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Baryon stopping as a relativistic Markov process in phase space
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We reconsider baryon stopping in relativistic heavy-ion collisions in a nonequilibrium-statistical framework.
The approach combines earlier formulations based on quantum chromodynamics with a relativistic diffusion
model through a suitably derived fluctuation-dissipation relation, thus allowing for a fully time-dependent theory
that is consistent with QCD. We use an existing framework for relativistic stochastic processes in spacetime that
are Markovian in phase space, and adapt it to derive a Fokker-Planck equation in rapidity space, which is solved
numerically. The time evolution of the net-proton distribution function in rapidity space agrees with stopping
data from the CERN Super Proton Synchrotron and the BNL Relativistic Heavy Ion Collider.
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I. INTRODUCTION

In relativistic heavy-ion collisions at the CERN Super
Proton Synchrotron (SPS), the BNL Relativistic Heavy Ion
Collider (RHIC), or the CERN Large Hadron Collider (LHC),
the incoming baryons are being slowed down (“stopped”)
as they interpenetrate each other, while in the spatial region
between the receding, highly Lorentz-contracted fragments
[1] a hot fireball is formed, which cools during its expansion
and eventually hadronizes in a parton-hadron crossover. Of
particular interest is the initial stage of such a collision with
the local thermalization of quarks and gluons, and the simul-
taneous stopping of the baryons. The latter occurs essentially
through collisions of the incoming valence quarks with soft
gluons in the respective other nucleus.

Various models to account for the stopping process and
its energy dependence have been developed, for example, in
Refs. [2–4] and related works, which are relying on the ap-
propriate parton distribution functions and hence on quantum
chromodynamics (QCD). These models yield agreement with
the available stopping data at SPS and RHIC, such as the dis-
tributions of net protons (protons minus produced antiprotons)
in longitudinal rapidity space, and also provide predictions
at LHC energies, where stopping data at forward rapidities
are not yet available. They do not, however, provide the time
development from the initial distribution at the instant of the
collision to the final, measured one.

Complementary time-dependent approaches to stopping
and local equilibration have relied on phenomenologi-
cal, nonequilibrium-statistical approaches: A linear Fokker-
Planck equation for the net-baryon rapidity distribution
function had been proposed in Ref. [5], which accounts for the
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time evolution of the net-baryon or net-proton rapidity distri-
butions in a two-source relativistic diffusion model (RDM).
Variants of the model with a nonlinearity in the diffusion
term have subsequently been suggested in Refs. [6–8] and
related works, which assume, however, the debatable valid-
ity [9] of nonextensive statistics. A linear diffusion model
for particle production was also put forward in Ref. [10]
and subsequent works. For produced particles at RHIC and
LHC energies, a third (midrapidity) source is essential to
cover pair production processes in the central fireball that
provide the bulk of charged-hadron generation at sufficiently
high energy [9]. When considering net baryons or pro-
tons, however, the midrapidity source cancels out because
it is equally composed of particles and antiparticles. The
highly nonlinear local thermalization of quarks and gluons
in the initial stages of the collision can be modeled through
quantum Boltzmann-like collision terms, which require nu-
merical solutions [11,12], but also a schematic model has
been developed that accounts for the fast local equilibration
through analytical solutions of a nonlinear partial differential
equation [13].

