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Designing adiabatic time evolution from high-frequency bichromatic sources
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We investigate the quantum dynamics of a two-level system driven by a bichromatic field, using a nonpertur-
bative analysis. We make special emphasis in the case of two large frequencies, where the Magnus expansion can
fail, and in the case of a large and a small frequency, where resonances can dominate. In the first case, we show
that two large frequencies can be combined to produce an effective adiabatic evolution. In the second case, we
show that high-frequency terms (which naturally arise as corrections to the adiabatic evolution obtained in the
first case) can be used to produce a highly tunable adiabatic evolution over the whole Bloch sphere, controlled
by multiphoton resonances.
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I. INTRODUCTION

Perturbing a system out of equilibrium is at the heart of
physics, as it allows one to extract information about its
properties by just measuring the response to the perturbation.
Besides small perturbations, one can also produce nonlin-
ear effects of high complexity, and steady states with novel
properties such as Floquet topological insulators, skyrmions,
or time crystals [1–6]. Applying periodic perturbations has
been shown to be a versatile tool to manipulate physical sys-
tems. For instance, they allow one to control spin qubits in
quantum dots [7–11], or to induce new electronic, dynamical,
and topological properties [12–16]. These works typically
consider monochromatic driving, although bichromatic fields
have been used in a few occasions [17–20], showing that their
potential has not been fully explored.

The periodically driven two-level system is one of the
fundamental models in quantum mechanics. Its physical re-
alization has been successfully implemented in quantum dots
[21–24], complex molecules [25,26], superconducting de-
vices [27], and many other systems [28]. Its universality relies
on the fact that many quantum mechanical systems, when
truncated to their low-lying states by lowering the tempera-
ture, can reduce to the dynamics between the ground state and
the first excited state.

The Hamiltonian describing the unperturbed two-level sys-
tem usually displays a splitting �z. Then, one chooses this
direction as the quantization axis, and performs transitions
between the ground state and the excited state to probe the
system, which is the guiding principle in techniques such
as nuclear and electron spin resonance. The Hamiltonian
describing the model can be written as H (t ) = H0 + V (t ),
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with

H0 = �z

2
σz, (1)

V (t ) =
∑

i

Vi

2
fi(t, ωi, φi )σx, (2)

and where Vi, ωi and φi correspond to the different amplitudes,
frequencies, and phases of the external source, respectively.
The dynamics of this simple Hamiltonian can be compli-
cated, even in the monochromatic case, as the three energy
scales involved (�z, V1, and ω1) can lead to very different
behavior. The standard perturbative analysis in V1 � �z, ω1

explains the linear response regime. This is commonly used
to probe the system and obtain information about its physi-
cal properties [29]. On the other hand, one can consider the
(high-frequency) strongly driven regime V1 > ω1 and ω1 �
�z, which produces the spectral changes typically found in
Magnus expansions [30], and can be used to dynamically
tune the properties of the system [2,5,12,31,32]. Finally, the
resonant behavior corresponds to the case ω1 � �z, which
produces a transfer of spectral weight from the ground state
to the excited state. This is used for state preparation in many
experiments [33] or to induce single-qubit gates [24]. On top
of that, environmental degrees of freedom in experiments can
also couple to the external field, producing an undesired large
signal if they are resonant.

In this work we study a two-level system driven by
a bichromatic field and discuss the advantages over the
monochromatic case. We analyze the limitations of high-
frequency expansions, when more than one frequency is
present, and introduce a description which captures the full
dynamics, including the fine details of the micro-motion. This
is in contrast with expansions where just the stroboscopic
evolution is considered, missing the dynamics within a period,
which can be crucial for a topological analysis [34].

We find that when the two frequencies are large, but close
to each other, the field amplitudes can be controlled to produce
an effective adiabatic evolution (see Fig. 1). We demonstrate
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FIG. 1. Schematic representation where a system driven by a
high-frequency bichromatic field behaves as adiabatically driven by
a single frequency.

that the adiabatic behavior is robust to noise, and highly tun-
able. Furthermore, we show that nonadiabatic corrections to
the resulting effective Hamiltonian can be beneficial, and can
be used to engineer adiabatic rotations on the Bloch sphere.
We also demonstrate that the long-time dynamics is controlled
by multiphoton resonances. In addition, our analysis can be
extended to the analysis of a multilevel system under multi-
chromatic driving in a straightforward manner.

