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Systematic construction of square-root topological insulators and superconductors
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We propose a general scheme to construct a Hamiltonian H,., describing a square root of an original
Hamiltonian Hoigina based on the graph theory. The square-root Hamiltonian is defined on the subdivided graph
of the original graph of Higina, Where the subdivided graph is obtained by putting one vertex on each link in
the original graph. When Hgina describes a topological system, there emerge in-gap edge states at nonzero
energy in the spectrum of Hy,., which are the inherence of the topological edge states at zero energy in Hosiginal-
In this case, H,, describes a square-root topological insulator or superconductor. Typical examples are square
roots of the Su-Schrieffer-Heeger (SSH) model, the Kitaev topological superconductor model, and the Haldane
model. Our scheme is also applicable to non-Hermitian topological systems, where we study an example of a

nonreciprocal non-Hermitian SSH model.
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I. INTRODUCTION

Topological insulators and superconductors are among the
most studied fields in condensed matter physics in this decade
[1,2]. They are characterized by the emergence of topological
edge states although the bulk is gapped.

They may have various extensions. Higher order topo-
logical insulators are one of them [3—13]. The higher order
topological insulator looks trivial since it has no zero-energy
edge states. However, there emerge zero-energy corner states
isolated both from the edge band and the bulk band due
to the nontrivial topology of the bulk. When we are ig-
norant of this fact, the emergence of zero-energy corner
states looks accidental. However, as we have just noted,
a deeper analysis has revealed that corner states emerge
because the bulk is topological. This finding implies that
some systems previously thought to be a trivial insulator
can be a topological insulator by generalizing the concept of
topology.

Recently, square-root topological insulators were proposed
[14,15]. Its notion has been generalized to square-root higher
order topological insulators [16]. They are characterized by
the emergence of in-gap edge states clearly isolated from
the bulk band. At first sight, its emergence looks accidental
since they emerge at nonzero energy. However, there is a case
whose origin can be traced back to the nontrivial topology
of a closely related system, i.e., the nontrivial topology of its
squared Hamiltonian. It is rather surprising that certain in-gap
edge states can be brought to zero-energy topological edge
states by squaring the Hamiltonian.
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In this paper, we propose a general scheme to construct
square-root topological insulators and superconductors from
ordinary topological insulators and superconductors based
on the graph theory. There is one-to-one correspondence
between a tight-binding Hamiltonian and a weighted graph.
A graph is composed of vertices and links. We can construct a
new graph by introducing one vertex on each link, which we
refer to as the subdivided graph [17,18]. We call the original
graph the parent graph in contrast to the subdivided graph.
Any subdivided graph is bipartite because it contains original
vertices and newly added vertices. Examples are shown in
Figs. 1-3 in Sec. III, where original (new) vertices are shown
in magenta (cyan).

We denote the Hamiltonian constructed on the subdivided
graph as Hyoo. We then find (Hroor)* = Hpar @ Hres, Where
Hyy, is identical to the original Hamiltonian Hyiginal up to an
additive constant interpreted as a self-energy. We call H,,,; and
H, the parent and residual Hamiltonians, respectively. When
Horigina describes a topological system, it contains zero-energy
topological edge states, producing the corresponding edge
states at nonzero energy in Hy,. Furthermore, zero-energy
perfect-flat bulk bands may emerge in H, as a bipartite
property according to the Lieb theorem: See orange lines
in Figs. 2 and 3. Because the eigenvalues are shown to be
identical between Hp, and Hyes except for zero-energy states
in Hpe, Hyoor 1 interpreted as the square-root Hamiltonian
of Hoyiginal. We can use the same topological index between
Hioor and Hyriginar since the eigenvectors are identical between
them. Indeed, the region of the in-gap edge states in Hyoq 1S
precisely the same as that of the zero-energy edge states in
Hoyrigina- Namely, the phase diagram is identical between Hyoq
and Horiginal .

We present explicit examples of the Su-Schrieffer-Heeger
(SSH) model, the Kitaev p-wave topological superconductor
model, and the Haldane honeycomb model. Furthermore, our
results are applicable to non-Hermitian systems, where we
demonstrate an example of nonreciprocal non-Hermitian SSH
model.
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FIG. 1. Illustration of (a) the graph and (b) the subdivided graph
for the SSH model Hssy. The green rectangles represent the unit
cells. Energy spectrum of (c) Hssy and (d) Hoo in unit of 7, as a
function of #,,/t,. The topological edge states are marked in magenta.
In-gap edge states are on the curve E = £./|t,| + |t,| for Hyoo.

