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θ-dependence of light nuclei and nucleosynthesis

Dean Lee ,1,* Ulf-G. Meißner ,2,3,4,† Keith A. Olive,5,‡ Mikhail Shifman ,5,§ and Thomas Vonk 2,‖
1Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, Michigan 48824, USA

2Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
3Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich,

D-52425 Jülich, Germany
4Tbilisi State University, 0186 Tbilisi, Georgia

5William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 26 June 2020; accepted 18 August 2020; published 10 September 2020)

We investigate the impact of the QCD vacuum at nonzero θ on the properties of light nuclei, Big Bang
nucleosynthesis, and stellar nucleosynthesis. Our analysis starts with a calculation of the θ -dependence of
the neutron-proton mass difference and neutron decay using chiral perturbation theory. We then discuss the
θ -dependence of the nucleon-nucleon interaction using a one-boson-exchange model and compute the properties
of the two-nucleon system. Using the universal properties of four-component fermions at large scattering
length, we then deduce the binding energies of the three-nucleon and four-nucleon systems. Based on these
results, we discuss the implications for primordial abundances of light nuclei, the production of nuclei in stellar
environments, and implications for an anthropic view of the universe.
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I. INTRODUCTION

One of the most outstanding questions in physics pertains
to the values of the fundamental parameters in the Standard
model. These include the gauge and Yukawa couplings, the
latter being responsible for fermion masses and mixings. In
the case of the gauge couplings, some hint is available from
grand unified theories where a single unified coupling is
run down from a very high energy scale to the weak scale
leading to predictions for the weak scale gauge couplings in
reasonable agreement with experiment. The Yukawa coupling
matrices are, however, a bigger mystery which includes the
generation structure of fermion masses. The answer may lie
in an as yet undefined future theory (e.g., a complete string
theory) in which case there is hope of a deeper understanding.
It is also possible that our Universe with its observed funda-
mental parameters is part of a larger structure or a Multiverse,
but we have no means to know. In this case, the observed
values, may be somewhat random with no deep explanation.
However, even in that case, our specific measurements of
these parameters can not be completely random, as not all

*leed@frib.msu.edu
†meissner@hiskp.uni-bonn.de
‡olive@umn.edu
§shifman@umn.edu
‖vonk@hiskp.uni-bonn.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

values will permit a Universe which supports our form of life,
which can carry out such measurements. This is often referred
to as the anthropic principle. The anthropic principle absolves
us, the Earth dwellers, from the duty of explaining the values
of the governing constants, at least for the time being, until
data at higher scales become available.

The term anthropic principle was coined in 1974 by Bran-
don Carter [1]. In the 1980s a few influential “anthropic
papers” were published by Steven Weinberg, see, e.g., Ref. [2]
(see also Refs. [3,4]). The anthropic principle is not a predic-
tive theory, rather it is a philosophical idea that the governing
parameters in our world should fit the intervals compati-
ble with the existence of conscious life. The recent LHC
data show no signs to support an opposite philosophical
principle—that of naturalness.

The most remarkable and still incomprehensible example
of anti-naturalness is the cosmological constant (for a differ-
ent view, see e.g. [5]). Its observed value is suppressed by
124 orders of magnitude compared to the Planck scale M4

P
(believed to be the only fundamental scale). The suppres-
sion of the electroweak scale compared to MP is 17 orders
of magnitude. The vacuum angle θ , whose natural order of
magnitude ∼1 is less than 10−10 in experiment [6].

It is obvious that the suppression of the cosmological
constant is vital for the existence of our world. Even if it
were a few orders of magnitude larger, the Universe would
have entered an inflationary stage before the onset of galaxy
formation. The smallness of the u, d quark masses compared
to �QCD and the fact that mu < md are crucial for the genesis
of heavier elements in stars. However, it is widely believed
that there are no anthropic limitations on θ and its suppression
must be solved through a natural mechanism such as a symme-
try including axions [7,8]. A dedicated study of this issue [9]
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revealed some θ -dependence on nuclear physics but the author
concludes with the statement that “these effects are not too
dramatic.” The authors of [7] note with regards to the vacuum
angle θ that it “is hard to see an anthropic argument that θ

[...] is bounded by 10−10. Moreover, in the flux vacua, there
is typically no light axion.” For further discussions related to
this issue, see Refs. [10–12]. In the present paper we revisit
this issue.

While it is certainly true (and will be made clear below)
that θ ∼ 10−9 or even θ ∼ 10−5 will not change life in our
world, it seems reasonable to reconsider constraints imposed
on θ from observations other than the neutron electric dipole
moment (nEDM) as well as the anthropic perspective. We will
see that the impact of θ on delicate aspects of nuclear physics
is similar to that of the parameters |mu| or |md |. Quark mass
variation of nuclear properties and reactions are considered,
e.g., in Refs. [13–26]. Furthermore, if the variation of quark
masses is due to an overall variation in the Yukawa couplings,
it will feed into variations of a host of fundamental observ-
ables including the gauge couplings, and affect Big Bang
Nucleosynthesis (BBN) [27–31], the lifetime of long-lived
nuclei [32], and atomic clocks [33]. Strictly speaking, it would
be more appropriate to combine the absolute values of the
quark masses with their phases and analyze the limitations in
the complex plane. Here, we will fix |mu| and |md | and let
θ vary. Unlike Ubaldi [9] who focused on CP-odd vertices
and arrived at rather weak constrains, we will consider the
θ -dependence due to CP-even vertices. For reviews on this
and related issues, see, e.g., Refs. [34–38].

Our approach is limited in the sense that we do not vary
all governing parameters simultaneously in a concerted way.
We do not explore how variations of some of them could be
masked by variation of others, for instance whether the change
of θ could be compensated by that of |mu,d | or the impact of
θ on, say, the vacuum energy density. Such a global task is a
problem for the future. We will only vary θ fixing all other
parameters to their observed values.

At this point, it is worth noting that the most often dis-
cussed physical effect of θ on an observable, the nEDM
arising from strong CP-violation, does not impose strong an-
thropic constraints on θ . The nEDM stemming from the QCD
θ -term is [39,40]

dn(θ̄ ) = O(10−16 θ̄ e cm), (1.1)

where θ̄ = θ + Arg det M and M the quark mass matrix.
Even if θ = O(1), this is still a very small number and the
physical effects of an nEDM of O(10−16 e cm) on the evolu-
tion of the universe would still be negligible.