II. MOTIVATION

As an illustrative example to understand the breakdown of
high-frequency expansions in a multifrequency case, let us
first consider a rather simple trigonometric property of the
function g(t ) = cos (ωt ). It can generally be written as

g(t ) = cos (ω1t ) cos (ω2t ) + sin (ω1t ) sin (ω2t ), (3)

where ω = ω1 − ω2 and their sum is arbitrary. If ωi � ω,
one can interpret the slowly evolving oscillatory function
g(t ) as coming from the difference of two large frequen-
cies, whose difference is very small. In this case, what
makes it possible to exactly map the two high frequencies
to an adiabatic evolution is the specific relation between
their Fourier components, where only the crossed terms
g±1,∓1 of the two-dimensional Fourier expansion gn1,n2 =∫ 2π

0
dθ1
2π

∫ 2π

0
dθ2
2π

e−i(n1θ1+n2θ2 )g�θ contribute, with g�θ being the
function g(t ) reparametrized according to θi = ωit [35]. This
illustrates a specific case where a system driven by two ini-
tially large frequencies will not give a converging result using
a high-frequency expansion. The reason is that a system with
such a driving term (with ω smaller than all the character-
istic energies of the model), obviously requires an adiabatic
analysis [36] due to its slow time evolution. Furthermore, it
provides some intuition about the requirements to engineer a
specific dynamical behavior in a quantum system, by studying
its Fourier decomposition.

III. BICHROMATIC TWO-LEVEL SYSTEM

Let us now move to the problem at hand. We choose a
simple harmonic protocol for the external drive fi(t, ωi, φi ) =
cos (ωit + φi ), although other choices are possible (i labels
each different component of the drive). One could also choose
each term in Eq. (2) coupled to a different, noncommuting,
degree of freedom (e.g., to a σy component). However, this
is not necessary for the present analysis and will be dis-
cussed below. We consider the specific case of bichromatic

drive, where the sum in Eq. (2) is restricted to two terms
only. Each term is characterized by a different amplitude,
frequency, and phase. If we parametrize ωit → θi to obtain
a two-dimensional Fourier representation [35], the only non-
vanishing Fourier components are the terms H0,±1 and H±1,0,
which characterize the time-evolution operator for small field
amplitudes. This indicates that for weak amplitudes, the be-
havior is dominated by oscillations with frequencies ω1,2 only.

If instead we perform a nonperturbative analysis of H (t ),
by applying the transformation U (t ) = exp {−i

∫
V (t )dt}

we find the following transformed multichromatic time-
dependent Hamiltonian:

H̃ (t ) = �z

4
(σz − iσy)

∏
i

eiFi (t,ωi,φi )

+ �z

4
(σz + iσy)

∏
i

e−iFi (t,ωi,φi ), (4)

where we have defined Fi(t, ωi, φi ) = ∫
Vi fi(t, ωi, φi )dt ,

where this result is still valid for an arbitrary number of drive
components. The advantage of Eq. (4) relies on the fact that,
from a Jacobi-Anger expansion [37], one finds nonperturba-
tive expressions in Vi. Notice that this type of Hamiltonian
is directly obtained in electronic systems via the Peierls sub-
stitution [12], indicating that our results will be valid for
seemingly different systems, connected by unitary transfor-
mations. However, in the case of the Peierls substitution, the
transformation to the interaction picture is not required.

In the monochromatic case, the phase φ1 in Eq. (4) does not
affect the spectrum, because it is a gauge degree of freedom
that sets the origin of the time evolution, but it affects the
dynamics. However, in the multichromatic case the phase
differences are relevant and both, the spectrum and the dy-
namics are affected. This provides an extra degree of freedom
in Floquet engineering, absent in the monochromatic case,
although we will not make use of it in the present work.

The two-dimensional Fourier decomposition of Eq. (4) (we
parametrize θi = ωit),

H̃n1,n2 =
∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
H̃ (θ1, θ2)e−i(n1θ1+n2θ2 ), (5)

leads to the following expression for the Fourier components
of the Hamiltonian:

H̃n1,n2 = �z

4
ei(n1φ1+n2φ2 )Jn1 (α1)Jn2 (α2)(σz − iσy)

+ �z

4
ei(n1φ1+n2φ2 )J−n1 (α1)J−n2 (α2)(σz + iσy) (6)

where αi = Vi/ωi and we have used the Jacobi-Anger expan-
sion eiz sin (θ ) = ∑∞

n=−∞ Jn(z)einθ . Equation (6) can be further
simplified if the two frequencies are commensurate [14,37];
however, we will consider the general case.

