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2kF density wave instability of composite Fermi liquid

Shao-Kai Jian 1 and Zheng Zhu 2,3,*

1Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
2Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 15 January 2020; revised 25 August 2020; accepted 26 August 2020; published 15 September 2020)

We investigate the 2kF density wave instability of non-Fermi-liquid states by combining exact diagonalization
with renormalization group analysis. At the half-filled zeroth Landau level, we study the fate of the composite
Fermi liquid in the presence of the mass anisotropy and mixed Landau level form factors. These two experimen-
tally accessible knobs trigger a phase transition towards a unidirectional charge density wave state with a wave
vector equal to 2kF of the composite Fermi liquid. Based on exact diagonalization, we identify such a transition
by examining both the energy spectra and the static structure factor of charge density-density correlations.
Moreover, the renormalization group analysis reveals that gauge fluctuations render the non-Fermi-liquid state
unstable against density wave orders, consistent with numerical observations. Possible experimental probes of
the density wave instability are also discussed.
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I. INTRODUCTION

Non Fermi liquids (NFLs) are among the most exotic quan-
tum states in condensed matter. One class of NFL states is
realized at quantum critical points (QCPs) [1–4] with gap-
less collective modes. The most well-known example is the
strange metal, which has been intensively investigated after
the discoveries of high-temperature superconductors [5] and
heavy-fermion materials [6]. More recently, moiré materials
such as the twisted bilayer graphene [7] have created new ex-
citement. Instead of appearing at QCPs, the NFL state can also
arise as a stable phase at zero temperature. A prominent exam-
ple is two-dimensional (2D) electrons under a strong magnetic
field: When the zeroth Landau level (LL) is half filled, it
becomes a fractionalized gapless state [8,9] with a large Fermi
surface formed by composite fermions (CFs) [10,11].

Fathoming the instabilities of NFL is the very essence
of understanding various phenomena in strongly correlated
systems. For example, the high transition temperature and
the complex orders of the high-temperature superconductors
are all believed to result from a NFL mother state [12–15].
Theoretically, a stable and controllable platform is crucial
and urgently needed for investigating the intriguing properties
of the NFL states. In particular, the compressible NFL state
at a half-filled LL is well established both experimentally
[16–18] and numerically [19–21], which provides a promising
platform. More importantly, the physical setup also comes
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with various tuning knobs such as the magnetic field, the
geometry, and the number of components including layers,
subbands, spins, and/or valleys. With these knobs, plenty of
states adjacent to the composite Fermi liquid (CFL) are dis-
covered, consequently revealing various instabilities of CFL.
For instance, the Cooper instability [22,23] leads to the p + ip
paired Moore-Read (MR) state [24–26] (we briefly review it
in Appendix A), the Pomeranchuk instability [27,28] results in
nematic quantum Hall states [29,30], the Stoner instability of
CFL gives rise to spin or valley polarizations [31–33], and the
instability towards the Halperin 331 state [34,35] in quantum
Hall bilayers.

In this paper, we propose one mechanism to reap yet an-
other instability of CFL: the 2kF density wave instability,
which is of equal importance to the previously discovered
CFL instabilities and is likely to exhibit distinct physics from
ordinary Fermi liquids [36–38]. Based on an exact diagonal-
ization (ED) and renormalization group (RG) analysis, we
propose one possible mechanism to trigger the density wave
instability of CFL on half-filled LLs: tuning the interactions
via the mixed LL form factors from an anisotropic CFL state.
We demonstrate such an instability numerically and reveal the
underlying mechanism by RG analysis. We find the density
wave instability would be dominant over the pairing insta-
bility via increasing the gauge fluctuations, which can be
achieved by breaking the rotational symmetry. Importantly,
the mixed form factor is experimentally accessible in Dirac
materials, e.g., in bilayer graphene, by tuning the interlayer
electric bias and the magnetic field [39–42], rendering it pos-
sible to examine our findings.

