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The emergence of synchronization in systems of coupled agents is a pivotal phenomenon in physics, biology,
computer science, and neuroscience. Traditionally, interaction systems have been described as networks, where
links encode information only on the pairwise influences among the nodes. Yet, in many systems, interactions
among the units take place in larger groups. Recent work has shown that the presence of higher-order interactions
between oscillators can significantly affect the emerging dynamics. However, these early studies have mostly
considered interactions up to four oscillators at time, and analytical treatments are limited to the all-to-all
setting. Here, we propose a general framework that allows us to effectively study populations of oscillators
where higher-order interactions of all possible orders are considered, for any complex topology described by
arbitrary hypergraphs, and for general coupling functions. To this end, we introduce a multiorder Laplacian
whose spectrum determines the stability of the synchronized solution. Our framework is validated on three
structures of interactions of increasing complexity. First, we study a population with all-to-all interactions at all
orders, for which we can derive in a full analytical manner the Lyapunov exponents of the system, and for which
we investigate the effect of including attractive and repulsive interactions. Second, we apply the multiorder
Laplacian framework to synchronization on a synthetic model with heterogeneous higher-order interactions.
Finally, we compare the dynamics of coupled oscillators with higher-order and pairwise couplings only, for a
real dataset describing the macaque brain connectome, highlighting the importance of faithfully representing the
complexity of interactions in real-world systems. Taken together, our multiorder Laplacian allows us to obtain a
complete analytical characterization of the stability of synchrony in arbitrary higher-order networks, paving the
way toward a general treatment of dynamical processes beyond pairwise interactions.
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I. INTRODUCTION

The emergence of order in populations of interacting
oscillators—a phenomenon known as synchronization—is
ubiquitous in natural and man-made systems [1,2]. Typical
examples of synchronization include the flashing of fireflies,
or the clapping of an audience. In the last decades, synchro-
nization has been the subject of intense research, and it has
been applied to a wide range of areas, including neuroscience
[3], circadian rhythms [4], or the cardiovascular system [5,6].
In particular, much attention has been devoted to unveiling
the relationship between the structure of the network of in-
teractions and the emerging collective behavior [7,8]. As an
outcome of these investigations, noticeable examples include
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the discovery of abrupt synchronization induced by degree-
frequency correlation [9], and cluster synchronization induced
by structural symmetries [10].

Most interacting systems have so far been represented as
networks, a collection of nodes and links describing rela-
tionships and influences between them at the level of pairs.
However, many real-world systems are better modeled by
including higher-order interactions, i.e., interactions between
more than two nodes at a time [11]. A typical example is
that of human collaborations, which often occur at the level
of groups. In this case, a traditional network representation
is misleading, as it would associate the same structure—a
triangle—both with the case of a triplet of people collaborat-
ing on a single task, and with the case of three individuals
collaborating as three distinct pairs in different projects. This
indistinguishability can be solved by making use of higher-
order network representations, such as hypergraphs [12] and
simplicial complexes [13]. A stream of research has recently
focused on correctly characterizing the structure of systems
with higher-order interactions [14–20]. Interestingly, consid-
ering this additional level of complexity sometimes leads
to changes in the emerging dynamics of complex systems,
including social contagions [21,22], activity-driven models
[23], diffusion [24,25], random walks [26,27], and evolution-
ary games [28].
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Higher-order interactions can influence the nature of the
dynamics also for systems of coupled oscillators. A few
studies have recently investigated their effect experimentally
[29,30], and from a network inference point of view [31–33].
From a theoretical point of view, higher-order interactions
were considered in the context of global nonlinear coupling
[31] and multipopulation resonance [34], they were shown
to arise from phase reduction beyond the first approxima-
tion [30,35–38], and they can facilitate chaotic behavior [35]
and other exotic dynamical regimes [30]. The Kuramoto
model, where phase oscillators interact in pairs, is often in-
voked as the most simple way to describe the emergence
of synchronization in a population of interacting nodes with
local dynamics. Only a few works have so far considered
higher-order generalizations [39–42], showing the promotion
of cluster synchronization [39–41] and explosive transitions
[41,42]. Yet, for all these studies, analytical insights are
limited to all-to-all coupling settings, disregarding the rich ar-
chitecture of interactions of real-world systems. Interestingly,
a different type of model was introduced in [43], where a
Kuramoto phase oscillator is associated with each simplex.

In this work, we provide a full analytical treatment for
synchronization in a population of coupled oscillators where
arbitrary higher-order interactions of all orders are possible.
To this end, we study a generalization of the Kuramoto model
of identical phase oscillators to general group interactions.
These can be conveniently described by hypergraphs, in the
most flexible mathematical representations of higher-order
interactions, which also generalize other commonly used
formalisms, such as simplicial complexes. For this model,
we show that the stability of the fully synchronized state
is determined by the eigenvalues of a newly defined multi-
order Laplacian, which takes into account the higher-order
complex topology of interactions. We validate this Lapla-
cian framework on several toy models describing higher-order
interactions of increasing complexity. First, we investigate
all-to-all interactions at all orders, for which the eigenvalues
can be derived fully analytically. We further characterize this
system by considering three subcases: (i) attractive coupling
only, (ii) interplay between attractive and repulsive orders, (iii)
and decaying coupling strength (that we link to higher-order
phase reduction studies). We confirm our analytical findings
with numerical simulations. Second, we consider the star-
clique model, a toy model specifically generated to highlight
some simple spectral properties of the multiorder Laplacian.
Finally, we investigate the effect of higher-order interactions
on synchronization on a real macaque brain dataset. Taken
together, our work sheds new light on the effect of higher-
order interactions in a population of coupled oscillators, and
it unveils how new emergent phenomena can be captured
analytically through the introduction of a suitable Laplacian
framework, which naturally generalizes the traditional ap-
proach to networks beyond pairwise interactions.

II. GENERALIZED HIGHER-ORDER INTERACTIONS

We study the effect of higher-order interactions in a pop-
ulation of N identical phase oscillators. Specifically, we
consider the dynamics of oscillators with the most general
topology describing many-body interactions of any order d =

1, . . . , D,

θ̇i = ω + γ1

〈K (1)〉
N∑

j=1

Ai j sin(θ j − θi )

+ γ2

2!〈K (2)〉
N∑

j,k=1

Bi jk sin(θ j + θk − 2θi )

+ γ3

3!〈K (3)〉
N∑

j,k,l=1

Ci jkl sin(θ j + θk + θl − 3θi )

+ · · ·

+ γD

D!〈K (D)〉
N∑

j1,..., jD=1

Mi j1,..., jD sin

(
D∑

m=1

θ jm − D θi

)
,

(1)
a natural generalization of the Kuramoto model, where ω is
the natural frequency of each oscillator, γ1, γ2, . . . , γD are
the coupling strengths at each order, the 〈K (1)〉, . . . , 〈K (D)〉
are the average degrees at order 1, . . . , D [explicitly defined
in Eq. (4)], and the adjacency tensors M determine the
topology. Just like Ai j = 1 if there is a pairwise interaction
(i, j) but 0 otherwise, Bi jk = 1 if there is a triplet interaction
(i, j, k) but 0 otherwise, and similarly for all orders. Note that
the interactions are assumed undirected, i.e., the adjacency
tensors are invariant under any permutation of their indices.
These adjacency tensors encode the most general topology
of higher-order interactions that can be formalized as
hypergraphs or simplicial complexes, for example. The
largest value that D can take is N − 1, which corresponds
to N-oscillator interactions, the highest order possible.
The general interaction scheme of (1) is illustrated with
an example in Fig. 1. There, a three-oscillator interaction
is represented by a 2-simplex, and any (d + 1)-oscillator
interaction is represented by a d-simplex (also called a
simplex of order d), as illustrated in Fig. 1(b). Figure 1(c)
shows a visualization of each pure order d .