Note also that θ = π is a special point in which QCD has
two degenerate vacua, and physics changes drastically, see,
e.g., the lucid discussion in Ref. [41] (and references therein).
However, here we are not interested in this special point but
rather in a generic situation with 0 < θ < π .

As we discuss below, the value of θ does affect a host of
hadronic properties which trigger changes in nuclear prop-
erties such as the binding energies of nuclei. Changes in θ

affect the pion mass which in turn alters the neutron-proton
mass difference, �mN which further affects the neutron decay
width. We also consider the effect of θ on multi-nucleon
systems and compute changes to nuclear binding energies.

The neutron-proton mass difference and the binding energy
of deuteron, Bd , play a sensitive role in BBN (see Ref. [42]
for the current status). As a result, changes in θ can substan-
tially alter the abundances of the light elements produced in
BBN. Thus we can set limits on θ (though they are weak)
entirely independent of the nEDM. However, even with large
changes in θ and large changes in the light element abun-
dances, it is not clear that this would cause an impediment
on the formation of life in the Universe. Indeed, in a related
study, Steigman and Scherrer [43] addressed the question of
fine-tuning in the matter-antimatter asymmetry, as measured
in terms of the baryon-to-photon asymmetry ηB. While the
baryon asymmetry is reliant on the existence of CP violation
[44], there is no reason to suspect that the baryon asymmetry
is itself related to θ . The authors of Ref. [45] found that even
for θ ∼ 1 the observed baryon asymmetry of the universe
would not be altered. Nevertheless, changes in ηB strongly
affect the light element abundances, though it was concluded
by Steigman and Scherrer that these could not be excluded
by anthropic arguments. A similar conclusion was reached in
[46] considering the effects of altered weak interactions on
BBN. Here, we fix ηB and consider the changes in abundances
due changes in �mN and Bd .

The θ induced changes will also affect stellar evolution
and can lead to very different patterns of chemical evolution.
In particular the changes in the nucleon-nucleon interaction,
can lead to stars which yield little or no carbon or oxygen,
thus potentially greatly affecting the existence of life in the
Universe.

The manuscript is organized as follows: In Sec. II, we
discuss the properties of various mesons and the nucleons
at nonzero θ . First, we collect the knowledge about the θ -
dependence of the corresponding hadron masses and coupling
constants. Next, we focus on the modification of the neutron-
proton mass difference and the neutron decay width. Then, we
turn to the two-nucleon system in Sec. III. We first construct
a simple one-boson-exchange (OBE) model to describe the
two-nucleon system and then display results for the deuteron,
the dineutron and the diproton with varying θ . In Sec. IV A,
we combine Wigner’s SU(4) symmetry with results from the
literature to get a handle on the θ -dependence of the three- and
four-nucleon systems. Larger nuclei are briefly discussed in
Sec. IV B. Implications of these results on the nucleosynthesis
in the Big Bang and in stars are discussed in Secs. V and
VI, respectively. We end with a summary and a discussion of
our anthropic view of the universe in Sec. VII. The Appendix
contains a derivation of the neutron-proton mass difference
with varying θ .

II. ONE NUCLEON

In this section, we first collect the θ -dependence of the
various hadrons entering our study, i.e., of the pion, the σ ,
ρ and ω mesons as well as the nucleon mass. Our framework
is chiral perturbation theory, in which the θ -dependence of
the nucleon (and also of the light nuclei) is driven by the
θ -dependence of the pion properties as well as the heavier
mesons, which model the intermediate and short-range part of
the nucleon-nucleon interaction. Of particular interest are the
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FIG. 1. The θ -dependence of the various meson masses Mα for α = {π, σ, ρ, ω}. (a) The θ -dependence of the pion in the case of two
degenerate flavors (blue solid line), and in the case with mu �= md (red dashed line). (b) The σ meson (blue solid line), ρ meson (green dotted
line), and ω meson (orange dashed line) masses as a function of θ .

neutron-proton mass difference and the neutron decay width,
which play an important role in BBN.

A. θ-dependence of hadron properties

Consider first the pion mass. We use the leading order (LO)
θ -dependence for two flavors [47,48] 1,

M2
π (θ ) = M2

π cos
θ

2

√
1 + ε2 tan 2

θ

2
, (2.1)

with Mπ = 139.57 MeV, the charged pion mass, and ε =
(md − mu)/(md + mu) measures the departure from the
isospin limit. For two degenerate flavors, this reduces to

M2
π (θ ) = M2

π cos
θ

2
. (2.2)

A plot of both Eqs. (2.1) and (2.2) is shown in Fig. 1(a). Since
the LO contribution gives about 95% [50] of the pion mass
at θ = 0, we do not need to consider higher order terms, as
done e.g. in Ref. [51]. The impact of the isospin breaking
term shows up mostly as θ → π . Note that while ε ∼ 1/3,
isospin symmetry is only broken by a few percent in nature
as (md − mu)/�QCD � 1. Here, we take mu = 2.27 MeV and
md = 4.67 MeV (this refers to the conventional MS scheme
taken at the scale μ = 2 GeV).

The mass of the σ as well as the masses of the ρ and
ω mesons when θ is varied are needed for the OBE model
and are taken from Ref. [51], assuming Mω(θ )/Mω(0) =
Mρ (θ )/Mρ (0) [Fig. 1(b)].

We consider the nucleon mass in the θ vacuum to leading
one-loop order (third order in the chiral expansion), which is
given by [48]2

mN (θ ) = m0 − 4c1M2
π (θ ) − 3g2

AM3
π (θ )

32πF 2
π

, (2.3)

1An equivalent expression for the θ -dependence of the pion mass
was also derived in a model of gluon dynamics in Ref. [49].

2Higher orders could be included, but that would go beyond the
accuracy of our calculation.

where m0 � 865 MeV [52] is the nucleon mass in the chi-
ral limit, gA = 1.27 the axial-vector coupling constant, Fπ =
92.2 MeV the pion decay constant, and c1 = −1.1 GeV−1

[53] is a low-energy constant (LEC) from the second order
chiral pion-nucleon Lagrangian, L(2)

πN , see, e.g., the review
[54]. The θ -dependence of the nucleon mass is thus entirely
given in terms of the pion mass, and one finds mN (0) =
938.92 MeV. We show the θ dependence of the nucleon mass
in Fig. 2(a).

