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Thermodynamics and feature extraction by machine learning
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Machine learning methods are powerful in distinguishing different phases of matter in an automated way
and provide a new perspective on the study of physical phenomena. We train a restricted Boltzmann machine
(RBM) on data constructed with spin configurations sampled from the Ising Hamiltonian at different values of
temperature and external magnetic field using Monte Carlo methods. From the trained machine we obtain the
flow of iterative reconstruction of spin state configurations to faithfully reproduce the observables of the physical
system. We find that the flow of the trained RBM approaches the spin configurations of the maximal possible
specific heat which resemble the near-criticality region of the Ising model. In the special case of the vanishing
magnetic field the trained RBM converges to the critical point of the renormalization group (RG) flow of the
lattice model. Our results suggest an explanation of how the machine identifies the physical phase transitions,
by recognizing certain properties of the configuration like the maximization of the specific heat, instead of
associating directly the recognition procedure with the RG flow and its fixed points. Then from the reconstructed
data we deduce the critical exponent associated with the magnetization to find satisfactory agreement with the
actual physical value. We assume no prior knowledge about the criticality of the system and its Hamiltonian.
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I. INTRODUCTION

Machine learning (ML) has been recently used as a very
effective tool for the study and prediction of data in various
fields of physics. Due to the combination of availability of
large amounts of data and the advances in computational
power, it has become a powerful method [1,2]. Deep learning
techniques have yielded with striking efficiency results on
a diverse set of complicated ML tasks in computer vision,
speech recognition, natural language processing, and more
recently, physics. However, despite such enormous success,
relatively little is understood theoretically about why these
techniques are so successful.

The recent applications of ML on physics provide a solid
hope that a more fundamental link between the methods of
learning and certain physical models could established that
will be mutually beneficial for understanding deeper certain
aspects in both sciences. The ML on physical models is per-
formed with neural networks (NNs), composed of nodes and
edges. These are of two major types, the supervised learning
where the network is trained on data with certain labeling,
and perhaps a more effective way of unsupervised learning,
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where the strategy is to learn the full distribution of the data
and no labels are required. Both approaches have been ap-
plied on physical models and particularly on the Ising model,
where unsupervised methods have been used extensively to
identify phase transitions and order parameters of the Ising
model using images of classical spin configurations [3–6],
while some parallel work with supervised methods includes
Refs. [7–9]. Such methods have been proven useful and strik-
ingly successful for the study of several modern complex
physical problems, like the strongly correlated many-body
systems [10], overcoming the challenges originating from the
difficulty of describing the nontrivial correlations encoded in
the exponential complexity of the many-body wave function
[11–14], in the search for the exotic particles [15], in the
study of the liquid-glass phase transition [16], and in iden-
tifying phase transitions by circumventing the fermion sign
problem [17]. Such applications of ML in identifying and
classifying different phases of matter, including the topo-
logical ones, include Refs. [18–23]. Moreover, attempts to
understand the mechanism of the emergence of bulk ge-
ometries in the gauge-gravity correspondence have been also
proposed in Refs. [24,25]. Most of these physical applications
are summarized in an analytic review, Ref. [26].

As part of this revolution, a more fundamental relation has
been proposed between the way that the learning occurs in
neural networks and the renormalization group (RG) flow in
statistical Ising models [27–33]. In [33] particularly, a deeper
relation has been demonstrated between the two ideas, where
a learning algorithm has identified the relevant degrees of free-
dom of the Ising model without any prior knowledge about the
system. The connection between RG and ML lies in the idea
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behind the RG flow, where by identifying relevant degrees
of freedom and integrating out the irrelevant ones iteratively,
one arrives at a low-energy effective theory with universal
features. For example, in the block spin decimation procedure
the spins are grouped into blocks coupled to their nearest
neighbors, and then treated again as random variables. This
kind of locality is exploited by artificial systems, where the
first neural layer performs mostly only the local operations. In
analogy to the RG flow, by adding layers to the network, the
correlation between hidden variables is expected to decrease
as we enter deeper into the network.

Furthermore, in [34] it has been shown that the critical
fixed point of the RG flow and the fixed point of data recon-
struction by the ML techniques are coincident. The restricted
Boltzmann machine (RBM) [35] plays a fundamental role in
this task. It is a stochastic neural undirected network, where
its neuron has a binary value that has a probabilistic ele-
ment depending on its neighboring units, resembling vaguely
properties of the Ising model. The RBM has been used for
learning the configurations of the Ising model in the absence
of external fields and then reconstructing these configurations
iteratively. We will be using such methods of learning in our
work and we will call the resulting flow of such series of
iteratively reconstructed configurations an “RBM flow.”