The sinusoidal coupling functions are chosen as a natural
generalization of those used in the Kuramoto model: when de-
scribing the dynamics of oscillator i, they are symmetric with
respect to i, meaning that any permutation of the other indices
leaves them invariant. Even when restricting ourselves to 2π -
periodic functions that vanish when oscillators are identical,
there exist more choices at larger orders. At order 2, for ex-
ample, the only other choice is sin(2θ j − θk − θi ), used, e.g.,
in [42]. All these other choices are discussed in Appendix B
and do not affect the generality of our framework. For the
sake of clarity of our presentation, however, we do not in-
clude them earlier. Sinusoidal couplings naturally arise when
applying phase reduction to more realistic nonlinear models,
for the Kuramoto model at first order, but also at higher orders
[35,38], e.g., for nanoelectromechanical oscillators [30].

A few studies have investigated systems similar to (1)
analytically, but only in all-to-all schemes [39–42,44]. In-
sights into complex topologies, for instance the onset of
synchronization [42], have so far been limited to numerical
simulations, and a formal description of the process is still
an open problem. In Sec. III A, we introduce an analytical
framework that allows us to overcome current limitations
and investigate arbitrarily complex topologies. Such general
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FIG. 1. Population of oscillators with higher-order interactions on simplicial complexes. (a) Example of simplicial complex of oscillators:
the red node has higher-order interactions of orders up to 3 (4-oscillator) with the other oscillators. (b) Here, the building blocks of the
higher-order interactions consist in edges (1-simplices), triangles (2-simplices), and tetrahedra (3-simplices). A d-simplex represents a (d + 1)-
oscillator interaction. (c) The simplicial complex (a) can be decomposed into its pure d-simplex interactions: the red node has seven 1-simplex
interactions (blue), four 2-simplex interactions (orange), and one 3-simplex interaction (green), but no 4- or more simplex interactions. In (a),
the faces of the tetrahedra belong to 2-simplices (orange) and to a 3-simplex (green) so that they are depicted in gray.

patterns are formalized as hypergraphs, which are the mathe-
matical structures that allow for the most general encoding of
higher-order interactions. These include—but are not limited
to—simplicial complexes, more constrained higher-order rep-
resentations where a group interaction of order d requires all
its lower order subgroup interactions, illustrated in Fig. 1 for
model (1).

For the introduced model (1), the existence of the fully syn-
chronized state, θi = θ j for all i and j, is trivially guaranteed
and implies the solution θi(t ) = ωt . In this paper, we focus on
the stability of that fully synchronized state. For convenience,
we start by going to the rotating reference frame ψi = θi − ωt .
This is equivalent to applying the transformation θi �→ ψi

and ω �→ 0 to the original system (1). In this new reference
frame, the synchronized solution is given by ψi(t ) = 0 for all
i = 1, . . . , N .

The linear stability of the synchronized state is determined
by the dynamics of heterogeneous perturbations δψi(t ), which
satisfy the linearized dynamics

δψ̇i = + γ1

〈K (1)〉
N∑

j=1

Ai j (δψ j − δψi )

+ γ2

2!〈K (2)〉
N∑

j,k=1

Bi jk (δψ j + δψk − 2δψi )

+ γ3

3!〈K (3)〉
N∑

j,k,l=1

Ci jkl (δψ j + δψk + δψl − 3δψi )

+ · · ·

+ γD

D!〈K (D)〉
N∑

j1,..., jD=1

Mi j1,..., jD

(
D∑

m=1

δψ jm − D δψi

)
.

(2)

These equations are straightforwardly obtained by lineariz-
ing system (1). It is worth noticing, however, that the same
equations could also be derived by assuming a different (not
necessarily sinusoidal) shape of the coupling functions in the
original system, via the linearization mechanism. For net-
works with pairwise interactions only, the dynamics of those
perturbations—and hence the stability of the system—is typi-
cally assessed by using the so-called Laplacian formalism. In
the next section, we see how we can characterize the stability
of system (1) with higher-order interactions up to any order d
by extending the traditional Laplacian formalism to systems
with any type of higher-order interactions.

III. MULTIORDER LAPLACIAN

Different generalizations of the Laplacian operator have
been proposed so far in the literature to include higher or-
ders of interactions: from the simplest versions for uniform
hypergraphs [45,46], to those more complicated associated
with simplicial complexes [47–49] and Hodge Laplacians
[25,50], to mention a few. Let us notice that these Laplacians
describe the hierarchy among building blocks of the topology,
and different orders are associated with Laplacian matrices of
different sizes, where the order zero is the traditional node
point of view; the first order represents the edge perspective
where the Laplacian size is equal to the number of pairwise
connections, and each entry is associated with edge adjacency;
the second-order Laplacian has a different size again, being
based on the existing triangles, and so on.

Here, we propose a multiorder Laplacian: an operator that
generalizes the typical pairwise Laplacian framework and
allows us to analytically describe the effect of higher-order
couplings on node oscillatory dynamics for any simplicial
interactions. This is different from the previously defined
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Laplacians, where interactions between, e.g., triangles, are
seen from the point of view of triangles and not from the point
of view of the nodes in those triangles.

First, we show that each d-simplex interaction term in
Eq. (2) can be written in terms of a generalized Laplacian of
order d . Second, we display how the full system (2) can be
written in terms of a multiorder Laplacian.

A. Laplacian

We introduce a generalized Laplacian of order d ,

L(d )
i j = dK (d )

i δi j − A(d )
i j , (3)

with the Kronecker delta δi j , and where we have defined at or-
der d the degree K (d )

i , i.e., the number of distinct d-simplices
that node i is part of, and the adjacency matrix A(d )

i j , i.e., the
number of distinct d-simplices that the pair of nodes (i, j) is
part of,

K (d )
i = 1

d!

N∑
j1,..., jD=1

Mi j1... jD , (4)

A(d )
i j = 1

(d − 1)!

N∑
j2,..., jD=1

Mi j1... jD . (5)

Note that these definitions are natural generalizations of their
pairwise counterparts to which they reduce when d = 1. This
newly defined Laplacian can be shown to have the expected
properties of a standard Laplacian matrix: it is symmetric, and
its rows sum to zero. Moreover, its eigenvalues are all non-
negative, as we shall see in the next section.

With those quantities, each term of the linearized equation
(2) can be rewritten as

δψ̇i = − γd

〈K (d )〉
N∑

j=1

L(d )
i j δψ j (6)

as shown in detail in Appendix A. We now have all the
ingredients to treat oscillators at each order of interaction and
build a multiorder Laplacian.

