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Bilocal quantum criticality
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We consider 2+1-dimensional conformal gauge theories coupled to additional degrees of freedom which
induce a spatially local but long-range in time 1/(τ − τ ′)2 interaction between gauge-neutral local operators.
Such theories have been argued to describe the hole-doped cuprates near optimal doping. We focus on a
SU(2) gauge theory with Nh flavors of adjoint Higgs fields undergoing a quantum transition between Higgs
and confining phases: the 1/(τ − τ ′)2 interaction arises from a spectator large Fermi surface of electrons. The
large Nh expansion leads to an effective action containing fields which are bilocal in time but local in space. We
find a strongly coupled fixed point at order 1/Nh, with dynamic critical exponent z > 1. We show that the entropy
preserves hyperscaling but nevertheless leads to a linear in temperature specific heat with a coefficient which has
a finite enhancement near the quantum critical point.
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I. INTRODUCTION

Strongly coupled gauge theories in 2+1 space-time dimen-
sions play a fundamental role in many phenomena in quantum
condensed matter physics. Of special interest are “decon-
fined” critical points of such theories, which separate phases
with different patterns of confinement, broken symmetry,
and/or topological order. The best understood class of such
critical points have an emergent relativistic conformal symme-
try, allowing use of many tools from the conformal field theory
literature. However, such conformal gauge theories apply to
limited classes of phenomena in insulators or quantum Hall
systems, and usually not to metallic, compressible systems
with Fermi surfaces in the clean limit. In particular, conformal
critical systems have a low temperature (T ) specific heat
Cv ∼ T 2, which is smaller than the specific heat Cv ∼ T in
metals.

Our interest in studying gauge theories of critical points
in metals was motivated by numerous experimental indica-
tions [1–14] of optimal doping criticality in the hole-doped
cuprate superconductors. We examine here further aspects
of a recently proposed [15,16] SU(2) gauge theory for the
vicinity of optimal doping in which a parent conformal theory
is coupled to a large Fermi surface of gauge-neutral electrons.
This theory describes a phase transition from a Higgs phase,
representing the pseudogap regime, to a confining phase,
representing the overdoped Fermi liquid. The main effect of
the spectator Fermi surface is a spatially local, but long-range
in time interaction ∼1/(τ − τ ′)2 between gauge-neutral local
operators, where τ, τ ′ are the imaginary time coordinates of
two such operators [17–23]. Within the context of a 1/Nh
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expansion, where Nh is the number of flavors of Higgs fields,
we find that this long-range interaction leads to a field theory
that is bilocal in time, but local in space, i.e., some fields de-
pend upon one spatial coordinate x, and two time coordinates
τ and τ ′. This should be contrasted to other theories where
“bilocality” refers to long-range interactions between local
fields [24].

The bilocality is a consequence of the spectator Fermi
surface. In the vicinity of conventional symmetry breaking
transitions, Hertz [25] argued that the low energy excitations
on the Fermi surface could be accounted for by long-range in-
teractions between the order parameter fields. Such arguments
were extended to the SU(2) gauge theory in Ref. [15], and in
the case of interest to us, the long-range interactions induced
by the large Fermi surface were irrelevant near the upper
critical spatial dimension d = 3. However, as we will describe
in detail here, the long-range interactions are relevant for the
SU(2) gauge theory in d = 2 in the large Nh limit, and lead to
a bilocal field theory for computing the 1/Nh expansion.

We will find that the bilocal criticality is described by a new
fixed point. This new fixed point is not relativistically invari-
ant, and has dynamic critical exponent z > 1 [see Eq. (75)].
We show that the free energy preserves hyperscaling, i.e.,
its leading singular term is consistent with scaling dimension
d + z. At first sight, this suggests that there is no contribution
to a linear in T specific heat from the singular hyperscaling
preserving term. This turns out to not be the case. The specific
heat is given by

Cv = γb T + T d/z �

(
T

�

)
. (1)

Here γbT is the background and noncritical specific heat from
the spectator Fermi surface; the prefactor γb evolves smoothly
across the critical point. The second term is the interesting,
singular hyperscaling preserving term, with � a scaling func-
tion, and � an energy scale measuring the distance from the
quantum critical point on the confining/Fermi liquid side. In
the Fermi liquid regime, T � �, this hyperscaling preserving
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term contributes Cv/T ∼ −�d/z−1, and so yields a finite
enhancement of limT →0 Cv/T near the quantum critical point.