One motivation of our work is to study whether and when
the RBM flow is correlated with the RG flow and when it
tends to the critical fixed point of the RG flow. In our analysis
we generate RBM flows, in systems such that when certain
parameters are fixed, the critical fixed points of the RG flow
can be inaccessible, while still the noncritical fixed points
remain accessible. For this purpose we choose to work with
the one-dimensional and the two-dimensional Ising models
in the presence of external magnetic field. Focusing mostly
on the two-dimensional model, we demonstrate that for fixed
nonvanishing magnetic field, the RBM reconstruction data
flows to configurations that resemble closer a configuration
of the phase transition. It recognizes as “critical” points the
ones which are close to maximizing the specific heat for given
external parameters. The RBM flow does not seem to show
any strong tendency to approach the noncritical fixed points of
the RG flow. At the special case of zero magnetic field where
an unstable RG critical point exists at a finite temperature,
we confirm that the RBM reconstruction data flow to it and
recognize it. Our analysis yields an alternative explanation on
the way that the RBM identifies the phase transitions, which
is not necessarily related to the RG flow.

Having studied the properties of the RBM flow and how
it recognizes the phase transitions, the second motivation of
our paper is to demonstrate the computation of the thermody-
namic quantities on the samples generated by the Boltzmann
machines to show that they closely reproduce those calculated
directly from the Monte Carlo samples. For the zero magnetic
field model and without giving information to the machine
about the Hamiltonian of the system and its criticality, we
compute the critical exponent associated with magnetization
from the reconstructed data to find satisfactory agreement.

We emphasize that the training and reconstruction pro-
cess is based entirely on the spin configurations without any
additional input. The RBM is trained by a large number of
Monte Carlo (MC) spin microstate configurations in various

temperatures. The binary MC configurations can be thought as
being transformed to 1- or 2-dimensional images, depending
on the dimension of the Ising model, with binary pixel values
corresponding to the up and down spins. This is all the knowl-
edge that the RBM has access to for the physical system;
it has no further information for the existence of the critical
points and their properties. During the unsupervised training
the RBM extracts specific patterns through the Kullback-
Leibler (KL) divergence minimization based on the images
we provide. Then to define the RBM flow we choose MC spin
configurations at a particular temperature and magnetic field
away from the criticality and we ask the RBM to reconstruct
them, i.e., to produce a new spin microstate according to its
prior training. The outcome of the new spin configuration cor-
responds in principle to a different temperature and magnetic
field. By repeating this process on the produced configuration,
we construct the RBM flow which has the physical properties
we describe in our work.

We organize our paper as follows. In Sec. II we present the
properties of the Ising model and the RG flow in 1d and 2d
lattices, which will be useful in the next sections. In Sec. III
we explain our method of ML to learn the spin configurations
in the Ising model. In Sec. IV we present the results of the
RBM flows. Then we demonstrate how to evaluate the critical
exponent of the Ising model using the RBM configuration in
Sec. V, and we finish by discussing our results in Sec. VI.

II. THE ISING MODEL

In this section we briefly establish the setup and review
aspects of the thermodynamics and the renormalization group
flow of the Ising model on 1d and 2d lattices. The Ising model
is built on a lattice of N sites. Each site, labeled by the index
i, contains a spin si with values ±1 which represent the two
possible states. The Hamiltonian is

H = −J
∑
〈i j〉

sis j − H
∑

i

si, (1)

where 〈i j〉 denotes all the nearest neighbor pairs of the sites
i and j, J > 0 is the coupling of the nearest neighbors, and
H is the external magnetic field. The magnetization M of this
system is defined as the sum of all the spins M = ∑

i si.
The partition function of the system reads

Z =
∑
{s}

∏
i

eKsisi+1+hsi , (2)

where K := J/T and h := H/T , while the Boltzmann con-
stant is set equal to unit, kB = 1. In practice the lattice has a
finite number of spins and the boundary conditions affect the
system’s properties. In the finite-N spin chain two boundary
conditions may be applied, the toroidal boundary condition
where the last N th spin interacts with the first spin forming
a ring, where all the spins are equivalent; or the free-end
boundary condition where the first and last spin have only one
neighbor. Nevertheless, by considering the thermodynamic
limit N → ∞ the effect of the boundary conditions becomes
negligible.
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A. Exact solution of 1d Ising model

By adopting the toroidal boundary conditions sN+1 = s1,
where all spins are equivalent, the energy of the 1d Ising
model takes the form

E

T
= −K

N∑
i=1

sisi+1 − h

2

N∑
i=1

(si + si+1). (3)

The partition function of the system (2) can be written in terms
of the elements of the transfer matrix T as

Z =
∑
{s}

N∏
i=1

Tsisi+1 , (4)

where the symmetric 2 × 2 matrix

Tsisi+1 := exp

[
Ksisi+1 + h

2
(si + si+1)

]
(5)

has the diagonal elements (T++, T−−) and the nondiagonal
ones T+− = T−+. The matrix T has the property (T2)s1s3 =∑

s2
Ts1s2 Ts2s3 which leads to the simplification of the partition

function as ZN = Tr (TN ). By using a similarity transforma-
tion on T, we diagonalize it to get a matrix T′ = diag(λ+, λ−),
where λ± are the eigenvalues of T,

λ± = eK cosh h ± (e−2K + e2K sinh2 h)
1/2

. (6)

The partition function becomes ZN = λN
+ + λN

−, which in the
thermodynamic limit simplifies further to ZN = λN

+.
The magnetization of the system is defined as M =

−(∂F/∂H )T , where the free energy is given by F = −T ln Z
leading to the magnetization per site

m := M

N
= sinh h√

sinh2 h + e−4K
. (7)

Therefore, the 1d Ising model becomes a ferromagnet only
at T = 0, where m → 1. The specific heat of the system is
obtained by C = (∂E/∂T )H , where the energy is be given by
E = T 2(∂ log Z/∂T )H .