Next, we discuss the θ -dependence of the coupling con-
stants. The θ -dependence of the pion-nucleon coupling is
related to the Goldberger-Treiman discrepancy [55]

gπNN (θ ) = gA mN (θ )

Fπ

(
1 − 2M2

π (θ )d̄18

gA

)
, (2.4)

where d̄18 = −0.47 GeV−2 so that g2
πNN (0)/(4π ) = 13.7,

which is in accordance with the most recent and precise value
from Ref. [56].

As gρππ shows very little variation with θ [51], we can use
universality relation gρππ = gρNN [57] and keep gρNN as well
as gωNN fixed at their values at θ = 0 in what follows. Matters
are different for the σ . Similar to Ubaldi [9], we employ the
parametrization of Refs. [58,59]. Writing the scalar attractive
piece of the nucleon-nucleon interaction as

Hcontact = GS (N̄N )(N̄N ), (2.5)

it is evident that

GS = −g2
σNN

M2
σ

, (2.6)

when translated to an OBE model (this corresponds to reso-
nance saturation of the corresponding LECs, see Ref. [60]).
The following dependence of GS (θ ) emerges [9]:

Gs(θ ) = GS (0)

(
1.4 − 0.4

M2
π (θ )

M2
π

)
, (2.7)

where we have normalized again to the value at θ = 0. Using
Eq. (2.6) together with the known θ -dependence of Mσ , we
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FIG. 2. The θ -dependence of the nucleon masses mN : (a) proton (blue solid line) and neutron (orange dashed line) and (b) neutron-proton
mass difference.

can extract the variation of gσNN with θ . We note that the cou-
pling gσππ extracted from the work of Ref. [51] also decreases
with θ . We now have all of the pieces of the puzzle needed to
calculate the binding energies of the various light nuclei. First,
however, let us take a closer look at the neutron-proton mass
difference and the neutron decay width, which also play an
important role in BBN.

B. Neutron-proton mass difference

Consider the neutron-proton mass difference

�mN = (mn − mp)QED + (mn − mp)QCD � 1.29 MeV.

(2.8)
The leading contribution to the strong part to the neutron-
proton mass difference arises from the second order effective
pion-nucleon Lagrangian and is given by [61]

(mn − mp)QCD = 4 c5 B0 (mu − md ) + O
(
M4

π

)
= −4 c5 M2

π ε + O
(
M4

π

)
, (2.9)

where c5 is a LEC. Using the most recent determina-
tion of the electromagnetic part of this mass difference,
(mn − mp)QED = −(0.58 ± 0.16) MeV [62], this amounts
to (mn − mp)QCD = 1.87 ∓ 0.16 MeV and correspondingly,
c5 = (−0.074 ± 0.006) GeV−1. In the θ -vacuum, this term
turns into [63] (for a derivation, see Appendix)

(mn − mp)QCD(θ ) � 4 c5 B0
M2

π

M2
π (θ )

(mu − md ), (2.10)

i.e the strong part of the neutron-proton mass increases (in
magnitude) with θ , see Fig. 2(b). At θ � 0.25, �mN (θ ) devi-
ates already by about 1 % from its real world value, and for
the range of θ = 1–2, we find �mN (θ ) = 1.51 − 2.47 MeV,
using Eq. (2.1) for Mπ (θ ).

C. Neutron decay width

As we increase θ , the neutron-proton mass difference,
�mN (θ ), becomes larger and results in a larger three-body
phase space for neutron beta decay. This increase in the phase

space integral scales roughly as the neutron-proton mass dif-
ference to the fifth power and is dominant over any expected
θ -dependence in the axial vector coupling, gA. The neutron
beta decay width can be written as (for the moment, we ex-
plicitly display factors of Planck’s constant h̄ and the speed of
light c, otherwise we work in natural units, kB = h̄ = c = 1)

�n = m5
ec4

2π3h̄6 |M|2 f , (2.11)

where me is the electron mass, M is the weak matrix element,
and f is the Fermi integral,

f =
∫ mn−mp−me

0
F (Z, Te)peTe(mn − mp − me − Te)2dTe,

(2.12)
where Z = 1 is the proton charge, Te is the electron kinetic
energy, pe is the electron momentum, and F (Z, Te) is the
Fermi function that takes into account Coulomb scattering
[64]. In Fig. 3, we plot [�n(θ )/�n(0)]1/5 versus �mN (θ ) − me

showing the linear behavior as expected. In Fig. 4, the neutron
mean life is shown as a function of θ . We see that the lifetime
drops off very quickly when θ starts to deviate from the

FIG. 3. Neutron decay width �n(θ ) as a function of the
neutron-proton mass difference. We plot the dimensionless quantity
[�n(θ )/�n(0)]1/5 vs �mN (θ ) − me.
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FIG. 4. Neutron life time τn(θ ) as a function of θ .

Standard model value θ ≈ 0. As we will see this dependence
plays a big role at the start of BBN.

III. TWO NUCLEONS

Here, we outline the formalism underlying our study of the
two-nucleon system. First, we construct a simple OBE model,
that allows us to describe the binding energies of the deuteron
and the unbound dineutron and diproton at θ = 0. Then, we
discuss how these two-nucleon systems change when θ varies
from 0 to π .

