shows that

T = 3 cos θ − cos 3θ

2
√

2
X.

Now it suffices to check that |3 cos θ − cos 3θ | � 2
√

2 for
all θ . �

Let L(Cd ) be the set of linear operators acting on C
d .

Lemma 2. Let R, S be Hermitian operators acting on C
d

satisfying R2 = S2 = 1. Then, the linear map �B : L(Cd ) →
L(C2) defined as

�B(ρ) := 〈1, ρ〉1 + 〈EX, ρ〉 X + 〈EY, ρ〉 Y + 〈EZ, ρ〉 Z,

where

EX = 1

4
√

2
[3(R + S) − (SRS + RSR)],

EY = −i

2
[R, S],

EZ = 1

4
√

2
[3(R − S) − (SRS − RSR)]

is completely positive.
Proof. To show that �B is completely positive we compute

the corresponding Choi operator and prove that it is positive
semidefinite. The unnormalized Choi operator is defined as

C := (idA ⊗�B)(|
〉〈
|AB),

where |
〉AB = ∑d
j=1 | j〉A| j〉B is the standard (unnormalized)

maximally entangled state of local dimension d . An explicit

calculation gives

C = 1 ⊗ 1 + E∗
X ⊗ X + E∗

Y ⊗ Y + E∗
Z ⊗ Z.

Since taking a (total) transpose does not affect the eigenvalues,
it suffices to prove that CT � 0 and note that

CT = 1 ⊗ 1 + EX ⊗ X − EY ⊗ Y + EZ ⊗ Z,

because the operators EX, EY, EZ are Hermitian.
The fact that R and S can be written in a block-diagonal

form where the blocks are of size at most 2 × 2 implies
that the same property holds for EX, EY, and EZ. This means
that to ensure that CT � 0, it suffices to check positivity for
all possible observables in d = 2. Using the parametrization
given in Eq. (B1) we obtain

CT = 1 ⊗ 1 + 3 cos θ − cos 3θ

2
√

2
X ⊗ X − sin 2θ Y ⊗ Y

+ 3 sin θ + sin 3θ

2
√

2
Z ⊗ Z.

Clearly, this operator is diagonal in the Bell basis and the
eigenvalues can be computed analytically. It is a simple ex-
ercise to check that the resulting trigonometric functions are
non-negative on the interval θ ∈ [0, π/2]. �

2. Constructing an extraction channel from two observables

Here we present two distinct ways of constructing a qubit
extraction channel out of two binary observables acting on an
unknown Hilbert space. Let R and S be binary observables
corresponding to projective measurements, i.e., Hermitian op-
erators acting on C

d satisfying R2 = S2 = 1. It is well known
that if the observables anticommute {R, S} = 0, they identify
a qubit within C

d . Our goal is to find simple constructions of
linear maps that give rise to valid quantum channels for all
choices of R and S, while for observables satisfying {R, S} =
0 extract the desired qubit.

Construction A. The standard swap isometry is defined
through the following circuit:

The circuit corresponds to a concatenation of an isometry
V1 : C

d → C
2 ⊗ C

d and two unitaries V2,V3 : C
2 ⊗ C

d →
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C
2 ⊗ C

d defined as

V1 := 1√
2

(|0〉 ⊗ 1 + |1〉 ⊗ R),

V2 := H ⊗ 1,

V3 := |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ S,

where H is the Hadamard matrix. It is easy to check that

V1|ψ〉 = 1√
2
|0〉|ψ〉 + 1√

2
|1〉R|ψ〉,

V2V1|ψ〉 = 1

2
|0〉(1 + R)|ψ〉 + 1

2
|1〉(1 − R)|ψ〉,

V3V2V1|ψ〉 = 1

2
|0〉(1 + R)|ψ〉 + 1

2
|1〉S(1 − R)|ψ〉.

The combined isometry V : C
d → C

2 ⊗ C
d is given by V :=

V3V2V1 and a direct computation shows that

V ρV † = 1

4
[|0〉〈0| ⊗ (1 + R)ρ(1 + R)

+ |0〉〈1| ⊗ (1 + R)ρ(1 − R)S

+ |1〉〈0| ⊗ S(1 − R)ρ(1 + R)

+ |1〉〈1| ⊗ S(1 − R)ρ(1 − R)S].

Let �A : L(Cd ) → L(C2) be the quantum channel obtained
by first applying the isometry and then tracing out the second
register:

�A(ρ) := tr2(V ρV †).