Diffusion models are being used in many areas of physics,
chemistry, and biology [14,15]. They have originally been
developed by Einstein and Smoluchowski to provide a
mesoscopic theory of Brownian motion [16–18] as linear dif-
ferential equations for the Brownian particles’ single-particle
distribution function. Alternative microscopic approaches
treat the Brownian particles’ trajectories as stochastic pro-
cesses in position space, for example in the form of a Wiener
[19] or Ornstein-Uhlenbeck process [20]. Stochastic pro-
cesses and stochastic differential equations have subsequently
been considered in more generality in a newly established
branch of mathematics, stochastic calculus, with notable con-
tributions by Itô [21,22], Stratonovich [23], Fisk [24], and
Klimontovich [25], who introduced various concepts of a
stochastic integral, each with different mathematical proper-
ties and physical interpretations. In some cases, connections
between the micro- and mesoscopic formulation can be es-
tablished through a Kramers-Moyal expansion [26,27] or the
Feynman-Kac formula [28].
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Following the discovery of special relativity, it became
clear that statistical physics in general, and diffusion models
in particular, would have to be adapted [29] to meet the re-
quirements imposed by a limited velocity of light. Especially,
nontrivial Lorentz-invariant stochastic processes for space-
time coordinates are necessarily non-Markovian [30–32],
which makes a straightforward generalization of the nonrel-
ativistic diffusion equation to special relativity impossible.
While a general stochastic process may depend on any finite
or infinite number of its prior realizations, Markov processes
[33] have no memory of the past apart from their current state,
which greatly simplifies their mathematical treatment. Conse-
quently, stochastic processes used in physical models often
have the Markov property, in spite of being mathematically
the exception rather than the rule.

As long as a process’s memory is finite, i.e., only a finite
number of its previous realizations affect the next value, it can
be reformulated as a coupled system of multiple Markov pro-
cesses through the introduction of additional variables [34].
This has been used in Refs. [35–40] to formulate relativis-
tic phase-space diffusion processes based on a generalized
Ornstein-Uhlenbeck process for the Brownian particle’s mo-
mentum. These processes are Markovian in phase space but
lose the Markov property when expressed solely in spacetime
coordinates. The authors also deduced associated relativis-
tic Kramers and Fokker-Planck equations for the particles’
phase-space and momentum distribution functions, and de-
rived fluctuation-dissipation relations suitable for an isotropic
thermal background.

In the present work, we aim to derive a nonequilibrium-
statistical diffusion model for baryon stopping in rapidity
space that is based on the key premises of the phenomeno-
logical RDM, but is constructed from a consistent approach
with relativistic Markov processes in phase space and in-
corporates the QCD-based theory through a suitably adapted
fluctuation-dissipation relation. The corresponding Fokker-
Planck equation will enable us to account for the time
evolution of the initial distribution functions from the onset
of a relativistic heavy-ion collision to the final, measured
distributions of net baryons or net protons in agreement with
the available SPS and RHIC data.

The key assumptions for our nonequilibrium-statistical
approach to stopping in relativistic heavy-ion collisions are
presented in the next section, followed by the equations
of motion in Langevin and Fokker-Planck formulation in
Sec. III. Drift and diffusion terms are discussed in Sec. IV, as
well as the expected stationary state derived from the earlier
QCD formulation that allows us to formulate an appropriate
fluctuation-dissipation relation that determines the course of
the time evolution from the initial to the final net-proton
rapidity distribution functions. The latter are compared with
available stopping data from SPS and RHIC experiments in
Sec. V. The conclusions are drawn in Sec. VI.

II. NET-PROTON RAPIDITY SPECTRA

We model baryon stopping as a diffusive process in ra-
pidity space of the participating nucleons whose dynamics
are governed by a—not necessarily thermalized—fluctuating

background representing the quarks and gluons of the frag-
ments. In this process, interactions between the partons and
the background are assumed to prevail such that the nucleon
distribution function reduces to a superposition of single-
particle probability density functions. As the distribution
functions of participant baryons are experimentally inacces-
sible, we consider only participant protons in our model and
compare our result to the measured net-proton number density
in rapidity space, i.e., the difference between the distributions
of protons and antiprotons produced in the collision, which
we expect to be reasonably close to the participant-proton
distribution function.

To incorporate the spatial separation of the two nuclear
fragments, we use a two-source ansatz [5] and completely
disconnect the time evolution of particles originating from
the forward- and backward-moving fragment through sepa-
rate probability densities and fluctuation-dissipation relations.
Taking advantage of the symmetry of the system with respect
to its center of momentum, we then write the net-proton
number density in rapidity space dNp−p̄/dy in the system’s
center-of-momentum frame F as the superposition

dNp−p̄

dy
(t ; y) ≈ Np−p̄

2
[ψ (t ; +y) + ψ (t ; −y)], (1)

where Np−p̄ denotes the net-proton number and ψ (t ; ±y)dy
the probability to find a participant proton from the forward-
or backward-moving fragment, respectively, at time t with
rapidity in [y, y + dy].

