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Systematic construction of square-root topological insulators and superconductors
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We propose a general scheme to construct a Hamiltonian Hroot describing a square root of an original
Hamiltonian Horiginal based on the graph theory. The square-root Hamiltonian is defined on the subdivided graph
of the original graph of Horiginal, where the subdivided graph is obtained by putting one vertex on each link in
the original graph. When Horiginal describes a topological system, there emerge in-gap edge states at nonzero
energy in the spectrum of Hroot, which are the inherence of the topological edge states at zero energy in Horiginal.
In this case, Hroot describes a square-root topological insulator or superconductor. Typical examples are square
roots of the Su-Schrieffer-Heeger (SSH) model, the Kitaev topological superconductor model, and the Haldane
model. Our scheme is also applicable to non-Hermitian topological systems, where we study an example of a
nonreciprocal non-Hermitian SSH model.
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I. INTRODUCTION

Topological insulators and superconductors are among the
most studied fields in condensed matter physics in this decade
[1,2]. They are characterized by the emergence of topological
edge states although the bulk is gapped.

They may have various extensions. Higher order topo-
logical insulators are one of them [3–13]. The higher order
topological insulator looks trivial since it has no zero-energy
edge states. However, there emerge zero-energy corner states
isolated both from the edge band and the bulk band due
to the nontrivial topology of the bulk. When we are ig-
norant of this fact, the emergence of zero-energy corner
states looks accidental. However, as we have just noted,
a deeper analysis has revealed that corner states emerge
because the bulk is topological. This finding implies that
some systems previously thought to be a trivial insulator
can be a topological insulator by generalizing the concept of
topology.

Recently, square-root topological insulators were proposed
[14,15]. Its notion has been generalized to square-root higher
order topological insulators [16]. They are characterized by
the emergence of in-gap edge states clearly isolated from
the bulk band. At first sight, its emergence looks accidental
since they emerge at nonzero energy. However, there is a case
whose origin can be traced back to the nontrivial topology
of a closely related system, i.e., the nontrivial topology of its
squared Hamiltonian. It is rather surprising that certain in-gap
edge states can be brought to zero-energy topological edge
states by squaring the Hamiltonian.
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In this paper, we propose a general scheme to construct
square-root topological insulators and superconductors from
ordinary topological insulators and superconductors based
on the graph theory. There is one-to-one correspondence
between a tight-binding Hamiltonian and a weighted graph.
A graph is composed of vertices and links. We can construct a
new graph by introducing one vertex on each link, which we
refer to as the subdivided graph [17,18]. We call the original
graph the parent graph in contrast to the subdivided graph.
Any subdivided graph is bipartite because it contains original
vertices and newly added vertices. Examples are shown in
Figs. 1–3 in Sec. III, where original (new) vertices are shown
in magenta (cyan).

We denote the Hamiltonian constructed on the subdivided
graph as Hroot. We then find (Hroot )2 = Hpar ⊕ Hres, where
Hpar is identical to the original Hamiltonian Horiginal up to an
additive constant interpreted as a self-energy. We call Hpar and
Hres the parent and residual Hamiltonians, respectively. When
Horiginal describes a topological system, it contains zero-energy
topological edge states, producing the corresponding edge
states at nonzero energy in Hroot. Furthermore, zero-energy
perfect-flat bulk bands may emerge in Hroot as a bipartite
property according to the Lieb theorem: See orange lines
in Figs. 2 and 3. Because the eigenvalues are shown to be
identical between Hpar and Hres except for zero-energy states
in Hres, Hroot is interpreted as the square-root Hamiltonian
of Horiginal. We can use the same topological index between
Hroot and Horiginal since the eigenvectors are identical between
them. Indeed, the region of the in-gap edge states in Hroot is
precisely the same as that of the zero-energy edge states in
Horiginal. Namely, the phase diagram is identical between Hroot

and Horiginal.

