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Real spectra in non-Hermitian topological insulators
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Spectra of bulk or edges in topological insulators are often made complex by non-Hermiticity. Here, we show
that symmetry protection enables entirely real spectra for both bulk and edges even in non-Hermitian topological
insulators. In particular, we demonstrate the entirely real spectra without non-Hermitian skin effects due to a
combination of pseudo-Hermiticity and Kramers degeneracy. This protection relies on nonspatial fundamental
symmetry and has stability against disorder. As an illustrative example, we investigate a non-Hermitian exten-
sion of the Bernevig-Hughes-Zhang model. The helical edge states exhibit oscillatory dynamics due to their
nonorthogonality as a unique non-Hermitian feature.
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I. INTRODUCTION

Physics of non-Hermitian systems has generated consider-
able recent research interest [1,2]. Non-Hermiticity appears,
for example, in open classical [3–13] and quantum [14–23]
systems as a consequence of the external environment. De-
spite non-Hermiticity, Hamiltonians can have entirely real
spectra if parity-time symmetry [24] or pseudo-Hermiticity
[25] is respected. Disorder can also give rise to the real spectra
in time-reversal-invariant non-Hermitian systems [26]. The
reality of the spectra ensures the stability of the systems
even in the presence of non-Hermiticity. On the other hand,
when non-Hermiticity is sufficiently strong, the symmetry is
spontaneously broken and some eigenenergies form complex-
conjugate pairs. An exceptional point appears between the two
phases at which the eigenstates coalesce with each other [27].
The real spectra and exceptional points were experimentally
observed in a number of classical and quantum systems, such
as a photonic lattice [8], a microcavity [10], single photons
[19], a nitrogen-vacancy center [20], and superconducting
qubits [22].

Much research in recent years has focused on topological
characterization of non-Hermitian systems [28,29] both in
theory [30–69] and in experiments [70–83]. Non-Hermiticity
alters the fundamental nature of the topological classification
of phases of matter [43,56,59] and the bulk-boundary cor-
respondence [35,44,46,49,55,60]. Furthermore, the interplay
of non-Hermiticity and topology leads to unique phenomena
and functionalities that have no counterparts in conventional
systems. A prime example is topological lasers [75–77,79].
Because of the judicious designs, they possess the real spectra
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for the bulk but the complex spectra for the edges; whereas
the bulk states remain stable, the edge states are amplified,
resulting in high-efficiency lasers protected by topology.

Despite the significance of the reality of spectra, Ref. [32],
which is one of the earliest works on non-Hermitian topo-
logical systems [30,31,32], showed that entirely real spectra
of both bulk and edges are impossible in a large class of
non-Hermitian topological insulators with parity-time sym-
metry. For example, when we introduce balanced gain and
loss to the Su-Schrieffer-Heeger model [84] without breaking
chiral symmetry (pseudo-anti-Hermiticity), the bulk spec-
trum remains real, but a pair of zero-energy edge states
acquires nonzero imaginary eigenenergies [31,33,73,75]. On
the other hand, when we introduce asymmetric hopping to
the Su-Schrieffer-Heeger model [84] without breaking sublat-
tice symmetry, the entirely real spectrum for both bulk and
edges can be realized under the open boundary conditions
[35,44,46]; however, it relies on the non-Hermitian skin ef-
fect and the spectrum becomes complex under the periodic
boundary conditions. Remarkably, Ref. [32] assumes no sym-
metry other than parity-time symmetry and mentions possible
exceptions of its theorem due to particle-hole or point-group
symmetry. In fact, a p-wave topological superconducting wire
with balanced gain and loss, which is described by a non-
Hermitian extension of the Kitaev chain [85] with parity-time
symmetry, can possess the entirely real spectrum even in the
presence of Majorana edge states [36,39,42]. By contrast,
non-Hermitian topological insulators with entirely real spec-
tra have yet to be known. Although the reality of spectra is
relevant to the stability of non-Hermitian systems, the real
spectra in non-Hermitian topological insulators have still been
elusive.

In this work, we show that symmetry protection enables
the entirely real spectra for both bulk and edges even in
non-Hermitian topological insulators. This protection is due to
nonspatial symmetry and stable against disorder. In Sec. II B,
we demonstrate that generic time-reversal-invariant topolog-
ical insulators in two dimensions can have real spectra even
in the presence of non-Hermiticity as long as reciprocity
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(a variant of time-reversal symmetry in non-Hermitian sys-
tems) and pseudo-Hermiticity are respected. As shown in
Sec. III with a continuum Dirac Hamiltonian, the discussions
in Ref. [32] are not directly applicable because of addi-
tional pseudo-Hermiticity and reciprocity. As an illustrative
example, we investigate a non-Hermitian extension of the
Bernevig-Hughes-Zhang (BHZ) model [86] in Sec. IV. We
explicitly show that it indeed has a real spectrum by both
numerical and analytical calculations. Despite the real spec-
trum, it shows phenomena unique to non-Hermitian systems.
In particular, the helical edge states exhibit oscillatory dy-
namics since they are nonorthogonal, as shown in Sec. V.
We conclude this work in Sec. VI. In the Appendix, we in-
vestigate another non-Hermitian extension of the BHZ model
that is protected by time-reversal symmetry and possesses the
complex edge spectrum.