A. OBE model

Consider first the case θ = 0. We set up an OBE model
inspired by Ref. [65] and work with the Schrödinger equation,
as the nucleons in the deuteron move with velocities v � c.
The corresponding OBE potential is given by

VOBE(q) =
∑

α={π,σ,ω,ρ}
Vα (q) (3.1)

where q denotes the momentum transfer. The static limit
is applied, i.e. the four-momentum transfer squared q2 =
(p′ − p)2 = −(p′ − p)2 = −q2. Setting furthermore L = 0,
i.e. focusing on the dominant S-wave and neglecting the small
D-wave contribution, the respective potentials can be reduced
to

Vπ (q) = −(τ1 · τ2)(σ1 · σ2)
g2

πNN

q2 + M2
π

q2

12m2
N

, (3.2)

Vσ (q, P) = − g2
σNN

q2 + M2
σ

(
1 + q2

8m2
N

− P2

2m2
N

)
, (3.3)

Vω(q, P) = g2
ωNN

q2 + M2
ω

(
1 − q2

2m2
N

[
1

4
+ 1

3
(σ1 · σ2)

]
+ 3P2

2m2
N

)
,

(3.4)

Vρ (q, P) = (τ1 · τ2)
g2

ρNN

q2 + M2
ρ

(
1 − q2

2m2
N

[
1

4
+ gρ

T

gρNN

+ 1

3

(
1 + gρ

T

gρNN

)2

(σ1 · σ2)

]
+ 3P2

2m2
N

)
, (3.5)

where P = (p′ + p)/2. Terms ∝ (q × P), which in coordinate
space correspond to terms ∝ L, the angular momentum op-
erator, and terms ∝ S12(q) = 3(σ1 · q)(σ2 · q) − (σ1 · σ2)|q|2,
have been omitted. The potentials depend on the total spin
S of the two-nucleon system through the factor (σ1 · σ2) =
2S(S + 1) − 3 and on the total isospin I through the factor
(τ1 · τ2) = 2I (I + 1) − 3. Note also that we omit from the
start the ωNN tensor coupling as the corresponding coupling
constant gT

ω is approximately zero, which is a good approxi-
mation, see, e.g., Refs. [65,66].

The corresponding potentials in coordinate space are of
Yukawa-type and given by

Vπ (r) = (τ1 · τ2)(σ1 · σ2)
g2

πNN

4π

1

12

(
Mπ

mN

)2 e−Mπ r

r
, (3.6)

Vσ (r) = −g2
σNN

4π

(
1 − 1

4

(
Mσ

mN

)2)e−Mσ r

r
, (3.7)

Vω(r) = g2
ωNN

4π

(
1 + 1

2

(
Mω

mN

)2[
1 + 1

3
(σ1 · σ2)

])
e−Mωr

r
,

(3.8)

Vρ (r) = (τ1 · τ2)
g2

ρNN

4π

(
1 + 1

2

(
Mρ

mN

)2[
1 + gρ

T

gρNN

+ 1

3

(
1 + gρ

T

gρNN

)2

(σ1 · σ2)

])
e−Mρr

r
. (3.9)

The OBE potential requires regularization since it is
ultraviolet-divergent. This can be most easily seen from
the momentum-space representation, Eqs. (3.2)–(3.5), as
these potentials grow quadratically with increasing momen-
tum transfer. A standard regularization procedure in nuclear
physics is to apply either a single vertex form factor controlled
by the cutoff mass � for the total potential, or four individual
form factors controlled by the cutoff masses �α for each
meson exchange potential. Here, we are only interested in the
binding energies of the nucleon-nucleon systems, therefore a
single form factor is sufficient. The total OBE potential in the
coordinate-space representation is then:

VOBE(r) =
∑

α={π,σ,ω,ρ}
Vα (r) + �

4π

e−�r

r
. (3.10)

At θ = 0, the meson masses we use are

Mπ = 139.57 MeV, Mσ = 550 MeV,

Mω = 783 MeV, Mρ = 769 MeV. (3.11)

In order to assess the parameter dependence, we take two sets
of parameters, cf. Ref. [65]:

g2
σNN

4π
= 14.17,

g2
ρNN

4π
= 0.80,

g2
ωNN

4π
= 20.0,

� = 1.364 GeV, (3.12)

which we call parameter set I, and

g2
σNN

4π
= 8.06,

g2
ρNN

4π
= 0.43,

g2
ωNN

4π
= 10.6,

� = 2.039 GeV, (3.13)
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FIG. 5. The binding energy of the deuteron for a θ -dependent
OPE with all other meson couplings and masses are kept fixed, for
parameter set I, Eq. (3.12) (solid line) and parameter set II, Eq. (3.13)
(dashed line), respectively.

which we call parameter set II. For both sets, we take
gρ

T/gρNN = 6.1 [65,66]. After solving the radial Schrödinger
equation for the two nucleon system, one finds for both param-
eter sets a bound deuteron with binding energy Ed = −Bd =
−2.224 MeV, and an unbound dineutron with Enn = −Bnn =
0.072 MeV.

We now have all of the parts needed to investigate the
θ -dependence of the binding energies of the various two-
nucleon systems.

B. Spin-triplet channel

The bound state in the spin-triplet channel is the deuteron.
Here, we work out the θ -dependence of its binding energy.

Consider first the case of a θ -dependent one-pion-exchange
(OPE) potential, whereas all other potentials remain constant.
The resulting θ -dependent deuteron binding energy is shown
in Fig. 5. If all OBE exchange potentials were independent of
θ except for the OPE potential, the deuteron’s binding energy
would slowly decrease until the deuteron would no longer be
bound for θ � 2.8 for parameter set II, Eq. (3.13). This is the
expected behavior of the OPE potential that led to the idea
that the deuteron for θ �= 0 might not be bound anymore. This
brief estimate demonstrates that the next-to-leading order con-
tributions calculated by Ubaldi [9], which were reevaluated
in Ref. [63], are (a) negligible (because they are CP-odd and
only account for a shift of a few percent), but also that (b) the
approach of applying first order perturbation theory is invalid,
because the effects of θ on the leading order OPE potential are
not small.

However, the actual contribution of the OPE potential
to the total OBE potential is very small, which can be
seen, e.g., by considering the individual potentials V (r) of
Eqs. (3.6)–(3.9). Clearly, the smallness of the OPE contri-
bution compared to the strong repulsion of the ω exchange
potential and the large attraction of the ρ and σ exchange
suggests that, even if the effects of θ on the scalar and vector
meson masses are not as pronounced as that for the pion, these
contributions finally determine the actual θ -dependence of Bd .

FIG. 6. The binding energy of the deuteron for the full θ -
dependent OBE model in the isospin symmetric case (blue upper
band) and in the case of broken isospin symmetry (red lower band)
for parameter set I, Eq. (3.12) (solid lines) and parameter set II,
Eq. (3.13) (dashed lines), respectively.