We note that bilocal field theories have appeared earlier in
the context of systems with random interactions. Reference
[26] obtained a bilocal field theory for the Ising spin glass
in a transverse field. Bilocal field theories also play a central
role in models with random and all-to-all interactions, and
in particular those related to the Sachdev-Ye-Kitaev (SYK)
models [27–31]. Our model appears to be the first realization
in a nonrandom system, and the bilocality arises from a
subtle interplay between the gauge-charged matter fields, and
the Fermi surface of electrons. Given the phenomenological
appeal of SYK models, the appearance of bilocality in more
realistic models of cuprate physics is encouraging.

We will introduce our model field theory with bilocality in
Sec. II. We describe Nh = ∞ saddle-point theory in Sec. III.
A key ingredient in our analysis is the bilocal field C(x, τ, τ ′),
and we describe its low T saddle point value C(τ − τ ′) in
Secs. III A–III C. We will compute the free energy at Nh = ∞
in Sec. III D. Full numerical solutions of the saddle point
equations appears in Sec. III E. We turn to a renormalization
group analysis in Sec. IV, where we will obtain some results
to order 1/Nh, including the value of z in Eq. (75).

II. THE MODEL

The gauge-charged matter sector of the model of
Refs. [15,16] has real Higgs fields Ha�, where a = 1, 2, 3 is
the SU(2) adjoint gauge index, and � = 1 . . . Nh is the flavor
index. This is coupled to SU(2) gauge field Aaμ, where μ is
a space-time index. The Higgs field arises from a transforma-
tion of the spin density wave order parameter to a rotating
reference frame, and optimal doping criticality is mapped
onto the Higgs-confinement transition of such a gauge theory.
The continuum, Euclidean time (τ ), action for the theory is∫

dd xdτ LH + S f (we set d = 2) with the Lagrangian density

LH = 1

4g2
a

FaμνFaμν + 1

2
(∂μHa� − εabcAbμHc�)2 + V (H ),

(2)
with the field strength

Faμν = ∂μAaν − ∂νAaμ − εabcAbμAcν, (3)

and the Higgs potential

V (H ) = u0

2Nh

[
Ha�Ha� − 3Nh

g

]2

+ u1

2Nh
Ha�HamHb�Hbm, (4)

which contains both types of the allowed quartic couplings,
u0 and u1. The coupling g is the tuning parameter across the
Higgs transition. For g < gc, we have the Higgs phase: this
is proposed to describe the underdoped pseudogap regime of
the cuprates, and its properties were discussed in detail in
Ref. [15]. For g > gc, the theory confines, and after including
the spectator Fermi surface, we eventually obtain a conven-
tional Fermi liquid description of the overdoped cuprates. Our
focus in the body of the paper will be for values g � gc where
there is no Higgs condensate.

We can take the limit of strong quartic interactions u0 →
∞ without modifying universal properties, and this simplifies
the analysis and allows comparison with previous large Nh

work without gauge fields [32,33]. The coupling u1 is impor-
tant in distinguishing possible Higgs phases for g < gc, but it
will not play a significant role for g � gc. The gauge coupling
ga will play no direct role in the large Nh computations in this
paper.

The effective potential V (H ) is constrained by the SU(2)
gauge symmetry, and a global O(Nh) symmetry acting on the
flavor indices �, m. In the models considered in Ref. [15],
the global symmetry is smaller, and arises from the action of
the square lattice space group symmetry on the charge density
wave (and other) order parameters. We have enhanced the
space group symmetry to O(Nh) for simplicity [15,16].

The second term in the action is the long-range interaction
obtained by integrating out the large Fermi surface of elec-
trons,

S f = − 1

2Nh

∫
dd xdτdτ ′Ha�(x, τ )Ham(x, τ )Jf (τ − τ ′)

× Hb�(x, τ ′)Hbm(x, τ ′). (5)

The electrons couple to the gauge-invariant order parameters,

Q�m = Ha�Ham − δ�m

Nh
HanHan, (6)

and then integrating out the electrons leads to the index and
space-time structure in S f ; this structure will be crucial to
the appearance of bilocality. We are assuming here that Q�m

correspond to order parameters at nonzero wavevectors, and in
that case we expect [25] Jf (τ ) ∼ 1/τ 2 at large τ , which is the
Fourier transform of a |ω| frequency dependence. In the more
complete model of Ref. [15], some of the Q�m correspond
to order parameters at zero momentum, in which case the
corresponding Jf will be different: it will have both space
and time dependencies arising from the Fourier transform of
|ω|/|k|. We will not consider this more complex case here.