Writing the output of the channel in the Pauli basis gives

�A(ρ) = 1

2
〈1, ρ〉1 + 1

4
〈S − RSR, ρ〉 X

+ i

4
〈[R, S], ρ〉 Y + 1

2
〈R, ρ〉 Z. (B2)

If the observables anticommute {R, S} = 0, it is easy to see
that the X component of the output qubit is perfectly corre-
lated to the S observable on the initial system, while the Z
component is perfectly correlated to the R observable.

For our purposes we need to generalize this construction.
Suppose that the operator S instead of satisfying S2 = 1 is
only guaranteed to satisfy S2 � 1. Since 1 − S2 � 0, we can
find a Hermitian operator T satisfying T 2 = 1 − S2. Then,
consider

�3(ρ) :=
1∑

j=0

KjρK†
j ,

where the Kraus operators are given by

K0 := |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ S, K1 := |1〉〈1| ⊗ T .

Clearly, this is a valid quantum channel. Let us now consider
a swap circuit in which the unitary V3 is replaced with the
channel �3. It turns out that the resulting extraction channel is
given precisely by Eq. (B2). In other words, this mathematical
expression corresponds to a valid quantum channel for any S
satisfying S2 � 1.

Construction B. Consider a linear map �B : L(Cd ) →
L(C2) defined as

�B(ρ) := 1
2 〈1, ρ〉1 + 1

2 〈EX, ρ〉 X

+ 1
2 〈EY, ρ〉 Y + 1

2 〈EZ, ρ〉 Z,

where

EX = 1

4
√

2
[3(R + S) − (SRS + RSR)],

EY = −i

2
[R, S],

EZ = 1

4
√

2
[3(R − S) − (SRS − RSR)].

This map is clearly trace preserving, while complete positivity
has been proved in Lemma 2.

This construction differs from the previous one in the sense
that if {R, S} = 0, then the X component of the output qubit is
maximally correlated to (R + S)/

√
2, while the Z component

is maximally correlated to (R − S)/
√

2.

3. Combining the two channels

In the previous section we have given two constructions of
extraction channels, and let us now explain how they can be
applied to our self-testing scenario.

An essential requirement is that the extraction channels
produce a perfect maximally entangled state of two qubits
whenever the violation is maximal. Our explicit characteriza-
tion of the optimal strategies implies that when the maximal
violation is achieved we have〈

A2 ⊗ B0 − B1√
2

, ρAB

〉
= 1,

〈
A0 + A1√

2
⊗ B0 + B1√

2
, ρAB

〉
= 1.

Now if we recall how the X and Z components of the output
qubit are correlated to the observables R and S of the input
system in the two constructions, we arrive at the following
choice of extraction channels. Alice employs the channel �A

corresponding to R = A2 and

S = 1

4
√

2
[3(A0 + A1) − (A1A0A1 + A0A1A0)].

The fact that S2 � 1 follows immediately from Lemma 1. At
the same time Bob employs the channel �B with R = B0 and
S = B1. Let us denote the output two-qubit state by

σA′B′ := (�A ⊗ �B)(ρAB),

and our goal is to evaluate the fidelity between σA′B′ and the
standard maximally entangled state �+. Since �+ is a pure
state, we have

F (σA′B′ ,�+) = 〈σA′B′ ,�+〉.
It is convenient to write �+ in the basis of Pauli matrices and
evaluate each term separately. A direct calculation shows that
for P ∈ {X, Y, Z} we have

〈σA′B′ , P ⊗ P〉 = 〈CP, ρAB〉,
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where

CX := 1

64
[3(A0 + A1) − (A1A0A1 + A0A1A0)

− 3A2(A0 + A1)A2 + A2(A1A0A1 + A0A1A0)A2]

⊗ [3(B0 + B1) − (B1B0B1 + B0B1B0)],

CY := −1

16
√

2
[A2, 3(A0 + A1)

− (A1A0A1 + A0A1A0)] ⊗ [B0, B1],

CZ := 1

4
√

2
A2 ⊗ [3(B0 − B1) − (B1B0B1 − B0B1B0)].

Conveniently, it is not necessary to provide bounds on all three
terms, because for every two-qubit state τA′B′ we have

〈τA′B′ , X ⊗ X〉 + 〈τA′B′ , Y ⊗ Y〉 + 〈τA′B′ , Z ⊗ Z〉 � 1. (B3)