II. SQUARE-ROOT HAMILTONIAN

It is impossible to construct a local hopping model only
by taking a square root of the Hamiltonian matrix. A simple
example is given by the SSH model,

_ 0 tq + tre™*
Hssy = (l‘a + et 0 - (H
A square root of the model is given by
(0 m
HSSH = l“-Hbe*"k ZH-H(b)e ) (2)
VE®)

with E (k) =
A. This is an infinite-range hopping model.

Here we recall the Dirac idea to take a square root of the
Klein-Gordon equation. He obtained the Dirac equation by in-
troducing a matrix degree of freedom. The Dirac equation has
various intriguing properties such as chirality and the index
theorem, which are absent in the Klein-Gordon equation.

We propose to take a square root of a Hamiltonian by
increasing a matrix degree of freedom as follows: (1) We

\/ 12 + 17 + 2t,1;, cos k, as we derive in Appendix

topological

FIG. 2. Illustration of (a) the graph and (b) the subdivided graph
for the Kitaev model Hjy,ev. Energy spectrum of (¢) Hgiwey and
(d) Hioor in unit of ¢ as a function of A/r. The topological edge
states are marked in magenta. In-gap states are on the curve £ =
+./2]t] 4+ 2| A| for Hyyo. Lieb perfect-flat bulk-bands are marked in
orange.

FIG. 3. Illustration of (a) the graph and (b) the subdivided graph
for the Haldane model Hyagane. Energy spectrum of (¢) Hyggane and
(d) Hooe in unit of ¢ as a function of the momentum k. The chiral
edge states are marked in magenta. Lieb perfect-flat bulk bands are
marked in orange. We have set A = 0.2¢/(3+/3).

first write down a graph representation of the adjacency ma-
trix of the original Hamiltonian Hoiginat. (2) We construct a
subdivided graph from the original graph. (3) We construct a
Hamiltonian H,y on the subdivided graph. Then, we obtain
(Hroot)? = var @ Hres, Where Hp,, is identical to the original
Hamiltonian Hoiginal Up to an additive constant, provided the
hopping parameter is taken to be /7 in Hyoo; corresponding to
the hopping parameter ¢ in Horiginai. The square-root Hamil-
tonian is given by H,,. When the hopping parameter ¢ is
complex, we take simply a square root of it. For instance,
when the hopping has a phase ¢ |t|, we set ¢'?/2|t|'/? for the
square-root Hamiltonian.

We make a comment when the Hamiltonian has the spin
or orbital degrees of freedom. Although a vertex of a graph
cannot include internal indices, it is possible to introduce sev-
eral vertices corresponding to internal indices. For example,
we introduce two vertices to incorporate the spin degree of
freedom.

We start with a Hamiltonian Hoigina Where a unit cell
contains N sites connected by M hoppings. We consider a
Hamiltonian on the subdivided graph, which is given by

ON XN HjlveﬂM
Hioor = < ) . (3)

right
HM <N OM xM

It is required that H;gf}\, = (H )T, when Hyoo is Hermitian.
We have

H, 0
(Hrool)2 = ( Sar Hres) = Hpar @ Hies, (€]
where
Hyw = HlyHyfis  Hies = Hyby Bl 9)
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Thus, the square of the Hamiltonian, (Hioot)?, s uniquely
decomposed into a direct sum of Hp, and Hyg, which are
the parent and residual Hamiltonians defined on the parent
and residual graphs. The unique decomposition of the square
of a subdivided graph is understood as follows. We label A
and B vertices of the subdivided graph since it is bipartite.
The square graph is grouped into two graphs, where one is
composed only by the A vertices and the other is composed
only by the B vertices. Thus, the decomposition of the graph
is unique.

In general, Hyy,, is identical to Hyiginal UP tO a constant term
because both of them are constructed on the same graph,

Hpar =C+ Horiginals (6)

where C is a positive constant obtained by calculating (Hroot)?.
This constant term can be interpreted as a self energy, as in the
case of the second-order perturbation theory. The zero-energy
topological edge states in Hoiginal are transformed into the in-

gap edge states at nonzero energy ++/C in H, oot

We show that it is enough to set the hopping /7 in the
subdivided graph for H;o in order to reproduce the parent
Hamiltonian Hp,, with the hopping 7. We consider hoppings
between three sites indexed by i — 1, i, and i+ 1, where
the sites i — 1 and i + 1 are nearest-neighbor sites in Horiginal
while the site i is the additional site introduced in H,y.. The
relevant part of the Hamiltonian is explicitly given by

left right § left T right +

!