II. NUMERICAL SETUP AND RESULTS

We consider 2D electrons on a torus with a strongly per-
pendicular magnetic field piercing through its surface. The
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FIG. 1. The phase diagram and the energy spectra. Depending on the mass anisotropy my/mx , we identify the pairing instability and density
wave instability of CFL when tuning the interaction via sin2 �, and the corresponding phase diagram is shown in (a). For a fixed mass ratio,
e.g., my/mx = 8 in (b)–(d), the phase boundary is consistently identified from the evolution of energy spectra with sin2 � (b) and the derivatives
of the ground-state energy (c). In the charge density wave phase, the energy spectra along momentum Kx exhibit quasidegenerate states that
differ by a momentum �q (d). Here, we consider a half-filled Landau level with Ne = 16 electrons.

Hamiltonian is given by

H = 1

2A

∑
q

V (q)F (q)F (−q) : ρ†(q)ρ(q) :, (1)

where V (q) is the Fourier transform of the unprojected
Coulomb interaction, F (q) denotes the density form fac-
tor introduced by projection, ρ(q) is the guiding cen-
ter density operators, and A represents the area of the
2D plane. Below we consider the mixed form factors
F (q) = cos2 �F0(qm) + sin2 �F1(qm) to tune the interactions
[39–42], where F0,1(qm) = exp (−q2

m/4)L0,1[q2
m/2] are the

form factors for n = 0 and n = 1 Galilean LLs, respectively.
Ln(x) is the Laguerre polynomial. The anisotropic CFL can
be achieved by introducing the mass anisotropy, where q2

m =
gab

m qaqb includes the metric gm = diag[
√

my/mx,
√

mx/my] de-
rived from the band mass tensor. In the isotropic limit (i.e.,
my = mx), the CFL and MR states are stabilized at sin2 � = 0
[8,10] and sin2 � = 1 [24–26], respectively. The correspond-
ing pairing instability in this limit, such as tuning sin2 �,
has been theoretically confirmed [43–45], though the nature
of this transition is still controversial [22–26]. The mass
anisotropy explicitly breaks the spatially rotational symmetry
[46–55], concealing another factor to trigger the instability
of CFL. Previous studies have demonstrated that CFL is re-
markably robust against mass anisotropy when sin2 � = 0
[54], while the MR state is fragile against mass anisotropy
and finally translates to a stripe state [56] when sin2 � = 1
[55]. Then it is natural to investigate the possible density wave
instability of CFL by tuning the interactions via sin2 � from

an anisotropic CFL state at sin2 � = 0. Below we will detect
such a possibility by solving the Hamiltonian by ED [57].

Our numerical results are depicted in the phase diagram
shown in Fig. 1(a). In the isotropic limit, we have confirmed
the pairing instability of CFL when tuning the interaction
via sin2 �, consistent with previous studies. In the presence
of mass anisotropy, we find the pairing instability only sur-
vives in a small regime in the phase space, and instead, the
density wave instability becomes the dominant instability of
CFL after rotational symmetry breaking, which can be trig-
gered more easily by increasing the mass anisotropy [see
Fig. 1(a)].

The phase boundaries in Fig. 1(a) are identified from both
the energy spectra and the derivatives of the ground-state
energy. Figure 1(b) shows an example of the energy spectra as
a function of sin2 � for an Ne = 16 system with my/mx = 8.
Further results of Ne = 12, 14 are given in Appendix C. The
CFL state is robust up to sin2 � ≈ 0.64 upon tuning the inter-
action, which can be further confirmed from the derivatives
of the ground-state energy in Fig. 1(c). The energy gap in
the spectra of CFL is induced by the shell-filling effect on
a finite-sized system, which can be identified by comparing
the quantum number of ground states obtained by ED and
the CFL wave functions on a torus [33,43,57–59]. The energy
level crossing near sin2 � ≈ 0.32 represents the change of the
CFL ground-state momentum sectors, in contrast to the phase
transitions around sin2 � ≈ 0.64. We further confirm the na-
ture of these phases by studying the static structure factor
N (q) of the density-density correlation, N (q) = 1