II. REAL SPECTRA DUE TO SYMMETRY PROTECTION

A. Symmetry and topology

We begin with a generic Hermitian Hamiltonian H (k) in
two dimensions that respects time-reversal symmetry:

T H∗(k)T −1 = H (−k), T T ∗ = −1, (1)

where H (k) is a Bloch Hamiltonian, and T is a unitary matrix
(i.e., T T † = T †T = 1). The topological phase of H (k) is
characterized by the Z2 invariant, which induces the quantum
spin Hall effect accompanying helical edge states [86–88].
Moreover, we consider additional unitary symmetry,

ηH (k)η−1 = H (k), η2 = 1, (2)

where η is a unitary and Hermitian matrix (i.e., ηη† = η†η =
1). We assume that these symmetry anticommutes with each
other:

T η∗ = −ηT . (3)

For example, the BHZ model [86] respects these symmetry
in Eqs. (1), (2), and (3) with T = iσy and η = σz:

HBHZ(k) = (m + t cos kx + t cos ky)τz

+ t (sin ky)τy + t (sin kx )σzτx. (4)

Here, Pauli matrices σi’s and τi’s (i = x, y, z) describe the spin
and orbital degrees of freedom, respectively. The BHZ model
describes mercury telluride–cadmium telluride semiconductor
quantum wells that host the quantum spin Hall effect, in which
the unitary symmetry in Eq. (2) represents the conservation of
spin.

As a non-Hermitian generalization of these symmetry, we
consider a generic non-Hermitian Hamiltonian H (k) in two
dimensions that respects

T HT (k)T −1 = H (−k), T T ∗ = −1, (5)

ηH†(k)η−1 = H (k), η2 = 1, (6)

where unitary matrices T and η anticommute with each other
[Eq. (3)]. Here, Eqs. (5) and (6) reduce to Eqs. (1) and (2) in

the presence of Hermiticity [i.e., H†(k) = H (k)], respectively.
When Eq. (5) is satisfied, the scattering matrix S respects
T STT −1 = S, and hence the scattering processes are recip-
rocal [89]. For example, an incoming spin-up wave is related
to an outgoing spin-down wave because of T STT −1 = S.
Consequently, Eq. (5) describes reciprocity in non-Hermitian
systems and is relevant, for example, in mesoscopic systems
[89] and open quantum systems [90–92]. It is also notable
that this symmetry is a variant of time-reversal symmetry
and called “TRS†” in Ref. [56]. On the other hand, Eq. (6)
denotes pseudo-Hermiticity [25], which can lead to the real
spectra of non-Hermitian systems (see Sec. II B for details).
These symmetry is included in the 38-fold internal symmetry
in non-Hermitian physics [56,93]. Examples of the symmetry
operators T and η are given in the subsequent sections [see
Eqs. (17) and (18)].

The Z2 topological phase survives non-Hermiticity as long
as reciprocity in Eq. (5) is respected and the gap for the real
part of eigenenergies remains open (i.e., ∀ k Re E (k) �= 0;
real line gap in Ref. [56]). Furthermore, even a Z topological
invariant is well defined in the presence of additional pseudo-
Hermiticity in Eq. (6). To see this Z invariant, let us focus
on a matrix ηH (k). Because of pseudo-Hermiticity in Eq. (6),
ηH (k) is Hermitian:

[ηH (k)]† = ηH (k). (7)

In addition, ηH (k) has a gap when the original non-Hermitian
Hamiltonian H (k) has a gap for the real part of eigenenergies.
Consequently, the Chern number is well defined for ηH (k),
which characterizes the Z topological phase of H (k). This is
contrasted with the vanishing Chern number for H (k) due to
time-reversal symmetry (reciprocity). Notably, if reciprocity
and pseudo-Hermiticity commute with each other (i.e., T η∗ =
ηT ) instead of Eq. (3), ηH (k) respects time-reversal symme-
try and its Chern number vanishes. The Z topological phases
protected by reciprocity in Eq. (5) and pseudo-Hermiticity
in Eq. (6) are consistent with the 38-fold classification of
non-Hermitian topological phases (see Table IX in Ref. [56],
with the symmetry class “AI + η−” and two dimensions). The
combination of reciprocity and pseudo-Hermiticity enables
the well-defined Z invariant, while we only have a Z2 invari-
ant if pseudo-Hermiticity is not respected (see also Table V
in Ref. [56], with the symmetry class “AII†” and two dimen-
sions). It is also remarkable that the Z invariant is equivalent
to the time-reversal-invariant Chern number in Refs. [31,56].

B. Real spectra

A combination of the symmetry in Eqs. (5) and (6) leads to
the entirely real spectra for both bulk and edges. The real spec-
tra of the bulk are ensured by pseudo-Hermiticity in Eq. (6).
To see this, let En(k) be an eigenenergy of H (k) and |un(k)〉
(|un(k)〉〉) be the corresponding right (left) eigenstate:

H (k) |un(k)〉 = En(k) |un(k)〉 ,

〈〈un(k)|H (k) = En(k)〈〈un(k)|. (8)
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In the presence of pseudo-Hermiticity in Eq. (6), we have

H (k)[η|un(k)〉〉] = ηH†(k)|un(k)〉〉
= E∗

n (k)[η|un(k)〉〉], (9)

which implies that η|un(k)〉〉 is a right eigenstate of H (k) with
the eigenenergy E∗

n (k). When non-Hermiticity is sufficiently
weak, |un(k)〉 and η|un(k)〉〉 should coincide with each other
since they are the same single state in the absence of non-
Hermiticity. As a result, it holds

En(k) = E∗
n (k), i.e., En(k) ∈ R. (10)

On the other hand, when non-Hermiticity is strong enough to
give rise to band touching, |un(k)〉 and η|un(k)〉〉 are different,
so the corresponding eigenenergies become complex in a pair.
Thus, even in the presence of non-Hermiticity, an energy band
with a real spectrum remains real as long as it is isolated from
other bands and pseudo-Hermiticity is preserved. It can have
a complex spectrum only if the energy gap is closed.