Hroot =14c lcl +157 ¢ cim +tl+lc Cit1 +tl+1 Cit1Cis
(N

whose square is uniquely decomposed into a direct product,
(H)Y=H _®H, ®)

— “par res’
where
’ left nght i left ,right
Hpar =4LT 6 Cim +tl+ltz+1 Cir1Cit1
left left .t rlght right 1 )

T4 G Cipt F L G G G ©

The hoppings are between the next-nearest-neighbor sites, and
there are on-site potentials. It is necessary to set 7/ = 7,"&" —
A/ to obtain

Hy, = t(c] jcion+ C;L+lCi+1 +el e+ CL_ICi—l)» (10)

which represents the generic terms in the original Hamilto-
nian Hygina defined on the subdivided graph. It shows that
the Hamiltonian H, , with the hopping amphtude J/t on the
subdivided gives the parent Hamiltonian H, par with the hopping
t.

In this derivation, we find that it is impossible to tune the
on-site potential independently. We have constructed a square-
root Hamiltonian only when the on-site terms are constant and
equals to the hopping term ¢ by using the subdivided graph in
general. In other words, it is impossible to construct a square-
root Hamiltonian if there are site-dependent on-site terms.

The bipartite Hamiltonian has chiral symmetry,
{y, Hioot} = 0, with the chiral operator defined by
Ivxn ~ Onxm
= . 11
v <0M><N _IM><M> an

In general, we have M > N. According to the Lieb theo-
rem [19], there are |M — N| zero-energy states constituting
perfect-flat bulk bands.

It is known [20,21] that the eigenvalues are identical be-
tween Hp,, and H,.s except for these zero-energy states in Hye,
and that they are non-negative. See also Appendix B. Namely,
when we set

Hpue| V") = &j[W]"), Hies}™) = e |yi), - (2)

we obtain {85-85} ={e1,...en,0,...,0}and &; > 0. It follows
from (6) that the eigenvectors of Hpy and Hgina are the
same,

Hosigina [V/]") = (£, — O|y]"). (13)

Furthermore, the eigenvectors |1ﬂjr-“) of H,s are obtained from
those of Hpyr as

i)=Y (HEy) ™), (14)

k

as we derive in Appendix B.

When the Hamiltonian Hroot is diagonalized by a uni-
tary transformation U as U THyootU = mot, the Hamiltonian
(Hyoot)? is also diagonalized by the same unitary transforma-
tion as U (Hyoot)*U = (HD )%, Then, the eigenvalues of Hyoo
are obtained just by taking a square root of them with the same
eigenvectors,

Hroot}w;00t> — (_:,;ool|1/fjr‘oot>7 (15)

where

“’Ot = {£/e1, ..., E/en; /e, ..., £/EN, 0, ..., 0}

(16)

Because of this property, H,
Hamiltonian of Higinar.

Consequently, non-zero-energy in-gap states emerge in
Hioot, Which corresponds to the zero-energy states in Hp,,. As
we shall see soon, the phase diagram which determined by
the edge states is identical between Hoo and Hp,,. Hence, the
same topological number is assigned for Hyoo; as that for Hpg,.
See the instances of the phase diagrams of Hp,, and Hyoo in
Figs. 1(c) and 1(d) for the SSH model and in Figs. 4(c) and
4(d) for the non-Hermitian model.

root 18 interpreted as the square-root

III. EXAMPLES

A. Square-root SSH model

For the first example, we analyze the SSH model (1). The
spectrum contains the zero-energy topological edge states as
in Fig. 1(c). The graph of the SSH model is a simple one-
dimensional graph containing two vertices in the unit cell
[Fig. 1(a)]. The corresponding subdivided graph is a one-
dimensional graph containing four vertices in the unit cell
[Fig. 1(b)]. The square-root Hamiltonian H;. is given by (3)
with (N, M) = (2, 2), and

et _ (Va e ™
Hyo = (\/t_a N > a7
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FIG. 4. Illustration of (a) the graph and (b) the subdivided graph
for the nonreciprocal non-Hermitian SSH model Hgg;. Real and
imaginary parts of the energy spectrum of (c) H{g and (d) Hyo in
unit of ¢, as a function of #,, /#,. The topological edge states are marked
in magenta. In-gap states are on the curve E = +,/|t,| + /17 — 2
for Hoo. We have set y =1, /4.

