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Pure multipartite quantum states of n parties and local dimension ¢ are called k-uniform if all reductions to
k parties are maximally mixed. These states are relevant for our understanding of multipartite entanglement,
quantum information protocols, and the construction of quantum error correction codes. To our knowledge, the
only known systematic construction of these quantum states is based on classical error correction codes. We
present a systematic method to construct other examples of k-uniform states and show that the states derived
through our construction are not equivalent to any k-uniform state constructed from the so-called maximum
distance separable error correction codes. Furthermore, we use our method to construct several examples of
absolutely maximally entangled states whose existence was open so far.
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I. INTRODUCTION

Multipartite entangled states play an important role in
many quantum information processing tasks, like quantum
secret sharing, quantum error correcting codes, and in the
context of high-energy physics [1-6]. All of these processes
and applications depend on the property of the multipartite en-
tangled states that are used as a resource. Providing a general
framework for multipartite entanglement represents a highly
complex problem, probably out of reach. Therefore, many
efforts have focused on the study of relevant sets of states such
as, for instance, graph states [7,8] or tensor network states [9].

Recently, a special class of states have attracted the at-
tention for a wide range of tasks. These states are called
k-uniform states (or for simplicity k-UNI states), and they
have the property that all of their reductions to k parties are
maximally mixed. An n-qudit state |¢/) in H(n, q) := C"
is k-uniform and denoted in what follows by k-UNI(n, q),
whenever

ps = Trse|Y) (Yl o1 VS C{l,...,n},|S| <k, (1)

where S¢ denotes the complementary set of S. The Schmidt
decomposition implies that a state can be at most |n/2|-UNI,
i.e., k < [n/2]. Operationally, in a k-UNI state any subset of
at most k parties is maximally entangled with the rest. The
[n/2]-UNI states are called absolutely maximally entangled
(AME) because they are maximally entangled along any
splitting of the n parties into two groups. Similarly, we denote
an AME state in H(n, g) by AME(n, q).
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Despite their natural definition, little is known about the
properties of k-UNI states, such as for which values of the
tuple (k, n, q¢) they exist or systematic methods for their con-
struction. In Refs. [10-12] these states were related to some
classes of combinatorial designs known as orthogonal arrays
(OA), and their quantum counterpart, quantum orthogonal
arrays (QOA). To our knowledge, the most general method
to construct k-UNI states is based on a connection between
them and a family of classical error correcting codes known
as maximum distance separable (MDS) [13,14]. The resulting
states are called of minimal support, as they can be expressed
with the minimum number of product terms needed to guar-
antee that the reduced states are maximally mixed.

In this work, we introduce a systematic method of con-
structing k-UNI states. We call this method Cl + Q because
it combines a given classical MDS code with a basis made of
k-UNI quantum states. We prove that our method is different
from previous constructions as the derived states may not be
of minimal support. In fact, we show that our states cannot be
obtained from any state of minimal support by stochastic local
operations and classical communication (SLOCC). We also
use our method to construct k-UNI states with smaller local
dimension g compared to the same k-UNI state constructed
from MDS codes. We then show how the k-UNI states derived
through our construction are example of graph states and
provide the corresponding graph, which is different from the
graphs associated to states of minimal support. Finally, we
present generalizations of the Cl 4+ Q method and use them to
construct two examples of AME states whose existence was
open so far, namely AME(19, 17) and AME(21, 19).

II. MDS CODES AND k-UNI STATES

The first ingredient in our construction are classical
MDS codes. In the language of coding theory, linear error
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correcting codes are usually specified by the tuple of
integer numbers [n, k,dy], and defined over a finite
field GF(g). Such codes encode ¢f many messages
specified by vectors ©; € [g]¥, with i=1,...,4%, into
a subset of codewords ¢&; € [¢]", all having Hamming
distance dy [15, Chap. 1]. Here [¢]:=(0,...,g—1)
denotes the range from O to ¢ — 1 and the Hamming dis-
tance dy between two codewords &; = (", ..., c?)and &; =

(cij )., c{) is the number of places where they differ. The
Singleton bound [16] states that for any linear code

dy <n—k+1. 2)

A code that achieves the maximum possible minimum Ham-
ming distance for given length and dimension is called MDS
code [15, Chap. 11]. Next, we specify MDS codes by the tuple
[n, k],, as the Hamming distance follows from the saturation
of the Singleton bound. Finally, given an [n, £], MDS code,
itis possible to define its dual, which is an [ng, ng — €], MDS
code (see Appendix A for details on k-UNI,;, states and the
number of terms they have, in expanded in the computational
basis). In what follows, we take initial MDS codes with
£ < n/2 so that the number of codewords in the dual is
ng — € >n/2.

MDS codes have been used to derive the only known sys-
tematic construction of k-UNI states [3,13,14], which are also
of minimal support, denoted by k-UNI,,(n, ¢). For a given
MDS code, consider the pure quantum state corresponding to
the equally weighted superposition of all the codewords ¢&; of
the code, i.e.,

> @, 3)

It is instructive for what follows to see why (3) is a k-UNI
state, that is, to show why all reductions up to k parties are
maximally mixed (more details in Appendix A). For that we
use two properties of MDS codes. First, since all codewords
have a distance at least equal to the Singleton bound (2), all
the off-diagonal elements of the reduced density matrices of
at most k parties are zero. What remains to be proven is that
all the diagonal elements of the reduced state of k parties
are equal. But this follows from the fact that any MDS code
has a systematic encoder in which any set of symbols of
length k of the codewords can be taken as message symbols
[15, Chap. 11], that is, all the ¢* possible combinations of
messages appear. Moreover, the obtained k-UNI states are
of minimal support. This refers to the minimal number of
product states needed to specify the state. For k-UNI states,
since the reduced state of k parties must be proportional to the
identity, and hence of full rank, this number has to be at least
equal to g, which is precisely the number of terms in (3).
Finally, let us recall that MDS codes over finite fields GF (q)
have been found for the following intervals:

n>=?2 k=1lorn—1
n<qg+2 gqgisevenandk =3orqg—1, (@)
n< g+ 1 all other cases

which in turn defines an existence interval of k-UNI,,;, states,
i.e., k < [n/2] (see Ref. [15, Chap. 11] and Ref. [17]).