On the other hand, pseudo-Hermiticity alone does not nec-
essarily lead to the real spectra of the boundary states. This is
because the boundary states are gapless and hence can have
complex spectra. Nevertheless, their reality can be ensured by
reciprocity in Eq. (5). An important consequence of Eq. (5) is
Kramers degeneracy [31,56]. To see this, we have

H (k)[T |u∗
n(−k)〉〉] = T HT (−k)|u∗

n(−k)〉〉
= En(−k)[T |u∗

n(−k)〉〉], (11)

which implies that T |u∗
n(−k)〉〉 is a right eigenstate of H (k)

with the eigenenergy En(−k). Hence, at a time-reversal-
invariant momentum kTRIM [i.e., H (kTRIM) = H (−kTRIM)],
both |un(kTRIM)〉 and T |u∗

n(kTRIM)〉〉 belong to the same
eigenenergy En(kTRIM). Moreover, because of T T = −T , we
have

〈〈un(kTRIM)|T |un(kTRIM)〉〉 = 〈〈un(kTRIM)|T T |un(kTRIM)〉〉
= −〈〈un(kTRIM)|T |un(kTRIM)〉〉,

(12)

leading to

〈〈un(kTRIM)|T |un(kTRIM)〉〉 = 0. (13)

This indicates that |un(kTRIM)〉 and T |u∗
n(kTRIM)〉〉 are

biorthogonal [94] and linearly independent of each other. This
Kramers degeneracy at time-reversal-invariant momenta is
retained as long as reciprocity in Eq. (5) is respected.

Now, suppose the Chern number of ηH (k) is 1. In the
presence of Hermiticity, a pair of helical edge states appears
and crosses at a time-reversal-invariant momentum. The bulk
spectrum remains real because of pseudo-Hermiticity as long
as the gap for the real part of the spectrum is open. On the
other hand, the helical edge states are gapless and hence
pseudo-Hermiticity alone cannot ensure their real spectrum.
However, reciprocity and the consequent Kramers degeneracy
ensure the real spectrum of the helical edge states. In fact, if
the pair of the helical edge states mixed with each other and
formed a complex-conjugate pair, Kramers degeneracy at the
time-reversal-invariant momentum would be lifted, which is
forbidden in the presence of reciprocity. Thus, the spectrum is

entirely real for both bulk and edges as a consequence of the
combination of pseudo-Hermiticity and reciprocity.

Next, suppose the Chern number of ηH (k) is 2. In contrast
to the previous case, two pairs of helical edge states appear,
and neither of them necessarily crosses at time-reversal-
invariant momenta. No degeneracy is guaranteed away from
time-reversal-invariant momenta even in the presence of reci-
procity. As a result, the helical edge states can mix with
each other and form complex-conjugate pairs with exceptional
points. Still, the bulk spectrum is real as long as the gap for
the real part of the spectrum remains open. Thus, the system
supports two pairs of helical lasing edge states. A model of
such a symmetry-protected topological laser is provided in
Refs. [31,56].

Notably, the bulk spectrum can change according to bound-
ary conditions. This is a unique feature of non-Hermitian
systems called the non-Hermitian skin effect [35,44,46].
However, when the bulk spectrum is real because of pseudo-
Hermiticity (or parity-time symmetry), no skin effect occurs,
i.e., the bulk spectrum under the periodic boundary conditions
and that under the open boundary conditions always coincide
with each other [31,56].

C. Complex spectra in Z2 topological insulators

Symmetry in Eqs. (1) and (2) for Hermitian Hamiltonians
can be respectively generalized to non-Hermitian systems in a
different manner as

T H∗(k)T −1 = H (−k), T T ∗ = −1, (14)

ηH (k)η−1 = H (k), η2 = 1. (15)

In the presence of Hermiticity, Eqs. (14) and (15), respec-
tively, coincide with Eqs. (5) and (6), both of which reduce
to Eqs. (1) and (2). However, this is not the case for non-
Hermitian Hamiltonians because of the distinction between
complex conjugation and transposition [i.e., H∗(k) �= HT (k)].
Whereas time-reversal symmetry in Eq. (14) leads to Kramers
degeneracy for eigenstates with real eigenenergies [45], it
results in no degeneracy for generic eigenstates with complex
eigenenergies. This is contrasted with reciprocity in Eq. (5),
which ensures Kramers degeneracy for all the eigenstates with
complex eigenenergies. Furthermore, symmetry in Eq. (15)
does not ensure the reality of the spectrum contrary to pseudo-
Hermiticity in Eq. (6). Therefore, the other generalization in
Eqs. (14) and (15) does not generally lead to the real spectra
of non-Hermitian topological systems.

For example, a non-Hermitian extension of the BHZ model
with Eq. (14) is investigated in the Appendix. Because of the
symmetry protection, the topological phase and the helical
edge states survive even in the presence of non-Hermiticity.
However, non-Hermiticity mixes these helical edge states and
creates a pair of exceptional points, and the Kramers de-
generacy at the time-reversal-invariant momentum is lifted.
Consequently, the edge spectrum generally becomes complex.
In contrast to this extension, another non-Hermitian extension
of the BHZ model with Eq. (5), which we consider in the
subsequent sections, can possess entirely real spectra even in
the presence of non-Hermiticity.