We present explicit examples of the Su-Schrieffer-Heeger
(SSH) model, the Kitaev p-wave topological superconductor
model, and the Haldane honeycomb model. Furthermore, our
results are applicable to non-Hermitian systems, where we
demonstrate an example of nonreciprocal non-Hermitian SSH
model.
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FIG. 1. Illustration of (a) the graph and (b) the subdivided graph
for the SSH model HSSH. The green rectangles represent the unit
cells. Energy spectrum of (c) HSSH and (d) Hroot in unit of ta as a
function of tb/ta. The topological edge states are marked in magenta.
In-gap edge states are on the curve E = ±√|ta| + |tb| for Hroot.

II. SQUARE-ROOT HAMILTONIAN

It is impossible to construct a local hopping model only
by taking a square root of the Hamiltonian matrix. A simple
example is given by the SSH model,

HSSH =
(

0 ta + tbe−ik

ta + tbeik 0

)
. (1)

A square root of the model is given by

√
HSSH =

(
0

√
E (k)

ta+tbe−ik

ta+tbe−ik√
E (k)

0

)
, (2)

with E (k) =
√

t2
a + t2

b + 2tatb cos k, as we derive in Appendix
A. This is an infinite-range hopping model.

Here we recall the Dirac idea to take a square root of the
Klein-Gordon equation. He obtained the Dirac equation by in-
troducing a matrix degree of freedom. The Dirac equation has
various intriguing properties such as chirality and the index
theorem, which are absent in the Klein-Gordon equation.

We propose to take a square root of a Hamiltonian by
increasing a matrix degree of freedom as follows: (1) We

FIG. 2. Illustration of (a) the graph and (b) the subdivided graph
for the Kitaev model HKitaev. Energy spectrum of (c) HKitaev and
(d) Hroot in unit of t as a function of �/t . The topological edge
states are marked in magenta. In-gap states are on the curve E =
±√

2|t | + 2|�| for Hroot. Lieb perfect-flat bulk-bands are marked in
orange.

FIG. 3. Illustration of (a) the graph and (b) the subdivided graph
for the Haldane model HHaldane. Energy spectrum of (c) HHaldane and
(d) Hroot in unit of t as a function of the momentum k. The chiral
edge states are marked in magenta. Lieb perfect-flat bulk bands are
marked in orange. We have set λ = 0.2t/(3

√
3).

first write down a graph representation of the adjacency ma-
trix of the original Hamiltonian Horiginal. (2) We construct a
subdivided graph from the original graph. (3) We construct a
Hamiltonian Hroot on the subdivided graph. Then, we obtain
(Hroot )2 = Hpar ⊕ Hres, where Hpar is identical to the original
Hamiltonian Horiginal up to an additive constant, provided the
hopping parameter is taken to be

√
t in Hroot corresponding to

the hopping parameter t in Horiginal. The square-root Hamil-
tonian is given by Hroot. When the hopping parameter t is
complex, we take simply a square root of it. For instance,
when the hopping has a phase eiθ |t |, we set eiθ/2|t |1/2 for the
square-root Hamiltonian.

We make a comment when the Hamiltonian has the spin
or orbital degrees of freedom. Although a vertex of a graph
cannot include internal indices, it is possible to introduce sev-
eral vertices corresponding to internal indices. For example,
we introduce two vertices to incorporate the spin degree of
freedom.

We start with a Hamiltonian Horiginal where a unit cell
contains N sites connected by M hoppings. We consider a
Hamiltonian on the subdivided graph, which is given by

Hroot =
(

ON×N H left
N×M

H right
M×N OM×M

)
. (3)

It is required that H right
M×N = (H left

N×M )†, when Hroot is Hermitian.
We have

(Hroot )
2 =

(
Hpar 0

0 Hres

)
= Hpar ⊕ Hres, (4)

where

Hpar ≡ H left
N×MH right

M×N , Hres ≡ H right
M×N H left

N×M . (5)
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Thus, the square of the Hamiltonian, (Hroot )2, is uniquely
decomposed into a direct sum of Hpar and Hres, which are
the parent and residual Hamiltonians defined on the parent
and residual graphs. The unique decomposition of the square
of a subdivided graph is understood as follows. We label A
and B vertices of the subdivided graph since it is bipartite.
The square graph is grouped into two graphs, where one is
composed only by the A vertices and the other is composed
only by the B vertices. Thus, the decomposition of the graph
is unique.