Consider now the case of a full θ -dependent OBE poten-
tial. We study two cases: first, the isospin symmetric case
with mu = md = (2.27 + 4.67)/2 = 3.47 MeV, and second,
the case of broken isospin symmetry with mu = 2.27 MeV
and md = 4.67 MeV. This gives the result shown in Fig. 6.
In the isospin symmetric case, we find that after increasing
and reaching a maximum at θ � 3.0 (parameter set I, corre-
sponding to Bd � 42.5 MeV) and θ � 2.9 (parameter set II,
corresponding to Bd � 22.8 MeV), respectively, the binding
energy decreases and seems to approach to Bd in the chiral
limit, Bc.l.

d � F 2
π /m � 10 MeV [15], at least in the case of

parameter set II. This behavior is expected: As we have set
mu = md , θ → π effectively corresponds to mu = md → 0,
since the charged and the neutral pion masses vanish in both
cases. Because of that, all other phenomenological quantities
such as the nucleon mass and the pion-nucleon coupling ap-
proach their respective values in the chiral limit.

In the case of broken isospin symmetry, the curve flattens
and reaches its maximum as θ → π , which is given by Bd �
28.3 MeV (parameter set I) and Bd � 17.8 MeV (parameter
set II). A useful analytic approximation for Bd (θ ) is given by

Bd (θ ) = 2.22 + c1(1 − cos θ ) + c2(1 − cos θ )2

+ c3(1 − cos θ )3 (3.14)

with

unbroken isospin symmetry:{
c1 = 9.14 c2 = −7.19 c3 = 6.30 set I
c1 = 3.25 c2 = 2.55 c3 = 0.47 set II ,

(3.15)

broken isospin symmetry:{
c1 = 5.68 c2 = −1.02 c3 = 2.36 set I
c1 = 3.77 c2 = 0.45 c3 = 0.80 set II .

(3.16)
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FIG. 7. The binding energies of the dineutron ([(a) and (b)] zoom into the region θ � 0.4) and of the diproton ([(c) and (d)] zoom into the
region θ � 1) for the full θ -dependent OBE model. In each figure, the blue (upper) band represents the isospin symmetric case and the red
(lower) band the case of broken isospin symmetry. A band is spanned by a solid line based on parameter set I, Eq. (3.12), and a dashed line
based on parameter set II, Eq. (3.13).

C. Spin-singlet channel

The same analysis can be repeated for the dineutron with
results shown in Figs. 7(a) and 7(b). Using Eqs. (3.6)–
(3.9), one sees that the OPE and the σ exchange potentials
are exactly the same for both deuteron and dineutron, i.e.,
with S = 1 and I = 0 (deuteron), and with S = 0 and I =
1 (dineutron). The vector exchange potentials on the other
hand change in terms of the strength, but not regarding
the overall sign: the ρ exchange potential is still attractive,
but weakened by about 50%, whereas the ω exchange po-
tential is still repulsive, but weakened by about 1/3. The
dineutron OBE potential is thus slightly less attractive in
comparison with the deuteron OBE potential, so the dineutron
fails to be bound, as in the real world. However, anything
that happened to the deuteron OBE potential when sending
θ → π , this also happens to the dineutron potential, i.e.,
the most decisive effects come from the σ exchange poten-
tial, which is getting stronger (while the increase of the ρ

exchange attraction and the increase of the ω exchange re-
pulsion roughly neutralize), so the dineutron becomes bound.
From Fig. 7(b) one sees that this happens already for θ �
0.18–0.24.

The overall θ -dependence of the dineutron’s binding en-
ergy is the same as for the deuteron. Note that while the
binding energy of the dineutron steadily increases, it remains
smaller than the binding energy of the deuteron.

We note that a bound dineutron is also found in lattice QCD
calculations with pion masses larger than the physical one, see
Refs. [67–70], which span pion masses from 300 to 510 MeV.
The central binding energies in these works span the range
from 7 to 13 MeV, similar to what we find at θ = 1 − 2.

We end with a short discussion of the diproton with S = 0
and I = 1. Referring to isospin symmetry, the only difference
between the nn and the pp systems is the repulsive Coulomb
interaction in the latter case:

VC (r) = e2

r
, (3.17)

with e the elementary charge. Adding this to our OBE po-
tential Eq. (3.10), we find a constant shift of −0.67 and
−0.72 MeV for sets I and II, respectively, compared to the
dineutron case as shown in Figs. 7(c) and 7(d). The only visi-
ble effect of this is that the crossover point from the unbound
to the bound case now happens at θ � 0.6 − 0.8 [Fig. 7(d)].
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FIG. 8. (a) The SU(4)-averaged binding energy of the three- and four-nucleon systems B̄n(θ ) versus the SU(4)-averaged binding energy
of the two-nucleon system, B̄2(θ ). Blue (lower) line: n = 3. Red (upper) line: n = 4. (b) B̄n(θ ) versus θ , taking isospin breaking effects into
account, for parameter set I (solid lines), and parameter set II (dashed lines). Blue (lower) band: n = 3. Red (upper) band: n = 4.

IV. MORE THAN TWO NUCLEONS

A. Three and four nucleons

We have seen that the nucleon-nucleon interaction be-
comes more attractive as θ increases. This is predominantly
due to the decrease in the σ meson mass. Since the σ meson
is a scalar particle with zero isospin, the increased attraction
is approximately the same in the spin-singlet and spin-triplet
channels. This is a realization of Wigner’s SU(4) symmetry
[71]. Wigner’s SU(4) symmetry is an approximate symmetry
of low-energy nuclear physics where the four spin and isospin
degrees of freedom are four components of an SU(4) multi-
plet.

In the SU(4) limit where the spin-singlet and spin-triplet
scattering lengths are large and equal, the properties of light
nuclei with up to four nucleons follow the same universal
behavior that describes attractive bosons at large scattering
length [72–76]. We can use this information to determine
the θ -dependent binding energies of 3H, 3He, and 4He. In
order to perform this analysis, we first average over nuclear
states which become degenerate in the SU(4) limit. For the
A = 2 system, we average over the physical deuteron and
spin-singlet channel to arrive at an average binding energy
of B̄2 � 1 MeV. For the A = 3 system, we average over the
physical 3H and 3He systems for an average binding energy
of B̄3 = 8.1 MeV. For the A = 4 system, we take the physical
4He binding energy, B̄4 = 28.3 MeV.