033391-3



KOHEI KAWABATA AND MASATOSHI SATO PHYSICAL REVIEW RESEARCH 2, 033391 (2020)

III. CONTINUUM DIRAC HAMILTONIAN

Using non-Hermitian Dirac Hamiltonians with parity-time
symmetry, Ref. [32] showed that entirely real spectra of both
bulk and edges are impossible. As discussed above, how-
ever, the discussion there is not directly applicable in the
presence of additional symmetry such as pseudo-Hermiticity
and reciprocity. To confirm this fact, we consider a non-
Hermitian Dirac Hamiltonian and its spectrum in a similar
manner to Ref. [32]. A non-Hermitian Dirac Hamiltonian
having reciprocity in Eq. (5) and pseudo-Hermiticity in Eq. (6)
is generally described by

H (k) = (σz + iγ σx )kxτx + kyτy + �τz. (16)

Here, γ ∈ R describes the degree of non-Hermiticity, and
� ∈ R describes the mass parameter that determines the topo-
logical phases. This Dirac model indeed respects reciprocity
in Eq. (5) and pseudo-Hermiticity in Eq. (6) (i.e., T = iσy and
η = σz):

(iσy)HT (k)(iσy)−1 = H (−k), (iσy)(iσy)∗ = −1, (17)

σzH
†(k)σ−1

z = H (k), σ 2
z = 1. (18)

The bulk spectrum is readily obtained as

E (k) = ±
√

(1 − γ 2)k2
x + k2

y + �2, (19)

which is entirely real for |γ | � 1 as a direct consequence
of pseudo-Hermiticity in Eq. (18). It is twofold degenerate
because of reciprocity in Eq. (17).

Even though the bulk spectrum is entirely real, the edge
spectrum is not necessarily real. In fact, Ref. [32] showed
that non-Hermiticity mixes a pair of edge states and makes
the edge spectrum complex in a large class of non-Hermitian
topological insulators. Still, the Dirac Hamiltonian in Eq. (16)
possesses the entirely real spectrum even for the edges be-
cause of additional pseudo-Hermiticity and reciprocity. To
see this, we consider an interface across which topological
phases change. We assume that the system is uniform along
the x direction and has a domain wall at y = 0. For the region
y > 0 (y < 0), the mass parameter is assumed to be �(y) > 0
[�(y) < 0]. The corresponding continuum Hamiltonian reads

H (kx, y) = (σz + iγ σx )kxτx − iτy
∂

∂y
+ �(y)τz. (20)

For kx = 0, a Kramers pair of zero-energy bound states ap-
pears around the interface y = 0. Solving the Shrödinger
equation

[
−iτy

∂

∂y
+ �(y)τz

]
|�↑(↓)〉 = 0, (21)

we have

|�↑(↓)〉 = e− ∫ y
0 � (y′ ) dy′ |↑ (↓)〉 |−〉 , (22)

where |↑ (↓)〉 and |−〉 are the eigenstates of σz and τx, respec-
tively [i.e., σz |↑ (↓)〉 = +(−) |↑ (↓)〉 and τx |−〉 = − |−〉].
Away from the time-reversal-invariant momentum kx = 0,
these boundary states have nonzero eigenenergies, which form

the energy dispersion of the helical boundary states. The effec-
tive boundary Hamiltonian around kx = 0 is obtained as

Hedge(kx, y) �
( 〈�↑|H |�↑〉 〈�↓|H |�↑〉

〈�↑|H |�↓〉 〈�↓|H |�↓〉
)

= e−2
∫ y

0 � (y′ ) dy′
(σz + iγ σx )kx. (23)

The energy dispersion is given as

Eedge(kx ) = ±
√

1 − γ 2 kx, (24)

which is indeed real for |γ | � 1.
We again stress that Kramers degeneracy plays a crucial

role in the reality of the boundary spectrum. In the absence
of reciprocity in Eq. (17), the Kramers degeneracy at kx =
0 is lifted by non-Hermitian perturbations and the boundary
spectrum becomes complex, as discussed in Ref. [32]. In the
presence of reciprocity, by contrast, the Kramers degeneracy
cannot be lifted and the boundary spectrum remains real.

IV. NON-HERMITIAN BERNEVIG-HUGHES-ZHANG
MODEL

A. Model and symmetry

As a prime example of the preceding discussion, we con-
sider a non-Hermitian extension of the BHZ model. The
Hamiltonian in momentum space is given as

HBHZ(k) = (m + t cos kx + t cos ky)τz + t (sin ky)τy

+ t (sin kx )σzτx + iγ (sin kx )σxτx, (25)

where t, m, γ ∈ R are the hopping amplitude, the mass pa-
rameter, and the degree of non-Hermiticity, respectively. We
assume t, γ � 0 without loss of generality. In the absence of
non-Hermiticity (i.e., γ = 0), Eq. (25) reduces to the original
Hermitian BHZ model in Eq. (4).

Around the time-reversal-invariant momentum k = 0, the
non-Hermitian BHZ model HBHZ(k) reduces to the contin-
uum Dirac model in Sec. III (i.e., t = 1 and � = m + 2t).
It respects reciprocity in Eq. (17) and pseudo-Hermiticity
in Eq. (18). In addition, it respects parity (spatial-inversion)
symmetry:

τzH (k)τ−1
z = H (−k), τ 2

z = 1. (26)

As a combination of these symmetry, HBHZ(k) also respects
parity-time symmetry:

(τzσx )H∗(k)(τzσx )−1 = H (k), (τzσx )2 = 1. (27)

While reciprocity and pseudo-Hermiticity are internal sym-
metry, parity symmetry and parity-time symmetry are spatial
symmetry, the latter of which is fragile against disorder.

B. Phase diagram

The spectrum of HBHZ(k) is obtained as

E (k) = ±[(m + t cos kx + t cos ky)2

+ (t2 − γ 2) sin2 kx + t2 sin2 ky]1/2. (28)

A topological phase persists as long as a gap for the real
part of eigenenergies is open [i.e., ∀ k Re E (k) �= 0]; van-
ishing of the real part of eigenenergies [i.e., ∃ k Re E (k) =
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0] can be considered to be a topological phase transition.
Here, E (k) in Eq. (28) is either real or purely imaginary. In
particular, E (k) is always real for the time-reversal-invariant
momenta kTRIM ∈ {(0, 0), (0, π ), (π, 0), (π, π )}. Thus, if an
energy gap for the real part of the spectrum is closed, it holds
E (k) = 0 for some k, and vice versa. This reduces to the
following gapless conditions according to t and γ .