A. Initial state

Prior to the collision of the nuclei at some time ti, we
assume the system to be in an initial state where each nucleus
can be approximated by a zero-temperature Fermi gas with
appropriate Fermi momentum pF. Then, the protons of each
nucleus are distributed in the nucleus’s rest frame F∗ accord-
ing to the momentum-space probability density function

φi( �p∗) = 3

4π p3
F

�(pF − | �p∗|), (2)

which is given by a Heaviside step function � scaled by a nor-
malizing factor. We determine the Fermi momentum through
a simple potential well model [41],

pF = 3

√
3π2

Z

V∗
, V∗ = 4π

3
r3
∗ . (3)

Here, Z denotes the nucleus’s proton number, V∗ the nuclear
charge volume, and r∗ the nuclear charge radius, which we
take from Ref. [42].

Choosing the orientation of F∗ such that p3
∗ is parallel to

the beam axis, we define the cylindrical coordinates

γ⊥∗ =
√

1 + (p1∗/m)2 + (p2∗/m)2, (4a)

ϕ∗ = arctan(p2
∗/p1

∗), (4b)

y∗ = atanh(p3
∗/p0

∗), (4c)

with the proton mass m. Boosting to F leaves the transverse
degrees of freedom unaffected (γ⊥ = γ⊥∗, ϕ = ϕ∗) while the
longitudinal rapidity coordinate is shifted by the beam rapidity
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FIG. 1. Marginal rapidity probability density function ψi (solid,
red) of the participant protons in a 208Pb nucleus prior to the initial
collision. For comparison, a normal distribution with zero mean and
standard deviation yF/2 is depicted as dashed blue curve. Dotted
vertical lines indicate the Fermi rapidity ±yF.

yb, y = y∗ ± yb. Integrating out γ⊥ and ϕ, the initial rapidity-
space probability density in F, ψi(y) ≡ ψ (ti; y), is found to
be

ψi(y∗ ± yb) = 1

2
sinh(yF)−3�(yF − |y∗|)

× cosh(y∗)

[(
cosh(yF)

cosh(y∗)

)3

− 1

]
(5)

with the Fermi rapidity yF = asinh(pF/m). Figure 1 shows ψi

as a function of y∗ for the isotope 208Pb. The numerical values
of yF for 197Au and 208Pb are 0.3134 and 0.3136, respectively,
and differ only slightly in the fourth decimal place.

A more realistic description of the initial state is principally
desirable (for example, with a finite temperature); however,
the exact form of the initial probability density function
hardly influences the later stages of the time evolution. Hence,
normal or delta distributions are often used as convenient
approximations for the initial state [43].

B. Final state

For t > ti, the system evolves in time, driven by the fluctu-
ating background, until it reaches a final state at some time tf
when the partonic interactions between the nuclei effectively
cease due to their increasing spatial distance. Consequently,
for comparison with experimental data from SPS and RHIC,
we evaluate Eq. (1) at t = tf . As we will see in Sec. V, the
concrete value of tf is not important at this stage of the model,
since it does only appear in products with other a priori
unknown quantities; it is not an observable.

III. TIME EVOLUTION

The time evolution of the system will ultimately be gov-
erned by a Fokker-Planck equation for the single-particle
probability density function ψ , whose drift and diffusion coef-
ficient functions will be derived in Sec. IV from the expected
mesoscopic behavior. A similar evolution equation had pre-
viously been determined on a phenomenological level in the
RDM [9] from comparisons with available SPS and RHIC

data. In this work, we will derive it from the underlying
particle dynamics to shed light on the different assumptions
entering our model.