Notice that Eq. (6) contains an infinite number of Fourier
components, and, in contrast with the unrealistic, but peda-
gogical case of g(t ) above, the adiabatic behavior will only
happen if we can enhance the crossed Fourier components
H̃±1,∓1. Fortunately, due to the nonperturbative expressions
in αi this is now possible, and we choose values of αi that
maximize J1(αi), while requiring ω− � �z and ωi � �z (we

033412-2



DESIGNING ADIABATIC TIME EVOLUTION FROM … PHYSICAL REVIEW RESEARCH 2, 033412 (2020)

FIG. 2. Exact dynamics during an adiabatic period T− = 2π/ω−
for the real part of the upper diagonal element of the time-evolution
operator Ũ (t ). The presence of white noise following a normal
distribution with a standard deviation σ has been considered. The
colors indicate different noise strength σ , in units of the dominant en-
ergy scale �̃ = �zJ2

1 (α). Parameters: ω1/�z = 10, ω2/�z = 10.05,
α � 1.8 [first maximum of J1(α)], and φi = 0. The inset shows the
short time dynamics, where the fast oscillations from the fast applied
drive (with period T1,2 � 2π/ω1,2) are more evident. All the other
components of the evolution operator also evolve adiabatically.

have defined ω± = ω1 ± ω2 and fixed φi = 0 for simplicity):

H̃ (t ) � �z

[
J2

0 (α)

2
− J2

1 (α) cos (ω−t )

]
σz

+�zJ
2
1 (α) cos (ω+t )σz

+�zJ0(α)J1(α)
∑
i=1,2

sin (ωit )σy + · · · . (7)

Noticing that the fast oscillating term in the second line aver-
ages to zero in this regime, and that the third line contributes
with a small amplitude correction to the time evolution, we
obtain the next leading Hamiltonian:

H̃0(t ) � �z

[
J2

0 (α)

2
− J2

1 (α) cos (ω−t )

]
σz (8)

Actually as ωi � �z, all terms with a fast frequency depen-
dence, of the order of ωi or larger, tend to zero as ωi → ∞.
To demonstrate this we have numerically calculated the time
evolution operator Ũ (t ) in the interaction picture. Figure 2
shows the real part of the component Ũ 1,1(t ) over time, which
is related with the occupation probability of the excited state.
Different colors indicate the time evolution averaged over
a hundred realizations of white noise, following a normal
distribution with standard deviation σ . For weak noise, the
plot displays adiabatic behavior (notice that T− ∼ 125 while
T1,2 ∼ 0.6 is the period of the driving fields) with small and
fast amplitude oscillations around the mean value, coming
from the high-frequency corrections (see Fig. 2, inset). This
is one of the main results of this work: One can combine two
high-frequency drives to effectively evolve the system adiabat-
ically. Actually, Fig. 2 contains a combination of two different
periods, which can be externally controlled: harmonic oscilla-
tions due to the static part of the effective Hamiltonian [first
term in Eq. (8)], and a slow frequency modulation due to

the adiabatic term [second term in Eq. (8)]. Reducing the
difference ω− = ω1 − ω2 makes the static part dominate at
short times, while its increase makes the nonlinear, adiabatic
term to take over (these two cases are explicitly shown in
Appendix A, Fig. 4 with an extended discussion about the role
of each term in the effective time-dependent Hamiltonian).

In addition, the robustness of our prediction is illustrated
with the changes of the time evolution as the noise increases.
Figure 2 shows that the original behavior persists for weak
values of noise, until σ becomes of the order of the dominant
energy scale, where the oscillations are strongly damped. This
indicates that experiments would have time to perform a few
adiabatic cycles before the effect of noise takes over.

IV. CORRECTIONS TO THE EFFECTIVE ADIABATIC
HAMILTONIAN

We have shown that it is possible to drive a system with two
different frequencies and produce effective adiabatic behavior.
The dominant part of the Hamiltonian, shown in Eq. (8), char-
acterizes the slow evolution, but corrections due to oscillatory
terms with higher frequency are also present and they can pro-
duce transitions between the adiabatic eigenstates [specially
relevant are the terms proportional to σy in Eq. (7), because
they do not commute with the leading order Hamiltonian]. To
understand their effect we now introduce a general formalism
to study Hamiltonians with two different frequencies, where
each drive couples to a different degree of freedom. The
general form of the Hamiltonian can be compactly written as

H̃ (t ) = H̃0(t ) + εH̃1(t ),

where

H̃0(t ) = �̃(t )

2
σz, (9)

H̃1(t ) = Ṽ (t )

2
σy; (10)

the functions �̃(t ) and Ṽ (t ) are, for the moment, general
harmonic functions, and ε is introduced to organize the per-
turbative series (we take ε → 1 at the end of the calculations).
To study the nonperturbative dynamics we will calculate the
time-evolution operator using multiple-scales analysis. This
method deals with the fastest timescales first, and then each
correction characterizes new processes taking over at longer
times. Importantly, this method includes a renormalization
procedure for the secular terms [38–40], making the solutions
valid at high or low frequency, as well as near a resonance.
This approach only neglects processes that take over at longer
timescales than the order of the expansion in ε.