(i) γ < t . Since we have

(m + t cos kx + t cos ky)2 � 0,

(t2 − γ 2) sin2 kx � 0, t2 sin2 ky � 0,
(29)

E (k) = 0 leads to

m + t cos kx + t cos ky = sin kx = sin ky = 0. (30)

Hence, we have

m = −2t for k0 = (0, 0),
m = 0 for k0 = (0, π ), (π, 0),
m = 2t for k0 = (π, π ),

(31)

where k0 is a momentum satisfying E (k0) = 0.
(ii) γ = t . Since E (k) = 0 leads to

m + t cos kx + t cos ky = sin ky = 0, (32)

we have

−2t � m � 0 for k0 = (arccos(1 + m/t ), 0),
0 � m � 2t for k0 = (arccos(1 − m/t ), π ). (33)

(iii) γ > t . Since we have

E2(0, 0) = (m + 2t )2 � 0,

E2(0, π ) = E2(π, 0) = m2 � 0,

E2(π, π ) = (m − 2t )2 � 0,

(34)

there exists k0 satisfying E (k0) = 0 if and only if the mini-
mum of E2(k) is nonpositive. Then, we have

E2(k) = 2t (m + t cos kx ) cos ky

+ (m + t cos kx )2 + (t2 − γ 2) sin2 kx + t2, (35)

which implies that E2(k) is minimum for ky = 0 or ky = π .
Now, E2(kx, 0) is given as

E2(kx, 0) = γ 2

[
cos kx + t (m + t )

γ 2

]2

+
(

1 − t2

γ 2

)
[(m + t )2 − γ 2], (36)

and E2(kx, 0) is nonnegative for kx = 0 and kx = π . Thus, we
have E (k0) = 0 for

k0 =
(

arccos

(
− t (m + t )

γ 2

)
, 0

)
(37)

if and only if∣∣∣∣ t (m + t )

γ 2

∣∣∣∣ � 1, (m + t )2 − γ 2 < 0 (38)

FIG. 1. Phase diagram of the non-Hermitian Bernevig-Hughes-
Zhang model. Topological phase transitions occur at the phase
boundaries, at which an energy gap for the real part of the complex
spectrum closes. Each gapped phase is characterized by the Chern
number C ∈ Z of ηH (k). A pair of helical edge states appears for
|C| = 1, whereas no edge states appear for C = 0.

are satisfied; these inequalities reduce to γ > |m + t |. Simi-
larly, we have E (k0) = 0 for

k0 =
(

arccos

(
− t (m − t )

γ 2

)
, π

)
(39)

as long as γ > |m − t | is satisfied.
The obtained phase diagram is provided in Fig. 1. Since

topology is invariant unless an energy gap is closed, the
topological invariant in each gapped phase is obtained by
continuously deforming the non-Hermitian system into the
corresponding Hermitian system without closing the energy
gap. In the absence of non-Hermiticity (i.e., γ = 0), we have

ηHBHZ(k) = (m + t cos kx + t cos ky)τzσz

+ t (sin ky)τyσz + t (sin kx )τx. (40)

The Chern number C of ηHBHZ(k) with γ = 0 is readily
obtained as

C =
{

sgn(m) for |m/t | < 2,

0 for |m/t | > 2.
(41)

This Chern number C is the topological invariant of HBHZ(k)
in the gapped phases, as shown in Fig. 1.

C. Helical edge states

Corresponding to the nontrivial topology of the bulk, a pair
of helical edge states appears under the open boundary condi-
tions. We here investigate the non-Hermitian BHZ model with
periodic boundaries in the x direction and open boundaries in
the y direction,

ĤBHZ =
∑
kx,y

{[
ĉ†

kx,y+1

t (τz + iτy)

2
ĉkx,y + H.c.

]

+ ĉ†
kx,y

[(m + t cos kx )τz + t (sin kx )σzτx

+ iγ (sin kx )σxτx]ĉkx,y

}
, (42)

033391-5



KOHEI KAWABATA AND MASATOSHI SATO PHYSICAL REVIEW RESEARCH 2, 033391 (2020)

FIG. 2. Complex spectrum of the non-Hermitian Bernevig-Hughes-Zhang model. The open boundary conditions are imposed in the y
direction (30 sites), whereas the periodic boundary conditions are imposed in the x direction, along which the wave number kx is defined. (a, b)
Gapped and topologically nontrivial phase (t = 1.0, m = −0.5, γ = 0.8; C = −1). A pair of helical edge states appears around kx = 0. (c, d)
Gapped and topologically nontrivial phase (t = 1.0, m = 0.2, γ = 0.9; C = +1). A pair of helical edge states appears around kx = ±π . (e, f)
Gapped and topologically trivial phase (t = 1.0, m = −2.5, γ = 1.0; C = 0). No edge states appear between the gapped bands. (g, h) Gapless
phase (t = 1.0, m = −0.5, γ = 1.5). The spectrum is entirely real in the gapped phases (a–f), but it is complex in the gapless phase (g, h).

where ĉkx,y (ĉ†
kx,y

) annihilates (creates) a particle at site y with
momentum kx that has 4 internal degrees of freedom. The
spectrum is shown in Fig. 2. In the gapped phases with non-
trivial topology, a pair of helical edge states indeed appears at
both edges [Figs. 2(a)–2(d)]. On the other hand, no edge states
appear in the gapped phase with trivial topology [Figs. 2(e)
and 2(f)]. The spectra are entirely real even in the presence of
the edge states. When non-Hermiticity is sufficiently strong
and the gap for the real part of the spectrum closes, the bulk
spontaneously breaks pseudo-Hermiticity and its spectrum
becomes complex [Figs. 2(g) and 2(h)].