To see this note that applying a correlated Pauli twirl to τA′B′

produces a Bell-diagonal state without affecting the coeffi-
cients of the terms X ⊗ X, Y ⊗ Y, and Z ⊗ Z (see Lemma
10 in the supplementary information of Ref. [60] for more
details). Positivity of the resulting density matrix immediately
implies the condition given in Eq. (B3). This means that

F (σA′B′ ,�+) = 1

4
(1 + 〈σA′B′ , X ⊗ X〉 − 〈σA′B′ , Y ⊗ Y〉

+ 〈σA′B′ , Z ⊗ Z〉)

� 1

2
(〈σA′B′ , X ⊗ X〉 + 〈σA′B′ , Z ⊗ Z〉)

= 1

2
(〈CX, ρAB〉 + 〈CZ, ρAB〉). (B4)

In Appendix C 3 we derive analytic lower bounds on 〈CX, ρAB〉
and 〈CZ, ρAB〉 in terms of the observed violation, which lead
to Theorem 2 in the main text.

Analogously, for every two-qubit state we have

−〈τA′B′ , X ⊗ X〉 − 〈τA′B′ , Y ⊗ Y〉 + 〈τA′B′ , Z ⊗ Z〉 � 1,

(B5)
which implies that

F (σA′B′ ,�+) � 1
2 (−〈σA′B′ , Y ⊗ Y〉 + 〈σA′B′ , Z ⊗ Z〉)

= 1
2 (−〈CY, ρAB〉 + 〈CZ, ρAB〉). (B6)

This bound turns out to be more useful for the numerical
calculations using the swap method given in Appendix C 4.

APPENDIX C: ROBUST SELF-TESTING

In this Appendix we derive robust self-testing bounds for
the case of α = √

2. In the first part we derive analytic
statements, whereas at the end we give some details on the
numerical calculations performed using the swap method.

1. Preliminaries

Our main task is to bound norms of certain operators. We
denote the Frobenius norm (Schatten 2-norm) by || · ||F and
the operator norm (Schatten ∞-norm) by || · ||∞. Let us first
state a couple of facts that we will take advantage of in the
argument.

The Cauchy-Schwarz inequality for linear operators X and
Y reads

|〈X,Y 〉| � ||X ||F · ||Y ||F . (C1)

We will often use this inequality in situations where one of
the operators is a normalized quantum state. Note that then
we have 〈L, ρ〉 = 〈Lρ1/2, ρ1/2〉, which implies

|〈L, ρ〉| � ||Lρ1/2||F . (C2)

Moreover, we will use the fact that

||XY ||F � ||X ||F · ||Y ||∞. (C3)

This can be easily seen from the fact that

||XY ||2F = tr(XYY †X †) � ||Y ||2∞ tr(XX †) = ||Y ||2∞ · ||X ||2F ,

where we have used the fact that YY † � ||Y ||2∞ 1 and that A �
B implies tr A � tr B. We will also use the reverse triangle
inequality which states that for any norm we have

|||X || − ||Y ||| � ||X − Y ||. (C4)

Moreover, if X 2 = 1, then

(Y + XY X )2 = {X,Y }2. (C5)

2. Conditions from the sum-of-squares decomposition

Recall that for α = √
2 we have

W = (
A2

0 + A2
1 + A2

2

) ⊗ 1 + 1 ⊗ (B2
0 + B2

1 + B2
2) − 1

2

2∑
j=0

L2
j .

Clearly, if the observed violation equals β = 〈W, ρAB〉 = 6 −
ε, we can immediately deduce that〈

A2
x, ρA

〉
� 1 − ε

and
2∑

j=0

〈
L2

j , ρAB
〉
� 2ε.

The latter implies that
∣∣∣∣Ljρ

1/2
AB

∣∣∣∣
F =

√〈
L2

j , ρAB
〉
�

√
2ε (C6)

for j = 0, 1, 2.

3. Analytic self-testing bounds

In this section we derive several robust self-testing state-
ments. The techniques are elementary, but the proofs can
be lengthy. To improve the readability we have divided the
argument up into several lemmas.