III. ORTHONORMAL BASIS

The second ingredient we used in our construction are
orthonormal bases where all the elements are k-UNI states.
In principle, the k-UNI states in the basis can be arbitrary but
in what follows we show how to construct examples of such
bases starting from a k-UNI;, state built from an [n, k], MDS
code. Let us first introduce the unitary operators X and Z that
generalize the Pauli operators to Hilbert spaces of arbitrary
dimension g > 2,

X|j) =

lj+1 mod g), &)

Zlj)y =’ |j), ©6)

where w := ¢/>"/4 is the gth root of unity. X and Z are unitary
and traceless, and they satisfy the conditions X? = Z7 = 1.
We now consider operators acting on H(n, q) consisting of
tensor products of powers of these operators. In particular, we
focus on the operators M (v) labeled by v € [¢"] that have the
form

M(ﬁ) =ZY ®...®ka®ka+] ®---
k n—k

@X". (1)

As we see next, these g" unitary operators define a basis when
acting on a k-UNI;, state.

Lemma 1. Consider a k-UNl,,, state |) € H(n, g) and
all possible vectors v; € [¢"], with i =1, ..., ¢". Then the
states |v;) := M(¥;) |¢) form a complete orthonormal basis
of k-UNI,,;, states.

Proof. First, note that all the |v;) are k-UNI states, since
local unitary operations do not change the entanglement
properties of the state |1). Then we should just check the
orthonormality of the states, i.e., check that

=[]su (8)

To show this we use the fact that, for any k-UNI state |y)
constructed from an MDS code ¢ = [n, k, dy =n —k + 1],
the Hamming distance between all the terms is at least dy =
n — k + 1. The large Hamming distance between the terms in
the superposition of state |) implies

(WIM @) M@)yr)

WIME) M@)IY) = (wIM (D)

vy ) 1v) H 8i

i=k+1
)

where M (T)(Zi )) has the Z operators of M (¥;) and no X opera-
tors. Now, by considering the property of having k-UNI state,
we yield

(WIM@) ME)IY) = Tr(M(89) M H 8ii

i=k+1
=[]6:- (10)
i=1

Here we also used the fact that the operator M (vg))T M (*(’ )
has weight at least k.
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(a) Classical Part Quantum Part TABLE I. Comparison between the local dimension ¢ of differ-
| T, > [y > ent k-UNI,;, states using our construction and known MDS codes.
Ie,> [y > . .
e | Uniform n Cl part Basis Q part CI+Q MDS code
C3 > Y3 >
- 2
e, > Ly, > n=>5 [3,2], Bell, q2 states qg=2 qg=4
= n=6 [4,2], Bell, ¢~ states q=3 q=4
Cs> lws > 2
'_f k=2 n=7 [52],  Bel,gstates g=4 g=7
I'¢6> lwe > n=8 [53], GHZgstates g>4 ¢>7
(b) ____ Classical Part Quantum Part n= [6, 3], GHZ, ¢° states g=24 qg=8

| ¢\ > n=10 [7,3], GHZ, ¢° states qg=>7 ¢q¢=9
<> lwi > n=11 [7.4], AME@,q).q"sttes q>7 q> 11
| ¢ > n=12 [8,4], AME(4,q),¢*states ¢>7 ¢q>11
IZ,> ; k=3 n=13 [9,4], AME4,q),q*states ¢ >8 ¢ > 13
— Ly, > n=14 [9,5], AME(5,q), ¢ states ¢ =8 ¢ > 13
|i5 = V2 n =15 [10,5], AME(, q), g’ states ¢g=>9 g>16

16> n=16 [11,5], AMEG,q).¢* states ¢ > 11 g > 16

. T

FIG. 1. Methods of constructing k-UNI states. (a) Cl+ Q
method. Constructing k-UNI states by concatenating each codeword
of an MDS code with a given ¢'-UNI state of an orthonormal basis.
(b) Cl1+ Q with repetition. Constructing AME states by repeating
states in the quantum part.

In Ref. [14] this result was proven for the particular case
of AME states of minimal support, leading to an AME basis.
The above lemma generalizes the result to any k-UNIy;,
states.

IV. CONSTRUCTING £k-UNI STATES
OF NONMINIMAL SUPPORT

We are now ready to describe our method to construct
nonminimal support k-UNI(n, g) states using the previous
two ingredients. The main idea is to combine the codeword
of a given MDS code with the states of a complete k-UNI
orthonormal basis, see Fig. 1(a). These states are examples of
QOAs, which determine a generalized quantum combinatorial
designs (see Ref. [12] for details).

Lemma 2 (C1 + Q method). Consider an [ng, £], MDS
code of codewords ¢; and a complete ¢'-UNI(ng, ¢) orthonor-
mal basis with states [;) such that nqy = £. Construct the
State

=D &) ). (b
i=1,...,q* 7:1-/ T

This state is a (€' + 1)-UNI state of n = ng + nq parties.

The condition nqy = £ is needed to ensure that the number
of codewords in the code match the number of elements in the
basis, as required by the construction. Note that the number
of states in the E/-UNI(nq, q) basis is g"¢, while the number of
codewords in the MDS code is ¢¢. This requirement implies
that £/ < £. Actually, the conditions for the lemma are slightly
more general, as one can use the dual of an MDS code for
the classical part. One then demands that ny = ng — £ and
obtains a k = min{¢ + 1, £’ + 1}-UNI state (for more details
see Appendix A).