We note that no skin effects occur in HBHZ(k). Thus, sim-
ilar results are obtained under different types of the open
boundary conditions, i.e., the open boundary conditions in
the x direction and the periodic boundary conditions in the
y direction, or the open boundary conditions in both x and y
directions. This is contrasted with non-Hermitian systems that
exhibit skin effects, including non-Hermitian Chern insulators
[44,47].

The energy dispersions and wave functions of the helical
edge states are analytically obtained in the following manner.
Let us consider a pair of helical edge states localized around
y = 1. The edge states are denoted as

�̂edge ∝
∑

y

λy−1
(
ĉ†

kx,y�v
)
, (43)

where λ is a parameter that determines the localization length
[given by −(log |λ|)−1], and �v is a four-component vector
that describes the internal degrees of freedom. Then, the
Schrödinger equation [Ĥ , �̂edge] = Eedge�̂edge reduces to

(λ−1T + M + λT †)�v = Eedge �v (44)

in the bulk and

(M + λT †)�v = Eedge �v (45)

at the edge. Here, T and M are defined as

T := t (τz + iτy)

2
,

M := (m + t cos kx )τz + t (sin kx )τxσz + iγ (sin kx )τxσx.

(46)

In addition, we take the semi-infinite limit and neglect the
effect of the other edge. Equations (44) and (45) lead to
T �v = 0, which implies

�v =
(

�vσ

−�vσ

)
, (47)

with a two-component vector �vσ that acts in the space of σi’s.
Using Eq. (44) or Eq. (45), we have

(λt + m + t cos kx )�vσ = 0, (48)

[t (sin kx )σz + iγ (sin kx )σx]�vσ = −Eedge�vσ . (49)

Since �vσ is nonvanishing, Eq. (48) leads to

λ = −m

t
− cos kx, (50)

which determines the localization length of the helical edge
states. Here, λ should be less than 1 so that the edge states
can be normalized. This gives |m/t + cos kx| < 1. For the
presence of the helical edge states, there exists a wave number
kx that satisfies this inequality, which then leads to |m/t | < 2.
This condition is compatible with the phase diagram in Fig. 1.
Furthermore, Eq. (49) implies that �vσ is an eigenstate of the
2 × 2 matrix t (sin kx )σz + iγ (sin kx )σx with the eigenenergy
−Eedge, which gives

Eedge(kx ) = ±
√

t2 − γ 2 sin kx. (51)

Thus, the spectrum of the helical edge states is indeed real
for γ < t . The obtained analytical results are consistent with
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FIG. 3. Complex spectrum of the non-Hermitian Bernevig-
Hughes-Zhang model with disorder. The open boundary conditions
are imposed in both x and y directions (30 × 30 sites). Even in
the presence of disorder, the spectrum is entirely real for both
(a) topological phase (t = 1.0, mx,y = −0.5 + 2.0 εx,y, γ = 0.8) and
(b) trivial phase (t = 1.0, mx,y = −2.5 + 2.0 εx,y, γ = 1.0). Here,
εx,y is a random variable uniformly distributed over [−0.5, 0.5].

the numerical results in Fig. 2, as well as the results for the
continuum Dirac Hamiltonian in Sec. III.

D. Robustness to disorder

The entirely real spectra in the non-Hermitian BHZ model
are robust to disorder. To see this, we investigate the following
disordered model:

ĤBHZ =
∑
x,y

{[
ĉ†

x,y+1

t (τz + iτy)

2
ĉx,y + H.c.

]

+
[

ĉ†
x+1,y

t (τz + iσzτx ) − γ σxτx

2
ĉx,y

+ ĉ†
x,y

t (τz − iσzτx ) + γ σxτx

2
ĉx+1,y

]

+ ĉ†
x,y(mx,yτz )ĉx,y

}
, (52)

where the open boundary conditions are imposed in both x
and y directions. In contrast to the clean model, the mass
parameters mx,y depend on the lattice sites x and y. As shown
in Fig. 3, the spectrum of this disordered model is entirely real
even in the presence of disorder. There, mx,y’s are uniformly
distributed random variables. Such disorder breaks parity
symmetry in Eq. (26) and parity-time symmetry in Eq. (27).
On the other hand, reciprocity and pseudo-Hermiticity remain
to be respected since they are internal symmetry.

In a similar manner to the clean model discussed in
Sec. II B, the reality of the bulk spectrum is due to pseudo-
Hermiticity. However, the discussion in Sec. II B is not
directly applicable to the reality of the edge spectrum since it
relies on translation invariance. Still, the real edge spectrum
can be partially understood on the basis of the continuum
models in Sec. III. Suppose the system includes disorder
solely along the y direction, and translation invariance is re-
spected along the x direction. Then, the space-dependent mass
parameter �(y) of the continuum model in Eq. (20), which
corresponds to mx,y of the lattice model in Eq. (52), only

changes the eigenstates and has no effect on the spectrum, as
shown in Eq. (24).

It is also notable that disorder generally tends to give
rise to real spectra and stabilize non-Hermitian systems.
Prime examples include the Hatano-Nelson model [26]. It
is a time-reversal-invariant system in one dimension whose
hopping amplitudes exhibit asymmetry as the degree of
non-Hermiticity. Because of this non-Hermiticity, it pos-
sesses a complex spectrum in the absence of disorder. In
the presence of disorder, by contrast, some eigenstates are
localized and uncorrelated with other eigenstates. Conse-
quently, these localized eigenstates have real eigenenergies.
This disorder-induced real spectrum is stable against many-
body interactions [18]. Thus, it is intuitively expected that
disorder leads to the real spectra also in the non-Hermitian
BHZ model, although symmetry or topology may change this
behavior even qualitatively.