In order to extend these binding energies to nonzero θ , we
use the numerical results from a study of bosonic clusters at
large scattering length [77]. In particular, we use an empirical
observation from Fig. 7 of Ref. [77] that

[B̄n/B]1/4 − [B̄2/B]1/4 (4.1)

remains approximate constant for positive scattering length
a > 0, where B is a binding energy scale set by a combination
of the range of the interaction and particle mass. Conveniently,
the value of B is approximately equal to the value of B̄4 at
infinite scattering length. We use these empirical observations
to determine B̄3(θ ) and B̄4(θ ) in terms of B̄2(θ ) using the

approximate relation

[B̄n(θ )/B̄4(0)]1/4 − [B̄2(θ )/B̄4(0)]1/4

= [B̄n(0)/B̄4(0)]1/4 − [B̄2(0)/B̄4(0)]1/4. (4.2)

In Fig. 8(a), we show the SU(4)-averaged binding energy
of the three- and four-nucleon systems, B̄3(θ ) and B̄4(θ ),
versus the SU(4)-averaged binding energy of the two-nucleon
system, B̄2(θ ), and in Fig. 8(b) directly as a function of θ .
Our results are similar to those obtained in Ref. [78], which
were computed using hyperspherical harmonics and auxiliary-
field diffusion Monte Carlo. We should also mention that we
find no evidence that varying theta will produce more exotic
states of three or four nucleons such as a bound trineutron or
tetraneutron.

B. More than four nucleons

In Ref. [79], the authors noted that the strength of the
4He - 4He interaction is controlled by the strength and range
of the SU(4)-invariant local nucleon-nucleon interaction. By
local we mean an interaction that is velocity independent. We
have noted that as θ increases, the range and strength of the
SU(4)-invariant local nucleon-nucleon interaction increases
due to the σ exchange contribution. We have already observed
the increase in the binding energies of the two-, three-, and
four-nucleon systems. As discussed in Ref. [79], the increase
in the range of the local interaction will also cause alpha-like
nuclei to become more bound. This is discussed further in
Secs. V and VI B.

Across the nuclear chart, the binding energy per nucleon
will increase with θ , and the relative importance of the
Coulomb interaction will decrease. As a result, the density
of nucleons at nuclear saturation will also rise. Given the
increase in the neutron-proton mass difference and decreased
importance of the Coulomb interaction, the line of nuclear sta-
bility will shift towards nuclei with equal numbers of neutrons
and protons and extend to larger nuclei.
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V. BIG BANG NUCLEOSYNTHESIS

In the early universe the temperature, T , is high enough to
keep neutrons and protons in thermal equilibrium through the
weak interactions

n + e+ ↔ p + ν̄e,

n + νe ↔ p + e−,

n ↔ p + e− + ν̄e. (5.1)

The weak interaction rates scale as T 5 and can be compared
with the expansion rate of the Universe, given by the Hubble
parameter, H ∝ T 2 in a radiation dominated Universe. As the
temperature drops, the weak rates freeze-out, i.e., they fall
out of equilibrium when they drop below the Hubble rate. In
standard BBN, this occurs at a temperature, Tf � 0.84 MeV.
In equilibrium, the ratio of the number densities of neutrons
to protons follow the Boltzmann distribution

n

p
≡ nn

np
� exp

[
−�mN

T

]
. (5.2)

At freeze-out, this ratio is about 1/4.7. The neutron-to-proton
ratio is particularly important, as it is the primary factor deter-
mining the 4He abundance. The 4He mass fraction, Y , can be
written as

Y = 2Xn ≡ 2(n/p)

1 + (n/p)
, (5.3)

and its observed value is Y = 0.2449 ± 0.0040 [80]. Further,
Xn is the neutron fraction. A change in θ , will therefore invari-
able affect the 4He abundance, primarily through the change
in �mN . While the change in θ and �mN does induce a change
in Tf , this is minor (<10% in Tf ) and we neglect it here.

The helium abundance, however, is not determined by
(n/p) at freeze-out, but rather by the ratio at the time BBN
begins. At the onset of BBN, deuterons are produced in the
forward reaction

n + p ↔ d + γ . (5.4)

However, initially (even though T < Bd ), deuteron is photo-
disintegrated by the backward reaction at temperatures Td �
0.1 MeV. This delay, often called the deuteron bottleneck,
is caused by the large excess of photons-to-baryons (or the
smallness of ηB), and allows time for some fraction of the
free neutrons to decay. A rough estimate of the temperature
at which deuteron starts to form is

Td ∼ −Bd (θ )

ln ηB
(5.5)

which for θ = 0 yields Td ∼ 0.1 MeV. A more accurate eval-
uation would find Td ≈ 0.064 MeV. Below this temperature,
the photo-disintegration processes become negligible and nu-
cleosynthesis begins.

A change in the starting time of BBN changes the (n/p)
at freeze-out or more accurately the neutron fraction, Xn, at
freeze-out by

Xn(Td ) = Xn(Tf )e−td /τn , (5.6)

where td is the age of the Universe corresponding to the
temperature, Td . As noted earlier, �n ∝ (�mN )5, and in a

FIG. 9. The Helium mass fraction, Y , as a function of θ in the
isospin symmetric case (blue upper band) and in the case of broken
isospin symmetry (red lower band) for parameter set I, Eq. (3.12)
(solid lines) and parameter set II, Eq. (3.13) (dashed lines).

radiation dominated Universe, t ∝ T −2, so that from (5.5),
td ∝ B−2

d . Thus using the dependencies of �mN , τn, and Bd

on θ , we can calculate Y (θ ) as shown in Fig. 9. Note that to
produce Fig. 9 we have used the numerical values of �n and
Bd as in Figs. 4 and 6, rather than the analytic approximations.