1. Multiorder interactions

We go back to our original system (1), with interactions
at orders d = 1, . . . , D combined. We know that the stability
of the synchronized solution of system (1) is determined by
system (2), which we now can write

δψ̇i = −
N∑

j=1

L(mul)
i j δψ j, (7)

where we have defined

L(mul)
i j =

D∑
d=1

γd

〈K (d )〉L(d )
i j , (8)

the multiorder Laplacian L(mul)
i j as a weighted sum of the

Laplacian matrices of order d . The weight given to each order
is proportional to γd , and normalized by the average degree
of order d . Hence, by definition, the multiorder Laplacian
gives an equal weight to each order, even if the network

contains more, say, 2-simplices than 5-simplices. Notice that
this normalization is not included in the definition of Lapla-
cians of pure order d . This newly defined Laplacian reduces
to the usual operator when D = 1, i.e., when only pairwise
interactions are taken into account. Finally, we note that L(mul)

i j
depends on D, whose maximum value is limited by the net-
work size, since when D = N − 1, all possible orders are
considered.

In this section, our generalized framework showed us two
things. First, how to rewrite interactions at each order with a
Laplacian matrix L(d )

i j of order d . And second, how to rewrite
the full system, including all higher-order interactions, with a
multiorder Laplacian matrix L(mul). Additionally we showed
how the latter matrix is just a weighted sum of the former
matrices.

So far, we have an analytical expression for the Laplacian
matrix of a given simplicial complex. It is the eigenvalues of
this Laplacian that quantify the stability or instability of the
synchronized state of the system. We note that, even though
the multiorder Laplacian is the weighted sum of each Lapla-
cian of order d , its eigenvalues cannot be obtained in general
as a linear combination of the Laplacians at each order d , as
the eigenvalue operator is nonlinear. In general, we need to
numerically compute the eigenvalues of the Laplacian. While
this is generally true, special cases exist where the eigenvalues
can nonetheless be summed and the system characterized in a
fully analytical manner. We present such a case in Sec. IV.

Before this, let us make a short didactic digression and step
back to analyze the pure order 2. We show the details of the
Laplacian derivation in this specific case and leave those for
order 3 and d in Appendix A.

2. Pure 2-simplex interactions

We now rewrite the three-oscillator interaction term in
Eq. (2), i.e., those interactions represented by filled orange
triangles in Fig. 1, with our Laplacian framework. The first
simple mathematical step represents an important point of the
derivation, allowing us to write the 2-simplex interaction of
three phases as two identical terms of the difference of only
two phases:

δψ̇i = γ2

2!〈K (2)〉
N∑

j,k=1

Bi jk (δψ j + δψk − 2δψi )

= γ2

〈K (2)〉
N∑

j,k=1

Bi jk (δψ j − δψi ), (9)

by using the symmetry Bi jk = Bik j and using (δψ j + δψk −
2δψi ) = (δψ j − δψi ) + (δψk − δψi ). The phase difference in
expression (9) is similar to the pairwise case, and this al-
lows us to naturally generalize the Laplacian formalism to
2-simplex interactions.

Indeed, the 2-degree K (2)
i of node i, i.e., the number

of distinct 2-simplices that node i is part of, is K (2)
i =

1
2!

∑N
j,k=1 Bi jk , where the factor 2! ensures each 2-simplex is

counted only once. For example, in Fig. 1(a), the red node has
a degree of order 2, K (2)

i = 4. The adjacency matrix of order 2,
whose entries A(2)

i j represent the number of 2-simplices shared
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by the pair (i, j), is A(2)
i j = ∑N

k=1 Bi jk , which is a natural gen-
eralization of the usual pairwise adjacency matrix A. Indeed,
just as Ai j = 1 if i and j are part of a common 1-simplex
interaction but 0 otherwise, A(2)

i j = n if i and j are part of n
common (but distinct) 2-simplex interactions, but 0 otherwise.

With these definitions in hand, we can now perform the
second important step of our procedure, which will take us
straight to the Laplacian. We rewrite the 2-simplex interaction
term (9) as follows:

δψ̇i = γ2

〈K (2)〉
N∑

j,k=1

Bi jk (δψ j − δψi )

= γ2

〈K (2)〉

[
N∑

j=1

A(2)
i j δψ j − δψi2!K (2)

i

]

= γ2

〈K (2)〉
N∑

j=1

[
A(2)

i j − 2K (2)
i δi j

]
δψ j

= − γ2

〈K (2)〉
N∑

j=1

L(2)
i j δψ j, (10)

where we obtained the last line by defining the Laplacian
of order 2 as in Eq. (3), as a natural generalization of the
usual pairwise Laplacian. With Eq. (10), we have explicitly
shown the link between the structure of the 2-simplex in-
teractions and the dynamics of the oscillators by casting it
into a Laplacian form. Notice that the two essential analytical
steps that allowed us to write the Laplacian of order 2 can be
straightforwardly generalized at each order. In Appendix A,
we show the same procedure for order 3 and generic order d .

It is important to mention another relevant feature of our
formalism. In Eq. (1), we considered the interactions at or-
ders higher than 1 occurring by means of coupling functions
designed to be natural generalizations of that at the first order.
Specifically, we chose sinusoidal functions that are symmetric
with respect to index i and vanish at synchronization. We
note here that this two-step derivation above also allows us
to treat any other such choice of coupling function, as shown
in Appendix B. Indeed, by performing the same first step,
one notices that terms that do not contain the phase i vanish,
and the terms left yield a fraction c0/d of the Laplacian of
order d , where c0 is the integer coefficient that multiplies
θi in the coupling function. Physically, this means that these
other choices, which arise naturally in phase reduction studies
beyond the first approximation (see, e.g., Refs. [37,38]), show
a slower convergence to synchronization.

B. Stability and Lyapunov exponents

We are finally able to study the stability of our system of
oscillators. The synchronized state is stable if the perturbation
δψi on each node i converges to zero.

Let us first consider pure d-simplex interactions. To this
end, we need to solve Eq. (6) to obtain the temporal evolu-
tion of the perturbation. To do so, we can make use of the
Laplacian eigenvalues �(d )

α and eigenvectors φ(d )
α defined by∑N

j=1 L(1)
i j (φ(d )

α ) j = �(d )
α (φ(d )

α )i, with α = 1, . . . , N . Indeed,

this eigenbasis can be used to project the perturbation vec-
tor δψi(t ) = ∑N

α=1 cα exp(λ(d )
α t ) φ(d )

α , where the cα are real
constants. By plugging this solution into system (6), we can
decouple our system of N equations and obtain the N Lya-
punov exponents of the synchronized state

λ(d )
α = − γd

〈K (d )〉�
(d )
α . (11)

The Lyapunov exponents are a measure a stability: the sys-
tem with pure d-simplex interactions is stable if all values
λ(d )

α are negative, so that the perturbations δψi tend to zero
over time. By convention, the Lyapunov exponents are or-
dered: λ

(d )
1 � λ

(d )
2 � · · · � λ

(d )
N . The Laplacian eigenvalues

are non-negative by definition so that if all γd > 0 (attractive
coupling), the synchronized state is always stable up to a
global phase shift: 0 = λ

(d )
1 > λ

(d )
2 .