In general, Hpar is identical to Horiginal up to a constant term
because both of them are constructed on the same graph,

Hpar = C + Horiginal, (6)

where C is a positive constant obtained by calculating (Hroot )2.
This constant term can be interpreted as a self energy, as in the
case of the second-order perturbation theory. The zero-energy
topological edge states in Horiginal are transformed into the in-
gap edge states at nonzero energy ±√

C in Hroot.
We show that it is enough to set the hopping

√
t in the

subdivided graph for Hroot in order to reproduce the parent
Hamiltonian Hpar with the hopping t . We consider hoppings
between three sites indexed by i − 1, i, and i + 1, where
the sites i − 1 and i + 1 are nearest-neighbor sites in Horiginal

while the site i is the additional site introduced in Hroot. The
relevant part of the Hamiltonian is explicitly given by

H ′
root = t left

i c†
i−1ci + t right

i c†
i ci−1 + t left

i+1c†
i ci+1 + t right

i+1 c†
i+1ci,

(7)
whose square is uniquely decomposed into a direct product,

(H ′)2 = H ′
par ⊕ H ′

res, (8)

where

H ′
par = t left

i t right
i c†

i−1ci−1 + t left
i+1t right

i+1 c†
i+1ci+1

+ t left
i t left

i+1c†
i−1ci+1 + t right

i+1 t right
i c†

i+1ci−1. (9)

The hoppings are between the next-nearest-neighbor sites, and
there are on-site potentials. It is necessary to set t left

i = t right
i =√

t to obtain

H ′
par = t (c†

i−1ci−1 + c†
i+1ci+1 + c†

i−1ci+1 + c†
i+1ci−1), (10)

which represents the generic terms in the original Hamilto-
nian Horiginal defined on the subdivided graph. It shows that
the Hamiltonian H ′

root with the hopping amplitude
√

t on the
subdivided gives the parent Hamiltonian H ′

par with the hopping
t .

In this derivation, we find that it is impossible to tune the
on-site potential independently. We have constructed a square-
root Hamiltonian only when the on-site terms are constant and
equals to the hopping term t by using the subdivided graph in
general. In other words, it is impossible to construct a square-
root Hamiltonian if there are site-dependent on-site terms.

The bipartite Hamiltonian has chiral symmetry,
{γ , Hroot} = 0, with the chiral operator defined by

γ =
(

IN×N ON×M

OM×N −IM×M

)
. (11)

In general, we have M > N . According to the Lieb theo-
rem [19], there are |M − N | zero-energy states constituting
perfect-flat bulk bands.

It is known [20,21] that the eigenvalues are identical be-
tween Hpar and Hres except for these zero-energy states in Hres

and that they are non-negative. See also Appendix B. Namely,
when we set

Hpar

∣∣ψpar
j

〉 = ε j

∣∣ψpar
j

〉
, Hres

∣∣ψ res
j

〉 = εres
j

∣∣ψ res
j

〉
, (12)

we obtain {εres
j } = {ε1, . . . εN , 0, . . . , 0} and ε j � 0. It follows

from (6) that the eigenvectors of Hpar and Horiginal are the
same,

Horiginal

∣∣ψpar
j

〉 = (ε j − C)
∣∣ψpar

j

〉
. (13)

Furthermore, the eigenvectors |ψ res
j 〉 of Hres are obtained from

those of Hpar as ∣∣ψ res
j

〉 ≡
∑

k

(
H right

M×N

)
jk

∣∣ψpar
k

〉
, (14)

as we derive in Appendix B.
When the Hamiltonian Hroot is diagonalized by a uni-

tary transformation U as U †HrootU = HD
root, the Hamiltonian

(Hroot )2 is also diagonalized by the same unitary transforma-
tion as U †(Hroot )2U = (HD

root)
2. Then, the eigenvalues of Hroot

are obtained just by taking a square root of them with the same
eigenvectors,

Hroot

∣∣ψ root
j

〉 = εroot
j

∣∣ψ root
j

〉
, (15)

where

εroot
j = {±√

ε1, . . . ,±√
εN ; ±√

ε1, . . . ,±√
εN , 0, . . . , 0}.