N 〈ρqρ−q〉 =
1
N

∑
i, j 〈eiq·Ri e−iq·R j 〉, where ρq = ∑N

i=1 eiq·Ri is the Fourier
transform of the guiding center density. As shown in Figs. 2(a)
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FIG. 2. The static structure factors N (q). The nature of the different phases in Figs. 1(b) and 1(c) can be identified from the static structure
factor N (q) of the density-density correlation. (a)–(d) show N (q) in the CFL phase with sin2 � = 0.16 (a) and sin2 � = 0.48 (b), as well as
N (q) in the charge density wave phase with sin2 � = 0.68 (c) and sin2 � = 0.96 (d). The dashed line in (a)–(c) indicates the Fermi surface
of CFs. Note a factor of 2 between the scattering momentum and the momentum of CFs. Here, we consider a half-filled Landau level with
Ne = 16 electrons and mass ratio my/mx = 8.

and 2(b) for sin2 � � 0.64, N (q) exhibits a strong 2kF

scattering feature induced by the scattering among CFs close
to the Fermi surface. At sin2 � > 0.64, there are two sharp
peaks in N (q) in the same direction, which can be regarded
as the hallmark of charge ordering with the wave vector de-
termined by the position of the peaks. Here, N (q) displays a
stripe feature.

Further increasing sin2 � � 0.88, the peaks rotate from
(qx, qy) = (0,±q∗) to (qx, qy) = (±q∗∗, 0) as shown in
Figs. 2(c) and 2(d). Here, the wave vector ±q∗∗ also can be
identified from the low-energy spectra of such a resulting
phase [see Fig. 1(d)], where there is no recognizable gap
separating the ground-state manifold from the excited states,
and instead, the energy spectra displays a conspicuous set of
quasidegenerate states which differ by momentum �q and
satisfy �q = ±q∗∗. The line connecting the lowest-energy
states in each momentum sector has a zigzag structure as
shown in Fig. 1(d), which only appears in the energy spectra
in one momentum direction, implying a unidirectional charge
density wave state.

III. RG ANALYSIS FROM CFL

As the Fermi surface and its instability are indicated in
Fig. 2, it is natural to understand it within the context of the
Halperin-Lee-Read (HLR) theory [8]. Because the instability
is peaked at two antipodal Fermi points [see Fig. 2(c)], we use
the patch theory (cf. Chap. 18 of Ref. [3] for a review) to ana-
lyze the competing fluctuations. The composite Fermi surface
is approximated by two patches [60,61] near the antipodal

Fermi points, H f = −isvF ∂x − 1
2K ∂2

y , where s = ± denotes
the two patches, ψs refers to CF, and x, y are the normal and
tangent directions of the Fermi surfacexx, respectively. vF and
K capture the CF Fermi velocity and the curvature of the
patch. Including the gauge field fluctuation, the total effective
action is given by S = S f + Sa + Sint,

S f =
∑

s

∫
d3xψ†

s (∂τ + H f )ψs, (2)

Sa =
∫

k
|ky|1+ε |a(k)|2, (3)

Sint =
∑

s

se
∫

d3xa(x)ψ†
s (x)ψs(x), (4)

where
∫

k ≡ ∫
d3k

(2π )3 , a(x) is the emergent gauge field, and e is
the Yukawa coupling between the fermion and gauge boson.
ε is the expansion parameter, and ε = 0 corresponds to the
long-range Coulomb interaction [60,61].

The patch theory is an effective description in the range
|kx|, k2

y < 
 (note that kx and ky scale differently). We ad-
dress the IR properties of the theory by integrating out the
high-energy mode 
e−l < k2

y < 
 to generate RG equa-
tions, where l > 0 is the running parameter. There is no
renormalization to a boson propagator because it is nonlo-
cal. The rationale for using a nonlocal bare kinetic term
for the gauge boson lies in the fact that the boson ki-
netic potential does not receive corrections up to three-loop
[62]. Taking into account the fermion self-energy �s(p) =
−e2

∫
k D(k)Gs(k + p) ≈ − ie2

4π2vF
p0, the RG equation reads
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FIG. 3. The corrections to short-ranged four-fermion interactions
within the patch theory. (a) denotes the correction from the four-
fermion interaction, and (b) and (c) denote corrections from the
gauge fluctuations.