For the purpose of the proof we need to check whether the
reduced density matrix,

os = Trse|¢)(p| = Trse Z 1E) (S5l @ [a) (sl |, (12)
ij
is proportional to the identity for every set S of size |S| = k.
In order to do so we consider the three different possibilities
for § when the k parties are (i) all inside the classical part, (ii)
all inside the quantum part, or (iii) split between the classical
and quantum part.

Proof of lemma 2. First, let us consider case (i): having a
complete orthonormal basis in the quantum part ensures or-
thogonality, i.e., (¥;|¥;) = §; ; and therefore the off-diagonal
elements of oy are zero. In addition, and similarly to what
happened for the construction of k-UNI states from MDS
codes, all the diagonal elements are equal because all possible
combinations of indices appear. Therefore, oy is maximally
mixed.

Now for case (ii): The large Hamming distance between the
terms of the classical part yields orthogonality, i.e., (¢;|¢;) =
8;,j. The fact that the quantum part is a complete basis, for
either choices of the classical part, implies that the reduced
density matrix is a sum over all states of a basis, i.e., o5 =
2o Wi (Wil o Ly,

Case (iii) is more involved and its proof can be found
in Appendix B, together with more details about the
construction. [ |

In Table I we provide examples of k-UNI states for systems
of smaller dimension than those obtained using the existing
MDS codes.

V. INEQUIVALENCE UNDER SLOCC

After presenting our construction, we now show that it
provides states that could not be obtained using the previously
known method based on MDS codes. In order to do so, we
show that states obtained using our construction cannot be
obtained by SLOCC from k-UNI,,, that is, they belong to
different SLOCC classes.

It is a well-known result that the number of product states
needed to specify a pure state is an upper bound to the rank of

033411-3



RAISSI, TEIXIDO, GOGOLIN, AND ACIN

PHYSICAL REVIEW RESEARCH 2, 033411 (2020)

all possible reduced states. For a k-UNI,;, state, this implies
that, for any subset S C {1, ..., n}, one has

rank(ps) < ¢, (13)

where pg = Trge|1) (¥]. It is also well known that this number
cannot be increased by SLOCC [18].

Now consider the k-UNI state |¢) in H(n, g) constructed
from the Cl + Q method. All the reductions up to k parties
of the state |¢) are maximally mixed. However, it is pos-
sible to show that there exists at least one subset of size
|S| = k + 1 parties such that the reduced density matrix oy =
Trse|¢) (@] o< 1. This specific set contains k parties of the
classical part and one party from the quantum part. This
implies that the state |¢) is not minimal support and hence
the two states |i{) and |¢) cannot be mapped into the other
probabilistically via LOCC. Therefore, they belong to differ-
ent SLOCC classes.

VI. GRAPH STATES

It is also relevant to understand the construction from the
point of view of graph states. A graph G = (V, I') is composed
of a set V of n vertices and a set of weighted edges specified
by the adjacency matrix T" [7,8,19,20], an n x n symmetric
matrix such that I'; ; = 0 if vertices 7 and j are not connected,
and I'; ; > O otherwise. Graph states are pure quantum states
specified by a graph with I'; ;. In this formalism, qudits are
represented by the graph vertices V. The graph state associ-
ated with a given graph G is the +1 eigenstate of the following
set of stabilizer operators [7,8,19,20]

S, =X; Z(zj)rn-f, 1<i<n. (14)
J

The k-UNI, states derived from MDS codes [n, k], are
examples of graph states as it is possible to connect the adja-
cency matrix I' and the code parameters [13,14]. In particular,
if one performs local Fourier transforms F; = Zi’ j oY 1i) (|
on all the last n — k parties of the state |) in (3), the resulting
state is a graph state corresponding to a complete bipartite
graph, see Fig. 2(a). This graph is partitioned into two subsets,
one containing k vertices and the other one n — k vertices.
The weights of the edges connecting the vertices in the two
subsets depend on the details of the construction of the MDS
code but the structure is the same for all the states |y) (3).
Note that when ¢ is a power of a prime, discrete Heisenberg-
Weyl groups should be considered for the stabiliser formalism
[21,22].

The graph state representation of the states |¢) constructed
from the Cl 4+ Q method, Eq. (11), when the states in the
basis are k-UNI,;, derived from an MDS code, is rather
intuitive and shows the structure of the method: It is formed by
concatenating the two complete bipartite graphs associated to
each MDS code or, equivalently, the corresponding k-UNIy;,
state, as shown in Fig. 2(b). All the details of these graph-state
representations will be explained elsewhere.

VII. CONSTRUCTIONS OF UNKNOWN AME STATES

We now show how using our method one can construct
AME states whose existence was unknown so far. For that

k+1 k+2 k+3 n

(b)

FIG. 2. Graph state representations of k-UNI states. (a) A com-
plete bipartite graph. Graph state which is local unitary equivalent
to the k-UNI,;, states constructed from MDS codes. (b) Graph state
representing the k-UNI states constructed from the Cl + Q method.
The graph can be considered as two parts connected as the method.
The left-hand side is the graph state representing the state constructed
from |y) = ,|C), ie., the Cl part. The right-hand side is the
graph state representing the Q part, states |;). The operators M (v;)
describe how the two parts connect.

we need to introduce a generalization of the method, which
we call Cl 4+ Q with repetition, where states in the quantum
part are repeated, that is, several codewords of the classical
part concatenate to the same quantum state of the quantum
part. For this to be possible, one should employ MDS codes
with the property that the codewords can be distributed into
subsets each forming MDS codes with smaller parameters.
In particular, we need MDS codes & = [n, (%1]4 such
that its codewords can be distributed into ¢> subsets each
forming an MDS code, with parameters %; = [n, (%1 —2]4.
Comparing the code parameters of the MDS code 4 with
each subclass %;, we see that they require the same number
of physical qudits but the number of logical qudits decreases
by 2 (while obviously the Hamming distance increases by the
same amount). The idea is now to associate all the elements of
each subclass to the same state in the Bell bases, see Fig. 1(b).