As one can see in the figure, the Helium mass fraction is
relatively flat for θ � 1. This is due to competing effects in
determining Y . As we saw in Fig. 2(b), the neutron-proton
mass difference increases with θ . This strongly suppresses the
neutron-to-proton ratio, as seen in Eq. (5.2). Furthermore, be-
cause �n ∝ (�mN )5, an even stronger suppression in Y occurs
due to the increased neutron decay rate as seen in Eq. (5.6).
However these decreases are largely canceled at low θ by the
increase in Bd , which causes BBN to begin earlier, leaving less
time for neutron decay. In fact, for set I parameters, at low θ

this is the dominant change in Y and causes an increase in the
Helium abundance. The maxima occur at θ = 0.42(0.54) and
Y = 0.248(0.252) for broken (unbroken) isospin symmetry.
Requiring Y > 0.24, sets upper limits on θ of roughly 0.77
(0.50) for broken isospin, and 0.89 (0.61) for unbroken isospin
for parameter sets I (II), respectively. For larger values of θ ,
the Helium abundance will drop below the observationally
inferred limit,3 however, as we note earlier, it is not clear
that a Universe with primordial Helium and Y < 0.05 would
prevent the formation of life and therefore can not be excluded
anthropically. We also note that an increase in θ and an in-
creased Bd will lead to an increase in the BBN value for D/H
[31] which is now very tightly constrained by observation
D/H = 2.53 ± 0.03 [81].

An interesting subtlety occurs in the case of unbroken
isospin symmetry for parameter set I. As one can see in Fig. 6,
the deuteron binding energy increases above ∼30 MeV, when
θ � 2.4. In this case, there is effectively no deuteron bot-
tleneck, as the backward reaction in (5.5) shuts off before

3While we have not run a nucleosynthetic chain in a numerical
BBN analysis, the analytic approximation for Y is quite good. For
θ = 0, we have Y = 0.2467, while the current result from a full BBN
analysis is Y = 0.24696 [42].
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weak decoupling. The Helium abundance, however, is highly
suppressed due to the large value of �mN � 3.5 MeV and
Y � 0.05.

As described above, the other two potentially bound
dimers, the dineutron and the diproton, become bound at
θ � 0.2 and θ � 0.7, respectively. Variations in the binding
energy of the dineutron is expected to have little effect on
the primordial abundances provided its absolute value remains
smaller than the deuteron’s binding energy [29,82,83]. Con-
sidering that, in this work the variations on the binding energy
of the deuteron are only of a few percent, we do not expect any
important role played by the binding energy of the dineutron
in the calculations. For large θ , although diprotons are bound,
their binding energy remains below that of deuteron and it
was argued that diproton production freezes-out before the
diproton bottleneck is broken [83,84].

Before concluding this section, we consider the possible
impact of changes in the binding energy of unstable nuclei. In
Ref. [30], changes in the nuclear part of the nucleon-nucleon
potential were parameterized as

VN (ri j ) = (1 + δNN )V 0
N (ri j ), (5.7)

where V 0
N (ri j ) is the nucleon-nucleon potential based on the

Minnesota force adapted to low mass systems [85]. The bind-
ing energy of 8Be, was found to be [30]

B8 = (−0.09184 + 12.208δNN ) MeV (5.8)

indicating that 8Be becomes bound when δNN � 0.00752.4

The binding energy of deuteron is also affected by a change
in the nucleon-nucleon potential

Bd (θ ) = (1 + 5.716 δNN (θ ))Bd (0), (5.9)

where we have implicitly here made θ the origin of this
change. From these expressions, we estimate that 8Be be-
comes bound when Bd (θ ) = 2.32 MeV or when θ is 0.21
(0.23) for broken isospin, and 0.19 (0.22) for unbroken isospin
for parameter sets I (II), respectively.

For stable 8Be, it may be possible in principle that BBN
produce elements beyond 7Li. As we discuss further in the
next section, changes in the nuclear potential strongly af-
fects the triple α process and the production of carbon and
oxygen in stars [30]. In the context of BBN, stable 8Be in-
creases the importance of two reactions 4He(α, γ ) 8Be and
8Be(α, γ ) 12C. Nevertheless, the detailed study in [31], found
that while some 8Be is produced in BBN (with a mass fraction
of 10−16 for δNN = 0.0116), no enhancement of carbon occurs
as the temperature and density in the BBN environment is
substantially below that in stars and the production rates are
inefficient.

4 5He and 5Li are unbound by 0.798 and 1.69 MeV, respectively,
i.e., roughly an order of magnitude more than 5Be requiring a very
substantial change in δNN and we do not consider this possibility here.

VI. STELLAR NUCLEOSYNTHESIS

A. Hydrogen burning

The effects of nonzero θ will also be manifest in stellar
nucleosynthesis. We first consider main sequence stars under-
going hydrogen burning. The first step of hydrogen burning is
proton-proton fusion,

p + p → d + e+ + νe. (6.1)

For θ � 0.5, proton-proton fusion is not significantly altered
from how it occurs in the physical Universe. However for
θ � 0.7, the diproton becomes bound and the first step in hy-
drogen burning can proceed many orders of magnitude faster
via radiative capture,

p + p → pp + γ . (6.2)

The diproton can then subsequently decay via the weak inter-
actions to a deuteron,

pp → d + e+ + νe. (6.3)

We note that while the neutron-proton mass difference grows
with θ , the diproton still has a higher mass than the deuteron
due to the larger binding energy of the deuteron.

Initially it was thought the rapid processing of protons to
diprotons would lead to stars with extremely short lifetimes,
so short so as to prevent the evolution of life on planets.
However, stellar structure compensates, and burning occurs at
lower temperatures and densities [84,96] and though the stars
would be different, it is not clear that there is an anthropic
argument against such stars.

B. Constraints on θ from the anthropic principle

The anthropic principle can constrain θ if changes in θ

result in a departure of normal stellar evolution so great that
planetary life would not occur. Therefore we could at min-
imum require that (a) enough metals (in the astronomical
sense) are available, and that (b) the lifetime of stars with
higher metallicity (thus allowing for rocky planets with po-
tentially living beings) is long enough that intelligent life can
evolve. Perhaps two of the most important elements for the
production of life as we know it are carbon and oxygen.