(see Appendix B)

dg

dl
= ε

2
g − g2

4
, (5)

where g ≡ e2

π2vF 
ε/2 captures the effective Yukawa coupling.
The presence of a nontrivial stable fixed point g∗ = 2ε corre-
sponds to the NFL interacting strongly with the gauge field.

Next, we analyze the density wave instability in the CFL.
Because we are interested in the 2kF instability connect-
ing antipodal Fermi points, we can consider the scattering
processes within the patch theory, namely, S = S f + Sa +
Sint + S4, S4 = U

∫
d3xψ†

+ψ+ψ
†
−ψ−. In the patch theory, the

four-body interaction is irrelevant, which is consistent with
the fact that the forward-scattering process does not affect
the existence of the Fermi surface [63], and the perturbative
calculation should be valid. As indicated in Fig. 3(a), the
renormalization to the four-body interaction reads

�
(a)
4 = −2U 2

∫
k

G+(k)G−(k) ≈ α0√
2π2

√

KU 2

vF
l,

where α0 ≡ �(0, 1) ≈ 0.219, and �(n, x) ≡ ∫ ∞
x dttn−1e−t is

the incomplete gamma function. Without gauge fluctuation,
the RG equation of dimensionless coupling constant u ≡√

K

π2vF

U is

du

dl
= −u

2
+

√
2α0u2, (6)

which shows that an instability only occurs at finite interaction
strength. When u is large enough, i.e., u > 1

2
√

2α0
, it develops

a wave density instability with the 2kF order parameter φ =
ψ

†
+ψ−.
Now we consider the effect of gauge fluctuations. As

shown in Figs. 3(b) and 3(c), the corrections from gauge
fluctuation read

�
(b)
4 = −2e2

3

∫
k

GR(k)GL(k)D(k) ≈ α0

3π2

e2u

vF
l,

�
(c)
4 = − e4

N2

∫
k

GR(k)GL(k)D2(k) ≈ α0

2
√

2π2

e4

√
K
vF

l.

There is no backreaction from the short-ranged interaction to
the gauge fluctuation at one-loop order. Thus, in the presence
of fluctuating gauge bosons, the RG equation becomes

du

dl
= −1

2
u +

√
2α0u2 +

(
α0

3
+ 3

8

)
gu + α0

2
√

2
g2. (7)

In the RG equations, there are four fixed points in the (u, g)
plane, including the Gaussian fixed point (0,0), the density
wave transition point ( 1

2
√

2α0
, 0) in the absence of gauge

bosons, and two new fixed points emerging from the inter-

play between gauge fluctuations and short-ranged interac-
tions: FPCFL = ( 6−(9+8α0 )ε−√

C(ε)
24

√
2α0

, 2ε) ≈ (2
√

2α0ε
2, 2ε) and

FPT = ( 6−(9+8α0 )ε+√
C(ε)

24
√

2α0
, 2ε), where C(ε) = (81 + 144α0 −

1088α2
0 )ε2 − 12(9 + 8α0)ε + 36 is a quadratic function in

ε. When 0 < ε < εc, C(ε) > 0, all four fixed points are
physically accessible, and FPCFL (FPT) corresponds to the
CFL fixed point (density wave transition point). Here, εc ≡
6[9−8(3

√
2−1)α0]

81+144α0−1088α2
0

is a positive number. When ε < εc, the blue
points in Fig. 4(a) correspond to Gaussian and density wave
transition points without gauge fluctuation, while the red
points correspond to FPCFL and FPT.