A. Langevin formulation

We describe the trajectories of the individual protons as
relativistic stochastic processes in spacetime that are Marko-
vian when expressed in phase-space coordinates [34,44]. In
the following, these stochastic processes will be designated
with uppercase letters, while lowercase letters denote the cor-
responding coordinates in the system’s center-of-momentum
frame F. The equations of motion for the spacetime position
X α (t ) and energy and momentum Pα (t ) as a function of
time t follow from a relativistic generalization [35–40] of the
Ornstein-Uhlenbeck process [20] in phase space,

dX α = Pα/P0dt, (6a)

dPi = μpi dt +
∑

k

σpi,kdWk, (6b)

where the Greek index α runs from 0 to 3 and the Latin
indices i, k from 1 to 3. The momenta Pi are driven by three
independent standard Wiener processes Wk [19] representing
the fluctuating background, while the particle energy P0 is

fixed by the mass-shell condition, P0 =
√

m2 + �P2, where m
denotes the proton mass.

The interaction between particles and background is gov-
erned by the drift coefficients μpi and diffusion coefficients
σpi,k : The former represent directed, deterministic effects (for
example, friction or pressure gradients) and determine the
mean value of the stochastic process; the latter are connected
to undirected, stochastic interactions (such as random particle
collisions) and its variance. In general, they can be functions
of all involved stochastic processes X α and Pi. Here, however,
we will assume that they depend on the momentum processes
only.

If we let the 3-direction of the coordinate system coincide
with the beam axis, we can replace P3 with the stochastic
process

Y = atanh(P3/P0), (7)

which corresponds to the (longitudinal) rapidity y. The asso-
ciated drift coefficient μy and diffusion coefficients σy,k can
be related to μpi and σpi,k through differential calculus.

To simplify the following computations, we will assume
that the longitudinal drift and diffusion coefficients’ depen-
dence on the transverse degrees of freedom is negligible, i.e.,
∂piμy = ∂piσy,3 = 0 and σpi,3 = σy,k = 0 for i, k = 1, 2. Then,
the Langevin equations for Y decouple from those of P1 and
P2,

dX 3 = tanh(Y )dt, (8a)

dY = μy(Y )dt + σy,3(Y )dW3. (8b)

Further, we want to treat σy,3 as a constant with respect
to rapidity for now, since the nonconstant case entails some
technical subtleties regarding discretization and interpretation
of the Langevin equations [21–25,45]. We intend, however, to
address this issue in a forthcoming publication.
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The choice of a constant diffusion coefficient is permissi-
ble here because the rapidity Y may assume any real value,
and hence arbitrarily large changes by the driving Wiener
process still result in a physically permissible state of Y . By
contrast, if we were to formulate a stochastic process for the
particle’s velocity or Lorentz factor, the diffusion coefficient
would necessarily have to be nonconstant to prevent superlu-
minal motion by suppressing fluctuations that would lead the
stochastic process to an unphysical state [46].

B. Fokker-Planck formulation

To obtain an equation for the time evolution of the
single-particle probability density function associated with
the particle trajectories discussed in the preceding section,
we perform a Kramers-Moyal expansion [26,27] with respect
to the longitudinal stochastic processes defined in Eqs. (8)
and the transverse stochastic processes from Eqs. (6). As we
have decoupled X 3 and Y from the other processes, we can
immediately integrate out the transverse coordinates x1, x2,
p1, and p2, which leaves us with the Kramers equation for
the marginal probability density function f of longitudinal
position x3 and rapidity y,[

∂t + tanh(y)∂x3 + ∂yμ(y) − 1
2σ 2∂2

y

]
f (t ; x3, y) = 0, (9)

with f (t ; x3,y)dx3dy giving the probability to find a par-
ticipant proton at time t with X 3 ∈ [x3, x3 + dx3] and Y ∈
[y, y + dy] in F. To ease notation, we drop the subscripts of
the longitudinal drift and diffusion coefficients from now on
as they are the only coefficient functions left.