Our computations with S f require an ultraviolet (UV)
cutoff, and we choose

Jf (τ ) = K

κ
2 + τ 2

, (7)

where κ is a short time cutoff. This has a simple Fourier
transform

J̃ f (ω) = πK

κ

e−κ|ω|. (8)

We will use the form in Eq. (8) but with Matsubara frequen-
cies (ωn = 2πnT which impose periodicity in imaginary time
with n integer),

J̃ f (ωn) = πK

κ

e−κ|ωn|. (9)

After a Fourier transformation, we find that the T > 0 form of
Jf (τ ) is

Jf (τ ) = πKT sinh(2κπT )

κ[cosh(2κπT ) − cos(2πT τ )]
. (10)

To obtain the large Nf limit, we decouple S f by introducing
a bilocal field Cab(x, τ, τ ′), and the terms in V (H ) with local
fields B0(x, τ ), B1,ab(x, τ ). In this manner, we obtain the
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partition function

Z =
∫

DCab(x, τ, τ ′)DB0(x, τ )DB1,ab(x, τ )DHa�e−S f −Sb

S f =
∫

dd xdτdτ ′
[

Nh

2

[Cab(x, τ, τ ′)]2

Jf (τ − τ ′)

− Cab(x, τ, τ ′)Ha�(x, τ )Hb�(x, τ ′)
]
,

Sb = 1

2

∫
dd xdτ

[
[∂μHa�(x, τ )]2 + iB0(x, τ )

×
(

Ha�(x, τ )Ha�(x, τ ) − 3Nh

g

)
+ Nh[B0(x, τ )]2

4u0

+ iB1,ab(x, τ )Ha�(x, τ )Hb�(x, τ ) + Nh[B1,ab(x, τ )]2

4u1

]
.

(11)

In the large Nh limit, we integrate over the Ha� and obtain an
effective action for the Cab, B0, and B1,ab with a prefactor of
Nh. Note that the bilocal field Cab(x, τ1, τ

′) is included in this
effective action. The large Nh limit then involves the saddle
point analysis of this action, which we present in the following
sections.

III. LARGE Nh LIMIT

For the symmetric phase, at the large Nh saddle point, we
take the following gauge invariant ansatz:

Cab(x, τ, τ ′) = δabC(τ − τ ′),

iB0(x, τ ) = B0,

iB1,ab(x, τ ) = δabB1. (12)

From Eq. (11) we observe that
3B1

2u1
= B0

2u0
+ 1

g
= 1

Nh

〈
H2

a�

〉
. (13)

We can therefore express B1 in terms of B0 everywhere,
and only treat B0 as an independent variable. Let us also
introduce C̃(ωn) as the Fourier transform of C(τ ), and define
the parameter

[�(T )]2 ≡ B0 + B1 − 2C̃(0), (14)

where we explicitly identify the T dependence to distinguish
it from � ≡ �(T = 0). We will see below that [�(T )]−1 is
best understood as a spatial correlation length ξx, and not
a temporal correlation length ξτ ; hence, we do not call it a
“gap.” Then, in the limit u0 → ∞ the free-energy density F is
a functional only of �(T ) and C(τ ) given by (after dropping
an additive constant)

F [�(T ),C(τ )]

3Nh
= 1

2

∫ β

0
dτ

[C(τ )]2

Jf (τ )

+ T

2

∑
ωn

∫ � d2k

4π2
ln

[
k2 + ω2

n + [�(T )
]2

− 2C̃(ωn) + 2C̃(0)] − [�(T )]2 + 2C̃(0)

2g
.

(15)

Here β = 1/T , and � is large momentum cutoff which we
impose by a Pauli-Villars subtraction (see Sec. III E). Our task
in this section is to solve the saddle-point equations of F , and
then determine F as a function of T and g.

The saddle point equations of Eq. (15) are

C(τ ) = Jf (τ )
∫ � d2k

4π2
G(k, τ ), (16)

1

g
=

∫ � d2k

4π2
G(k, 0), (17)

where the Higgs field Green’s function is

G̃(k, ωn) = 1

k2 + ω2
n + [�(T )]2 − 2C̃(ωn) + 2C̃(0)

, (18)

and G(k, τ ) is its Fourier transform in frequency/time. We
have to solve Eqs. (16) and (17) for �(T ) and C(τ ) as a
function of T and g. In practice, it is easier to pick a value of
�(T ), solve Eq. (16) for C(τ ), and then determine the value
of g as a dependent variable from Eq. (17). In particular, the
critical value gc is determined by following this procedure for
�(T = 0) = 0.