We also note that, in the presence of gauge fluctuations,
the critical coupling strength of the 2kF density wave tran-
sition is significantly reduced. More exotically, when ε = εc,
C(εc) = 0, the CFL fixed point and the transition point collide
with each other, as shown in Fig. 4(b). The CFL transition
fixed point is unstable against 2kF density wave instability.
We would like to point out that such a fixed point collision
is also found in previous literature [64–66]. When ε > εc, the
CFL is totally preempted by density wave orders as shown
in Fig. 4(c). These results indicate that the NFL fixed point
is unstable if the gauge fluctuation is strong enough. We also
note that the FPCFL is well controlled by ε expansion as can
be seen from FPCFL ≈ (2

√
2α0ε

2, 2ε) at small ε. Moreover,
at the merging point εc, the values of two fixed points FPCFL

and FPT are coincident, and so are controlled provided εc to
be small. In the one-loop calculation, εc ≈ 0.32 < 1 indicates
the scenario of a fixed point collision is under control.

IV. DISCUSSIONS

The large portion of CFL in the phase diagram in Fig. 1
suggests ε < εc. Although it is unclear how the bare in-
teraction strengths, namely, the gauge coupling and the
short-ranged interaction, change with the mixed form fac-
tors, the RG analysis is able to predict the wave vector of
the density wave in the presence of mass anisotropy. This is
because bare gauge coupling is enhanced by mass anisotropy
through the Fermi velocity. Assuming (u, g) = (u0, g0) for the
isotropic CFL, we have (u, g) = (u0, α̃

1/4g0) at the patches
k = (±√

2m̃xμ, 0) of the anisotropic Fermi surface, where
α̃ ≡ m̃x/m̃y denotes the mass anisotropy of CFs (we will con-
sider α̃ � 1, since the opposite case is equivalent). α̃ is related
to the mass anisotropy of electrons α through α̃ = √

α [67].
It is easy to see that α̃1/4g0 is the largest bare value in the
elliptic Fermi surface, therefore, the above RG analysis pre-
dicts that the 2kF instability occurs at 2kF = 2

√
2m̃xμ, which

connects the Fermi points with the smallest Fermi velocity.
This observation is consistent with N (q) in Fig. 2(c) near the
transition point. Note that this is a gauge fluctuation induced
stripe transition.

Deep inside the charge density wave phase, we also find the
switch of stripe orientations, as shown in Figs. 2(c) and 2(d).
This phenomenon might be beyond the CFL physics since
it is further away from the critical point, however, it can be
attributed to the reduction of Hartree energy cost when the
stripe orientation coincides with the direction of the smaller
mass [55]. Moreover, from our ED results, the energy level
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FIG. 4. The RG flow diagrams of (u, g) at different ε. The blue points show the Gaussian fixed point and stripe transition point without
gauge fluctuations. Red points show the NFL fixed point and stripe transition point in the presence of gauge fluctuations. (a) shows four fixed
points when ε < εc. (b) and (c) show the RG flow for ε = εc and ε > εc, respectively. The dashed line indicates the trajectory of two nontrivial
fixed points in the presence of gauge fluctuations. After their collision, the fixed points become imaginary values, and disappear from the flow
diagram.

crossing [see Fig. 1(b)] and the sudden jump in the first-order
derivatives [see Fig. 1(c)] suggest the transition from CFL
to charge density wave might be first order. We should note
that it is still under debate whether the 2kF density wave
transition is continuous. While Altshuler et al. [36] argues that
a first-order transition occurs due to the strong 2kF fluctuation
at low energies, a more recent article by Sykora et al. [37]
shows a second-order transition is also possible. It will also
be an excellent task to investigate the critical phenomena in
2kF transitions of NFL, which we leave for future work.

Here, the RG analysis does not rely on the particle-hole
symmetry. Therefore, the density wave instability should be
possible to extend to CFL at other filling factors, such as
ν = 1/4. A recent numerical study [68] suggests that, for
ν = 1/4 with mass anisotropy, the CFL state in n = 0LL is
robust while a stripelike phase emerges in n = 1LL, then one
can expect that tuning the mixed form factor would trigger
the density wave instability of CFL at ν = 1/4 by the same
mechanism proposed here.