Given an appropriate initial condition, we could in princi-
ple solve Eq. (9). However, since the position coordinate x3 is
unobservable, we integrate it out, thus reducing Eq. (9) to a
Fokker-Planck equation for the marginal rapidity probability
density ψ ,

∂tψ (t ; y) = −∂y[μ(y)ψ (t ; y)] + 1
2σ 2∂2

y ψ (t ; y), (10)

ψ (t ; y) =
∫

dx3 f (t ; x3, y), (11)

where we have used that f must vanish at the boundaries and
that μ and σ were assumed to be independent of x3. Alterna-
tively, Eq. (10) can be rewritten as a continuity equation

∂tψ (t ; y) + ∂y j(t ; y) = 0 (12)

with the probability current density

j(t ; y) = [
μ(y) − 1

2σ 2∂y
]
ψ (t ; y), (13)

which can be decomposed into an advective ( ja) and a diffu-
sive part ( jd),

ja(t ; y) = μ(y)ψ (t ; y), (14a)

jd(t ; y) = − 1
2σ 2∂yψ (t ; y). (14b)

In this context, the prefactor σ 2/2 can be understood as the
protons’ diffusivity D in rapidity space.

When defining nonlocal observables as in Eq. (11) in rel-
ativistic statistical physics, care has to be taken [47] because
the involved integral introduces a dependence on the chosen
hypersurface. In our case, integration is done with respect to

isochronous hypersurfaces in F; we expect this to give a rea-
sonable representation of the dNp−p̄/dy measuring process. A
more accurate treatment would require precise knowledge of
the particle positions and detector layout, which is beyond the
scope of this model.

IV. DRIFT AND DIFFUSION

So far, we have left open the exact form of the drift and
diffusion coefficients, apart from setting the latter constant
with respect to rapidity. Instead of deriving them from micro-
scopic considerations, we will set the coefficients in a way that
the solutions of the Fokker-Planck equation (10) reproduce a
certain expected mesoscopic behavior of the physical system
to be modeled, as proposed in Refs. [35,40]. Possible choices
include presetting the system’s stationary state or specifying
the time evolution of some macroscopic observable. Gener-
ally, two such criteria are needed to uniquely determine both
coefficients [39]; however, having set σ 2/2 = D to a constant
that can be numerically deduced by fitting the model to ex-
perimental data, one constraint will suffice in our case. In an
earlier version of the RDM, a linear approximation was used
for the drift coefficient function that enabled an analytical
solution of the Fokker-Planck equation [5].

A. Expected stationary state

The stochastic process defined in Eq. (8b) would approach
a stationary state if its time evolution continued past t = tf .
We can estimate this state by assuming the formation of a
color-glass condensate (CGC) [48–51], a coherent state based
on the saturation of the gluon density below a characteristic
momentum scale Qs. In the CGC framework, the postcolli-
sion distribution of the forward-moving participant protons is
given by [52–54]

ψCGC(y) = C

2π

∫ 1

0
dx qv (x)g(x2+λeτ (y) ), (15)

where x is the longitudinal momentum fraction carried by
the protons’ valence quarks and qv denotes the valence-quark
distribution function for which we use the NNLO results
from [55]. C is a normalizing constant that sets the integral
of ψCGC to unity. To determine the distribution function g
of the soft gluons from the backward-moving fragment, we
choose the Golec-Biernat–Wüsthoff model [56] in which g
reduces to a simple function of the scaling variable ζ =
[(p1)2 + (p2)2]/Q2

s ,

g(ζ ) = 4πζe−ζ . (16)

The gluon-saturation-scale exponent λ determines the x
dependence of Qs,

Q2
s = Q2

0A1/3x−λ, (17)

while the constant Q2
0 sets its dimension and the mass num-

ber A its scaling with the nucleus’s size. Together with
the center-of-mass energy per nucleon pair

√
sNN, the same

three parameters determine the rapidity dependence of ψCGC

through the dimensionless function

τ (y) = ln

(
sNN

Q2
0

)
− 1

3
ln(A) − 2(1 + λ)y. (18)
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More details on the subject can be found in Refs. [2,3],
where similar distribution functions were fitted directly to
proton-stopping data without considering a time evolution of
the system.