There have been many studies relating the sensitivity of
carbon production to fundamental physics in relation to the
anthropic principle [23,24,26,86–92]. The production of 12C
in stars requires a triple fine tuning: (i) the decay lifetime of
8Be, is relatively long, and is of order 10−16 s, which is four
orders of magnitude longer than the scattering time for two α

particles, (ii) there must exist an excited state of carbon which
lies just above the energy of 8Be + α and (iii) the energy level
of 16O which sits at 7.1197 MeV must be nonresonant and
below the energy of 12C +α, at 7.1616 MeV, so that most
of the produced carbon is not destroyed by further stellar
processing. It is well known of course, that the existence of
the excited state of 12C was predicted by Hoyle [93]. Any
change in fundamental physics which affects the position of
the Hoyle resonance, could severely affect the production of
carbon and oxygen and ultimately the existence of life.

We saw that it is perhaps not possible to place anthropic
bounds on θ from BBN, as it is hard to see why a universe with
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a paucity of Helium would prevent star formation or stellar
processing. It is however possible to set some constraints on
θ based on its effect on the triple α process leading to carbon
production in stars. In addition to the change in the 8Be bind-
ing energy given in Eq. (5.8), changes in θ and thus changes
in the nucleon-nucleon potential, δNN , shift the energy level of
the Hoyle resonance [30],

ER = (0.2876 − 20.412δNN ) MeV, (6.4)

where the resonant energy is given with respect to the 8Be
+α threshold of 7.367 MeV. In standard stellar evolutionary
models for massive stars, most 12C is produced during the He
burning phase. When the temperature becomes high enough,
the 12C(α, γ ) 16O reaction begins and 12C is processed to 16O.
Massive stars end their He burning phases with a mixture of C
and O. When δNN > 0, as would be expected for θ �= 0, ER is
reduced, and the production of carbon becomes more efficient
at a lower temperature. The burning of carbon to oxygen does
not occur and stars end their Helium burning phases with a
core of almost pure carbon.

If oxygen is not present after He burning, there is little
chance to subsequently produce it. Though some oxygen is
produced during carbon burning, the oxygen abundance in
this phase of stellar evolution is reduced as oxygen is pro-
cessed to Ne through α capture. The analysis of Ref. [30] was
based on stellar evolution models [94] of 15 and 60 M�, zero
metallicity stars and found that for δNN � 0.3 %, negligible
amounts of oxygen survive the Helium burning phase. Thus
an upper limit of δNN < 0.002 was set which corresponds to
Bd < 2.25 MeV. This is a rather tight bound and corresponds
to upper limits on θ of 0.11 (0.11) for broken isospin, and
0.11 (0.12) for unbroken isospin for parameter sets I (II),
respectively. As shown above, the dineutron and the diproton
remain unbound for such values of θ , so that a universe with
0 < θ � 0.1 will most probably look (almost) the same as a
universe with θ = 0.

VII. SUMMARY AND CONCLUSIONS

Let us summarize the pertinent results of our investigation
for 0 < θ < π .

(1) As θ is increased, the deuteron is more strongly bound
than in our world. This means that for θ of the order one,
there is much less fine-tuning than for θ = 0. Also, in the case
of isospin symmetry, the values for the binding energy as θ

approaches π are compatible with calculations for the chiral
limit.

(2) The dineutron as well as the diproton are bound for
θ � 0.2 and θ � 0.7, respectively. A bound diproton has often
been considered a disaster for the nucleosynthesis as we know
it [95], but recent stellar calculations show that this might not
be the case, see Refs. [83,84,96].

(3) Using Wigner’s SU(4) symmetry and earlier results
on systems with large scattering length, we have estimated
the SU(4)-averaged binding energies of the three- and four-
nucleon systems and found that these increase with increasing
θ or with the deuteron binding energy.

(4) In general, we have found that nuclear binding energies
are quite significantly altered when θ = O(1). While BBN
would proceed, perhaps producing far less helium and more

deuterium, changes in the deuteron binding energy would
not prevent the formation of stars and eventually life. Even
a stable diproton can not be excluded on this basis as stars
would continue to burn Hydrogen at lower temperatures. On
the other hand, changes in the binding energy of 8Be and the
resonant energy of the Hoyle state, would affect the triple α

reaction rate and lead to a world lacking in 16O.
(5) Applying the even stronger constraint not to upset the

world as we enjoy it, we derived that θ must be �0.1 in order
to approximately recover the real nuclear reaction rates. In this
case, the deviation of the neutron-proton mass difference to
the real world value is less than 1% and both the diproton and
the dineutron still fail to be bound.
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APPENDIX: θ-DEPENDENCE OF THE NEUTRON-PROTON
MASS DIFFERENCE

The strong contribution to the proton-neutron mass differ-
ence can be derived from the NLO πN Lagrangian [54]

L�mN
πN = N̄c5

(
χ+ − 1

2
〈χ+〉

)
N, (A.1)

where c5 is a LEC, N = (p, n)T contains the nucleon fields,
〈. . .〉 denotes the trace in flavor space, and

χ+ = u†χθu† + uχ
†
θ u. (A.2)

For the determination of the mass difference, U = u2, which
contains the pseudo-Nambu-Goldstone bosons of SU(2) chi-
ral perturbation theory, only needs to be expanded up
to its leading order constant term. In particular, in a θ -
vacuum U is given by the vacuum alignment U0. For χθ =
2BM exp (iθ/2), with M = diag{mu, md} the quark mass
matrix, we use the following parametrization of the vacuum
alignment:

U0 = diag{eiϕ, e−iϕ}. (A.3)

Minimizing the vacuum energy density in SU(2) chiral pertur-
bation theory (or equivalently removing the tree-level tadpole
term of the neutral pion), one finds [48]

tan ϕ = −ε tan
θ

2
, (A.4)
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or

sin ϕ = −ε tan θ
2√

1 + ε2 tan2 θ
2

= −εM2
π sin θ

2

M2
π (θ )

, (A.5)

cos ϕ = 1√
1 + ε2 tan2 θ

2

= M2
π cos θ

2

M2
π (θ )

, (A.6)

where we have used Eq. (2.1). With that, Eq. (A.1) becomes

L�mN
πN = N̄4c5B0

mu cos
(

θ
2 − ϕ

) − md cos
(

θ
2 + ϕ

)
2

τ3N

= N̄4c5B0
M2

π

M2
π (θ )

mu − md

2
τ3N, (A.7)

which results in the strong contribution to the proton-neutron
mass difference given in Eq. (2.10).
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