The experimental probe of the various instabilities of CFL
still presents many challenges and is under intensive investiga-
tions. Previous studies mainly focus on detecting the pairing
instability of CFL, which has been proposed by tuning the
subband level crossings [69,70] or applying hydrostatic pres-
sure [71–73] in GaAs quantum wells, or by tuning either
the perpendicular magnetic field or the interlayer electric
bias in bilayer graphene [40–42]. In particular, the hydro-
static pressure experiments [71–73] have found that tuning
the pressure through Pc1 would trigger the transition from
MR to an anisotropic compressible phase, which is consistent
with either a stripe phase [43,55,56] or nematic phase [28].
Interestingly, further increasing the pressure to Pc2 leads to a
transition to an isotropic compressible phase, which might be
relevant to the density wave instability, particularly consid-
ering that the pressure is believed to change the LL mixing
parameters [73]. However, we should also note the pressure-
driven platform is hard to be captured by an ideal Hamiltonian
microscopically, which would be an interesting direction for
a future study. Moreover, the mixed form factor could be
realized and tunable in bilayer graphene by an interlayer
electric bias and magnetic field [39–42], then breaking the

rotational symmetry may potentially probe the density wave
instability of CFL. The mass anisotropy exists in AlAs quan-
tum wells [74,75] in nature or could be introduced by applying
an in-plane field [76] or uniaxial strain [77,78], so then realiz-
ing a density wave instability on top of an anisotropic CFL is
also a promising direction to pursue experimentally.
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APPENDIX A: COMPOSITE FERMI LIQUID

The action of two patches is given by

S = S f + Sa + Sint, (A1)

S f =
∑

s

∫
d3xψ†

s

(
∂τ − isvF ∂x − 1

2K
∂2

y

)
ψs, (A2)

Sa =
∫

d3k

(2π )3
|ky|1+ε |a(k)|2, (A3)

Sint =
∑

s

∫
d3x

se√
N

aψ†
s ψs, (A4)

where s = ± denotes the two patches, and ψs and a refer to
the composite fermion and emergent gauge field, respectively.
vF and K capture the Fermi velocity and curvature of the
patch, and e is the Yukawa coupling between the fermion and
gauge boson. The above action is believed to describe various
interesting systems, such as a U (1) quantum spin liquid with
a large spinor Fermi surface and a composite Fermi liquid
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in a half-filled Landau level. Here, we mainly focus on the
latter case, and the above action is a patch description of the
Halperin-Lee-Read (HLR) theory [8]. The summation over N
flavors of the patch fermion is implicit, and ε is the expan-
sion parameter. ε = 0 corresponds to the long-range Coulomb
interaction [60,61]. In the noninteracting limit, the action is
invariant under scaling transformation dictated by the scaling
dimensions,

[kx] = 1, [ky] = 1

2
, [ω] = 1, [ψ] = 3

4
,

[a] = 1 − ε

4
, [e] = ε

4
. (A5)

The RG calculation is controllable in the large-N and small
ε ∼ 1

N expansion [60]. The patch theory is an effective de-
scription in the range |kx|, k2

y < 
. In the following, we

integrate out the high-energy mode
√


e−l < |ky| <
√


 to
generate RG equations, where l > 0 is the running parameter.
There is no renormalization to a boson propagator because it
is nonlocal. The rationale for using a nonlocal bare kinetic
term for a gauge boson lies in the fact that the boson kinetic
potential does not receive corrections up to three-loop [62].
The fermion self-energy is [Fig. 5(a)]

�s(p) = −e2

N

∫
d3k

(2π )3
D(k)Gs(k + p) = −e2

N

∫
d3k

(2π )3

1

|ky|1+ε

1

−i(k0 + p0) + svF (kx + px ) + 1
2K (ky + py)2

(A6)

= −e2

N

∫
d3k

(2π )3

iπ (k0 + p0)δ
(
svF (kx + px ) + 1

2K (ky + py)2
)

|ky|1+ε
(A7)

= − ie2

2(2π )2NvF

∫
dkydk0

sgn(k0 + p0)

|ky|1+ε
= − ie2

2π2NvF
p0

∫ √



√

e−l

dky
1

|ky|1+ε
≈ − ie2

4π2NvF
p0l. (A8)

The vertex correction is [Fig. 5(b)]