In the multiorder system (7), the stability of the syn-
chronized equilibrium is determined by the interplay of all
different orders, as encoded in the multiorder Laplacian. We
can then analogously use the spectrum and eigenbasis of
L(mul), hence obtaining the N Lyapunov exponents

λ(mul)
α = −�(mul)

α . (12)

The Laplacian eigenvalues are non-negative by definition so
that if all γd > 0 (attractive coupling), the synchronized state
is always stable. The Lyapunov exponent determines the long-
term behavior of the second Lyapunov exponent, λ

(mul)
2 , i.e.,

the smallest nonzero one. Its value determines the resilience
of the system to perturbations, i.e., how fast the system comes
back to the stable state after a perturbation. In particular, the
more negative the λ

(mul)
2 is, the more stable is the synchronized

state.

IV. STABILITY IN ALL-TO-ALL HIGHER-ORDER
NETWORKS

In this section, we analyze a simple case—dubbed higher-
order all-to-all—which can be solved analytically. This
setting is a generalization of the usual “all-to-all” (or global)
coupling scheme in traditional networks. Indeed, in networks
with pairwise interactions, all-to-all coupling indicates that
every possible pairwise interaction takes place. Similarly, in
a network with higher-order interactions, higher-order all-to-
all indicates that every possible (d + 1)-oscillator interaction
occurs, for all orders d .

This setting is the only one that has been studied analyti-
cally, with a main focus on cluster states. In this homogeneous
case, each term of order d in the original system (1) can be
written in terms of the order parameter amplitude R1 and its
phase �1 as, up to a normalization factor,

θ̇i = γd Rd
1 sin[d (�1 − θi )] = γd Im

[
Zd

1 e−iθi
]
, (13)

which makes apparent the driving by the mean field that is
now nonlinear. Effectively, each oscillator is driven by the
same mean field with strength Rd

1 and with a dth harmonic.
Pure harmonics are known to yield stable cluster states, which
can be checked via a self-consistency argument. If we take
d = 2, then Eq. (13) has two stable fixed points with distance
π , and that two-cluster state has R1 > 0, which keeps driving
the system.

033410-5



LUCAS, CENCETTI, AND BATTISTON PHYSICAL REVIEW RESEARCH 2, 033410 (2020)

These considerations were used in [41] for the pure triplet
case to study cluster states and abrupt transition in the thermo-
dynamic limit. Still in the pure triplet case, Ref. [40] shows
that although the incoherent state is stable in the thermo-
dynamic limit, finite-size effects can destabilize it and yield
cluster states. In [42], the authors, combining interactions of
orders up to 4, unveiled the emergence of an abrupt transi-
tion to synchronization in the thermodynamic limit. Finally,
in [44], the authors extended the Watanabe-Strogatz low-
dimensional description to any pure higher harmonics l for the
general system θ̇i = ω + Im[He−ilθi ], where H is a function
of the generalized order parameters, which can take the form
(13) and yield higher-order interactions of any order. With
their framework, the authors tracked the basins of attraction
of the clusters in cluster states. While this treatment does not
focus primarily on higher-order interactions, it can be related
via the nonlinear mean-field coupling.

Here, in contrast with these studies, we focus on the
stability of full synchrony and provide a full analytical de-
scription of its spectrum. In addition, we investigate the effect
considering a variable number of orders, mixing attractive
and repulsive couplings, and decaying coupling strengths as
observed in phase reduction studies. In particular, we show
that, due to the absence of complex topology, the Lyapunov
spectrum of the full system reduces to a linear combination
of those at each pure order. We remark that this is not true
in complex topologies, for which the aggregated spectrum is
determined by a nonlinear combination of each order.

A. Higher-order Laplacians are proportional to the traditional
pairwise Laplacian

We now show that at each order d , the higher-order all-
to-all Laplacian L(d ) is proportional to the usual pairwise
all-to-all Laplacian L(1), defined by L(1)

i j = K (1)
i j δi j − A(1)

i j .
Consequently, since the analytical spectrum of the latter is
known, the analytical spectrum of L(d ) can also be obtained,
and in turn, that of L(mul).

First, we need to explicitly write down our degree and ad-
jacency matrices defined in general in Eqs. (4) and (5). In the
all-to-all case, the degree reduces to K (d )

i = ( N−1
d ), in combi-

natorics notation. This, for order 1, yields the usual K (1)
i =

N − 1. The adjacency matrix reduces to A(d )
i j = ( N−2

d−1 )(1 −
δi j ), which yields the usual A(1)

i j = 1 − δi j at order 1. Addi-
tionally, the following identities will prove useful in the next
section to relate the quantities at order d to their traditional
counterparts (at order 1),

A(d )
i j = [(N − 2) · · · (N − d )/(d − 1)!] A(1)

i j , (14)

K (d )
i = [(N − 2) · · · (N − d )/d!] K (1)

i . (15)

Now that we have these expressions, we have all we need to
write an explicit formula for the multiorder Laplacian (3) in
the next section. In the higher-order all-to-all setting, all nodes
have the same degree of order d . Hence, in this section, we
write K (d )

i and K (d ) interchangeably. More details are provided
in Appendix C.

1. Pure d-simplex interactions

For the general case of order d , analogously injecting ex-
pressions (14) and (15) into definition (3) yields

L(d )
i j = dK (d )

i δi j − A(d )
i j ,

= [(N − 2) · · · (N − d )/(d − 1)!]
[
K (1)

i δi j − A(1)
i j

]
,

= [(N − 2) · · · (N − d )/(d − 1)!] L(1)
i j , (16)

which can be rewritten

L(d )
i j = d K (d )

N − 1
L(1)

i j . (17)

Hence, we have shown that the Laplacian of order d is pro-
portional to the usual pairwise Laplacian for any order d . In
addition, Eq. (17) indicates that L(d )

i j is linearly growing with
the order of the interactions d , and with K (d ), which is the
number of d-simplex interactions that each oscillator has.

We will discuss the implications that these dependencies
have on the stability in more detail in Sec. IV B. For now,
we only stress that the analytical formula (17) serves as a
limit case to understand the behavior of L(d )

i j in more complex
coupling schemes than the higher-order all-to-all scheme. Ex-
amples of those will be investigated in Sec. V, in which a full
analytical derivation is not always possible.

2. Multiorder interactions

Oscillators in the higher-order network have multioscilla-
tor interactions with the other oscillators at all orders d =
1, . . . , D. In general, the stability of the synchronized solution
is determined by the eigenvalues of the multiorder Laplacian
L(mul), in Eq. (8), as we have shown in Sec. III A. In the higher-
order all-to-all setting, by injecting Eq. (17), this Laplacian
reduces to

L(mul)
i j =

(
D∑

d=1

γd d

N − 1

)
L(1)

i j . (18)

Hence, the stability of the synchronized solution is only
determined by the usual pairwise Laplacian, as well as by the
strength γd of each interaction of order d , and by the order d
of those interactions. We give the full analytical spectrum of
L(mul) for the higher-order all-to-all case in the next section.
We will see that, as a consequence of the proportionality be-
tween L(d )

i j and L(1)
i j , the multiorder eigenvalue spectrum is just

a linear combination of the spectra at each order. However,
this is only true in the all-to-all scheme, which overlooks the
complexity of real-world topologies.