(16)

Because of this property, Hroot is interpreted as the square-root
Hamiltonian of Horiginal.

Consequently, non-zero-energy in-gap states emerge in
Hroot, which corresponds to the zero-energy states in Hpar. As
we shall see soon, the phase diagram which determined by
the edge states is identical between Hroot and Hpar. Hence, the
same topological number is assigned for Hroot as that for Hpar.
See the instances of the phase diagrams of Hpar and Hroot in
Figs. 1(c) and 1(d) for the SSH model and in Figs. 4(c) and
4(d) for the non-Hermitian model.

III. EXAMPLES

A. Square-root SSH model

For the first example, we analyze the SSH model (1). The
spectrum contains the zero-energy topological edge states as
in Fig. 1(c). The graph of the SSH model is a simple one-
dimensional graph containing two vertices in the unit cell
[Fig. 1(a)]. The corresponding subdivided graph is a one-
dimensional graph containing four vertices in the unit cell
[Fig. 1(b)]. The square-root Hamiltonian Hroot is given by (3)
with (N, M ) = (2, 2), and

H left
2×2 =

(√
ta

√
tbe−ik√

ta
√

tb

)
. (17)
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FIG. 4. Illustration of (a) the graph and (b) the subdivided graph
for the nonreciprocal non-Hermitian SSH model Hnon

SSH. Real and
imaginary parts of the energy spectrum of (c) Hnon

SSH and (d) Hroot in
unit of ta as a function of tb/ta. The topological edge states are marked

in magenta. In-gap states are on the curve E = ±
√

|ta| + √
t2
b − γ 2

for Hroot. We have set γ = ta/4.

It is straightforward to derive (Hroot )2 = Hpar ⊕ Hres with

Hpar = |ta| + |tb| + HSSH, (18)

Hres =
(

2ta
√

tatb(1 + e−ik )
√

tatb(1 + eik ) 2tb

)
, (19)

where Hres is the Rice-Mele model. In-gap edge states appear
at E = ±√|ta| + |tb| for |tb| > |ta|, as illustrated in Fig. 1(d),

whose origin is the topological zero-energy states in the SSH
model [Fig. 1(c)]. The phase diagram of the square-root SSH
model is found to be identical to that of the SSH model.

B. Square-root Kitaev topological superconductor

The next example is a square root of the Kitaev p-wave
topological superconductor model defined by [22–25]

HKitaev = (2t cos k − μ)σz + 2�σx sin k. (20)

The spectrum contains the zero-energy topological edge states
as in Fig. 2(c). The corresponding graph and subdivided graph
are shown in Figs. 2(a) and 2(b). The square-root Hamiltonian
Hroot is given the Hamiltonian (3) with (N, M ) = (2, 4), and

H left
2×4=

(√
t (1+e−ik ) 0 �′ �′∗e−ik

0 i
√

t (1−e−ik ) �′∗e−ik �′

)
,

(21)

where �′ = e−iπ/4
√

�.
We calculate (Hroot )2 = Hpar ⊕ Hres. The parent Hamilto-

nian Hpar is found to be the Kitaev Hamiltonian [22–25] with
μ = 0 and the addition of a constant term 2|t | + 2|�|. In-
gap edge states appear in Hroot at E = ±√

2|t | + 2|�| as in
Fig. 2(d), which are transformed from the zero-energy topo-
logical states in the Kitaev model [Fig. 2(c)]. Furthermore,
there are perfect-flat bulk bands at zero energy in Hroot due to
the Lieb theorem [19] with |M − N | = 2.