It is straightforward to derive (Hyoo)? = Hpyor @ Hyes With

Hpar = |ta] + |t3| + Hssw, (18)
21, Statp(1 + ek
Hyey = . 2 N a9
St (1 + %) 21,

where H is the Rice-Mele model. In-gap edge states appear
at E = x./|t,| + |tp] for |t,| > |t,], as illustrated in Fig. 1(d),

J

3k,
2

ky
Hyaldane = 22 (2 sin > cos

whose origin is the topological zero-energy states in the SSH
model [Fig. 1(c)]. The phase diagram of the square-root SSH
model is found to be identical to that of the SSH model.

B. Square-root Kitaev topological superconductor

The next example is a square root of the Kitaev p-wave
topological superconductor model defined by [22-25]

Hgitaev = (2t cosk — p)o, + 2A0, sink. (20)

The spectrum contains the zero-energy topological edge states
as in Fig. 2(c). The corresponding graph and subdivided graph
are shown in Figs. 2(a) and 2(b). The square-root Hamiltonian
H,o is given the Hamiltonian (3) with (N, M) = (2,4), and

—ik 1% ,—ik
H = J1(1+e=*) 0 A Ae

* 0 ii(l—e )y Alremik A
(21)

where A’ = e /4 /A.

We calculate (Hroo)* = Hpar @ Hyes. The parent Hamilto-
nian Hp,, is found to be the Kitaev Hamiltonian [22-25] with
u = 0 and the addition of a constant term 2|t| + 2|A|[. In-
gap edge states appear in Hoo at E = £4/2|t| + 2|A] as in
Fig. 2(d), which are transformed from the zero-energy topo-
logical states in the Kitaev model [Fig. 2(c)]. Furthermore,
there are perfect-flat bulk bands at zero energy in H;oo due to
the Lieb theorem [19] with |[M — N| = 2.

C. Square-root Haldane model

We next study a square root of the Haldane model. The
Hamiltonian is defined on the graph in Fig. 3(a) and given by

3k k 3k k
- sinkx)oZ + t(l + cos \/; * cos —y>ax ~|—t<cos \/; * §in —y>oy. (22)

2 2

The spectrum in nanoribbon geometry contains chiral edge states as in Fig. 3(c). The subdivided graph of the honeycomb graph
is shown in Fig. 3(b). The square-root Hamiltonian H; is given by the Hamiltonian (3) with (N, M) = (2, 9), where

Het — Voo Jteke Jremkar 5y gxeika
2x9 — \/; \/; \/; 0 0

with s = ¢4V, a; = {v/3/2,1/2}, a» = {~/3/2, —1/2}.

The parent Hamiltonian H,, is found to be
Hpar = 3(|t| + 2|)\|) ~+ Hualdane- (24)

The chiral edge state in nanoribbon geometry emerges in
Hioor, as shown in Fig. 3(d). Furthermore, there are seven
zero energy states in Hiyy, due to the Lieb theorem [19] with
M —N|=1.

D. Square-root non-Hermitian SSH model

We proceed to construct a square root of a non-Hermitian
SSH model by introducing the nonreciprocity y, as illustrated

s* + se

—ik-a, 0 0 0 s+ s*e_ik"
s* + seik-al s+ S*e—ik-az s* + se‘”‘* 0 ’
(23)
(
in Fig. 4(a). The Hamiltonian reads [26-31]
0 tat (tp+ y)e ™
non __ )
Hgghy = (ta +(tp — e 0 . (@25

where the hopping amplitudes are different between left and
right goings. The spectrum contains zero-energy edges states
in the topological phase, whose real and imaginary parts are
shown in Figs. 4(c) and 4(c’). The square-root Hamiltonian
H,y is defined on the subdivided graph in Fig. 4(b), and given
by the Hamiltonian (3) with

left __ \/E 1y + ye_ik
H2><2 - <«/t—a /—tb —y )7 (26)

right \/E ) \/E
Hyn = (\/tb —yet o ) 27
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The parent Hamiltonian H,, is found to be

Hpa.r = |ta| + V tl% - yZ + Hsnglr-ll (28)

The residual Hamiltonian is given by Hes = {a;;}, where
an = Vi(Vt — v + Vi + ve®),

ar = \/t_a(’\/th +y+ Vip — Veik), axy = 2\/t2—7]/2
(29)

ay =21,

In-gap edge states emerge at E = &, /|t,| + 1/tb2 —y2 for
[t.] > |tp| in Hyoor, as shown in Fig. 4(d), which are trans-
formed from the zero-energy topological edge states in Hggy,.
The phase diagram of the square-root non-Hermitian SSH
model is found to be identical to that of the non-Hermitian
SSH model.