B. Analytic solutions of 2d Ising model

The 2d Ising model has been solved exactly for zero
magnetic field in [36] and studied further in [37]. The criti-
cal temperature at the second-order phase transition is given
by Tc/J = 2/ log(1 + √

2) � 2.27, and the magnetization for
T < Tc is given by

m = (1 − sinh−4 2K )
1/8

. (8)

For general T , the specific heat is a given by a more involved
formula

C = 1

π
(K coth 2K )2

{
K1(κ ) − E1(κ )

− 1

cosh2 2K

[π

2
+ (2 tanh2 2K − 1)K1(κ )

]}
, (9)

where K1(κ ) and E1(κ ) are the complete elliptic inte-
grals of the first and second kind, respectively, and κ :=
2 sinh 2K/ cosh2 2K . The specific heat diverges at T =
Tc, H = 0, signaling the phase transition of the system.

The exact solution with nonvanishing magnetic field is
not known although powerful approximation techniques are
applicable. In the Bethe-Peierls approximation we consider a
central spin s0 and the exact interaction with its nearest neigh-
bors s1, . . . , sq, while the rest of the spins are approximated to
act on the nearest neighbors through a self-consistent effective
field. The energy can be written as

E

T
= −(Ks0 + heff )

q∑
j=1

s j − hs0, (10)

where q is the number of nearest spins and heff = h + (q −
1)m/T is the effective field which takes into account contri-
butions of the external magnetic field h and the magnetization
m from the rest of the spins. The translational invariance of
the model implies that 〈s0〉 = 〈si〉, resulting in the equation
for the effective field

coshq−1 (K + heff ) = e2(heff −h) coshq−1 (K − heff ), (11)

which when solved gives the magnetization m of the system.
In the 2d Ising model with the square lattice where q = 4, the
approximate rapid decrease of the magnetization happens at
T/J = 2.89, H = 0, giving a prediction of the critical tem-
perature, close enough to the exact value Tc/J = 2.27.

C. Renormalization group of Ising model

By applying RG flow methods the fixed and critical points
of the system are identified. The idea of renormalization in
the Ising model is to transform the original Hamiltonian H
into a deformed Hamiltonian H′ = RH where an operation
R removes a number of degrees of freedom. The degrees
of freedom are reduced as N ′ = b−d N , where N and N ′ are
the original and transformed number of lattice sites, d is the
dimensionality of the lattice, and b is a constant which denotes
how the decimation is performed.

This transformation is realized by carrying out a par-
tial trace to obtain a new partition function that has fewer
summations on the remaining sites. The resulting Hamilto-
nian H′ should be algebraically specified to take the same
functional form as the original Hamiltonian with rescaled
coefficients and most likely new interactions. However, the
partition function remains proportional to the original one
ZN ′ (H′) = cZN (H), where c depends on the couplings of
the theory. Therefore, the free energy remains the same, while
the free energy per site in the new Hamiltonian will increase
by a rescaling bd , resulting in the length of lattice spacing be-
ing rescaled by b−1 and respectively momenta being rescaled
by b.

The fixed points in this procedure which interest us in this
work are defined by the equality H′ = H. At such points, the
system is invariant under scale changes; thus the correlation
length is invariant. In particular, critical fixed points where
the phase transition of the system happens have infinite corre-
lation lengths.
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FIG. 1. The RG flow in the 1d Ising model with external
magnetic field. The region K → 0 represents the high-temperature
regime, while K → ∞ represents the low-temperature regime.

D. RG flow in 1d Ising model

By implementing the decimation procedure of summing
over the sites with even index i we have

Z (N, K, h) = egN Z

(
N

2
, K ′, h′

)
, (12)

where g depends on the coupling constants K, h, and the
rescaled Hamiltonian H′ is a coarse-grained version of
the original one with half degrees of freedom and primed
couplings. The recursive equation (12) given a system
K ′(K, h), h′(k, h), g(K, h) generates the diagram of Fig. 1. In
the process we have removed half of the degrees of freedom
N ′ = N/2 and at the same time we have doubled the lattice
spacing α′ = 2α, while the correlation length has been de-
creased to half of the original one. The renormalization of the
1d Ising model is exact; that is, the coarse-grained Hamilto-
nian does not have additional terms which could correspond
to new interactions between the spins. The number of the new
coupling constants remains the same as the couplings before
the decimation, which are expressed exclusively in terms of
the initial ones.

The fixed points where our couplings K and h do not
change under successive decimation are (i) at the infinite
temperature where the spins are completely disordered and
the correlation length tends to be zero; (ii) at zero temperature
and magnetic field, which is the critical unstable point, where
the correlation length diverges; (iii) at zero temperature and
infinite magnetic field where the spins are completely ordered.
The RG flow of the 1d Ising model is depicted in Fig. 1.