B. Spectrum and stability

In this section, we give an analytical formula for the eigen-
values of the higher-order all-to-all Laplacian matrix, and
consequently for the Lyapunov exponents that determine the
stability of the synchronized solution. We remind the reader
that the attractiveness or repulsiveness of interaction at a given
order d is determined by the sign of the coupling strength
γd : positive and negative coupling strengths correspond to
attractive and repulsive interactions, respectively. We consider

033410-6



MULTIORDER LAPLACIAN FOR SYNCHRONIZATION IN … PHYSICAL REVIEW RESEARCH 2, 033410 (2020)

FIG. 2. Higher-order all-to-all: attractive coupling. Higher-order interactions increase the stability of synchronization. Synchronization of
N = 100 oscillators over time with (a) only 1-simplex (2-oscillator) interactions and (b) only 2-simplex (3-oscillator) interactions, obtained
by numerical integration. The oscillators with only 2-simplex interactions synchronize faster than those with only 1-simplex ones. This is
confirmed by (c): the analytical second Lyapunov exponent λ

(d )
2 of Eq. (21) as a function of network size N , at each order d = 1, . . . , 4. The

Lyapunov exponent is more negative for larger orders d of interaction. (d) Lyapunov exponent of the full system, as a function of D, the largest
order taken into account. The higher the order of interactions taken into account, the more negative the Lyapunov exponent is, i.e., the most
stable the synchronized state is. Parameters are N = 100 and γd = 1 for all d .

different scenarios, where we tune at will the sign and inten-
sity of the coupling strengths γd .

1. Attracting couplings at all orders

We have shown in the previous section that the d-order
Laplacians are intrinsically connected to the usual pairwise
Laplacian L(1). Therefore, this latter shapes the Laplacian
spectrum at each order d , and consequently also at the mul-
tiorder. For higher-order all-to-all networks, the spectrum of
L(1) is degenerate and given by

�
(1)
1 = 0, �

(1)
2,...,N = N (19)

from which we derive the Lyapunov exponents of each
order d:

λ
(d )
1 = 0, λ

(d )
2,...,N = −γd d

N

N − 1
. (20)

The second Lyapunov exponent is reported in Fig. 2(c) for
different values of d as a function of network size N . It
appears clear that interactions of higher orders d stabilize the
synchronized state more (more negative λ

(d )
2 as d increases).

Interestingly, this is true despite each order being given an
equal weight through the normalization in system (1). This is
illustrated with numerical simulations for the pure orders d =
1 and 2, respectively, shown in Figs. 2(a) and 2(b). Indeed,
trajectories converge faster with pure 2-simplex interactions
than with pure pairwise ones.

Then, combining all orders, we obtain the multiorder Lya-
punov exponents

λ
(mul)
1 = 0, λ

(mul)
2,...,N = − N

N − 1

D∑
d=1

γd d. (21)

From this formula, we see that the more orders are taken
into account, i.e., the more D is increased, the more negative
λ

(mul)
2 is, as shown in Fig. 2(d). Physically, additional attractive

higher-order interactions tend to stabilize the synchronized
state, as expected.

2. Attractive even orders and repulsive odd orders

Here, we apply our analytical framework to investigate the
interplay between attractive and repulsive interactions. For
simplicity, we study the case where attractive and repulsive
relationships are associated with different interaction orders.
Mixing attractive and repulsive couplings has been previously
investigated, motivated by, e.g., analogies with inhibitory and
excitatory connections between neurons [51].

First, we restrict ourselves to only 1-simplex (2-oscillator)
and repulsive 2-simplex (3-oscillator) interactions. Depend-
ing on the sign of γ1, 1-simplex interactions are attractive
(γ1 > 0) or repulsive (γ1 < 0). The attractiveness or repul-
siveness of 2-simplex interactions depends identically on the
sign of γ2. Physically, attractive interactions favor synchro-
nization by stabilizing the synchronized state. By contrast,
repulsive interactions will favor incoherence by destabilizing
the synchronized state. The result of this interplay between
the interactions at various orders depends on the respective
coupling strengths γd : λ

(mul)
2 = − N

N−1 (γ1 + 2γ2), which is

negative if γ1 + 2γ2 > 0. The value of λ
(mul)
2 is shown in

Fig. 3(c) for a range of positive and negative values of γ1

and γ2. We see that synchronization can be stable even if
the traditional pairwise (1-simplex) interactions are repulsive,
as long as 3-oscillator (2-simplex) interactions are attractive
enough to counterbalance them, as illustrated in Fig. 3(a).
This highlights a potential benefit of considering higher-order
interactions: indeed they might stabilize the systems, in cases
when the purely pairwise system is unstable. This confirms
a similar result obtained in [41] for phase oscillators with
distributed frequencies. In addition, attractive pairwise inter-
actions might be outplayed by repulsive three-oscillators ones.
This can result in an unstable synchronized state, as illustrated
in Fig. 3(b).

Second, we generalize to all orders up to D with alternating
signs. Specifically, we consider all interactions of an even and
odd order d to be attractive and repulsive, respectively, by
setting

γ2n = −1, γ2n+1 = +1. (22)
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FIG. 3. Higher-order all-to-all: (a)–(d) interplay of attractive and repulsive coupling orders, and (e) decaying coupling strength. Phases over
time with (a) which synchronize even with repulsive 1-simplex interactions due to attractive 2-simplex interactions [γ1 = −0.5, γ2 + −0.5,
black plus in (c)], but do not synchronize with attractive 1-simplex interactions because of repulsive 2-simplex interactions [γ1 = +0.5,
γ2 = −0.5, black star in (c)]. Time series are numerically integrated on a simplicial complex of N = 100 nodes. (c) Analytical, nonzero,
multiorder Lyapunov exponent (with D = 2) for a range of 1- and 2-simplex coupling strengths (γ1, γ2). Positive and negative coupling
strengths correspond to attractive and repulsive coupling, respectively. Negative values (blue) and positive values (red) of λ

(mul)
2 indicate

instability and stability of the synchronized state, and confirm numerics in (a) and (b). The Lyapunov exponent vanishes when γ1 + 2γ2 = 0
(dashed black). (d) Analytical, nonzero, multiorder Lyapunov exponent as a function of the largest order taken into account, D, for attractive
and repulsive coupling at even and odd orders, respectively. The synchronized state changes its stability as higher orders are taken into
account. (c) Analytical, nonzero, multiorder Lyapunov exponent as a function of D for decaying coupling strengths γd = γ d

1 , with γ1 = 0.6.
The Lyapunov exponent converges to a negative value as higher-order interactions are taken into account.

Now, the Lyapunov exponent is given by the alternating series

λ
(mul)
2 = − N

N − 1

D∑
d=1

d (−1)d+1, (23)

which diverges as D → ∞ (which requires N → ∞). For
increasing but finite values of D, however, the Lyapunov
exponent alternates between positive and negative values, as
illustrated in Fig. 3(d). In other words, if the highest order of
interaction considered is odd, the synchronized state is stable.
However, if it is even, the synchronized state is unstable. This
is due to the fact that the contribution to λ

(mul)
2 of each order

d is proportional to d: adding one repulsive or attractive order
outplays all lower-order interactions. Finally, we note that the
factor N/(N − 1) → 1 in the limit of large networks N → ∞,
so that it can be seen as a finite-size correction factor.