In the first step we parametrize the time evolution operator
U (t ) → U (�τ ) in terms of a set of timescales τn = εnt , and
expand in powers of ε the equation of motion for the time-
evolution operator, with U (�τ ) = ∑

n εnUn(�τ ). The equations
to zeroth and first order in ε result in

i∂τ0U0 = H̃0(τ0)U0, (11)

i∂τ0U1 + i∂τ1U0 = H̃0(τ0)U1 + H̃1(τ0)U0, (12)
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where we have omitted the �τ dependence in Un(�τ ). The lowest
order solution can be easily obtained from Eq. (11) by direct
matrix exponentiation:

U0(�τ ) = e−i
∫ τ0

0 H̃0(τ0 )dτ0 u0(τ1), (13)

where the matrix u0(τ1) comes from the boundary condition
and will be determined later on, during the renormalization
procedure. Equation (13) can now be inserted in Eq. (12)
and solved by choosing U1(�τ ) = u1(�τ )v1(�τ ), with u1(�τ ) =
e−i

∫ τ0
0 H̃0(τ0 )dτ0 being the solution to the homogeneous equa-

tion. The solution results in

U1(�τ ) = −iu1(τ0)
∫ τ0

0
H̃ ′

1(τ0)dτ0u0(τ1)

− τ0u1(τ0)∂τ1 u0(τ1), (14)

where we have defined

H̃ ′
1(τ0) = u1(τ0)−1H̃1(τ0)u1(τ0). (15)

Equations (13) and (14) are the formal solutions for the time
evolution operator, which now need to be particularized for
the case of interest and renormalized, if needed. For our
present purpose we fix the specific form of the periodic
functions to �̃(t ) = �̃z + μ cos (ωt ) and Ṽ (t ) = β cos (t ).
In this case �̃z corresponds to the static part [first term in
Eq. (8)], μ to the dominant time-dependent term [second term
in Eq. (8)], and β to the dominant correction, noncommuting
with Eq. (8) (the value of the two frequencies ω and  is arbi-
trary for the moment). The unperturbed solution is obtained
from Eq. (13) and displays the nonlinear phase evolution
typically obtained in time-dependent systems:

U0(�τ ) = e− i
2 [�̃zτ0+ μ

ω
sin (ωτ0 )]σz u0(τ1), (16)

where u0(τ1) still needs to be determined. Similarly, the first-
order solution in ε is obtained from Eq. (14). We do not write
here the full form of the solution, because of its length and
because it is enough to show that it is proportional to (details
of the calculation are in Appendix B)

U1(�τ ) ∝ β[(nω ± �̃z )2 − 2]−1. (17)

This correction to U0(�τ ) diverges if the denominator in
Eq. (17) vanishes. This is a common feature of time-
dependent perturbation theory, indicating the breakdown of
the solution, but these resonances can be renormalized in
multiple-scales analysis, and produce nonperturbative cor-
rections to U0(�τ ). Strictly speaking, the resonance condition
can only be fulfilled for commensurate frequencies (which
differentiates this case with the one of incommensurate fre-
quencies), and for very specific values of the parameters.
However, if the denominator in Eq. (17) becomes smaller
than β, the perturbative series still diverges and should be
renormalized as well, making the difference between incom-
mensurate and commensurate frequencies (with very long
total period) merely a mathematical curiosity, for the phys-
ically relevant timescales of this setup. Therefore, one can
relax the strict relation between the parameters for a reso-
nance, to just the approximate one: (nω ± �̃z )

2 − 2 � β.
To renormalize the resonant terms, one needs to separate

resonant and off-resonant contributions. The amplitude cor-
rections produced by the off-resonant terms in Eq. (17) are

of order β, and can be neglected if we focus on U0(t ) only.
However, resonant corrections contribute to leading order and
need to be included. We assume that the system is in the
regime ω � �̃z � , where ω corresponds to an adiabatic
drive and  to a high-frequency one. This situation is analo-
gous to the one obtained in Eq. (7) for the effective adiabatic
Hamiltonian. In this situation, several resonances can con-
tribute (i.e., several values of n fulfill (nω ± �̃z )