E. RG flow in 2d Ising model

As the 1d Ising model, we take the partial trace over the
nearest and next-nearest neighbors, where the procedure in
each row and column of the 2d lattice resembles the decima-
tion in the 1d spin chain. The coarse-grained lattice comes by
tracing out the center spin of each cross interaction among
spins, which leads to a lengthy expression of the partition
function, written in a compact form as

Z (N, K, h) = eN ′gZ (N ′, K ′
i , h′). (13)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

FIG. 2. The RG flow of the 2d Ising model without a magnetic
field h = 0, when the square interactions K ′

3 are negligible (13). The
fixed point Kc = J/Tc = 0.507 is depicted and is unstable.

The renormalized Hamiltonian H′ is the Landau-Ginzburg-
Wilson energy function with three couplings. K ′

1 is the
renormalized coupling between nearest neighbors, K ′

2 is the
new interaction coupling between next-nearest neighbors, and
K ′

3 is the four-spin interaction of any square in the lattice.
To solve this recursive equation we need to consider the four
independent spin configurations around a central spin, which
give analytical relations of the coupling constants Ki. Sub-
sequent decimation leads to more involved interactions each
time, and an approximation needs to be considered in order to
find the fixed point analytically. By assuming that the nearest
and next-nearest neighbor interactions dominate, we use the
perturbation expansion, to get from the iteration equation (13),

K ′ ≡ K ′
1 + K ′

2 = 3
8 log cosh 4K. (14)

The fixed points are at K = 0,∞ and K = Kc = 0.507. The
critical point is unstable and, as depicted in Fig. 2, the flow is
either toward the high-temperature paramagnetic fixed point
K = 0 or toward the low-temperature ferromagnetic fixed
point K = ∞. Note that the value of Kc = J/Tc is slightly
different from the exact value Tc = 2.27 due to the approxi-
mation applied during the decimation.

The above analysis can be repeated for the case of positive
magnetic field H , where there are no critical points except the
critical unstable point T = Tc, H = 0 as shown above.

III. MACHINE LEARNING

A. Unsupervised learning by restricted Boltzmann machines

Restricted Boltzmann machines (RBMs) are generative
stochastic models commonly used in unsupervised learning.
The RBM parameters contain a set of weights and biases
corresponding to the couplings and local fields present in the
system. We construct the energy as a function of the data in-
put, which can be expressed as a Gibbs-Boltzmann probability
density for the binary and shallow RBM with one hidden layer

p(vi, ha) = e−�(vi,ha )

Z , (15)

where � is the “energy” function

�(vi, ha) = −
∑
i,a

viWiaha −
∑

i

b(v)
i vi −

∑
a

b(h)
a ha, (16)

Wia is the weight matrix, and Z is the partition function Z =∑
{vi,ha} e−�(vi,ha ). The set (b(v)

i , b(h)
a ) can be regarded as the

local potentials defining the biases on each variable assigned
in the visible and hidden neurons (vi, ha), respectively.

An exact computation of the partition function is in
practice inaccessible; however a precise estimate of the nor-
malization is unnecessary for the RBM application in the Ising
model. The RBM bipartite structure admits couplings between
the hidden and visible variables, which can be effectively used
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to construct efficient sampling schemes by the use of the con-
trastive divergence (CD) method [38]. The method is based of
a sampling Markov chain alternating between samples drawn
from the conditional probabilities of each layer which depend
on the conditional expectations of the previously sampled
layer.

To train the parameters of the RBM for our data set, we
minimize the distance between the probability distributions
of the input data q(vi ) and the output data p(vi ). The input
here is the training data of the Ising model for a set of values
(T, H ) and the output is what the RBM reconstructs. The
distance is measured using the KL divergence KL(q||p), and
we successively decrease it by renewing the weight matrix
and biases, as Wia → Wia − ε

∂ KL(q||p)
∂Wia

. We point out that the
learning method of reweighting that we use may be correlated
with our final findings. The parameter ε is the learning rate
which we set 10−3 to achieve an optimal ratio of performance
over computational time required. The process is done by
considering an average of a number of data points, where the
needed gradients for the process are given by

∂ KL(q||p)

∂Wia
= 〈viha〉p(ha|vi ) − 〈viha〉p(vi,ha ), (17)

∂ KL(q||p)

∂b(v)
i

= 〈vi〉q(vi ) − 〈vi〉p(vi,ha ), (18)

∂ KL(q||p)

∂b(h)
a

= 〈ha〉p(ha|vi ) − 〈ha〉p(vi,ha ), (19)

where 〈A〉p is the expectation value of A with respect to the
probability density p and p(ha|vi ) is the probability density
of ha for given vi with the probability density q(vi ). In our
work to optimize the weight matrix and biases, we use a
modification of the method [38], taking advantage of the iter-
ative gradient behavior to quickly obtain thermalized Markov
chains through Gibbs sampling at one step (CD-1) [39]. We
evaluate the gradients by running the Markov chain with the
probability distribution p(vi, ha) in one step, starting from the
input data q(vi ).

The number of times of successive renewal, the so called
learning epoch, is chosen to be 104. We choose an RBM with
Nv = 100 neurons in the visible layer, so that we can input the
spin configurations {si} to the visible neurons vi, and we study
the cases of Nh = 9, 16, 25, 36, 49, 64, 81, 100 neurons in the
hidden layer.