The integral in Eq. (15) has no analytic solution, and
hence, we solve it numerically with adaptive Gauss-Kronrod
quadrature in all our computations. For rapidities far from
zero, however, analytical approximate solutions exist, which
we will discuss briefly below.

For large positive rapidities, the argument of g becomes
very small such that we can approximate g(ζ ) ≈ 4πζ and
separate the x- and y-dependent terms,

ψCGC(y) ∼
y→+∞ 2Ceτ (y)

∫ 1

0
dx qv (x)x2+λ. (19)

With the integral yielding a constant numerical factor, the
distribution function thus decays exponentially for large
positive y, ψCGC(y) ∼ exp(α+y), with decay constant α+ =
−2(1 + λ).

For large negative rapidities, only small x values contribute
to the integral due to the exponential damping with τ (y). If the
low-x behavior of the valence-quark distribution is given by
xqv (x) ∼ axb, Eq. (15) reduces to the definition of the gamma
function times an exponential function of τ (y),

ψCGC(y) ∼
y→−∞

2Ca

2 + λ
�

(
1 + b

2 + λ

)

× exp

(
−bτ (y)

2 + λ

)
. (20)

Accordingly, the distribution function exhibits an exponential
tail also for large negative values of y, where ψCGC(y) ∼
exp(α−y) with α− = 2b(1 + λ)/(2 + λ).

B. Fluctuation-dissipation relation

A Fokker-Planck equation of the form Eq. (10) possesses
a unique stationary solution ψs. It can be easily calculated by
using the fact that its time derivative vanishes, ∂tψs(y) = 0,
resulting in [57,58]

ψs(y) ∝ exp

[
1

D

∫ y

∗
dy′μ(y′)

]
, (21)

where the lower integration limit is chosen such that the inte-
gral exists. All solutions of Eq. (10) would converge against
this state for t → ∞, limt→∞ ψ (t ; y) = ψs(y), if we contin-
ued their time evolution past tf , which is, however, physically
impossible since the fragments separate. Hence, fixing the
drift coefficient and diffusivity determines ψs and vice versa:
Inverting Eq. (21) yields the fluctuation-dissipation relation
associated with a given stationary state ψs [35,39,40],

μ(y)

D
= ∂y ln[ψs(y)]. (22)

If we then identify ψs ≡ ψCGC with the CGC distribution
from Eq. (15), the drift coefficient μ can thus be fixed as
a function of D and y. Like ψCGC, the resulting expression
for μ is not analytic, but can be evaluated numerically as
shown in Fig. 2. The graph is roughly S shaped and converges
toward constant values for y → ±∞ due to the exponential

FIG. 2. Stationary distribution function (a) and fluctuation-
dissipation relation (b) for ψs ≡ ψCGC of the forward-moving
nucleus in a collision of 208Pb nuclei with center-of-mass en-
ergy

√
sNN = 17.3 GeV (solid, red) and 197Au nuclei with

√
sNN =

62.4 GeV (dashed, blue) with λ = 0.2 and Q2
0 = 0.09 GeV2. Dotted

horizontal lines indicate the limiting values α+ = −2.4 and α− ≈
+0, 34. Decreasing λ stretches the curves toward more positive y
and reduces their slope, while increasing Q2

0/sNN or A shifts them to
the left.

tails of ψCGC,

lim
y→+∞

μ(y)

D
= α+ = −2(1 + λ), (23a)

lim
y→−∞

μ(y)

D
= α− = +2b

1 + λ

2 + λ
. (23b)

Its zero crossing marks the peak position of ψCGC; the max-
imum close to y ≈ 0 indicates an inflection point of the
logarithm of ψCGC.

V. RESULTS

We obtain a dimensionless form of the Fokker-Planck
equation (10) by substituting the time t with the evolution
parameter s(t ) = (t − ti )/(tf − ti ) and reordering some terms.
The transformed equation reads

∂sψ (t (s); y) = D�t

[
−∂y

μ(y)

D
+ ∂2

y

]
ψ (t (s); y) (24)

with �t = tf − ti. While s, y, and ψ are dimensionless by
definition, we have arranged the remaining quantities such
that they form the composite dimensionless factors D�t and
μ(y)/D. The latter is given by the fluctuation-dissipation re-
lation defined in Eq. (22), while D�t is treated as a free
parameter of the model.