2 − 2 � β),
while in a different regime the analysis would be simpler,
because the resonances do not need to be included. Then,
in the spirit of multiple-scales analysis, we require that the
secular terms produced by the resonances are canceled by
∂τ1 u0(τ1) in Eq. (14). This requirement leads to the following
flow equation for u0(τ1):

∂τ1 u0(τ1) = −i
β

4

∑
n0

Jn0

(μ

ω

)
σyu0(τ1), (18)

where n0 corresponds to the set of resonances {±n0} which
fulfill the approximate resonance condition above. This equa-
tion allows one to determine u0(τ1), which encodes the
nonperturbative correction to U0(t ). The lowest order renor-
malized solution becomes

U0(t ) � e− i
2 [�̃zt+ μ

ω
sin(ωt )]σz e−it β

4

∑
n0

Jn0 ( μ

ω
)σy . (19)

Notice that the smaller ω is, the larger is the set of resonances
±n0 that needs to be included, increasing the contribution
from the nonperturbative correction. Furthermore, this correc-
tion strongly depends on the ratio μ/ω. This indicates that if
the system is far from a resonance, or μ is not in the region
where Jn0 (μ/ω) has a relevant weight, the behavior is similar
to that of the unperturbed solution (at least to timescales of the
order of β−2).

The multiple-scales analysis can be continued to higher
orders in a very systematic way; however, the results pre-
sented here are quite accurate for the range of parameters
under consideration. In Fig. 3 we show a comparison between
the numerical and the analytical approximation for the time-
evolution operator. One can identify three different timescales
in this plot:

(1) The shortest timescale is given by slow harmonic oscil-
lations coming from the static part of the unperturbed solution
�̃z (as those oscillating between ±1 in Fig. 2).

(2) The next timescale corresponds to the nonlinear phase
evolution. Proportional to μ, it introduces the anharmonic
oscillations happening at intermediate times and defines the
adiabatic period T−.

(3) The longest timescale is produced by the nonperturba-
tive correction produced by H̃1(t ). It produces the long-time
modulation observed in Fig. 3 (in this case T− ∼ 60 and the
long-time modulation has period τlong ∼ 600, i.e., one order
of magnitude larger).

We also show the dynamics for the off-diagonal compo-
nent of U (t ) in the Appendix B, Fig. 7, to confirm that the
long-time behavior is controlled by the nonperturbative cor-
rection u1(τ1), which produces the rotation proportional to σy

in Eq. (19).
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FIG. 3. Comparison between the exact and the approximate dy-
namics to first order in ε for the real part of U 1,1(t ), in the presence of
resonances [Eq. (19)]. The short-time dynamics is well captured by
the unperturbed solution, but the slow oscillations at longer times
are obtained from the renormalization of resonances. Parameters:
ω/�̃z = 0.1, /�̃z = 2, β/�̃z = 0.2, and μ/�̃z = 2. In this case
the dominant resonance is obtained for n = ±10, and its contribution
perfectly captures the slow modulation of the oscillations.

V. CONCLUSIONS

We have demonstrated that bichromatic driving provides
new possibilities to externally control quantum systems. An
interesting one is that two high frequencies ω1,2 can pro-
duce effective adiabatic evolution, with frequency controlled
by the difference ω1 − ω2. This effect requires strongly
driving the system beyond the perturbative regime, and
provides an example of the breakdown of high-frequency
expansions.

The effect can be used in experiments where low fre-
quencies are out of reach due to equipment restrictions, or
if the slow, monochromatic drive resonantly couples to en-
vironmental (or undesired) degrees of freedom [41]. This is
because the effective Hamiltonian [Eq. (6)] is a function of
the coupling strength between the drive and each degree of
freedom (in this case controlled by Bessel functions). Then,
as the coupling to the environmental modes is different, their
Fourier components will be tuned at a different rate with the
field amplitude and generally suppressed, while the one of
interest is being enhanced. This would allow reaching the
desired monochromatic behavior for the degree of freedom
of interest, while reducing the undesired signal from the
environment.1

As the effective adiabatic Hamiltonian [Eq. (8)] generally
contains high-frequency corrections, we have also studied
their effect. This is equivalent to a bichromatic system with
slow and fast frequencies, coupled to different, noncommut-
ing degrees of freedom. In this case, we have shown that
the high-frequency corrections of the effective Hamiltonian

1As a final comment, notice that electronic systems coupled via the
Peierls phase to the AC source directly lead to Hamiltonians such as
Eq. (4). This means that the transformation to the interaction picture
becomes unnecessary and our analysis directly applies.

can be used to engineer controlled single-qubit rotations. At
short timescales the adiabatic part dominates, and one can
switch between free and adiabatic evolution by adjusting the
frequency difference ω− = ω1 − ω2. At longer timescales the
high-frequency corrections become relevant and produce adi-
abatic evolution between the ground state and the excited
state. This extra adiabatic evolution along a perpendicular
direction is controlled by resonances involving the slow and
the fast frequencies, and its period depends on the amplitude
of both time-dependent terms (μ/ω and β). This provides a
highly tunable mechanism to implement single-qubit gates
using two off-resonant fields only.