Lemma 3. If the observed violation is close to maximal,
the observables A0 and A1 approximately anticommute and,
moreover, the operators (A0 − A1) and B2 are almost perfectly
correlated. More specifically, if 〈W, ρAB〉 = 6 − ε, then∣∣∣∣{A0, A1} ⊗ 1 ρ

1/2
AB

∣∣∣∣
F � 2(1 +

√
2)

√
ε

and

〈(A0 − A1) ⊗ B2, ρAB〉 �
√

2 −
√

2ε.
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Proof. Equation (C6) applied to L1 implies that
∣∣∣∣[(A0 − A1) ⊗ 1 −

√
2 1 ⊗ B2] ρ

1/2
AB

∣∣∣∣
F

�
√

2ε.

If we multiply the operator under the norm by
√

2 1 ⊗ B2 and
then apply Eq. (C3) we conclude that

∣∣∣∣[√2(A0 − A1) ⊗ B2 − 2 1 ⊗ 1] ρ
1/2
AB

∣∣∣∣
F � 2

√
ε. (C7)

Alternatively, if we multiply the same operator by (A0 −
A1) ⊗ 1, we obtain∣∣∣∣[2 1 ⊗ 1 − {A0, A1} ⊗ 1 −

√
2(A0 − A1) ⊗ B2] ρ

1/2
AB

∣∣∣∣
F

� 2
√

2ε.

These two inequalities allow us to apply the reverse triangle
inequality to

X = {A0, A1} ⊗ 1 ρ
1/2
AB ,

Y = [2 1 ⊗ 1 −
√

2(A0 − A1) ⊗ B2] ρ
1/2
AB ,

which gives the first inequality stated in the lemma. Inequality
(C7) together with the variant of the Cauchy-Schwarz inequal-
ity stated in Eq. (C2) gives the second inequality stated in the
lemma. �

Corollary 1. Since the Bell inequality is symmetric with
respect to swapping Alice and Bob, we immediately deduce
that if 〈W, ρAB〉 = 6 − ε, then∣∣∣∣1 ⊗ {B0, B1} ρ

1/2
AB

∣∣∣∣
F

� 2(1 +
√

2)
√

ε

and

〈A2 ⊗ (B0 − B1), ρAB〉 �
√

2 −
√

2ε.

Lemma 4. If the observed violation is close to maximal,
then the operators (A0 + A1) and (B0 + B1) are almost per-
fectly correlated. More specifically, if 〈W, ρAB〉 = 6 − ε, then

〈(A0 + A1) ⊗ (B0 + B1), ρAB〉 � 2 − 2(1 + 2
√

2)
√

ε.

Proof. Equation (C6) applied to L0 implies that
∣∣∣∣[(A0 + A1) ⊗ 1 − 1 ⊗ (B0 + B1)]ρ1/2

AB

∣∣∣∣
F �

√
2ε.

If we multiply the operator under the norm by 1 ⊗ (B0 + B1)
and then apply Eq. (C3) we conclude that∣∣∣∣[(A0 + A1) ⊗ (B0 + B1) − 2 1 ⊗ 1 − 1 ⊗ {B0, B1}]ρ1/2

AB

∣∣∣∣
F

� 2
√

2ε.

This together with Corollary 1 allow us to apply the reverse
triangle inequality to

X = [(A0 + A1) ⊗ (B0 + B1) − 2 1 ⊗ 1]ρ1/2
AB ,

Y = 1 ⊗ {B0, B1} ρ
1/2
AB ,

which gives
∣∣∣∣[(A0 + A1) ⊗ (B0 + B1)−2 1 ⊗ 1]ρ1/2

AB

∣∣∣∣
F �2(1 + 2

√
2)

√
ε.

Applying the Cauchy-Schwarz inequality given in Eq. (C2)
concludes the proof. �

Lemma 5. If the observed violation is close to maximal,
then the operators (A0 + A1) and A2 approximately anticom-
mute. More specifically, if 〈W, ρAB〉 = 6 − ε, then∣∣∣∣{A0 + A1, A2} ⊗ 1 ρ

1/2
AB

∣∣∣∣
F � 2(4 +

√
2)

√
ε.

Proof. Note that∣∣∣∣[(A0 + A1 +
√

2A2) ⊗ 1 − 2 1 ⊗ B0]ρ1/2
AB

∣∣∣∣
F

= ∣∣∣∣(L0 + L2)ρ1/2
AB

∣∣∣∣
F �

∣∣∣∣L0ρ
1/2
AB

∣∣∣∣
F + ∣∣∣∣L2ρ

1/2
AB

∣∣∣∣
F � 2

√
2ε.