As the strength of the stochastic processes scale with the
diffusivity D, while �t is defined as the time span during
which the system is subject to the associated forces, the com-
pound variable D�t can be interpreted as the net impact of the
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TABLE I. Parameters used in the model as determined through a fit of the final net-proton distribution functions to experimental data
[60–63]. For

√
sNN = 200 GeV, final and stationary state were so close to each other that no meaningful fit result could be determined for

D�t (see text); accordingly, no numerical value is given at this energy. λ and Q2
0 are shared parameters and hence take the same numerical

values for all collisions. Reduced sums of squared residuals χ2/ndf (excluding shared parameters) are given for each setting as measures for
the individual goodness of fit.

Nuclei
√

sNN (GeV) yb Centrality (%) λ Q2
0 (GeV2) Np− p̄ D�t χ 2/ndf

208Pb 17.3 2.909 0–5 0.2 0.09 150 3.1 0.56
197Au 62.4 4.196 0–10 0.2 0.09 140 3.8 1.4
197Au 200 5.361 0–5 0.2 0.09 150 0.36
197Au 200 5.361 0–10 0.2 0.09 120 1.4

partonic interactions between the nuclei. Appearing only on
the right-hand side of Eq. (24), it can be completely absorbed
into the evolution parameter by rescaling s̃ = D�t × s, which
then runs from s̃(ti ) = 0 to s̃(tf ) = D�t . Small values of D�t
hence indicate that the system remains close to its initial state,
while larger values drive it closer toward the stationary state
imposed by the fluctuation-dissipation relation.

The transformed Fokker-Planck equation (24) is solved
numerically for 0 < s � 1 by discretizing the rapidity deriva-
tive operators and solving the resulting system of ordi-
nary differential equations with an additive Runge-Kutta
method [59].

We compare the results of our calculations to SPS and
RHIC data from the NA49 and BRAHMS Collaboration,
respectively [60–63]. The gluon-saturation-scale exponent
λ and prefactor Q2

0, the net-proton number Np−p̄, and the
diffusivity times elapsed time D�t are free parameters of
the model. They are determined through a simultaneous
weighted least-squares fit of the final net-proton distribution
functions to the experimental data, where minimization of
the fit objective is done numerically with a quasi-Newton
method [64,65]. We restrict Np−p̄ to deviate not more than
10% from the respective Glauber result, while λ and Q2

0
are treated as common parameters that take the same nu-
merical values for all collisions in the SPS to RHIC energy
region. Our results are given in Table I; the combined sum
of squared residuals divided by the total number of degrees
of freedom is χ2/ndf ≈ 0.89. The estimates for λ and Q2

0
compare well to literature results, where λ ≈ 0.288 and Q2

0 ≈
0.097 GeV2 were obtained in a fit to deep-inelastic-scattering
data from the DESY Hadron-Electron Ring Accelerator
(HERA) [56].

The time evolution of the net-proton distribution functions
for the two collisions with lower energy is shown in Fig. 3. As
expected [66], the distribution functions converge exponen-
tially in time toward the stationary state, which is indicated
in the plot by a logarithmic spacing of the intermediate time
steps. While the final distribution functions appear to differ
only slightly from the stationary ones, the systems are still
far from their stationary states in a temporal sense, as further
convergence slows down exponentially.

At the lower center-of-mass energies
√

sNN = 17.3 and
62.4 GeV, the final and stationary state differ enough for
a reasonable estimate of D�t , which takes values between
3 and 4. At the higher energy

√
sNN = 200 GeV, however,

final and stationary state are too close compared to the

FIG. 3. Time evolution of the net-proton rapidity distribution
function for central collisions of 208Pb nuclei with center-of-mass
energy

√
sNN = 17.3 GeV at 0%–5% centrality (a) and 197Au nuclei

with
√

sNN = 62.4 GeV at 0%–10% centrality (b). Solid lines mark
the time steps s = 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1, where
s = 0 corresponds to the initial state (peaked, blue) and s = 1 to
the final state (broad, red). The latter is compared with experimental
data (black circles) recorded at SPS by the NA49 Collaboration
[60] (top) and RHIC by the BRAHMS Collaboration [63] (bottom);
associated uncertainties are depicted as bars. Dashed lines indicate
the stationary distribution functions (s → ∞).