For making the training data set we use the method
of the Metropolis MC simulation, to generate 1d and
2d Ising configurations {si} at various values of tempera-
ture T = 0, 0.5, . . . , 9.5 and external magnetic field H =
0, 0.5, . . . , 4.5. The 1d chain size is L = 100 and for a 2d
square lattice is 10 × 10 (or 20 × 20 in certain cases for
checking the dependence on lattice size), with toroidal bound-
ary conditions. From now on we fix the coupling constant
to J = 1 without loss of generality. We generated 2000 con-
figurations for each (T, H ); 1000 are used as training data
for the machine, while the remaining 1000 compose the test
data to avoid overlearning conditions of RBM. Here we note
that nonlocal or cluster algorithms like the Swendsen-Wang
algorithm could be also useful and applied for giving more
accurate data on the critical region.

B. RBM flow of configurations

By the end of unsupervised learning of the RBM, the prob-
ability distributions of the training data q(vi ) and the output
reconstructed data p(vi ) are not identical since the KL diver-
gence KL(q||p) practically does not become zero. To generate
a flow of probability distributions we use as an input the
reconstructed data into the RBM, to obtain a new output with a
probability distribution p̃(vi ). Doing this procedure iteratively,
we obtain a flow of probability distributions q(vi ) → p(vi ) →
p̃(vi ) → · · · .

When a probability distribution p is given, we can obtain a
concrete example of the spin configurations by replacing the
expectation value 〈vi〉p at each site with ±1 with the proba-
bility (1 ± 〈vi〉p)/2. Then the flow of probability distribution
can be regarded as the flow of the spin configurations and it
can be thought as an “RBM flow” of spin configurations as
in [34]. The RBM learning and the process of reconstruction
under the learned distributions to produce the RBM flow are
schematically presented in Fig. 3.

C. Neural network to measure T and H

By generating the RBM flow, we get new spin configura-
tions with various probability distributions. In order to study
them, we need to specify the temperature T and external mag-
netic field H of the reconstructed RBM spin configurations.
This can be done in several ways; here we choose to do it
by means of machine learning. We use a second independent
neural network (NN) to perform a supervised learning of
Ising configurations. This plays the role of an independent
thermometer to identify the temperature of the RBM flow.
For training the NN, we use the same training data for the
RBM. Our NN has 100 neurons in the input layer z(i)

i and
200 neurons in the output layer z(o)

μ , since we have 20 × 10
combinations of (T, H ) in the training data. In addition, it is
shallow and has only one hidden layer z(h)

a with 150 neurons.
The activation function for the hidden layer and the output
layer is chosen to be tanh:

z(h)
a = tanh

(∑
i

z(i)
i W (h)

ia + b(h)
a

)
,

z(o)
μ = f

(
tanh

(∑
a

z(h)
a W (o)

aμ + b(o)
μ

))
, (20)

where W (h)
ia ,W (o)

aμ are the weight matrices, and b(h)
a , b(o)

μ are the
biases. In the output layer, we use the softmax function f (x) to
get the probability distribution for (T, H ). The answer (T, H )
for each training data is given in the one-hot representation

dμ = (0, . . . , 0, 1, 0, . . . , 0) = δμν, (21)

where we parametrize ν = 2(T + 20H ) so that the index ac-
commodates all our parametrizations as ν = 0, 1, . . . , 199.
Therefore, for training the NN, we try to minimize the KL
divergence of the answer dμ and the output z(o)

μ for the training
data. Here we use the method of back propagation to optimize
the weight matrices and biases. We set the learning rate 0.1
and the learning epoch 25 000. After training this NN, each of
the output neurons z(o)

μ shows the probability of each combi-
nation (T, H ) when a spin configuration is input into the input

033415-5



FUNAI AND GIATAGANAS PHYSICAL REVIEW RESEARCH 2, 033415 (2020)

Input Monte-Carlo data

Learning finished

visible neurons

hidden neurons

Output reconstructed data 

Iterative
reconstructions

Input Monte-Carlo data

Same RBM after learning

Op�mizing 

FIG. 3. During the learning of the RBM we optimize its param-
eters appropriately. Then the trained RBM is used to reconstruct
data from the learned distribution. This data are used as an input
to the same RBM machine to generate the flow through iterative
reconstructions.

neurons z(i)
i . Then we identify the measured (T, H ) by the NN

as that with the highest probability: We test our NN on newly
produced MC spin configurations to confirm the validity of
the prediction of the right (T, H ).