A. Critical point

First, let us examine the nature of the critical point at g =
gc at T = 0. Let us assume the power-law behavior

C(τ ) = κ0

|τ |α as |τ | → ∞, (19)

for some exponent α and prefactor κ0. Then

C̃(ω) − C̃(0) = 2κ0|ω|α−1�(1 − α) sin(πα/2) as |ω| → 0.

(20)

We can drop the ω2
n term in Eq. (18) if α < 3. So we evaluate∫

dd kdω

(2π )d+1
G̃(k, ω)e−iωτ

≈
∫

dd kdω

(2π )d+1

e−iωτ

k2 − 4κ0|ω|α−1�(1 − α) sin(πα/2)

= �(1 − d/2)

(4π )d/2

∫
dω

2π
e−iωτ [−4κ0|ω|α−1�(1 − α)

× sin(πα/2)](d−2)/2

= −�(1 − d/2)

(4π )d/2
[−4κ0�(1 − α) sin(πα/2)](d−2)/2

×
[
�(1 + δ) sin(πδ/2)

π |τ |1+δ

]
, (21)

where

δ ≡ (α − 1)(d − 2)

2
. (22)

From saddle point Eq. (16), we now see that δ + 3 = α or

α = 8 − d

4 − d
= 3 − (2 − d ) + . . . as d → 2, (23)
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and

κ0 =
(

−K
�(1 − d/2)

(4π )d/2
[−4�(1 − α) sin(πα/2)](d−2)/2

×
[
�(1 + δ) sin(πδ/2)

π

])2/(4−d )

= K

4π
as d → 2. (24)

So we have a well-behaved result in the limit d → 2 of interest
to us:

C(τ ) = K

4π |τ |3 for d = 2. (25)

Note that this result is linear in K , although we did not
make an expansion in K above; our analysis was only a low
frequency asymptotic analysis. It can now be verified that
computing the term linear in K from Eq. (16) by dropping the
C̃ contribution to G on the right-hand side also yields Eq. (25).

For the frequency dependence, the above results imply

C̃(0) − C̃(ω) = Kω2

4π (2 − d )
as d → 2. (26)

By the usual interpretation of dimensional regularization, we
conclude

C̃(0) − C̃(ω) = Kω2 ln(�/|ω|)
4π

for d = 2. (27)

1. Subleading terms

It is useful to examine the structure of the subleading
corrections to Eq. (27) at low frequency, along with their
dependence on K . Inserting Eq. (27) into the right-hand side
of Eq. (16), transforming to frequency space, and performing

the momentum integral, we obtain

C̃(ω) = K

4

∫
d�

2π
|ω − �| ln

[
K�2 ln(�/|�|)

2π�2

]
. (28)

Taking a derivative, we have for ω > 0

dC̃(ω)

dω
= K

4

∫
d�

2π
sgn(ω − �) ln

[
K�2 ln(�/|�|)

2π�2

]

≈ K

4π
ω ln

[
Kω2 ln(�/|ω|)

2π�2

]
. (29)

This agrees with Eq. (27) and yields a subleading
correction which is suppressed by a factor of
∼ ln[K ln(�/|ω|)]/ ln(�/|ω|). We expect similar ln ln / ln
corrections to all other aspects of the critical behavior to be
discussed below.

B. Fermi liquid regime

Let us now increase g above gc to gap the Higgs field in
the Fermi liquid phase at T = 0. We generalize the ansatz for
C(τ ) in Eq. (19) to

C(τ ) = κ1e−|τ |/ξτ

|τ |3 as |τ | → ∞. (30)

Then by Fourier transform,

C̃(0) − C̃(ω) = κ1 ln(ξτ e−γ )ω2 + O(ω4)as |ω| → 0. (31)

We now confirm via the saddle point equations that the
ansatz Eq. (30) is self-consistent. For convenience, define
κ̃1 ≡ κ1 ln (ξτ e−γ ). We approximate the Greens function in
the small ω limit, and again evaluate using dimensional regu-
larization [we define � ≡ �(T = 0)],