033409-6



BARYON STOPPING AS A RELATIVISTIC MARKOV … PHYSICAL REVIEW RESEARCH 2, 033409 (2020)

FIG. 4. Calculated stationary net-proton rapidity distribution
functions for collisions of 197Au nuclei with center-of-mass energy√

sNN = 200 GeV at 0%–5% centrality (a) and 0%–10% centrality
(b). Black circles show experimental data from RHIC recorded by the
BRAHMS Collaboration in 2004 [61] and 2008 [62], respectively;
uncertainties are depicted as bars.

experimental errors. As a consequence of the exponential
convergence in time, the uncertainty in the determination
of D�t becomes orders of magnitude larger than the ac-
tual value. Therefore, a meaningful estimate of D�t is
not possible and no values are given in Table I at this
center-of-mass energy.

Figure 4 therefore shows only the stationary net-proton dis-
tribution functions for the two collisions at

√
sNN = 200 GeV,

which are nearly indistinguishable from the final distribu-
tion functions. A time evolution from the initial to the final
state cannot be given due to the indeterminate value of D�t .
The net-proton numbers differ for the two centralities, being
higher for 0% to 5% and lower for 0% to 10%, which is
consistent with the latter data containing additional events
with fewer participants.

All required numerical routines were implemented with
the JULIA programming language [67]; functionalities for the
solution of differential equations and parameter optimization
were provided by the packages DIFFERENTIALEQUATIONS.JL

[68] and OPTIM.JL [69], respectively.

VI. CONCLUSIONS

A relativistic phase-space diffusion model for the time
evolution of net-proton distribution functions in rapidity space
was presented to account for the transition process from
the initial to the final state in baryon stopping. Inspired by
the phenomenological RDM, the model uses similar key as-
sumptions, but is based on stochastic particle trajectories
constructed from relativistic Markov processes in phase space
that are equivalent to non-Markovian spacetime processes.
The drift and diffusion coefficient, which carry over from the
Langevin to the Fokker-Planck formulation of the system’s
time evolution, were determined by assuming a constant dif-
fusivity in rapidity space and setting the stationary solution
of the Fokker-Planck equation to a QCD-inspired distribution
function. Due to the latter’s exponential tails, the associated
fluctuation-dissipation relation was found to be virtually con-
stant for large absolute rapidities. Analytic expressions for the
limiting values were derived.

A simultaneous least-squares fit was used to determine
the free model parameters for four data sets recorded at SPS
and RHIC by the NA49 and BRAHMS Collaboration, respec-
tively. In the fit, the net-proton number Np−p̄ was restricted to
a neighborhood of the corresponding Glauber result for each
collision. The gluon-saturation-scale exponent λ and prefac-
tor Q2

0 were treated as common parameters taking the same
value in all comparisons with experiment. No constraints,
apart from positivity, were placed on the dimensionless factor
D�t composed of the diffusivity and the elapsed time be-
tween initial and final state. For 208Pb and 197Au collisions at√

sNN = 17.3 and 62.4 GeV, respectively, agreement with the
data could be reached and an estimate of the time evolution
from the initial to the final state was given. At 200 GeV, the
latter was not possible, since the final and stationary distri-
bution functions were found to be too close compared to the
experimental uncertainties.

The phase-space diffusion framework adopted in this arti-
cle is easily adaptable to different physical systems and allows
us to construct the drift and diffusion coefficient functions,
which can be difficult to access theoretically, from mesoscopic
considerations. In a forthcoming work, we will examine a pos-
sible application to charged-particle production in relativistic
heavy-ion collisions.
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