IV. RBM FIXED POINTS AND ISING MODEL
THERMODYNAMICS

In this section we study the RBM flow using the NN to
evaluate the probability distribution of spin configurations
in the (T, H ) space. Along the RBM flow, i.e., the iterative
reconstruction of configurations, the peaks of the probability

FIG. 4. RBM flow of configurations in 1d Ising model with
number of hidden units Nh = 9. Notice that after 20 iterative re-
construction of configurations a well-formed probability distribution
already appears away from the initial configuration. After 500 iter-
ations the flow has a sharp probability maximum. The dimensionful
quantities are normalized with the constant coupling constant.

distributions behave according to a certain pattern and finally
converge to special points of (T, H ), which we call the “RBM
fixed points.” In the special case that the external magnetic
field is zero the RBM fixed point would match to the critical
point of the theory. For fixed and nonzero magnetic field, we
show that these points are identical to the ones that maximize
the specific heat of the system suggesting an alternative way
that the RBM recognizes the phase transitions. We work with
the 1d and 2d Ising models, and we establish a correspondence
between the thermodynamic properties of the Ising model and
the RBM flows.

It turns out that the RBM flow depends heavily on the
number of hidden neurons Nh for both the Ising chain and
lattice. We may classify the behaviors into two types, one
type which is interesting for us occurs for a low number
of hidden neurons, Nh = 9, 16, while the other type occurs
for higher number Nh = 25, . . . , 100. In the former type, the
RBM iterative reconstruction of configurations flows to fixed
points at finite (T, H ), as shown for example in Fig. 4, while
in the later type overlearning seems to occur.

Using a low number of neurons, it turns out that the be-
havior of the flow is not sensitive to the initial conditions
of the physical system we use to generate it. The iterative
reconstruction of configurations ends at the same fixed points
irrespective of the starting configuration, hinting already at the
capability of the RBM to extract certain physical properties of
the system.

Below we perform the machine learning analysis and elab-
orate concretely on the points discussed above.

A. RBM in 1d Ising model

Keeping the hidden neurons Nh � 16 to avoid overlearn-
ing, we generate the RBM flow for the spin chain with the
initial configuration at (T, H ) = (9.5, 0.5), without loss of
generality as already mentioned.

The generated RBM flow as a function of the magnetic
field and temperature is depicted in Fig. 4. The probability
distribution leads to a well-deformed peak after only about
20 iterative reconstructions, while for 500 iterations the peak
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FIG. 5. The correlation between the RBM fixed points and the
maximal points of specific heat for a fixed magnetic field, in the
1d Ising model. The solid line is the numerical maximization of the
analytic specific heat in the thermodynamic limit of a large lattice.
It follows closely the RBM maximal probability in the parametric
space. At low temperatures the RBM does produce clear maxima
and is inconclusive.

of the flow becomes clearly identified. For nonzero magnetic
field the RG flow is nontrivial as has been described in Sec. II,
and there is a well-posed question as to which configuration
the RBM-generated flow corresponds. We compare the RBM
fixed points with the maximal specific heat of the Ising model
and we find a striking agreement (Fig. 5). The RBM flows
to the points that happen to resemble the Ising model’s phase
transition. For nonvanishing magnetic field where no critical
point occurs, we find that the fixed points of the RG flow are
not recognized as the RBM fixed points; instead the latter tend
to recognize the ones with maximum specific heat. Our find-
ings suggest that the machine learning generates flows with
a tendency to approach certain configurations that resemble
as closely as possible the ones of the phase transitions. A
measure of this closeness to criticality is the maximization
of the specific heat, which we find is in close agreement
with the maximization of the probability of the reconstructed
configurations.

The zero magnetic field RBM analysis at low temperature
in spin chains would be also interesting since this is a special
case, where the specific heat at the critical point (T, H ) =
(0, 0) is finite. Nevertheless, the reconstructed flows in the
near region do not seem to form clear probability peaks to
extract conclusions.

The overlearned configuration occurs in the RBM with
a larger number of hidden neurons Nh � 25, which flow to
higher-temperature configurations. By increasing the number
of neurons, the flow tends faster toward such configurations.
The RBM has been overlearning about the configurations at
higher temperature which are noiselike and we can check it
by computing the eigenvectors of the weight matrix with large

FIG. 6. The seven eigenvectors of the product of the weight ma-
trix

∑
a WiaWja with the largest eigenvalues for 100 visible neurons.

The uncorrelated distribution of eigenvector elements between the
nearest neurons signals overlearning on noiselike configurations.

eigenvalues to show that their vast majority are noiselike,
resulting in noiselike output data, Fig. 6. As an additional
test to show such overlearning is not an artifact of the data
or the RBM parameters used, we have also trained the RBM
with Nh = 9 and 16 using only high-temperature spin config-
urations, then confirmed that the RBM reconstructs the noisy
high-temperature configurations as it learns.

B. RBM in 2d Ising model

The 2d Ising model has a phase transition and an unstable
critical point on the RG flow for (T, H ) = (Tc, 0) offering a
richer phase diagram to study our claims for the RBM flow
compared to that of the spin chain. We generate RBM flows
using a low number of hidden neurons, starting from the con-
figurations at (T, H ) = (9.5, 1.0) without loss of generality.
The three-dimensional plot of the flow as a function of the
magnetic field and temperature is depicted in Fig. 7. The
probability distribution leads to a well-deformed peak after
500 reconstructions. The RBM fixed points follow a curve
on the (T, H ) plane that is defined as the maximum of the
probability distribution.