V. POWER OSCILLATION

Even when a non-Hermitian system possesses an entirely
real spectrum, it exhibits unique phenomena that have no
analogs in Hermitian systems. Eigenstates of a non-Hermitian
Hamiltonian are biorthogonal to each other [94],

〈〈um|un〉 ∝ δmn, 〈um|un〉〉 ∝ δmn, (53)

where |un〉 (|un〉〉) is a right (left) eigenstate of the non-
Hermitian Hamiltonian H . Nevertheless, they are, in general,
nonorthogonal to each other:

〈um|un〉 �= δmn, 〈〈um|un〉〉 �= δmn. (54)

An immediate physical consequence of the nonorthogonality
between eigenstates is power oscillation. This is the oscilla-
tion of the norm (power) unique to non-Hermitian systems.
When a wave function is initially prepared to be

|ψ (0)〉 =
∑

n

cn |un〉 , cn := 〈〈un|ψ (0)〉
〈〈un|un〉 , (55)

it evolves into

|ψ (t )〉 = e−iHt |ψ (0)〉 =
∑

n

cne−iEnt |un〉 , (56)

where En is the eigenenergy that corresponds to |un〉 and |un〉〉.
Its norm is given by

〈ψ (t )|ψ (t )〉 =
∑
m,n

c∗
mcnei(E∗

m−En )t 〈um|un〉 . (57)

In Hermitian systems, this reduces to

〈ψ (t )|ψ (t )〉 =
∑

n

|cn|2 〈un|un〉 = 〈ψ (0)|ψ (0)〉 (58)

because of the orthogonality between eigenstates (i.e.,
〈um|un〉 ∝ δmn) and the reality of eigenenergies (i.e., E∗

n =
En). In non-Hermitian systems, by contrast, eigenstates are
in general nonorthogonal, and hence the norm 〈ψ (t )|ψ (t )〉
depends on time, which is a clear manifestation of nonuni-
tarity of the dynamics resulting from coupling to an external
environment. Notably, even when eigenenergies are entirely
real, eigenstates are still nonorthogonal and the norm oscil-
lates in contrast to unitary dynamics of Hermitian systems.
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This power oscillation was experimentally observed in the
bulk of an open photonic lattice with balanced gain and loss
[8]. A quantum counterpart arises as oscillation of quantum
information flow between a system and its environment [17],
which was observed in dissipative single photons [19]. Fur-
thermore, we note in passing that the power oscillation has an
analogy with the norm leakage in open chaotic systems [95].

The helical edge states oscillate in the non-Hermitian BHZ
model. As an illustration, we investigate the non-Hermitian
BHZ model HBHZ with periodic boundaries in the x direction
and open boundaries in the y direction, in a similar manner
to Sec. IV C. The number of sites is Lx × Ly. An eigenenergy
and the corresponding right (left) eigenstate of HBHZ(kx ) are,
respectively, denoted as En(kx ) and |un(kx )〉 (|un(kx )〉〉) with
n = 1, 2, . . . , 4Ly, where HBHZ(kx ) is a Fourier transform of
the original Hamiltonian HBHZ along the x direction. The
eigenstates are normalized by

〈〈um(kx )|un(k′
x )〉 = 〈um(kx )|un(k′

x )〉〉 = δm,nδkx,k′
x
. (59)

Then a right (left) eigenstate of HBHZ is given by |kx〉 |un(kx )〉
(|kx〉 |un(kx )〉〉) with

|kx〉 := 1√
Lx

Lx∑
x=1

eixkx |x〉 , kx ∈
{

0,
2π

Lx
, . . . ,

2(Lx − 1)π

Lx

}
.

(60)
Using these eigenstates, we expand the initial state |ψ (0)〉 :=∑

x,y cxy |x〉 |y〉 as

|ψ (0)〉 =
∑
kx,n

cn(kx ) |kx〉 |un(kx )〉 , (61)

with

cn(kx ) := 1√
Lx

∑
x,y

cxye−ikxx〈〈un(kx )|y〉. (62)

This state evolves into

|ψ (t )〉 = e−iHBHZt |ψ (0)〉
=

∑
kx,n

cn(kx )e−iEn (kx )t |kx〉 |un(kx )〉 , (63)

and its amplitude at y = y0 is

|〈y0|ψ (t )〉|2 =
∑

kx

∣∣∣∣∣
∑

n

cn(kx ) 〈y0|un(kx )〉 e−iEn (kx )t

∣∣∣∣∣
2

. (64)

Figure 4 shows the evolutions of the population at the edge
y0 = 1 for each phase. There, an initial state is prepared to be
a localized state at the edge y0 = 1. In the topological phase,
the wave packet remains localized because of the presence
of the helical edge states, while some of the population is
absorbed into the bulk. The helical edge states indeed exhibit
oscillatory dynamics. Although the edge amplitude oscillates
even in the Hermitian case, the oscillation is enhanced by
non-Hermiticity and the consequent nonorthogonality. In the
trivial phase, on the other hand, the wave packet quickly dif-
fuses into the bulk since no edge states appear, which results
in the monotonic decrease in the edge amplitudes in both
Hermitian and non-Hermitian cases. Such power oscillation
of the nonorthogonal edge states can in principle occur even

FIG. 4. Power oscillation at an edge in the non-Hermitian
Bernevig-Hughes-Zhang model. An initial state is prepared to be
a localized wave function |ψ (0)〉 ∝ ∑

x,y e−(x−1)2/36−(y−1)2 |x〉 |y〉,
and the evolutions of the amplitude at the edge [i.e., Pedge(t ) :=
| 〈y = 1|e−iHBHZt |ψ (0)〉 |2] are shown. The two-dimensional system
consists of 30 × 30 sites and has periodic boundaries in the x direc-
tion and open boundaries in the y direction. The solid red curve shows
the dynamics for the non-Hermitian topological phase (t = 1.0, m =
−0.5, γ = 0.8), whereas the solid blue curve shows the dynamics
for the non-Hermitian trivial phase (t = 1.0, m = −2.5, γ = 1.0);
the dotted orange curve shows the dynamics for the Hermitian topo-
logical phase (t = 1.0, m = −0.5, γ = 0), whereas the dotted violet
curve shows the dynamics for the Hermitian trivial phase (t = 1.0,
m = −2.5, γ = 0).

in non-Hermitian topological systems with complex spectra.
However, it is in practice difficult to observe because amplifi-
cation or attenuation dominates the nonunitary dynamics and
clears away a signature of the power oscillation.