Lemma 3 (Cl + Q with repetition). Consider an % =
[na1, [%l]q MDS code such that its codewords can be
distributed into g* subsets each forming MDS code with
parameters 6; = [ng, [%1 — 2],. An AME(n, g) state |¢) for
n odd, with n = n + 2, can be constructed by concatenating
all the terms of each subclass with one of the Bell states of
the quantum part, see also Fig. 1(b).

In general, this configuration leads to AME states for n odd
when n < g + 3. To show that the state |¢) is an AME state we
need to check all the reduced states o = Trsc|¢)(¢p| on up to
half of the systems. For the purpose of the proof, we proceed
as above and check three different cases, depending on how
the k parties are distributed between the classical and quantum
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part. We then use two properties of the construction: (i) the
fact that subsets %; of the MDS code are also MDS codes and
(ii) the large Hamming distance between codewords of two
different subsets %; and ¢, see Appendix C for more details.

What remains to be shown is that the construction can find
an application, that is, that there exist MDS codes that can be
distributed into ¢> subsets forming MDS codes. We proved
this for MDS codes with parameters ¢ = [ng, [na/21]y,
where ny < ¢, whose codewords can be distributed into ¢°
MDS codes 6; = [nc1, [na/2] — 214, that the technique is pre-
sented in Appendix D. This result then allows us to construct
AME(( < g + 2, g) states, while g is an odd prime power.
To our understanding, in some cases, like AME(19, 17) and
AME(21, 19), the states were not known. For the simplest
case g = 4 we also provide a closed form of states AME(7, 4)
[23] (details of construction can be found in Appendix D). A
table of known AME(n, ¢q) states for different local dimension
g can be found in Refs. [24-26].

Before concluding this part, we mention that the Cl + Q
method can be generalized in a different way where the same
quantum part is concatenated several times with the classical
part. With this method, if » is the number of times that each
state of the quantum part concatenates to the terms of the
classical part, then the k-UNI state contains n = ng + rnq
many parties. This generalization will be discussed elsewhere.

VIII. CONCLUSION

We have presented a method that combines a classical
error correcting code with a basis of k-UNI states to generate
other k-UNI states. We have shown that our construction is
different from the other systematic construction previously
known based on MDS codes: They belong to different SLOCC
classes and have different graph-state representations. Then,
we have used our method to construct k-UNI states of n parties
with smaller local dimensions g compared to MDS codes,
and examples of AME states with its closed expression, such
as AME(19, 17), AME(21, 19), and AME(7, 4), that were
unknown so far. Due to the importance that k-UNI and AME
states have, it is an interesting avenue to explore how to use
the method presented here for quantum information tasks and,
in particular, in the context of quantum error correction.
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APPENDIX A: LINEAR CODES AND DUAL CODES

In general, an error correcting code is denoted by
(n, K, dy )q, when it encodes K many messages into a subset

of higher dimension [¢]”, all having Hamming distance at
least dy . Linear codes are a special class of codes whose set of
messages is K = [¢]* for some integer k, and the injective map
from this set of messages to the [¢]” set of codewords is linear.
Linear codes are usually denoted as ¢ = [n, k, dy],, over a
finite field GF (q) (for the reasons of using finite fields see Ref.
[15, Chap. 3]). Codewords of a linear code are all possible
combination of the rows of a matrix, called a generator matrix
Gy.xn- For a given vector v; € [q]k a codeword can be written
as ¢; = V; Gyxp. A generator matrix can always be written in
the standard form

Grxn = [1ilA], (AD)

where 1, is a k x k identity matrix and A € GF (g)**"=%,

MDS codes are those linear codes that achieve maximum
possible minimum Hamming distance, Eq. (2). A k-UNI,
state V), Eq. (3), can be constructed by taking superposition
of the computational basis states corresponding to all of
the codewords. Using the previous results, this superposition
reads

W) =D 1&) =D 15 Gra) = ) _ [0, BA) .

(A2)
i i

Given a linear code % it is always possible to define the
dual code €+ such that all of its codewords are orthogonal
to all the codewords of the initial code € with respect to
the Euclidean inner product of the finite field [15, Chap. 5].
The dual code €+ of any linear MDS code % is also MDS.
If € is an MDS code with parameters € = [n, k,dy = n —
k + 1], then the dual code has parameters €t =[n,n—
k, dﬁ =k + 1] [15, Chaps. 1 and 11]. To avoid ambiguity,
we denote the MDS code with message length k < n/2 by
% and its dual with message length n — k by €+. As above,
one can construct the two states ) and |y +) by taking the
equally weighted superposition of the codewords of ¢ and its
dual €+, respectively. However, considering the connection
between the codewords of the original code and its dual, one
can check that the states ) and |1) can be transformed
one into the other by local unitary operations, more precisely
by applying Fourier gates that map the Z eigenbasis into the
X eigenbasis to each party. Therefore, not only |y), but also
[1) is a k-UNI state of minimal support.

APPENDIX B: PROOF OF LEMMA 2
AND PRESENTING AN EXAMPLE

For the readers convenience we discuss the proof of
Lemma 2 in more detail.