In the absence of the external magnetic field, our RBM
fixed point coincides with the Ising RG flow critical point as
was observed in [34]. At the critical point the specific heat

FIG. 7. RBM flow of configurations in the 2d Ising model with
number of hidden units Nh = 9. The flow forms a pattern after a small
number of iterations already and in 500 iterations it already has a
clear peak.
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FIG. 8. RBM fixed points and maximal points of specific heat in
the 2d Ising model for reconstructed flows with fixed magnetic fields.

has a maximum and diverges, and therefore it is one of the
points that maximize the specific heat for given H = 0. By
applying a fixed external magnetic field the Ising model does
not undergo a phase transition, although the RG flow has fixed
points. We observe that our RBM flow of iterative reconstruc-
tion of configurations does not end up at the fixed points of
the RG Ising flow; instead it tends to points of finite (T, H ),
which correspond to configurations that resemble the closest
possible ones to the phase transition. For any combination of
(T, H ) with fixed magnetic field the RBM flow tends toward
the points that correspond in the Ising model to the maximum
of the specific heat (Fig. 8). The RG critical point at zero
magnetic field happens to be one of the points that satisfies
the maximum specific heat criterion.

We note that for RBMs with a higher number of hid-
den neurons, Nh � 25, the noise takes over and the flow
approaches higher temperatures, while as Nh increases the
flow goes to these points more rapidly. The overlearning in
presence of external field occurs for a lower number of hidden
neurons than without it, which has been found to occur for
Nh > Nv = 100 [34]. To obtain an analytic prediction of the
ideal number of hidden nodes for the best optimized learning
is an open and interesting question. The numerical pattern
we find here can be important input in developing a more
analytic relation between the RBM flow and the RG flow, a
very challenging task.

C. Ising models and RBM flows

The question that arises is what is the feature of the
Ising model that signals to the machine learning to flow to
certain configurations. For nonvanishing magnetic field the
RBM flows to configurations that have certain thermodynamic
properties. In particular these maximize the specific heat for
fixed magnetic field. Our analysis suggests that the RBM fixed

points are the ones that correspond to configurations that max-
imize certain thermodynamic properties, and resemble closer
the state of the phase transition of the physical system even
when the physical system does not undergo such transition.
When the system undergoes a phase transition, the RBM
identifies the critical fixed point by the same criterion since
at criticality the specific heat diverges. We highlight at this
point that we provide no prior knowledge to the RBM about
the criticality of the physical system and its Hamiltonian, to
guarantee that the RBM flow extracts the features of input data
and recognizes the relevant and irrelevant degrees of freedom
spontaneously.

Our result implies the possibility of an effective mapping
between the way that the machine learns and the thermody-
namics of the Ising model. If this is realized, a large number
of applications would follow, both in the deeper understanding
of the way that the machine learning performs, given that the
Ising model is very well understood, and in extending the
applications of ML to physical models. Recognizing complex
holographic phase transitions, like the ones of [40], by ML
and extracting the relevant physical information would be
such a direction.

V. CRITICAL EXPONENTS WITH MACHINE LEARNING

We have started by assuming no knowledge of an existing
phase transition, and have employed unsupervised learning to
obtain the critical point in the Ising model at zero magnetic
field. It is known that the accuracy of the training on learning
the two-dimensional properties of the Ising model depends
mainly on the number of neurons in the first hidden layer of
the network and not on other model details such as the model
type and the network depth [41]. Taking into account that
shallow networks are very efficient at representing physical
probability distributions associated with Ising systems near
criticality we demonstrate here how to compute the critical
exponents of the model based exclusively on the machine
learning.

The principles of scaling and universality play important
roles in the theory of phase transitions and critical phenomena.
Observable quantities exhibit power law singularities in the
variable δT = T − Tc in the vicinity of the critical temper-
ature, where the proportionality coefficients are functions of
dimensionless combinations of the dimensionful Ising model
parameters. In this vicinity the scaling and universality hy-
potheses predict that the leading singular part of the free
energy can be expressed through a universal function for all
systems in a given universality class.

Here we demonstrate how to compute the critical exponent
associated with the magnetization using the machine learning.
The magnetization (8) can be expanded around the critical
point to give

m ∼ 1.222
|Tc − T |

Tc

1
8

. (22)

The order parameter critical exponent is β = 1/8, which is
independent of the lattice type considered.

We take advantage of the fact that the RBM flow recog-
nizes and approaches Tc, and that we get the vast majority of
new configurations at around Tc which are reconstructed by
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FIG. 9. RBM flow of configurations at H = 0 in the 2d Ising
model (when Nh = 81) with a variety in the number of iterative
reconstructions. The RBM fixed point located at the peak of the line
corresponds to the largest number of iterations and is at T � 2.4.
The RBM starts from the configurations at T = 1 as depicted in the
zero-iteration line of the plot.

the RBM. In order to have large number of such configura-
tions, we need to set Nh � Nv so that the RBM flow arrives
at Tc after many iterations of reconstructions [42]. Then we
use the RBM with Nh = 81, which learns the configurations
at various temperatures T = 0, 0.1, . . . , 5.9 in the absence
of magnetic field. For training and testing of the RBM, we
prepare 1000 + 1000 spin configurations at each temperature.
Using the same configurations, we also train and test the NN
to measure their temperature. This NN has 100, 80, and 60
neurons in the input, hidden, and output layers, respectively.
The way of training of the RBM and the NN, including the
learning rate and the learning epoch, is the same as in previous
sections. Using these settings where we generate the flow,
a representative example of the probability is presented in
Fig. 9. Here we use the configurations at T = 0, 0.1, . . . , 1.9
as the starting points. Originally we have the 2000 × 20 spin
configurations at these temperatures and we make the RBM
to iteratively reconstruct the configurations nine times. After
that, we have the 4 × 105 configurations in total and many of
them are at around Tc. Their temperatures can be measured us-
ing the NN, where the NN outputs the probability distribution
of the temperature, so we can regard the temperature with the
highest probability as the estimated temperature.