VI. DISCUSSION

The reality of spectra is relevant to the stability of
non-Hermitian systems. Nevertheless, non-Hermiticity often
makes spectra of bulk or edges in topological insulators com-
plex. In this work, we have shown that a combination of
pseudo-Hermiticity and reciprocity (a variant of time-reversal
symmetry) enables entirely real spectra even in non-Hermitian
topological insulators. Thanks to pseudo-Hermiticity, the bulk
spectra remain real as long as an energy gap for the real
part of the spectrum is open. Still, the gapless edge states
are not necessarily real solely in the presence of pseudo-
Hermiticity. Instead, the reality of the edge spectrum is
ensured by Kramers degeneracy due to reciprocity. As a proto-
typical example, we have illustrated this with a non-Hermitian
extension of the BHZ model [86]. Although Ref. [32] showed
that entirely real spectra of both bulk and edges are impos-
sible in a large class of non-Hermitian topological insulators
with parity-time symmetry, the discussion there is not directly
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applicable in the presence of additional symmetry such as
pseudo-Hermiticity and reciprocity.

Non-Hermitian topological insulators with real spectra can
be experimentally realized in various synthetic materials. In
fact, Hermitian Z2 topological insulators including the BHZ
model can be created in a variety of classical systems, such
as photonic systems [96,97], mechanical metamaterials [98],
and electric circuits [99]. In these systems, non-Hermiticity
such as gain or loss, as well as asymmetric hopping, can be
introduced by judiciously controlling the external coupling
to the environment [1,2]. An experimental signature of the
entirely real spectra is the power oscillation of helical edge
states, which is induced by the nonorthogonality due to non-
Hermiticity.

Moreover, real spectra may be feasible in non-Hermitian
topological insulators with different symmetry in different
spatial dimensions. As long as internal symmetry is relevant,
they can be systematically explored on the basis of the topo-
logical classification of non-Hermitian systems [56]. Spatial
symmetry can also enrich band structures of non-Hermitian
systems. Furthermore, a recent work demonstrated the entirely
real spectrum in a non-Hermitian topological quasicrystal in
one dimension [68]. Further research is warranted for such
new types of non-Hermitian topological insulators with real
spectra.
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APPENDIX: NON-HERMITIAN
BERNEVIG-HUGHES-ZHANG MODEL PROTECTED BY

TIME-REVERSAL SYMMETRY

In Sec. IV, we have investigated a non-Hermitian extension
of the BHZ model protected by reciprocity. While reciprocity
is equivalent to time-reversal symmetry in Hermitian sys-
tems, this is not the case in non-Hermitian systems. In fact,
time-reversal symmetry in non-Hermitian spinful systems is
defined by Eq. (14), which is different from reciprocity in
Eq. (5). Both symmetry can protect the topological phase
of the BHZ model as long as the real part of the spectrum
is gapped. However, the real spectrum of the helical edge
states cannot be protected by time-reversal symmetry, which
contrasts with reciprocity.

To see the difference between reciprocity and time-reversal
symmetry, we here consider another non-Hermitian extension

FIG. 5. Complex spectrum of the non-Hermitian Bernevig-
Hughes-Zhang model protected by time-reversal symmetry. The
open boundary conditions are imposed in the y direction (30 sites),
whereas the periodic boundary conditions are imposed in the x direc-
tion, along which the wave number kx is defined. (a, b) Gapped and
topologically nontrivial phase (t = 1.0, m = −0.5, γ = 0.4). A pair
of helical edge states appears around kx = 0. The helical edge states
coalesce with each other and form exceptional points, leading to
the complex spectrum at the edges. (c, d) Gapped and topologically
trivial phase (t = 1.0, m = −2.5, γ = 0.4). No edge states appear
between the gapped bands, and the spectrum is entirely real.

of the BHZ model protected by time-reversal symmetry:

H̃BHZ(k) = (m + t cos kx + t cos ky)τz + t (sin ky)τy

+ t (sin kx )σzτx + iγ σxτx. (A1)

In a similar manner to the previous model HBHZ(k), this model
H̃BHZ(k) respects pseudo-Hermiticity in Eq. (6) with η = σz:

σzH̃
†
BHZ(k)σz = H̃BHZ(k). (A2)

By contrast, it does not respect reciprocity in Eq. (5); instead,
it respects time-reversal symmetry in Eq. (14) with T = iσy:

(iσy)H̃∗
BHZ(k)(iσy)−1 = H̃BHZ(−k). (A3)

Notably, a similar non-Hermitian quantum spin Hall insulator
was also investigated in Ref. [45].

The spectrum of H̃BHZ(k) is shown in Fig. 5. The bulk
spectrum is real as long as the bulk bands are gapped, which
is due to pseudo-Hermiticity. Between the gapped bulk bands,
a pair of helical edge states appears in the topological phase.
In the previous model HBHZ(k), these helical edge states are
forbidden to mix with each other because of the Kramers de-
generacy. However, time-reversal symmetry does not impose
such a constraint in non-Hermitian systems. Consequently,
the helical edge states coalesce with each other and form
a pair of exceptional points in the present model H̃BHZ(k);
the edge spectrum becomes complex. Physically, the complex
edge spectrum means the amplification (lasing) of the helical
edge states.
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