3. Weaker higher orders: Link to phase reduction

Here, we make a brief link between our formalism and
the higher-order phase reduction approaches developed, for
example, in [33,35,36,38]. In these phase reduction studies,
the authors obtain a phase model from an original network of
nonlinear oscillators by performing a sophisticated perturba-
tive expansion in a small parameter. This small parameter is
usually linked to the original pairwise coupling strength γ1.
The authors find that, at higher orders in the expansion, i.e., at
higher powers of γ1, there appear terms including higher-order
interactions, i.e., interactions between more than two phases.

Motivated by these studies, we consider a scenario of de-
caying coupling strengths. Specifically, we set 0 � γ1 < 1,
and couplings at higher orders as powers of the pairwise
coupling strength

γd = γ d
1 , (24)

which means that interactions between many oscillators are
weak. In this case, the stability is given by the series

λ
(mul)
2 = − N

N − 1

D∑
d=1

d γ d
1 < 0. (25)

which is always negative, and hence the stability of the syn-
chronized state is ensured. In addition, this is a geometric
series that converges to −γ1/(γ1 − 1)2 when D (and hence N)
tends to infinity. This convergence is illustrated in Fig. 3(e).
Even though the qualitative result, i.e., stability, was expected
since interactions at all orders are attractive, such a quantita-
tive result has more predictive power. In particular, we note
that −γ1/(γ1 − 1)2 → −∞ as we go away from the domain
of validity of the perturbative regime γ1 → 1.

V. STABILITY IN HIGHER-ORDER NETWORKS WITH
ARBITRARY TOPOLOGY

In this section, we apply our multiorder Laplacian frame-
work to simplicial complexes with complex heterogeneous
structures. We consider two cases: first, a toy model—the star-
clique model—and second, a real network, i.e., a macaque
brain dataset.

A. The star-clique model

As a first example of complex topology with higher-order
interactions, we consider a toy model that we call star-clique
[27]. We make use of this model in order to observe in a
simple case the multiorder Laplacian properties and thus the
stability conditions for synchronization. The star-clique, as its
name indicates, is composed of two subnetworks: a star of
size Ns and a clique of size Nc, which we treat analogously to
a higher-order all-to-all network of size Nc from the previous
section. The subnetworks are connected only by one link
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FIG. 4. Synchronization in the star-clique simplicial complex (a) with Ns = 6 and Nc = 7. The highest-order of interaction is D = 6. In
the clique, faces are part of simplices of five different orders, and hence they are depicted in gray. (b) Lyapunov spectra for each case of pure
d-simplex interactions. (c) Lyapunov spectrum with higher-order interactions combined (black), γd = 1 for all d , compared to the traditional
pure 1-simplex case (blue).

from the center of the star to a single node of the clique,
as illustrated in Fig. 4(a). By construction of this simplicial
complex, the two subnetworks are almost disconnected, and
they work almost as two independent systems. We will see,
however, that at each pure order d � 2 the subnetworks are
actually disconnected. This allows us to use our analytical
understanding from the previous section to comprehend the
present case with complex topology.

We start by analyzing the structure of the 1-simplex in-
teractions. The Lyapunov spectrum of the pure 1-simplex
interactions is shown in blue in Fig. 4(b). The spectrum re-
flects the quasi-independence of the two subnetworks. Indeed,
since the star and the clique are almost independent, the
adjacency matrix Ai j is a slightly perturbed matrix with two
independent blocks, one for each subnetwork. The same holds
for the Laplacian matrix, and hence its eigenvalues and the
Lyapunov exponents. We know that the Ns Laplacian eigenval-
ues �(1)

α of a star network with pairwise interactions are given
by {0, 1, . . . , 1, Ns + 1}. We also know that the Nc Laplacian
eigenvalues �(1)

α of a pairwise all-to-all network are given by
{0, Nc, . . . , Nc}. Hence, the spectrum of N eigenvalues �(1)

α

of the 1-simplex Laplacian L(1) is the union of both spectra,
only slightly perturbed. This can be seen in Fig. 4(b) for the
Lyapunov exponents, i.e., scaled Laplacian eigenvalues (blue
symbols).

Moving to higher-order interactions, d � 2, the star and
the clique actually are disconnected. In fact, in these pure d-
simplex cases, there is no star, since it has no higher-order
interactions. Hence the higher-order Laplacians only “see” the
clique. This implies that the spectrum of L(2)

i j is the union of
Ns zeros and the spectrum of a higher-order all-to-all that we
derived analytically in the previous section: one element zero
and the others with value −γ22Nc/(Nc − 1). Analogously at
orders d higher than 2, the spectrum is given by Ns + 1 zeros
and Nc − 1 elements −γd dNc/(Nc − 1). See Fig. 4(b) for the
spectrum at different orders d .

For what concerns the spectrum of the total Laplacian,
it is not exactly the sum of the spectrum of order d , as in
the all-to-all case, but almost. Indeed, the only thing that
distinguishes it from the previous case is that the pairwise
Laplacian of the star-clique network is not composed of two
disconnected blocks, but almost. Let us observe that if the pure
orders d � 2 can be simply described by the all-to-all higher

order spectrum, the order d = 1 (traditional pairwise) and the
multiorder reflect the structure of the two almost disconnected
subgraphs, namely the star and the clique. Their spectrum is
compared in Fig. 4(c). It is important to notice that λ

(1)
2 and

λ
(mul)
2 are identical. The two spectra are, however, globally

different, and in particular λ
(1)
N and λ

(mul)
N have very differ-

ent values, suggesting that in the repulsive case (all γd < 0)
the two Laplacians would yield dynamics with very different
timescales.

B. Real network: Macaque brain

In this section, we demonstrate the use of our multiorder
Laplacian framework on a real dataset. We use a macaque
brain dataset publicly available at [52], consisting of 91 nodes
and 628 edges. The nodes represent cortical areas, and the
edges represent links among those, experimentally determined
by retrograde tracing [53]. We assume that each fully con-
nected (d + 1)-node clique captures multiorder interactions
that can be described as a d-simplex, and we study the dy-
namics of (1) on top of the resulting simplicial complex.
The obtained simplicial complex as it appears at orders 1,
4, and 9 is depicted in Figs. 5(a)–5(c), respectively. A whole
spectrum of models of coupled oscillators has been used to
study the synchronization of neurons in the brain. Here we do
not intend this to be a realistic model of a functional brain,
but rather we use this dataset as an empirical basis to test
our theoretical toy model of synchronization in systems with
higher-order interactions. While there are clear limitations in
applying extremely simplified neuronal models to capture real
brain dynamics, idealized phase models are still interesting, as
they can sometimes capture well more realistic dynamics such
as integrate-and-fire ones [54].