Proof. For the classical part in our construction, it is
possible to use an MDS code € = [nq, £], or its dual €Lt =
[nc1, ne — £],. The resulting states can be written as

=316 )
! nel nq

= 15 Ga) 1¥1) = Y _ 1 BA) [¥3). (B
where as above we denote by |¢) (|¢*)) the state associated

to code € (€*). The above equation is the generalized form
of Eq. (11). The difference between |¢) and |¢) is in the
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generator matrix, or alternatively the A matrix. For the state
|¢+) we have v; € [¢q]"~*.

The pure states |¢) or |¢+) are k-UNI states iff the reduced
density matrix og of any subset of k parties, S € {1, ..., n}
with |S| =k, is maximally mixed. This subset may be (i)
entirely contained in the support of the classical part Cl =
{1, ..., ng}; (ii) entirely contained in the support of the quan-

tum part Q = {1, ..., ng}, and (iii) split between the two parts
CluQ = {1,..., n}. We consider these three different cases
separately.

Case (i): If the S qudits of the reduced density matrix oy
are contained in the classical part, S € CI, then the reduced
density matrix resulting from tracing out all the quantum part
and the complement of § in Cl, S¢; = §¢ N CI, of the state |¢),
Eq. (B1),is

os = T, Trql¢) (]
= Z(Trsg,m', UiA) (B, Ty Al) (Yl

= ZTrsi [, T:A)(@;, TAl (B2)

which is a direct consequence of having a complete basis in
the quantum part, i.e., ({;|¥) = 8, 7. In case of considering
the state |¢*), the same procedure holds when we calculate
the reduced density matrix og with the same condition for the
set § € Cl. We should just replace v; € [q]z with v; € [q]”C"e.
As argued for state (3), o is proportional to the identity matrix
whenever its size is equal number of free indices in the code
used in the classical part, equal to £ for the state |¢) and ny —
£ for |pt).

Case (ii): If the qudits are all contained the quantum part,
S C Q, then the reduced density matrix og resulting from
tracing out all of the qudits of the classical part and the
complement of S in Q, So=8°NQ, is

os = TraTrs 9) (9]
= Z(ﬁilﬁmmlﬁwf\) (Trsg|1/fi)(¢i'|)

i

= Trs, ) 1V (Wil (B3)

where we have used that (v;|V;) = §; 7. The quantum part is a
complete orthogonal basis, then the reduced density matrix in
this case is maximally mixed for any subset S fully contained
in the quantum part, which may be of size at most ng = £
or ng = ng — £ depending on the MDS code used for the
classical part.

Case (iii): Finally, we consider the case where S NCl =
Sc1 # S and SN Q = Sq # S. We then have the general for-
mula

o5 = Trge|p) (9|
=Y Trg, (9, DA By, DA @ Trsy (1) (Ye]).  (B4)

il

We start by the state |¢) in which the MDS code used for the
classical part has £ < n¢;/2 and consider the case in which

|S| = ¢ + 1. We first show that
Trse, (19, U:A) Uy, VrA]) o 851, (BS)

for all S with |S¢| < €. As the terms |U;, U;A) that make up the
classical part of the state |¢) are coming from an MDS code,
they are all product states in, say, the computational basis. Fix
any S, with |S¢| < €/, and let {|s)} be the computational basis
for Scy and {|¢)} be that of S&,. We can then write

Trse, (1U;, 0:A) (Ui, VrAl)
= > 1) (s |{s. [T, DAY (By, DeAls' 1), (B6)

s,8',t

For ¥; # ¥y, the two inner products in the right-hand side
of the last equation can be simultaneously nonzero only if
|V, U;A) and |Uy, DyA) are identical in at least |S¢;| many lo-
cations, because otherwise they cannot both be nonorthogonal
to |¢). But this means that their Hamming distance could not
be larger than dy < ng — [S&| = 1Sal <€ <ny/2=1¢/2.
But, at the same time, we know that the Hamming distance
between any two |;, 1;A) and |Uy, UyA) for ¥; # Uy is at least
dy =ng — £+ 1> £+ 1, where the inequality follows from
nq = 2€. These were only compatible if £ + 1 < £/2, which
is never fulfilled. We now use (B5) into (B4) to get

o5 =Y Trs: (B, BA) (@i, BAI) ® Trs, (19 (Wil).  (BT)

Any set S of size ¢’ + 1 with nonzero intersection with the
classical and quantum part is such that |Sq| < ¢'. Therefore,
as all the states in the quantum part |v;) are £’-UNI states, one
has Trsé(hp;) (Y¥;]) o< 1, Vi. We are therefore left with

o5 ZTTS&(WI', A) (B;, BAD @ 1, (B8)

which is maximally mixed because |S¢)| < ¢ < L.

Let us finally consider the state |¢*) in which the classical
part is constructed from the dual code 4+ and the condition
ne — £ = nq is necessary. We can now repeat the same analy-
sis as above. To conclude that the terms in the classical part are
proportional to §;  we need that di = € + 1 > |Scy|, while
for the traces in the quantum part to be maximally mixed it is
required that |Sq| < €. These two conditions can be fulfilled
if |S| = min{¢ + 1, ¢’ 4 1}.

Now, considering all the three cases, we see that case (iii) is
the most restrictive and implies that our construction leads in
general to min{¢ + 1, £’ 4+ 1}-UNI states, this minimum being
equal to (¢ + 1)-UNI for the state |¢). [ |

Note that the the previous proof also implies that some
reduced states og in our construction are maximally mixed
even for sizes |S| > £'.

It just remains to present instances in which the con-
struction applies. Recall that the Cl + Q method requires an
(A1, £]1; MDS code and a complete £'-UNI(rg, ¢) orthonormal
basis, with ng = £ or ng = n — £ depending on the MDS code.
For the quantum basis, we can employ the direct correspon-
dence between minimal support states and classical MDS
codes. Then, in order to find instances of the Cl + Q method,
one can simply check the known conditions for the existence
of MDS codes. To show this we use that according to Eq. (4),
we should find max{n, ny} for given local dimension g.