The above model can be generalized as follows. In general,
we obtain a square root of a non-Hermitian topological system

by taking (3) with Hﬁih;v * (H,l\,eilM)T. For example, we take
left left ,—ik right right
Fleft netoe pyieht _ h )
2x2 — i ’ %2 — . . . .
t%ett l‘éeﬂ X tfght ek t;lght
(30)
By calculating (Hyoot)* = Hpar © Hies, We Obtain

< t%efttlright tlefttl ight t%efttrighl tleftt;ighleik)
H =
par

left  right left right ik left  right left  right
LT+ 57T e oM 2 o e
(31

which is nonreciprocal non-Hermitian in general.

IV. DISCUSSION

We have presented a systematic method to construct
square-root topological insulators and superconductors based
on subdivided graphs. We recall that subdivided graphs natu-
rally arise in electric circuits when we rewrite the Kirchhoff
law in the form of the Schrédinger equation [17,18]. Hence, it
would be natural to make experimental observation of square-
root topological systems with the use of electric circuits. We
start with a lattice electric circuit. In the original graph, it
contains voltage at the sites, which correspond to the vertices
in the graph theory. We can define currents flowing between
two adjacent sites, which corresponds to links in the graph
theory. Both the in-gap nonzero-energy edge states and the
zero-energy flat bands due to the Lieb theorem are to be
observed by measuring impedance peaks [32-34]. Another
possibility to realize square-root topological systems is a
direct construction of lattice structures by photonic [15] or
acoustic [35,36] systems.
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APPENDIX A: NAIVE CONSTRUCTION

We try to construct a square-root of a given Hamiltonian
in a naive way, where we take a square root of a matrix
representing the original Hamiltonian. First, we diagonalize
the original Hamiltonian H by a unitary transformation as

U~'HU = Hp, (A1)
where

Hp = diag.(eq, ..., en) (A2)

is a diagonal matrix whose components are eigenvalues ¢;
with 1 < j < N. Here, N is the dimension of the matrix H
and Hp. Then a square-root Hamiltonian ~/H is given by

VH = UHU ™", (A3)

where
A/Hp = diag.(\/e1, . .., +/€N).

A problem is that a square-root Hamiltonian +/H is an
infinite-range hopping model even when we start with a local
hopping model H. We see it for an example of the square root
of the SSH model (1), or

(A4)

Hssy = (lu —i—Otbeik fa +(t)be_lk>. (AS5)
It is diagonalize as
Hp = E(k)o; (A6)
with an energy
E(k) = |12 + 1 + 21ty cosk, (A7)
and a unitary matrix
U = L (tufti];)-fk t_j;,(ek-)k> (A8)
V2 1 1
Then the square-root Hamiltonian is given by
VEK)
VH = ( bt ’a*’aﬁ’*), (A9)
VE(k)

which is an infinite-range hopping model.

APPENDIX B: BIPARTITE GRAPH

We have constructed the Hamiltonian H;, on the subdi-
vided graph and decomposed it as (Hroot)? = Hp,r @ Hyes. The
eigenvalues of Hp,, and Hyes have the following two properties:

(1) All of the eigenvalues are identical between &par = Eres
except for the zero energy.

In order to prove it, we analyze the eigenvalue problem,

Hpar wpar =2 1ppar s BD

with A # 0. By inserting Hy, = H™), HIE™ | we rewrite it as

H s Hy o Viae = Mpar. (B2)
By multiplying Hﬁgf;\, from the left hand, we obtain
S H e = A B
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We now define

Yres = H]Eg:ljl\] par» (B4)
and use Hy, = Hy" VHE,, to obtain from (B3) as
Hreswres = )‘Wres- (BS)

Hence, the eigenvalues of Hy, and Hs are identical except
for the zero energy.

(2) The eigenvalues for Hp,, and Hes are positive epar > 0
and &, > 0, when they are Hermitian.

In order to prove it, we note that

o
Hyr = (Hyfty) HyEly (B6)

Hpes = (HgitM)THﬁQM, (B7)

when they are Hermitian. For an N-dimensional vector vy
and an M -dimensional vector ¥, we find

nh r1h
(Un, Hpur¥n) = <ng1thNv ngzthN)

right 2
|HM><N | O’

(B8)
<WMa HresWM) = <H1{'/:>f<thM’ Hll\leSMwM)
= |H1{/eitM¢M|2

0 and g5 > 0.

(B9)

Hence, we have proven gp,, >
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