The full distribution of the number of d-simplices present
in the simplicial complex is shown in Fig. 5(a). The highest or-
der of interaction is 10. As expected, the distribution follows a
bell curve: the simplicial complex contains fewer than 1000 1-
simplices, i.e., 2-oscillator interactions, and 10-simplices, i.e.,
11-oscillator interactions, but it has over 6000 5-simplices.
In addition to the distribution of d-simplices across orders
d , the dynamics is affected by the structure of the d-simplex
interactions at each order d . Specifically, we wonder how 1-,
2-, ..., and d-simplices are distributed among nodes. It turns
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FIG. 5. Real macaque brain dataset: structure and dynamics. Panels (a), (b), and (c) depict the simplicial complex as it appears at orders
d = 1, 4, and 9, respectively, and they report the associated distributions of degree K (d )

i across nodes. At each order, most nodes have zero or
few interactions, but a few nodes have many. (d) Number of d-simplices in the simplicial complex for each d . The highest order of interaction
in the network is D = 10. (e) Lyapunov spectra with only 1-simplex interactions, and with higher-order interactions (with d up to D = 4).
(f) Comparison of the Lyapunov spectra: multiorder (black) and projected graph (blue), i.e., D = 1. The spectrum is affected by higher-order
interactions.

out that at each order d , the interactions are very centralized:
only few nodes have many d-simplex interactions, whereas
the majority of the nodes have very few or no d-simplex
interaction at all. This is shown for orders 4 and 9 in Figs. 5(b)
and 5(c), respectively. The higher the order d is, the more
nodes have zero d-simplex interactions.

How is the stability of the synchronized state affected by
this inter- and intraorder structure? To assess this, we compute
the Laplacian (3) at each order d as well as the multiorder
Laplacian (8), and we obtain the Lyapunov exponents from the
eigenvalue spectra. First, we assess the stability of each pure
case, at orders d from 1 to 4, by computing their respective
Lyapunov spectra shown in Fig. 5(e). Orders higher than 4
are not shown for visualization purposes. These spectra reflect
the structure we described above: the higher the order d , the
more nodes that have no d-simplex interactions, i.e., that are
disconnected from the main component in the pure d-simplex
network. These disconnected nodes translate into eigenvalues
of value 0 in the spectra. We observe also two other stages
of the spectra: In the first step, higher orders correspond to
lower Lyapunov exponents, which is similar to what happens
for the star-clique model because of the clique subnetwork
and may reflect, also in this example, the aggregated nature
of the network at each order d . Then, we observe a strong
descending behavior for the last eigenvalues, which confirms
the stronger stability of the higher orders.

Finally, we compare the stability of the full system with
combined higher-order interactions against what is obtained
on the corresponding projecting graph, where nodes coupled
at any order are linked with a pairwise edge. This is illustrated
in Fig. 5(f).

VI. SUMMARY AND CONCLUSIONS

In summary, in this work we have studied the effects of
higher-order interactions, i.e., multioscillator interactions, on
the synchronization of identical phase oscillators on hyper-
graphs. We considered interactions up to any order in an
extension of the Kuramoto model by introducing a multiorder
Laplacian, which makes the system amenable to analytical
treatment, and determines the stability of the fully synchro-
nized state. In particular, we obtained a quantitative measure
of that stability by computing the Lyapunov exponents of the
state, which are proportional to the Laplacian spectrum. We
showed applications of the multiorder Laplacian in settings
of increasing complexity. We emphasize that such analytical
treatment is especially important for higher-order systems, as
numerical simulations become slower with each additional
order of interactions, quickly becoming unfeasible.

As a first example, we considered a case that is fully
tractable analytically: the higher-order all-to-all setting. In this
setting, all nodes interact in all possible d-simplex interactions
for any order d . In this case, we showed that the Laplacian of
each order d , L(d ), is proportional to the traditional pairwise
Laplacian L(1), and to the value of d itself; see Eq. (17). As
a consequence, the stability of the multiorder system can be
linearly decomposed into the stability of each of the pure
d-simplex systems. Indeed, in this special setting the mul-
tiorder Lyapunov exponents are merely a weighted sum of
the Lyapunov exponents of order d . We confirm our find-
ings with numerical simulations. Finally, this fully tractable
higher-order all-to-all setting also serves as a limit case to help
us understand what happens in more complex topologies.
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In this context, we investigated analytically two additional
scenarios. First, we investigated the interplay between orders
with attractive interactions (γd > 0) and orders with repul-
sive interactions (γd < 0). For example, we showed that their
opposite effect on synchronization means that repulsive pair-
wise couplings can be countered effectively by higher-order
attractive couplings. In general, we showed that when odd
orders are attractive and even orders are repulsive, taking
more higher orders into account can stabilize or destabi-
lize the system, depending on the highest order considered.
Second, to link our work to higher-order phase reduction
techniques, we considered the attractive coupling strength
γd , which decays as the order d increases. We derived the
convergence of the Lyapunov exponents as higher orders are
considered.

Then, we considered two cases with more complex topolo-
gies. First, we applied the multiorder Laplacian framework
to a toy model: the star-clique network. With this model, we
illustrated spectral properties of the multiorder Laplacian, and
of the Laplacian at each order. In that specific topology, the
star subnetwork does not contain higher-order interactions
and hence does not influence the value of the first nonzero
Lyapunov exponent. Higher-order interactions in the clique
subnetwork, however, do change the other values of the spec-
trum, as we showed. Second, we considered a real-world
topology: a macaque brain network. In this setting, we show
how the complex shape of the multiorder Laplacian spec-
trum can be understood from the structure of the simplicial
complex. More importantly, our analysis confirms changes
in all Lyapunov exponents due to the inclusion of higher-
order interactions, as compared to only pairwise interactions.
Specifically, higher-order interactions tend to stabilize syn-
chronization, with more drastic change on the more negative
part of the spectrum, due to the hublike structure of the
dataset. We showed in Appendix B that, for higher-order
complex topologies, the choice of the coupling function af-
fects the timescales, causing them to reach full synchrony.
Yet, the precise effect of different coupling functions [55,56]
on other dynamical regimes on such systems is an open
question.

In conclusion, in this paper we introduced a multiorder
Laplacian to assess the stability of synchronization in pop-
ulations of oscillators with higher-order interactions. Our
framework has two main strengths: (i) it is a natural general-
ization of the traditional and well-known pairwise Laplacian
framework, and (ii) it can be applied to arbitrary hypergraphs
describing any structured group interactions up to any order
d . This is in contrast with previous studies, where analytical
insights were provided for the higher-order all-to-all coupling
scheme only. Besides, other than its inherent ability to deal
with complex topologies, the Laplacian formalism is valid for
any N , allowing one to investigate finite-size effects.