�3 =
∑

s

∫
d3k

(2π )3
G2

s (k)D(k) =
∑

s

∫
d3k

(2π )3

1

|ky|1+ε

1[−i(k0 + p0) + svF (kx + px ) + 1
2K (ky + py)2

]2 , (A9)

which vanishes because the poles of k0 lie in the same plane.
In terms of the dimensionless coupling constant g ≡ e2

π2vF 
ε/2

that captures the effective Yukawa coupling, we have the
following RG equations,

dg

dl
= ε

2
g − g2

4
. (A10)

The presence of a nontrivial stable fixed point g∗ = 2ε cor-
responds to the non-Fermi liquid (NFL) interacting strongly
with a gauge field.

APPENDIX B: COOPER INSTABILITY AND 2kF DENSITY
WAVE INSTABILITY

Despite the long-range interactions between the composite
fermion mediated by the gauge field, there are local inter-
actions between the composite fermion that might generate
pairing or stripe instability. Owing to the Pauli exclusion
principle of fermions, among infinite channels of four-fermion
interactions only BCS and the forward-scattering channel sur-
vive in the low energy [63]. For simplicity, we will send N = 1

FIG. 5. The Feynman diagrams: (a) Fermion self-energy, and
(b) fermion-boson vertex.

in the following and consider four-fermion interactions. We
first consider the BCS Hamiltonian for the nondegenerate
Fermi surface,

HBCS=−
∫

d2k

(2π )2

d2k′

(2π )2
V (k, k′)ψ†(k)ψ†(−k)ψ (k′)ψ (−k′),

(B1)

where ψ denotes the Fermi surface, and V is the strength
of the BCS interaction. It is well known that the pairing
instability is marginally relevant for a Fermi liquid [63]. The
RG equation is given by [Fig. 6(a), and we consider spherical
Fermi surface for simplicity]

dv j

dl
= −v2

j , (B2)

where v j = kF
2πv f

Vj and Vj = ∫
dθ
2π

V (θ )eiθ j . Different from a
Fermi liquid, the presence of an emergent gauge boson in a
composite Fermi liquid suppress the pairing instability. In-
deed, as shown in Fig. 6(b), integrating out the high-energy
mode of gauge fluctuation will generate an interpatch in-
teraction [23]. Here, we review the calculations [23]. For a

FIG. 6. The Feynman diagrams in a particle-particle channel.
(a) is the one-loop corrections of from the four-fermion BCS inter-
action. (b) is the interpatch interaction resulting from integrating out
the high-energy gauge fluctuation.
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small-angle BCS interaction, θ ∼ 0, we have the correction
from the gauge fluctuation,

δV (k1, k2) = e2

2N
D(k1 − k2), (B3)

while it also contributes to V (θ ∼ π ). Taking both of these
into consideration, the corrections to the BCS interaction are

δv j = kF

2πv f

∫
dθ

2π
δV (θ )eiθ j ≈ 1

πv f

e2

N

∫ √



√

e−l

dk

2π

1

k1+ε

≈ e2

4π2v f N
l. (B4)

Therefore, including the gauge fluctuation, the RG equation
reads

dv

dl
= −v2 + g

4
. (B5)

Because of the suppression from gauge fluctuation, the BCS
instability is no longer marginally relevant. Instead, it requires
a finite bare BCS interaction to drive the composite Fermi
liquid into the paired state. Note that in the context of a
half-filled Landau level, for example, in a ν = 5/2 filling
fraction, the system favors p + ip pairing, which is the famous
Moore-Read Pfaffian state [24,26].