To compute the magnetization we use the RBM configu-
rations around Tc. For the configurations at each estimated
temperature, we calculate the averaged absolute values of
magnetization per site 〈m〉; a sample of the results is presented
in Fig. 10. It is a relatively straightforward fitting problem,
taking advantage of the fact that the RBM flow has a stable
point that matches the Ising critical one, so the reconstructed
Ising data would correspond to configurations around the
critical temperature. As an extra feature on the figure, we
show the Bethe-Peierls approximation since we notice that it
agrees well with the RBM reconstructed spin configurations.
Possibly this is due to the approximations taking place while
we are computing the RBM partition function (e.g., the CD
method) which resemble the mean field approximation.

0.5 1.0 1.5 2.0 2.5 3.0
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1.0

FIG. 10. Magnetization versus temperature. The RBM, MC sim-
ulations, and Bethe-Peierls approximation are relatively close. We
estimate the critical exponent near criticality by using the RBM
configurations.

By logarithmical fitting we estimate the critical exponent
using the RBM configurations around the critical temperature
that the RBM provides to obtain

〈m〉 ∼ 0.931|T − Tc|0.127, (23)

which gives β � 0.127, close to the actual value β = 0.125.
Our fitting has statistical errors that depend on the quan-
tity of the data we collect, and in practice can be reduced,
since here we have used a wider range of values spanning
T − Tc ∼ 0.4. We demonstrate successfully how to compute
thermodynamic quantities on the samples generated by the
Boltzmann machines and show that they faithfully reproduce
those calculated directly from the Monte Carlo samples. We
point out that we have not given in advance any information
to the RBM on where the phase transition occurs and have
assumed no knowledge of the Hamiltonian of the model.

Our results clearly demonstrate that RBMs with standard
Monte Carlo methods can be used as a powerful tool to study
physical models. We have shown that the performance of the
RBM in the reconstruction of the thermodynamic quantities
and the computation of the critical exponents are in direct
comparison of the relevant results produced by the theoretical
models and MC methods.

VI. CONCLUSION AND DISCUSSION

In this work we have trained an RBM to produce a stochas-
tic model of a thermodynamic probability distribution. The
generated RBM flow, i.e., the iterative reconstruction of data,
is produced by configurations of the one-dimensional and
two-dimensional Ising models in the presence of external
magnetic field. The RBM has only the information of the
binary images corresponding to spin microstates produced by
the MC, and has no direct prior knowledge about the physical
properties of the system, the existence of the criticality, and
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its Hamiltonian. We find that the flow of the RBM reconstruc-
tion data approaches the spin configurations of the maximal
possible specific heat which resembles, or matches in the case
of zero external field, the near-criticality region of the Ising
model. In the special case of the vanishing magnetic field, the
RBM flow converges to the critical point of the renormaliza-
tion group flow of the lattice model. Our work confirms that
the RBM learns the probability distribution that corresponds
to the critical phase transition. Our results suggest an alterna-
tive explanation of how the machine identifies the physical
phase transitions, by recognizing certain properties of the
configuration like the maximization of the specific heat, or the
maximization of the correlation length, instead of associating
directly the recognition procedure with the RG flow and its
fixed points.

Motivated by our results it is intriguing to ask if a map
between the thermodynamic quantities or correlators in lattice
models, with certain quantities for the RBM, can be estab-
lished, where a reasonable concept of equilibrium in the RBM
should be also defined. If this is realized, a deeper understand-
ing of the way that the machine learning performs will be
achieved and the ML method will find application to a larger
variety of physical models.

Having studied the properties of the RBM flows, we
have then demonstrated the computation of the thermody-
namic quantities on the samples generated by the Boltzmann

machines, to show that they potentially reproduce those cal-
culated directly from the Monte Carlo samples. By looking
at the zero magnetic field model and without giving infor-
mation to the machine about the criticality of the system and
its Hamiltonian, we compute the critical exponent associated
with magnetization from the reconstructed data to find satis-
factory agreement. This is not surprising; once we accept the
fact that the RBM flow has a stable point that matches the
Ising critical one, the reconstructed Ising data correspond to
configurations around the critical temperature. Then the com-
putations of the critical exponents is a straightforward fitting
problem on the reconstructed data. Our findings demonstrate
that RBMs with standard Monte Carlo methods can be used
as a powerful tool to study physical models and to reconstruct
the thermodynamic quantities accurately.
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