033411-6



CONSTRUCTIONS OF k-UNIFORM AND ABSOLUTELY ...

PHYSICAL REVIEW RESEARCH 2, 033411 (2020)

Considering this, one simply can verify that max{n., nq} =
ne. Thus the existence of MDS code with n parties and local
dimension ¢ is enough to guarantee that such a nonminimal
support k-UNI state constructs from our method.

As a concrete example, we can consider the state
AME(S, g) with the following closed-form expression [12]:

g—1

) = D Lm, L+ m) [ Yam) (B9)

1,m=0

where the states v ,,,) define a Bell basis,

Wam) =X'®2Z"Y " |r 7). (B10)

For the qubit case we have

™) = [000)|pF) + [011)[yr) + [101)]¢~) + [110)]yr—),
(B11)

where |¢*) and |y*) are the Bell basis of the Hilbert space of
two qubits. One can easily check that all the reduced density
matrices o up to two parties are maximally mixed.

APPENDIX C: PROOF OF LEMMA 3

Here we discuss how to prove Lemma 3, which is at the
basis of the Cl + Q method with repetition that allows us to
construct other examples of AME states.

Proof. In the proof of the theorem, we assume the ex-
istence of MDS codes € = [na, [%],dy = 5] + 1], that
can be divided into ¢g> MDS codes with smaller parameters
€ = [na, 151 —2,dy = | 5] + 3];, where i=1, e g
For each code %;, codewords are presented by ¢; ; with j =
1,..., qF%‘FZ_ The state

¢>=Z;@L@ (C1)

Nel

is a modification of Eq. (B1), and it is an AME state if all
the reduced density matrices os = Trgc|¢) (¢| are proportional
to identity for [S| < 5] = [%]. As in Lemma 2, we check
three different cases for any subset S of this size: This may
be entirely contained in the support of the classical part
Cl ={1,...,nq}, orit can be split between the classical and
quantum parts, Sq and Scj. For the last case we have two
possibilities, depending on whether the support in the the
quantum part is partial, |Sq| = 1, and then [S¢i| = 5] — 1,
or complete, having [Sq| = 2 and |S¢i| = [5] — 2.

Case (i): If the set S contain entirely in the support of the
classical part, then the reduced density matrix can be written
as

o5 = Trg: Trol$) (p| = ZZTrsz )@yl (C2)

where we used the orthogonality of the states |y;). Since the
codewords with the same value of i have Hamming distance
dy > (%] + 2, which is larger than the size of the subset S,
the partial trace is nonzero only when j = j’, having

os = Z (Trsg, 1€i.) (@i 1) o< Lingay, (C3)

ij

where we used the fact that the number of free indices of the
classical part is equal to [%5!] = |5].

Case (ii): The subset § split between two parts such that
ISql = land |Sci| = [%'] — 1 = [ %!]. Then the reduced den-
sity matrix oy simplifies to

o5 = Tr |¢) (@]
= 33 T, (12,) @) ® Trsg () (Wi ).

ii" j,j

()

el

For the classical part, since [Sci| = [ ] is smaller than the
Hamming distance of the code %, dH = [%'] + 1, only the
diagonal terms give a nonzero contribution, getting

o5 = Trs: (I ) (@) ® Trs; (1) (Vi)

ij

(€5)

The trace over the quantum part gives the identity, as |i;) are
all Bell states, getting
o5 o Y Trse (16, (@1) ® 1. (C6)

ij

The remaining sum in the classical part is the same as the
reduced state obtained from the superposition of the all code-
words of the MDS code %, i.e., Zi’j Ci,j), which is an AME
states of ng parties and all its reduced density matrices to
L' | parties are maximally mixed. Putting all this together, we
conclude that the reduced density matrix o is also maximally
mixed.

Case (iii): We consider a subset § that [Sg| = |Q| =2

and |S¢i| = [%] —-2= L%J — 1. We then have the following
formula:
os = Trs[¢) (9]

—ZZTrs (&)@ e (vl €D

ll

As for case (ii), the Hamming distance between the terms
of the classical part, dy = L%J + 1, is larger than the size
of the subset |Sci| = [ 5] — 1, therefore Trse, (I¢i.j){Crjr]) =0
whenever i # i’ and j # j’ and Eq. (C7) simplifies to

as—ZZTrs (&)@ D@ (v (C8)

As explained, all the codewords with the same value of
i define MDS codes with parameters [ng, [5'] —2,dy =
[%1] + 2],. They all give raise to ([ %] — 1)-UNI states, that
is, all the reduced density matrices to |5 | — 1 parties are
proportional to the identity. But the sum over index j in (C8)
is precisely equal to one of these reduced states for the set of
parties S¢y, that is,

> Trse (187) (@) o T |y (C9)
J

Then, we get
qZ

os =) Tim ) ® (Vi) Wil). (C10)
i=1
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The quantum part is a complete orthonormal basis, therefore
> i (i) o< 1p. Then, the reduced density matrix in this
caseoSO(]an%le]lL%J_ n

APPENDIX D: DISTRIBUTION OF CODEWORDS OF AN
MDS CODE INTO SUBSETS FORMING MDS CODES WITH
SMALLER PARAMETERS AND CORRESPONDING
AME STATES

Here we show how for ng < ¢ it is possible to find
MDS codes € = [na, [na/21], whose codewords can be
distributed into ¢> subsets each forming MDS codes
i = [na, [na/21 —2],. Then we present the AME states
AME(7, 4), AME(19, 17), and AME(21, 19).