Multiplying the operator under the norm by 2B0 gives∣∣∣∣[2(A0 + A1 +
√

2A2) ⊗ B0 − 4 1 ⊗ 1]ρ1/2
AB

∣∣∣∣
F � 4

√
2ε.

Alternatively, multiplying it by (A0 + A1 + √
2A2) gives∣∣∣∣[(A0 + A1 +

√
2A2)2 ⊗ 1 − 2 (A0 + A1 +

√
2A2)

⊗B0]ρ1/2
AB

∣∣∣∣
F � 2(1 +

√
2)

√
ε.

Since

(A0 + A1 +
√

2A2)2 = 4 1 + {A0, A1} +
√

2{A0 + A1, A2},
we can apply the reverse triangle inequality to

X = ({A0, A1} +
√

2{A0 + A1, A2}) ⊗ 1 ρ
1/2
AB ,

Y = [2(A0 + A1 +
√

2A2) ⊗ B0 − 4 1 ⊗ 1]ρ1/2
AB

to obtain∣∣∣∣({A0, A1}+
√

2{A0 + A1, A2}) ⊗ 1 ρ
1/2
AB

∣∣∣∣
F
�2(1 + 3

√
2)

√
ε.

One last application of the reverse triangle inequality com-
bined with the first result of Lemma 3 gives the final
result. �

In the last two lemmas we bound the inner products ap-
pearing in the fidelity expression given in Eq. (B4).

Lemma 6. If the observed violation is close to maximal,
then the inner product 〈CX, ρAB〉 is close to unity. More
specifically, if 〈W, ρAB〉 = 6 − ε, then

〈CX, ρAB〉 � 1 − (7 + 5
√

2)
√

ε.

Proof. Let

K := 3(A0 + A1) − (A1A0A1 + A0A1A0) − 3A2(A0 + A1)A2

+ A2(A1A0A1 + A0A1A0)A2

and note that the operator CX can be written as

CX = 1

64
K ⊗ [4(B0 + B1) − (B0 + B1B0B1)

− (B1 + B0B1B0)].

Therefore,

〈CX, ρAB〉 = 1

16
〈K ⊗ (B0 + B1), ρAB〉

− 1

64
〈K ⊗ [(B0 + B1B0B1)

+ (B1 + B0B1B0)], ρAB〉.
The second term we can already bound since the Cauchy-
Schwarz inequality and the fact that (B0 + B1B0B1)2 =
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(B1 + B0B1B0)2 = {B0, B1}2 imply that

|〈K ⊗ (B0 + B1B0B1), ρAB〉| �
∣∣∣∣K ⊗ 1 ρ

1/2
AB

∣∣∣∣
F

·∣∣∣∣1 ⊗ {B0, B1}ρ1/2
AB

∣∣∣∣
F .

The first factor can be bounded by∣∣∣∣K ⊗ 1 ρ
1/2
AB

∣∣∣∣
F =

√
〈K2, ρAB〉 �

∣∣∣∣K∣∣∣∣
∞ � 16.

In the second step we write K = 8K0 + K1 + K2 − 4K3 −
K4 − K5, where

K0 := A0 + A1,

K1 := A2(A0 + A1A0A1)A2,

K2 := A2(A1 + A0A1A0)A2,

K3 := (A0 + A1) + A2(A0 + A1)A2,

K4 := A0 + A1A0A1,

K5 := A1 + A0A1A0.

Note that 〈K0 ⊗ (B0 + B1), ρAB〉 = 〈(A0 + A1) ⊗ (B0 +
B1), ρAB〉 is precisely the term we have bounded in Lemma
4. To show that all the other terms approximately vanish we
apply inequalities (C2) and (C3) to obtain

|〈Kj ⊗ (B0 + B1), ρAB〉| �
∣∣∣∣Kj ⊗ (B0 + B1) ρ

1/2
AB

∣∣∣∣
F

� 2
∣∣∣∣Kj ⊗ 1 ρ

1/2
AB

∣∣∣∣
F .

For j = 1, 2 we have∣∣∣∣Kj ⊗ 1 ρ
1/2
AB

∣∣∣∣
F =

√
〈A2{A0, A1}2A2, ρAB〉

= ∣∣∣∣A2{A0, A1} ⊗ 1 ρ
1/2
AB

∣∣∣∣
F

�
∣∣∣∣{A0, A1} ⊗ 1 ρ

1/2
AB

∣∣∣∣
F .