Our framework promises to find wide applicability. Indeed,
it has very recently been used to extend the ideas behind the
master stability function [57] to simplicial complexes [58].
Taken together, the multiorder Laplacian is a powerful tool
that could be used widely not only to characterize populations
of oscillators with higher-order interactions, but also for a
wider general analytical treatment of dynamical processes
beyond pairwise interactions.
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APPENDIX A: DERIVATION OF THE LAPLACIAN
FORMULATION

1. Order 3

We briefly show how to rewrite the 3-simplex interac-
tions of Eq. (2) in a similar way to the 2-simplex case from
Sec. III A. Although it is similar, the case of 3-simplices better
prepares us for the next step: the general d-simplex case.
The first important step is to reduce the expression with four
phases into an expression of only two phases:

δψ̇i = γ3

3!〈K (3)〉
N∑

j,k,l=1

Ci jkl (δψ j + δψk + δψl − 3δψi ),

= γ3

2!〈K (3)〉
N∑

j,k,l=1

Ci jkl (δψ j − δψi ), (A1)

by using the invariance of Ci jkl under index permutations, and
where the factor 2! = 3!/3 comes from the intermediate step
where the expression is written as the sum of three identical
terms.

At order 3, definitions (3)–(5) for the degree K (3)
i , the

adjacency matrix A(3)
i j , and the Laplacian L(3)

i j read

K (3)
i = 1

3!

N∑
j,k,l=1

Ci jkl , (A2)

A(3)
i j = 1

2!

N∑
k,l=1

Ci jkl , (A3)

L(3)
i j = 3K (3)

i δi j − A(3)
i j . (A4)

We remind the reader that the degree of order 3, K (3)
i , of node

i is the number of distinct 3-simplex interactions it is part of,
and A(3)

i j is the number of shared 3-simplices including nodes i
and j. With these definitions, we can now perform the second
important step and rewrite (A1) as

δψ̇i = γ3

2!〈K (3)〉
N∑

j,k,l=1

Ci jkl (δψ j − δψi )

= γ3

2!〈K (3)〉

[
N∑

j=1

2!A(3)
i j δψ j − δψi3!K (3)

i

]

= γ3

〈K (3)〉
N∑

j=1

[
A(3)

i j − 3K (3)
i δi j

]
δψ j

= − γ3

〈K (3)〉
N∑

j=1

L(3)
i j δψ j (A5)
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in a similar way to the usual case of order 1. This shows
that the dynamics of the 3-simplex interactions, i.e., of four
oscillators, can be rewritten in terms of a Laplacian of order 3.
Indeed, once again such an operator fulfills the requirements
to be a Laplacian, being symmetric, positive-semidefinite, and
zero row-sum.

2. Order d

The rewrite of order d follows the same two important
steps as the derivation above. First, we rewrite the term of
d + 1 phases as d terms of two phases, and we see that they
are all equal, yielding

δψ̇i = + γd

d!〈K (d )〉
N∑

j1,..., jd =1

Mi j1,..., jD

(
d∑

m=1

δψ jm − d δψi

)

= γd d

d!〈K (d )〉
N∑

j1,..., jd =1

Mi j1,..., jD (δψ j − δψi ). (A6)

With definitions (3)–(5), we can now perform the second step,
which is to rewrite the difference of two phases in terms of the
Laplacian of order d:

δψ̇i = γd d

d!〈K (d )〉
N∑

j1,..., jd =1

Mi j1,..., jD (δψ j − δψi )

= γd

(d − 1)!〈K (d )〉

[
N∑

j=1

2!A(d )
i j δψ j − δψid!K (d )

i

]

= γd

〈K (d )〉
N∑

j=1

[
A(d )

i j − dK (d )
i δi j

]
δψ j

= − γd

〈K (d )〉
N∑

j=1

L(d )
i j δψ j . (A7)

This shows that, at any order d , the dynamics caused by
interactions of order d (d + 1 oscillators) is determined by
the matrix L(d ). Such a matrix fulfills the properties necessary
to be a Laplacian so that its eigenvalues are non-negative and
include at least one zero.

APPENDIX B: ALTERNATIVE HIGHER-ORDER
COUPLING FUNCTIONS

As we mentioned in the main text, even restricting
ourselves to sine coupling functions that vanish at synchro-
nization, other choices are possible. Here, we show that our
framework can readily be used for these other choices. We
refer to the coupling functions in system (1), of which there is
only one at each order.

1. Order 2

At order 2, the only other choice is the asymmetric function
sin(2θ j − θk − θi ). As in the previous Appendix, the first step

is to separate the three-phase term into three two-phase terms:

γ2

2!

N∑
j,k=1

Bi jk (2δψ j − δψk − δψi )

= γ2

2!

N∑
j,k=1

Bi jk (δψ j − δψk ) + γ2

2!

N∑
j,k=1

Bi jk (δψ j − δψi ).

(B1)

The second term is as in the symmetric case of the main text,
and hence yields 1

2 L(2)
i j . The first term is different, however,

but we can use the symmetry between j and k in this term to
show that it vanishes:

+ γ2

2!

N∑
j,k=1

Bi jk (δψ j − δψk )

= +γ2

2!

⎡
⎣ N∑

j,k=1

Bi jkδψ j −
N∑

j,k=1

Bi jkδψk

⎤
⎦ = 0, (B2)

because Bi jk = Bik j . Hence, the full term of order 2 with
this function is half that with the symmetric function [see
Eq. (10)],

δψ̇i = − γ2

〈K (2)〉
1

2

N∑
j=1

L(2)
i j δψ j . (B3)

Remarkably, this means that, for pure triplets, this choice
of coupling function will lead to a convergence that is two
times slower than the symmetric one.

2. Order d

The same two steps can be used to treat any arbitrary d by
noticing that, in the first step, each term that includes the phase
i yields a 1/d Laplacian of order d , and all other terms vanish
as shown for order 2 above. Hence, for oscillators coupled via
a general function

sin(c1θ j1 + c2θ j2 + · · · − c0δψi ), (B4)

with integer coefficient c j such that sin(0) = 0, the linearized
dynamics is determined solely by c0 as

δψ̇i = − γd

〈K (d )〉
c0

d

N∑
j=1

L(d )
i j δψ j . (B5)

APPENDIX C: HIGHER-ORDER DEGREE AND
ADJACENCY MATRICES FOR ALL-TO-ALL COUPLING

In this Appendix, we explicitly write the higher-order ad-
jacency matrix and connectivity defined in Sec. IV A, for each
order d , in the higher-order all-to-all setting.

First, we start with the adjacency matrices of order d . In
a traditional all-to-all setting, the pairwise adjacency matrix
has all entries equal to 1, but 0 on the diagonal, which can be
written A(1)

i j = 1 − δi j . At order d , the generic entry (i, j) of

the adjacency matrix A(d )
i j is equal to the number of distinct

(d + 1)-oscillator interactions including both oscillators i and
j, as described above. Hence, the matrix is simply given by
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the number of ways to pick d − 1 oscillators among the N −
1 oscillators left. This number is given by the combinatorics
formula A(d )

i j = ( N−2
d−1 )(1 − δi j ), where (1 − δi j ) ensures that

entries with i = j are equal to zero.
Second, we proceed similarly to write explicitly the degree

of order d . In a usual all-to-all setting with only pairwise
interactions, every oscillator has a pairwise interaction with all

N − 1 oscillators left, i.e., K (1)
i = N − 1. The degree of order

d is equal to the number of (d + 1)-oscillator interactions of
which oscillator i is a part. Hence, it is given by the number
of ways to pick d oscillators out of the N − 1 left, which can
be written K (d )

i = ( N−1
d ) in combinatorics notation. Note that

it scales with the size of the system as K (d )
i ∼ Nd .
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