Further applications of our results are the possibility to
externally control quantum pumping [42,43] in higher di-
mensional systems [44], or to describe Floquet topological
phases at low frequencies. This is because our approach
(multiple-scales analysis) allows a complete characterization
of the evolution operator, which is required for the topological
analysis [45]. In qubits, it would also be interesting to study
the competition between geometric and dynamical phases, as
the difference between frequencies is tuned. This could be
implemented in several experimental setups such as quantum
dots, nitrogen-vacancy centers, single-ion magnets, or super-
conducting junctions.
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APPENDIX A: EFFECTIVE ADIABATIC HAMILTONIAN
FOR THE BICHROMATIC TWO-LEVEL SYSTEM

The Hamiltonian for the two-level system driven by multi-
chromatic driving is given by

H (t ) = H0 + V (t ), (A1)

H0 = �z

2
σz, (A2)

V (t ) =
∑

i

Vi

2
cos (ωit + φi )σx. (A3)

The non-perturbative expression in the field amplitudes is
obtained from the transformation to the interaction picture:

H̃ (t ) = U (t )†H (t )U (t ) − iU (t )†U̇ (t ), (A4)

U (t ) = exp

{
−i

∫
V (t )dt

}
. (A5)

Simplifying the expressions, the general form can be
written as

H̃ (t ) = �z

2
cos

[∑
i

Fi(t, ωi, φi )

]
σz

+ �z

2
sin

[∑
i

Fi(t, ωi, φi )

]
σy (A6)
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= �z

4
(σz − iσy)

∏
i

eiFi (t,ωi,φi )

+ �z

4
(σz + iσy)

∏
i

e−iFi (t,ωi,φi ). (A7)

Considering the bichromatic case, we find that the trans-
formed Hamiltonian reduces to (αi = Vi/ωi):

H̃ (t ) = �z

2
cos [α1 sin (ω1t + φ1) + α2 sin (ω2t + φ2)]σz

+ �z

2
sin[α1 sin(ω1t + φ1)

+α2 sin(ω2t + φ2)]σy. (A8)

Using the Jacobi-Anger expansion in terms of Bessel func-
tions, we find the Fourier components

H̃n1,n2 =
∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
H̃ (θ1, θ2)e−i(n1θ1+n2θ2 ), (A9)

H̃ (θ1, θ2) = �z

2
cos [α1 sin (θ1 + φ1) + α2 sin (θ2 + φ2)]σz

+ �z

2
sin[α1 sin (θ1 + φ1)

+α2 sin (θ2 + φ2)]σy, (A10)

H̃n1,n2 = �z

4
ei(n1φ1+n2φ2 )Jn1 (α1)Jn2 (α2)(σz − iσy)

+ �z

4
ei(n1φ1+n2φ2 )J−n1 (α1)J−n2 (α2)(σz + iσy),

(A11)

where we have parametrized θi = ωit . To find an effective
adiabatic time evolution, we are interested in maximizing
the Fourier components which contain the frequency differ-
ences H̃±1,∓1, while suppressing the others. If we choose the
first maximum of J1(αi ), the Hamiltonian is given by (ω± =
ω1 ± ω2 and we choose the two fields in phase for simplicity
φ1,2 = 0):

H̃ (t ) � �z

2
J2

0 (α)σz − �zJ
2
1 (α)[cos (ω−t ) − cos (ω+t )]σz

+�zJ0(α)J1(α)
∑
i=1,2

sin (ωit )σy + · · · , (A12)

and its dominant contribution consists of

H̃0(t ) � �z

[
J2

0 (α)

2
− J2

1 (α) cos (ω−t )

]
σz (A13)

This is obtained by noticing that the high-frequency terms
approximately average to zero.