First, we describe how the MDS code ¢ = [nd, [na/21],,
for ng < g can be obtained. In order to do so, we restrict
our analysis to the biggest size 4" = [q, [¢/2]],, as the other
codes can be constructed in the same way. As discussed in
Appendix A, in general, to find an MDS code [n, k], we need
to provide a suitable generator matrix Gy, = [1x|A]. To do
that, we first recall the concept of the so-called Singleton
arrays. Singleton arrays S, represent a special case of Cauchy
matrices [15, Chap. 11] and have the property that all its
square submatrices are nonsingular. It is known that for any
finite field GF (g), a Singleton array of size g can be found as
(see Ref. [17] and Table A2 of Ref. [14])

1 1 1 . 1 1 1
1 a) aj . ag—3 ag—2
1 ap as e ag—2

Sgr=i i n S . OD
1 ag-3 ag—2
1 ag—2

with
1
a; = ———, (D2)
1 —y!

where y is an element of GF (g) called primitive element. All
the nonzero elements of GF (g) can be written as some integer
power of y. It is also known that by taking a rectangular
submatrix A of size k x (n — k) of S; one can construct a
suitable generator of an MDS code [15, Chap. 11] [14].

Theorem 4. Let Gixp = [1i|Akxn—k)] be the generator ma-
trix of a code ¢ with parameters [n, k, dy],. The following
statements are equivalent:

(i) ¥ is MDS.

(i) Every square submatrix of A is nonsingular.

(iii)) Any k column vectors of Gy, = [1]A] are linearly
independent.

(iv) Any n — k column vectors of H,_z)x, = [—AT|1] are
linearly independent.

For g being an odd prime power dimension, the biggest
submatrix A has size [¢g/2] x [q/2]. Using this construction,
the biggest generator matrix Gy 21x(g+1) = [114/21|A] has size
[g/2] x (g + 1), and, equivalently, the MDS code has param-
eters C = [q + 1, [q/2]],.

Starting with the obtained code, there are several sim-
ple modifications to produce new codes with different pa-
rameters from the old one. One of these manipulations is

called puncturing [2,27,28], where from a given linear code
[n, k,dp], one can obtain a new code [n—1,k,dg — 1],
by deleting one coordinate. Considering this, we start from
an MDS code C =[g+1,[q/2]], and generator matrix
Grq/21x(g+1) = [L14/211Al and by puncturing we get

Lg/21-1

(D3)

Grg/21xq = Afq/21x1q/2]

0 0

This generator matrix is not in the standard form but it
constructs the MDS code ¢ = [g, [¢q/21],.

The second step is showing that codewords of the
constructed MDS code € =g, [¢/21]], distribute into
subsets forming MDS codes %; = [q, [¢] — 2],. In order to
do this, we first discuss another method of constructing new
codes from old codes, called shortening [2,27,28]. Following
this method, starting from a code [n, k, dy],, and by taking
an appropriate subcode after deleting one coordinate, a code
with parameters [n — 1, k — 1, d;; > dy], can be constructed.
This propagation rule will be useful several times in what
follows. We will take an appropriate subcode by choosing the

TABLE II. Codewrods of MDS code [5, 3, 3], are distributed
into ¢g*> = 16 subsets [5, 1, 5];. AME(7,4), Eq. (D11), formed by
concatenating codewords of one subset to one of the Bell states.

0 0 0 0 0 0 0 3 3 2
1 1 3 3 1 1 1 0 0 3
2 2 1 1 2 2 2 2 2 0
3 3 2 2 3 @ 3 3 1 1 1 @
0 0 1 1 3 0 0 2 2 1
1 1 2 2 2 1 1 1 1 0
2 2 0 0 1 2 2 3 3 3
3 3 3 3 0 P02 3 3 0 0 2 o3
1 0 3 2 3 1 0 0 1 1
0 1 0 1 2 0 1 3 2 0
3 2 2 3 1 3 2 1 0 3
2 3 1 0 0 ¢@o 2 3 2 3 2 on
1 0 2 3 0 1 0 1 0 2
0 1 1 0 1 0 1 2 3 3
3 2 3 2 2 3 2 0 1 0
2 3 0 1 3 o 2 3 3 2 1 o3
2 0 1 3 1 2 0 2 0 3
3 1 2 0 0 3 1 1 3 2
0 2 0 2 3 0 2 3 1 1
1 3 3 1 2 ©20 1 3 0 2 0 (53]
2 0 0 2 2 2 0 3 1 0
3 1 3 1 3 3 1 0 2 1
0 2 1 3 0 0 2 2 0 2
1 3 2 0 I on 1 3 1 3 3 on
3 0 2 1 2 3 0 1 2 0
2 1 1 2 3 2 1 2 1 1
1 2 3 0 0 1 2 0 3 2
0 3 0 3 I @3 O 3 3 0 3 3
3 0 3 0 1 3 0 0 3 3
2 1 0 3 0 2 1 3 0 2
1 2 2 1 3 1 2 1 2 1
0 3 1 2 2 P32 0 3 2 1 0 ¥33
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codewords which have all the same value in the deleted coordinate, for instance, 0. Thanks to this, all the differences between
codewords must be in the coordinates that we did not delete, and thus the Hamming distance cannot decrease, d;; > dy.
We first show the existence of a subset % and then we will discuss the rest of the subsets. We define the matrix Q as

1 0
argm 0
Org21x2 = : . (D4
ag—2 0
0 1

that contains two columns, called Q; and Q. The [¢/2] — 1 elements of Q) are exactly the same as for the ([g/2] + 1)-th
column of the Singleton array S,. The biggest rectangular submatrix of the singleton array S, is used to construct the generator
matrix Gpg/21x¢> EQ. (D3), and the ([g/2] + 1)-th column contains [g/2] — 1 many elements that we used as Q1 (we added a
zero for the last element). The column Q> is the only column of the matrix 1,27 that is missing in Gy4/21x4- Now, let us consider
the following matrix:

1 0
Lg/21-1 argp1 0
[G1Q]1g/m1xg+2) = Arg/21x7q/21 : E (D5)
ag—2
0 o 0 0 1

G is the generator matrix of the MDS code € = [q, [¢/21],. The matrix [G|Q] does not define an MDS code, Theorem 4 can
show that its parameters are € = [q + 2, [¢/2], l¢/2] + 2],. Now we repeat the shortening process two times to get the subset
%o. Every time we remove one of the last two columns of the [G|Q] matrix because G is the generator matrix of the code ¢ and
we are looking for a right set of its codewords to form the code %j. After one step shortening, removing the last row and the last
column of the [G|Q] matrix, we get

1 1 e 1

. ar ... g

Girgm-nxg+n = | Lrga-1 | . : . E (D6)
1 Aarg/21-2 . ag—2

Theorem 4 tells us that the above matrix is the generator matrix of an MDS code with parameters [g + 1, [¢/2] — 1],. To
perform the shortening process for the second time we need to find the right combination of rows of the generator matrix. To
that end we define the following matrix:

1

Lig/m-2 arg/2)

Cra/21-Dx(q/21-1) = (D7)

0 e 0 ag—2

We perform the C~! matrix on the generator matrix G to get the right combination of the rows of the generator matrix to do the
shortening process. We get

0
c'G= Lrg/m—2 C™'B o, (D8)
0 0 1
where B is a submatrix of G,
0 1 1 . 1
0 1 aq e Aarg/21-1
Brga1-nx(rq2141 = | 1! : : . (D9)
0 1 Aarg/21-3 . dg—4
1 Aarg/21-2 e ag-3
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Now the matrix C~'G is presented in a form in which the rows are in the right combination to easily perform the shortening
process. By removing the last row and the last column we get the following matrix of size([g/2] — 2) X g:

Go = | Lgm—2 D, (D10)

where Dfy/21-2)x(fq/21+1) = C~'B removing the bottom row, and Gy is the generator matrix of the shortened code, . We
performed a shortening that keeps or grows the Hamming distance. Since we started with a MDS code [g + 1, [¢/2] — 1],
thus the shortened code is an MDS code 4 = [q, [¢/2] — 2],. It is in fact easy to check that the Singleton bound continues
to saturate. Moreover, one verifies that the generator matrix Gy is a linear combination of the rows of the generator matrix
Grq/21x¢> Eq. (D3). This implies that the codewords of MDS code % are a subset of the codewords of the original MDS code

It remains to show that all of the codewords of the MDS code % can be distributed into subsets each forming 4; = [q, [¢/2] —
2],. So far we were able to show that ¢/?/?1=2 of its codewords distribute into an MDS code with parameters 6y = [g, [¢/2] —
2],. The fact that both MDS codes ¢ and % are linear codes implies the existence of the other subsets. Each of these subsets %;
can be achieved by adding a different codeword ¢; of code % that is not inside the code % to all the codewords of code %j.

Now let us consider some examples. The Cl + Q with repetition produces two unknown AME states, AME(19, 17) and
AME(21, 19), as well as provides a close formula for other known AME state like AME(7, 4). The state AME(7, 4) can be
constructed by using MDS code with parameters [5, 3, 3]4 and showing that all the terms can be divided into 4% subgroups each
forming an MDS code [5, 1, 5]4. Thus, the following closed form expression is an AME(7, 4)

lp) = Z li, j,Li+j+Li+xj+ 0400 @ap), (DI1)
i,j,leGF(4)

where ¢, represents one of the Bell states such that @ = i + j, 8 =i + x/ over finite field GF (4) = {0, 1, x, 1 + x} generated
by x? = x + 1. The detailed description of the subcodes [35, 1, 5]4 connected to the Bell states ¢, are presented in Table II. Note
that, in order to achieve the AME state, it is important to have different Bell states for different subclasses but the pattern of the
states is not important.

For the other two states, AME(19, 17) and AME(21, 19), we can only provide the closed form expressions of the AME states
|¢) with the G and Q matrices,

B)=Y_  13G) ¥0) . (D12)

BeGF (q)[4/2]
with

g—1
Wig) = X" @27 " |L.1) . (D13)
=0

The G and Q matrices to construct AME(19, 17) are as follows:

111 1 1 1 1 11
1 8 2 15 7 4 6 5 9
1 2 15 7 4 6 5 9 13
Tgxs 1 15 7 4 6 5 9 13 12
G = 1 7 4 6 5 9 13 12 14|, (D14)
1 4 6 5 9 13 12 14 11
1 6 5 9 13 12 14 11 3
1 5 9 13 12 14 11 3 16
0 ... 0|1 9 13 12 14 11 3 16 10
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and

To produce the state AME(21, 19) the G and Q matrices are

1 1 1
1 18 6
1 6 8
1 8 5
. Toyg 1 5 11
G= 1 11 3
1 3 16
1 16 7
1 7 10
| 0 0O[1 10 13
and
0=

10

13 0

2 0

14 0

T (D15)
30

16 0

10 0

0 1]

11 111 1T

§ S 11 3 16 7 10

5 11 3 16 7 10 13

11 3 16 7 10 13 4

3016 7 10 13 4 17

6 7 10 13 4 17 9| (D16)
7 10 13 4 17 9 15

0 13 4 17 9 15 12

3 4 17 9 15 12 14

4 17 9 15 12 14 2|

107

13 0

4 0

17 0

9 0

R (D17)
2 0

14 0

2 0

0o 1]

Both AME states are constructed using G matrices that generate MDS codes [g, [¢/21],, for g = 17 or 19, respectively, whose
codewords are distributed into subsets each forming MDS codes [g, [¢/2] — 2],. We found the right combination of the MDS

codes, or alternatively the G and Q matrices, using a Python code.
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