C. Square-root Haldane model

We next study a square root of the Haldane model. The
Hamiltonian is defined on the graph in Fig. 3(a) and given by

HHaldane = 2λ

(
2 sin

kx

2
cos

√
3ky

2
− sin kx

)
σz + t

(
1 + cos

√
3kx

2
cos

ky

2

)
σx + t

(
cos

√
3kx

2
sin

ky

2

)
σy. (22)

The spectrum in nanoribbon geometry contains chiral edge states as in Fig. 3(c). The subdivided graph of the honeycomb graph
is shown in Fig. 3(b). The square-root Hamiltonian Hroot is given by the Hamiltonian (3) with (N, M ) = (2, 9), where

H left
2×9 =

(√
t

√
teik·a2

√
te−ik·a1 s + s∗eik·a2 s∗ + se−ik·a1 0 0 0 s + s∗e−ikx√

t
√

t
√

t 0 0 s∗ + seik·a1 s + s∗e−ik·a2 s∗ + se−ikx 0

)
,

(23)

with s = eiπ/4
√

λ, a1 = {√3/2, 1/2}, a2 = {√3/2,−1/2}.
The parent Hamiltonian Hpar is found to be

Hpar = 3(|t | + 2|λ|) + HHaldane. (24)

The chiral edge state in nanoribbon geometry emerges in
Hroot, as shown in Fig. 3(d). Furthermore, there are seven
zero energy states in Htotal due to the Lieb theorem [19] with
|M − N | = 7.

D. Square-root non-Hermitian SSH model

We proceed to construct a square root of a non-Hermitian
SSH model by introducing the nonreciprocity γ , as illustrated

in Fig. 4(a). The Hamiltonian reads [26–31]

Hnon
SSH =

(
0 ta + (tb + γ )e−ik

ta + (tb − γ )eik 0

)
, (25)

where the hopping amplitudes are different between left and
right goings. The spectrum contains zero-energy edges states
in the topological phase, whose real and imaginary parts are
shown in Figs. 4(c) and 4(c′). The square-root Hamiltonian
Hroot is defined on the subdivided graph in Fig. 4(b), and given
by the Hamiltonian (3) with

H left
2×2 =

(√
ta

√
tb + γ e−ik√

ta
√

tb − γ

)
, (26)

H right
2×2 =

( √
ta

√
ta√

tb − γ eik √
tb + γ

)
. (27)

033397-4



SYSTEMATIC CONSTRUCTION OF SQUARE-ROOT … PHYSICAL REVIEW RESEARCH 2, 033397 (2020)

The parent Hamiltonian Hpar is found to be

Hpar = |ta| +
√

t2
b − γ 2 + Hnon

SSH. (28)

The residual Hamiltonian is given by Hres = {ai j}, where

a11 = 2ta, a12 = √
ta(

√
tb − γ + √

tb + γ eik ),

a21 = √
ta(

√
tb + γ + √

tb − γ eik ), a22 = 2
√

t2
b − γ 2.

(29)

In-gap edge states emerge at E = ±
√

|ta| +
√

t2
b − γ 2 for

|ta| > |tb| in Hroot, as shown in Fig. 4(d), which are trans-
formed from the zero-energy topological edge states in Hnon

SSH.
The phase diagram of the square-root non-Hermitian SSH
model is found to be identical to that of the non-Hermitian
SSH model.

The above model can be generalized as follows. In general,
we obtain a square root of a non-Hermitian topological system
by taking (3) with H right

M×N �= (H left
N×M )

†
. For example, we take

H left
2×2 =

(
t left
1 t left

4 e−ik

t left
2 t left

3

)
, H right

2×2 =
(

t right
1 t right

2

t right
4 eik t right

3

)
.

(30)
By calculating (Hroot )2 = Hpar ⊕ Hres, we obtain

Hpar =
(

t left
1 t right

1 + t left
4 t right

4 t left
1 t right

2 + t left
4 t right

3 e−ik

t left
2 t right

1 + t left
3 t right

4 eik t left
2 t right

2 + t left
3 t right

3

)
,

(31)
which is nonreciprocal non-Hermitian in general.