On the other hand, we consider the four-fermion interac-
tion within the patch theory in the following,

S = S f + Sa + Sint + S4, (B6)

S4 = U
∫

d3xψ†
+ψ+ψ

†
−ψ−. (B7)

In the patch theory, the four-body interaction is irrelevant,
which is consistent with the fact that forward scattering does
not affect the existence of a Fermi surface, and the perturba-
tive calculation should be valid. The correction reads

�
(a)
4 = −2U 2

∫
d3k

(2π )3
G+(k)G−(k)

= 2
√

2KU 2

vF

∫
d3q

(2π )3

1

q0 + i
(
qx + q2

y

) 1

q0 − i
(
qx − q2

y

)
(B8)

= 4
√

2KU 2

(2π )2vF

∫ √



√

e−l

dqy

∫ ∞

q2
y

dqx
e−q2

x /

2

qx

≈
√

2�(0, 1)

π2

√

KU 2

vF
l, (B9)

where �(n, x) ≡ ∫ ∞
x dttn−1e−t is the incomplete gamma

function, and �(0, 1) ≈ 0.219. In the calculation, we have
introduced a regularization function e−q2

x /

2

to regularize the
UV divergence. Without gauge fluctuation, the RG equation
of the dimensionless coupling constant u ≡

√
K


π2vF
U is

du

dl
= −1

2
u +

√
2�(0, 1)u2, (B10)

which shows that an instability only occurs at a finite interac-
tion strength, and the Fermi liquid is perturbatively stable.

The corrections from gauge fluctuation read

�
(b)
4 = −2e2

3

∫
d3k

(2π )3
GR(k)GL(k)D(k)

= 2
√

2Ke2u

3vF

∫
d3q

(2π )3

1

q0 + (
qx + q2

y

) 1

q0 − i
(
qx − q2

y

)

× 1

|√2Kqy|1+ε
(B11)

= 4e2u

3(2π )2vF

∫ √



√

e−l

dqy

|qy|1+ε

∫ ∞

q2
y

dqx
e−q2

x /

2

qx

≈ �(0, 1)

3π2

e2u

vF
l, (B12)

and

�
(c)
4 = −e4

∫
d3k

(2π )3
GR(k)GL(k)D2(k)

=
√

2Ke4

vF

∫
d3q

(2π )3

1

q0 + i
(
qx + q2

y

) 1

q0 − i
(
qx − q2

y

)

× 1

|√2Kqy|2(1+ε)
(B13)

FIG. 7. (a) The evolution of energy spectra as a function of sin2 � for a half-filled Landau level with Ne = 12 electrons and mass ratio
my/mx = 8. The nature of the different phases can be identified from the static structure factor N (q) of the density-density correlation. (b) and
(c) show N (q) in the CFL phase with sin2 � = 0.1 (a) and in the charge density wave phase with sin2 � = 0.6 (c).
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FIG. 8. (a) The evolution of energy spectra as a function of sin2 � for a half-filled Landau level with Ne = 14 electrons and mass ratio
my/mx = 8. The nature of the different phases can be identified from the static structure factor N (q) of the density-density correlation. (b) and
(c) show N (q) in the CFL phase with sin2 � = 0.2 (a) and in the charge density wave phase with sin2 � = 0.8 (c).

= 2e4

(2π )2N2
√

2KvF

∫ √



√

e−l

dqy

|qy|2(1+ε)

∫ ∞

q2
y

dqx
e−q2

x /

2

qx

≈ �(0, 1)

2
√

2π2N2

e4

√
K
vF

l. (B14)

These corrections lead to the RG equations in the main text.

APPENDIX C: FINITE-SIZE EFFECT

In the main text, we mainly show the results for Ne = 16
systems, but we also have checked the other system and found

similar results, as shown in Figs. 7 and 8 for Ne = 12 and
Ne = 14 systems. The CFL to charge density wave (CDW)
transition can be identified from the evolution of energy spec-
tra as a function of sin2 � [see Figs. 7(a) and 8(a) for mass
ratio my/mx = 8]. The nature of the CFL phase and CDW
phase can be identified from the static structure factor N (q) of
the density-density correlation. For the CFL phase, N (q) ex-
hibits a strong 2kF scattering feature induced by the scattering
among CFs close to the Fermi surface, as shown in Figs. 7(b)
and 8(b). For the CDW phase, as shown in Figs. 7(c) and 8(c),
there are two sharp peaks in N (q) in the same direction, which
can be regarded as the hallmark of charge ordering with the
wave vector determined by the position of the peaks.
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