For j = 3 we use inequality (C5) to obtain∣∣∣∣K3 ⊗ 1 ρ
1/2
AB

∣∣∣∣
F = ∣∣∣∣{A0 + A1, A2} ⊗ 1 ρ

1/2
AB

∣∣∣∣
F .

Similarly, for j = 4, 5 we have∣∣∣∣Kj ⊗ 1 ρ
1/2
AB

∣∣∣∣
F

= ∣∣∣∣{A0, A1} ⊗ 1 ρ
1/2
AB

∣∣∣∣
F
.

Collecting all the error terms and plugging in the bounds
derived in Lemmas 3 and 5 and Corollary 1 leads to the
desired inequality. �

Lemma 7. If the observed violation is close to maximal,
then the inner product 〈CZ, ρAB〉 is close to unity. More
specifically, if 〈W, ρAB〉 = 6 − ε, then

〈CZ, ρAB〉 � 1 − 1
2 (4 +

√
2)

√
ε.

Proof. Note that the expression for CZ can be written as

CZ = 1

4
√

2
A2 ⊗ [4(B0 − B1) − (B0

+ B1B0B1) + (B1 + B0B1B0)],

which immediately implies that

〈CZ, ρAB〉 = 1√
2
〈A2 ⊗ (B0 − B1), ρAB〉

− 1

4
√

2
〈A2 ⊗ (B0 + B1B0B1), ρAB〉

+ 1

4
√

2
〈A2 ⊗ (B1 + B0B1B0), ρAB〉

� 1√
2
〈A2 ⊗ (B0 − B1), ρAB〉

− 1

2
√

2

∣∣∣∣1 ⊗ {B0, B1} ρ
1/2
AB

∣∣∣∣
F ,

where we have used the Cauchy-Schwarz inequality com-
bined with the observation that (B0 + B1B0B1)2 = (B1 +
B0B1B0)2 = {B0, B1}2. Plugging in the bounds derived in
Corollary 1 gives the final result of the lemma. �

4. Details of the numerical calculation using the swap method

We construct a 100 × 100 moment matrix �, whose rows
and columns correspond to Pj |ψ〉, where Pj is a monomial
from the set {1, Ax, AxAx′ } ⊗ {1, By, ByBy′ }. We impose the
equality conditions resulting from A2

x = 1 and B2
y = 1, the

normalization condition � j j = 1 for all j, and positivity � �
0. Then we minimize

〈−CY + CZ, ρAB〉 (C8)

subject to a fixed Bell violation β = t for various values of
t ∈ [5.7, 6]. Inequality (B6) leads to the lower bound on the
fidelity presented in Fig. 1 in the main text.

Note that this moment matrix is not sufficient to obtain a
bound on 〈CX, ρAB〉, because it does not contain strings of Ax

operators of sufficient length. Therefore, if we want to bound
the fidelity using the inequality given in Eq. (B4) or bound
all three terms simultaneously, we must construct a larger
moment matrix. While we have been able to construct a larger
moment matrix, we were not able to perform the numerical
optimization on it.

APPENDIX D: RANDOMNESS CERTIFICATION

In this Appendix we explain the approach we have used
to study the amount of randomness generated by the Bell
inequality corresponding to α = 1.

1. The trade-off between marginals and the Bell violation

We consider the simplest device-independent scenario: the
devices of Alice and Bob are produced by Eve whose goal is to
predict the outcome of Alice for a particular fixed setting. It is
well known that in this case Eve does not gain anything by en-
tangling herself with the device. In fact, if we only care about
her guessing probability, she does not even need to keep any
classical knowledge about the device. Certifying randomness
reduces to investigating the trade-off between the bias of the
local observables and the observed Bell violation, and such
trade-offs can be studied numerically using the Navascués-
Pironio-Acín (NPA) hierarchy [61,62]. More specifically, we
use the “1 + AB” level to investigate the maximal bias of
Ax for a fixed violation β (by symmetry the same constraints
apply to the observables of Bob). We construct a 16 × 16
moment matrix � whose rows and columns correspond to
{|ψ〉, Ax ⊗ 1|ψ〉,1 ⊗ By|ψ〉, Ax ⊗ By|ψ〉}. We maximize the
expectation value 〈Ax〉 subject to a fixed Bell violation β = t
for various choices of t ∈ [4, 5]. To find feasible points we

033420-10
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(a) (b)