In general, the effective Hamiltonian contains three types
of corrections:

(1) Constant terms such as �zJ2
0 (α)σz/2. They introduce

a linear phase evolution for the states (see Fig. 4, blue).
(2) High-frequency corrections which commute with

H̃ (t ), such as J2
1 (α) cos (ω+t )σz. They introduce fast oscillat-

ing nonlinear corrections to the phase evolution.
(3) Noncommuting, time-dependent terms, such as

J0(α)J1(α) sin (ωit )σy. They produce transitions between the
ground state and the excited state, and can lead to resonances.

FIG. 4. In red (blue), the dynamics upper diagonal component of
the time evolution operator for ω1/�z = 10, ω2/�z = 10.05(10.01),
αi � 1.8 [this is the first maximum of J1(αi )] and φi = 0. The inset
shows the effect of the high-frequency corrections, as small oscil-
lations with the frequency ωi of the original drive. For ω− = 0.01
(blue) the static part of the effective Hamiltonian dominates at short
time, displaying harmonic oscillations with nonlinearities taking over
at later times (not shown). For ω− = 0.05 (red) the nonlinear part
produces an earlier adiabatic frequency modulation.

Nevertheless, if each independent frequency is large
enough, the averaged Hamiltonian in Eq. (A13) is a good
approximation, and one is left with the static and the fre-
quency difference ω− terms only, representing the adiabatic
evolution. Figure 4 shows an exact numerical simulation of
the time-evolution operator using the exact Hamiltonian in
Eq. (A6). Notice how the time evolution is adiabatic, with fre-
quency controlled by ω−, and just with small high-frequency
oscillations around the mean value due to the extra harmonics.
Importantly, as the individual frequencies ωi are large, com-
pared with the amplitudes of the extra harmonics, corrections
coming from high-frequency terms are strongly suppressed.

In conclusion, if the individual frequencies ωi are large,
the dynamics is controlled by just two contributions: (i) the
static part, which controls the simple harmonic oscillations
(blue in Fig. 4), and (ii) the nonlinear adiabatic term (red in
Fig. 4). Furthermore, the ratio between these two could be
independently controlled with an extra DC field, which could
enhance or suppress the static part.

APPENDIX B: MULTIPLE-SCALES ANALYSIS FOR THE
BICHROMATIC CASE

We consider the general time-dependent Hamiltonian

H̃ (t ) = H̃0(t ) + εH̃1(t ) (B1)

= 1
2 �̃(t )σz + 1

2εṼ (t )σy, (B2)

where ε is a dimensionless parameter which is used to orga-
nize the perturbative series, and it is taken to 1 at the end of the
calculations. The time-evolution operator obeys the following
equation of motion:

i∂tU (t ) = H̃ (t )U (t ). (B3)
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FIG. 5. Curves (nω ± �̃z )
2 − 2 for different values of n (red

and blue dots) and a region of width β [green, see Eq. (B10)]. Points
in the green area fulfill the resonance condition, and require renor-
malization. Increasing ω from adiabatic to diabatic values produces
a transition from several resonances to none. Parameters for the plot:
/�̃z = 4, ω/�̃z = 0.3, and β/�̃z = 0.4.

Now we write this equation in the usual form of multiple-
scales analysis, with parametrization τn = εnt . The unper-
turbed solution is obtained from the unperturbed equation of
motion:

i∂τ0U0(�τ ) = H̃0(τ0)U0(�τ ), (B4)

which gives

U0(�τ ) = e−i
∫ τ0

0 H̃0(τ0 )dτ0 u0(τ1). (B5)

To first order in ε, the equation of motion is given by

i∂τ0U1(�τ ) + i∂τ1U0(�τ ) = H̃0(τ0)U1(�τ ) + H̃1(τ0)U0(�τ ), (B6)

It can be solved by choosing U1(�τ ) = u1(�τ )v1(�τ ), with
u1(�τ ) = e−i

∫ τ0
0 H̃0(τ0 )dτ0 being the solution to the homogeneous

equation. Then, one finds that the solution is given by

U1(�τ ) = −iu1(τ0)
∫ τ0

0
H̃ ′

1(τ0)dτ0u0(τ1)

− τ0u1(τ0)∂τ1 u0(τ1), (B7)

H̃ ′
1(τ0) = ei

∫ τ0
0 H̃0(τ0 )dτ0 H̃1(τ0)e−i

∫ τ0
0 H̃0(τ0 )dτ0 . (B8)

Now we choose specific forms for �̃(t ) and Ṽ (t ):

�̃(t ) = �̃z + μ cos (ωt ), (B9)