IV. DISCUSSION

We have presented a systematic method to construct
square-root topological insulators and superconductors based
on subdivided graphs. We recall that subdivided graphs natu-
rally arise in electric circuits when we rewrite the Kirchhoff
law in the form of the Schrödinger equation [17,18]. Hence, it
would be natural to make experimental observation of square-
root topological systems with the use of electric circuits. We
start with a lattice electric circuit. In the original graph, it
contains voltage at the sites, which correspond to the vertices
in the graph theory. We can define currents flowing between
two adjacent sites, which corresponds to links in the graph
theory. Both the in-gap nonzero-energy edge states and the
zero-energy flat bands due to the Lieb theorem are to be
observed by measuring impedance peaks [32–34]. Another
possibility to realize square-root topological systems is a
direct construction of lattice structures by photonic [15] or
acoustic [35,36] systems.
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APPENDIX A: NAIVE CONSTRUCTION

We try to construct a square-root of a given Hamiltonian
in a naive way, where we take a square root of a matrix
representing the original Hamiltonian. First, we diagonalize
the original Hamiltonian H by a unitary transformation as

U −1HU = HD, (A1)

where

HD = diag.(ε1, . . . , εN ) (A2)

is a diagonal matrix whose components are eigenvalues ε j

with 1 � j � N . Here, N is the dimension of the matrix H
and HD. Then a square-root Hamiltonian

√
H is given by

√
H = U

√
HDU −1, (A3)

where
√

HD = diag.(
√

ε1, . . . ,
√

εN ). (A4)

A problem is that a square-root Hamiltonian
√

H is an
infinite-range hopping model even when we start with a local
hopping model H . We see it for an example of the square root
of the SSH model (1), or

HSSH =
(

0 ta + tbe−ik

ta + tbeik 0

)
. (A5)

It is diagonalize as

HD = E (k)σz (A6)

with an energy

E (k) =
√

t2
a + t2

b + 2tatb cos k, (A7)

and a unitary matrix

U = 1√
2

( E (k)
ta+tbe−ik

−E (k)
ta+tbe−ik

1 1

)
. (A8)

Then the square-root Hamiltonian is given by

√
H =

(
0

√
E (k)

ta+tbe−ik

ta+tbe−ik√
E (k)

0

)
, (A9)

which is an infinite-range hopping model.

APPENDIX B: BIPARTITE GRAPH

We have constructed the Hamiltonian Hroot on the subdi-
vided graph and decomposed it as (Hroot )2 = Hpar ⊕ Hres. The
eigenvalues of Hpar and Hres have the following two properties:

(1) All of the eigenvalues are identical between εpar = εres

except for the zero energy.
In order to prove it, we analyze the eigenvalue problem,

Hparψpar = λψpar, (B1)

with λ �= 0. By inserting Hpar = H left
N×MH right

M×N , we rewrite it as

H left
N×MH right

M×Nψpar = λψpar. (B2)

By multiplying H right
M×N from the left hand, we obtain

H right
M×N H left

N×MH right
M×Nψpar = λH right

M×Nψ par. (B3)
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We now define

ψres ≡ H right
M×Nψpar, (B4)

and use Hres ≡ H right
M×N H left

N×M to obtain from (B3) as

Hresψres = λψres. (B5)

Hence, the eigenvalues of Hpar and Hres are identical except
for the zero energy.

(2) The eigenvalues for Hpar and Hres are positive εpar � 0
and εres � 0, when they are Hermitian.

In order to prove it, we note that

Hpar = (
H right

M×N

)†
H right

M×N , (B6)

Hres = (
H left

N×M

)†
H left

N×M , (B7)

when they are Hermitian. For an N-dimensional vector ψN

and an M -dimensional vector ψM , we find

〈ψN , HparψN 〉 = 〈
H right

M×NψN , H right
M×NψN

〉
= ∣∣H right

M×NψN

∣∣2 � 0, (B8)〈
ψM, HresψM

〉 = 〈
H left

N×MψM, H left
N×MψM

〉
= ∣∣H left

N×MψM

∣∣2 � 0. (B9)

Hence, we have proven εpar � 0 and εres � 0.
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