FIG. 3. Numerical bounds on 〈A0〉 and 〈A2〉 for a fixed violation β are shown in panels (a) and (b), respectively. The solid red lines represent
the upper bounds obtained from the NPA hierarchy, while the dashed blue lines correspond to feasible points. The observable A2 can only be
used to generate randomness for violations exceeding 2

√
5.

start with some optimal arrangement of the observables for
Alice and Bob (as given in the main text) and consider a
tilted version of the Bell operator: rAx ⊗ 1 + W for some
r � 0. Finding the eigenvector corresponding to the largest
eigenvalue gives a particular realization for which typically
β = 〈W 〉 < 5 and 〈Ax〉 > 0. By generating a sufficient num-
ber of points and then taking their convex hull we construct the
lower curves presented in Fig. 3. Clearly, the upper and lower
bounds turn out to be relatively close, and they are consistent
with our analytic result that the maximal violation certifies
maximal randomness. Randomness produced by A0 and A1

can be certified all the way down to the classical value β = 4.
Randomness of A2, on the other hand, is only guaranteed for
β > 2

√
5, and we have indeed found a quantum realization

that achieves β = 2
√

5 while keeping A2 deterministic (see
below). Clearly, A0 and A1 are better suited for generating
randomness than A2.

2. Maximal violation under commutation constraints

Determining the minimal value of β for which the observ-
able Ax is guaranteed to generate randomness is equivalent to
finding the largest Bell value consistent with 〈Ax〉 = ±1. A
related question is to determine the maximal value of β under
the assumption that certain observables commute, a problem
that can be tackled numerically by imposing some additional
constraints on the moment matrix. Numerical evidence sug-
gests that

[A0, A1] = 0 ⇒ β � 2
√

5 ≈ 4.47,

[A0, A2] = 0 ⇒ β � 2 + 3
√

6

2
≈ 4.67,

[A1, A2] = 0 ⇒ β � 2 + 3
√

6

2
≈ 4.67,

[A0, A2] = [A1, A2] = 0 ⇒ β � 2 + 3
√

6

2
≈ 4.67,

[A0, A1] = [A0, A2] = 0 ⇒ β � 4.163,

[A0, A1] = [A1, A2] = 0 ⇒ β � 4.163.

Except for the last two cases we can provide explicit two-
qubit realizations that saturate these bounds (see below).
These results suggest that this Bell inequality can be used to
make device-independent conclusions about the incompatibil-
ity structure of the employed observables [63].

For [A0, A1] = 0 consider the observables

A0 = X, B0 = 2X + Z√
5

,

A1 = X, B1 = 2X − Z√
5

,

A2 = Z, B2 = 1.

It is easy to verify that 〈W,�+〉 = 2
√

5. Note that this realiza-
tion also satisfies [B0, B2] = [B1, B2] = 0. Moreover, it shows
that the value β = 2

√
5 is consistent with 〈B2〉 = 1 (and by

symmetry with 〈A2〉 = 1).
For [A0, A2] = 0 consider the observables

A0 = X, B0 = 9X + √
15 Z

4
√

6
,

A1 = X + √
15 Z

4
, B1 = X + √

15 Z
4

,

A2 = X, B2 =
√

3 X − √
5 Z

2
√

2
.

It is easy to verify that 〈W,�+〉 = (2 + 3
√

6)/2. A realization
satisfying [A1, A2] can be obtained by swapping A0 ↔ A1 and
flipping the sign of B2.
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JĘDRZEJ KANIEWSKI PHYSICAL REVIEW RESEARCH 2, 033420 (2020)

[7] D. Mayers and A. Yao, in Proceedings of the 39th Annual Sym-
posium on Foundations of Computer Science (IEEE Computer
Society Press, Piscataway, New Jersey, US, 1998), p. 503.

[8] D. Mayers and A. Yao, Quantum. Inf. Comput. 4, 273 (2004).
[9] B. W. Reichardt, F. Unger, and U. Vazirani, Nature (London)

496, 456 (2013).
[10] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.

Rev. Lett. 23, 880 (1969).
[11] M. McKague and M. Mosca, in TQC 2010: Theory of

Quantum Computation, Communication, and Cryptography,
Lecture Notes in Computer Science Vol. 6519 (Springer,
Berlin/Heidelberg, Germany, 2011), pp. 113–130.

[12] J. Kaniewski, Phys. Rev. A 95, 062323 (2017).
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