Ṽ (t ) = β cos (t ), (B10)

where �̃z corresponds to the static part of the effective Hamil-
tonian [first term in Eq. (A13)], μ to the dominant periodic
modulation with frequency ω [second term in Eq. (A13)], and
β to the transverse oscillating correction with frequency .
This way, the unperturbed solution corresponds to

U0(�τ ) = e− i
2 [�̃zτ0+ μ

ω
sin (ωτ0 )]σz u0(τ1) (B11)

and the first-order solution is obtained from the rotated Hamil-
tonian:

H̃ ′
1(τ0) = −ie

i
2 [�̃zτ0+ μ

ω
sin (ωτ0 )]σz H̃1(τ0)e− i

2 [�̃zτ0+ μ

ω
sin (ωτ0 )]σz

(B12)

= i

2
β cos (τ0)

×
(

0 −e−i[�̃zτ0+ μ

ω
sin (ωτ0 )]

ei[�̃zτ0+ μ

ω
sin (ωτ0 )] 0

)
.

(B13)

To calculate the correction from Eq. (B7), one can write the
exponentials in terms of Bessel functions,

H̃ ′
1(τ0) = i

2
β cos (τ0)

∑
n

einωτ0

×
(

0 −e−i�̃zτ0 J−n
(

μ

ω

)
ei�̃zτ0 Jn

(
μ

ω

)
0

)
, (B14)

and perform the following integrals:∫ τ0

0
ei(nω±�̃z±)τ0 dτ0 = i

1 − ei(nω±�̃z±)τ0

nω ± �̃z ± 
. (B15)

These integrals will produce secular terms if �̃z ± nω ∓  =
0, but they can be canceled by the term ∂τ1 u0(τ1) in Eq. (B7),

(a) (b)

FIG. 6. Comparison between the exact dynamics (red solid) and the one generated by U0(t ) (blue dashed). (a) shows the case without
renormalization, while (b) shows the case with renormalization of the resonances. We have plotted the real part of the U 1,1(t ) component, but
the agreement is valid for all the other components as well. The addition of small corrections of order β to the renormalized U0(t ) leads to an
even better agreement, as shown in Fig. 3 of the main text. Parameters: ω/�̃z = 0.1, /�̃z = 2, β/�̃z = 0.2, and μ/�̃z = 2.
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FIG. 7. Real and imaginary parts (red and blue, respectively)
of U 1,2(t ) for the parameters ω/�̃z = 0.1, /�̃z = 2, β/�̃z = 0.2,
and μ/�̃z = 2. One can see that the off-diagonal element acquires
nonperturbative corrections (of order 1), as predicted by the renor-
malization of resonances.

defining the flow equation. Furthermore, even for case where
the resonance condition is approximately fulfilled �̃z ± nω ∓
 � β only, the perturbative solution would not converge, and
the renormalization can be applied. Fig. 5 graphically shows,
for a specific case, the harmonics n that require renormaliza-
tion (n = 10 in this case). Larger ω increases the distance
between different harmonics, making more difficult to find
a resonance. In this case, beyond ω � 5 resonances are no
longer possible, signaling the transition to the high-frequency

regime.2 Once the subset of n values which produces secular
terms is identified, the cancellation with ∂τ1 u0(τ1) in Eq. (B7)
produces the following flow equation:

∂τ1 u0(τ1) = −i
β

4

∑
n0

Jn0

(μ

ω

)
σyu0(τ1), (B16)

where n0 is the set of pairs of integers fulfilling the condition
n0 � ±±�̃z

ω
. Then, the lowest order solution is given by

U0(t ) � e− i
2 t[�̃z+ μ

ω
sin (ωt )]σz e−it β

4

∑
n0

Jn0 ( μ

ω
)σy . (B17)

This non-perturbative correction indicates that the oscillations
of each independent energy level are now modulated by a tran-
sition between the ground and the excited level with frequency
β

4

∑
n0

Jn0 ( μ

ω
). Figure 6 compares the exact dynamics with the

one generated by U0(t ) without and with renormalization (left
and right, respectively). The addition of nonsecular contribu-
tions produces the plot in the main text (Fig. 3). However, the
importance of the resonances is evident from the comparison
between the left and right plots for U0(t ) in Fig. 6. Finally,
we plot in Fig. 7 the exact dynamics of U 1,2(t ), to confirm
that the resonances control the rotation proportional to σy and
that their contribution is nonperturbative. This is confirmed
by noticing that the off-diagonal part initially vanishes, but
acquires values of the order of 1 for times of approximately
half the period obtained from the resonances.

2This is not in contradiction with the first part of the paper, where
two high frequencies can give rise to adiabatic evolution. In that case
the system is far from the perturbative regime.
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