∫
dd kdω

(2π )d+1
G(k, ω)e−iωτ ≈

∫
dd kdω

(2π )d+1

e−iωτ

k2 + ω2 + �2 + 2κ̃1ω2

= �(1 − d/2)

(4π )d/2

∫
dω

2π
e−iωτ [ω2(1 + 2κ̃1) + �2](d−2)/2

=
⎡
⎣ (�2)(d/2−1)

( 1+2κ̃1
�2

) 1
4 (2(d/2−1)−1)

K(d/2−1)+ 1
2

(|τ |
√

�2

1+2κ̃1

)
(2π )(d+1)/2|τ |(d/2−1)+ 1

2

⎤
⎦

= 1

4π

e−|τ |
√

�2
1+2κ̃1

|τ | at d = 2. (32)

Here, Kn is a Bessel function. Hence, asymptotically (τ → ∞) we have that

C(τ ) = Jf (τ )G(x = 0, τ ) = K

4π

e−|τ |
√

�2
1+2κ̃1

|τ |3 , (33)

which is consistent with Eq. (30) once we identify κ1 = K/(4π ) and

ξτ =
√

1 + K ln (ξτ e−γ )/(2π )�−1

≈ 1

�

[
K

2π
ln(�/�)

]1/2

(34)

to leading logs.
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We now determine the dependence of � on (g − gc). We obtain this by writing the difference of Eq. (17) at g = gc and g > gc

as ∫
dω

2π

∫ � d2k

4π2

[
1

k2 + ω2K ln(•)/(2π )
− 1

k2 + �2 + ω2K ln(•)/(2π )

]
= 1

gc
− 1

g
. (35)

Here ln(•) refers to a logarithm of various possible frequency
scales. In the leading logarithm approximation discussed in
Sec. III A 1, we can just replace the logarithm by a constant
with • = �/(largest of external frequency scales); it can be
verified that all of the results obtained so far in this section
can also be obtained in this manner. Then Eq. (35) yields

�

4π

[
K

2π
ln(�/�)

]−1/2

= 1

gc
− 1

g
(36)

or � ∼ (g − gc) ln1/2[1/(g − gc)].
From Eqs. (34) and (36), we see that ξ−1

τ ∼ (g − gc),
without a logarithmic correction. The absence of logarithmic
corrections in ξτ will be crucial to our results. Also, from the
structure of the Green’s function, we see that the spatial corre-
lation length, ξx ∼ �−1. So there is a logarithmic singularity
in the spatial correlation length, ξx, but not in the temporal
correlation length ξτ .

C. Nonzero temperatures

The solution at T > 0 is characterized by the parameter
�(T ). We can determine �(T ) in terms of � ≡ �(T = 0),
the parameter at the same value g at T = 0; the method
leading to Eq. (35) now yields∫ � d2k

4π2

[∫
dω

2π

1

k2 + �2 + ω2K ln(•)/(2π )

−T
∑
ωn

1

k2 + [�(T )]2 + ω2
nK ln(•)/(2π )

]
= 0. (37)

This yields an equation for �(T ) which is the same as that in
Ref. [32] apart from the ln(•) factors:

�(T )

T

[
K

2π
ln(•)

]−1/2

= ��

{
�

T

[
K

2π
ln(•)

]−1/2
}

, (38)

where the scaling function �� is the same as Ref. [32],

��(y) = 2 arcsinh

(
ey/2

2

)
. (39)

In particular, at the critical point g = gc, we have � = 0 and

�(T ) = �T

[
K

2π
ln

(
�

T

)]1/2

, (40)

where � = 2 ln[(
√

5 + 1)/2].
By combining Eq. (38) with Eq. (34), we see that there is

no logarithmic prefactor in the time-correlation length, as we
observed above,

ξ−1
τ (T ) = T ��

(
�

T

[
K

2π
ln(•)

]−1/2
)

, (41)

so that ξτ (T ) = 1/(�T ) at the critical point g = gc, just as in
Ref. [32]. For the function C(τ ), the leading-log corrections
can be absorbed into ξτ , and we expect from Eq. (33) that

C(τ ) = 1

|τ |3 �C (τ/ξτ ), (42)

with a scaling function �C .

D. Free energy

As we will describe below, evaluating the free energy in
Eq. (15) leads to subtle questions on the nature of the low T
limit. It turns out to be essential to have full analytical control
to separate terms with different physical origins. We already
observed below Eq. (25) that perturbation theory in K was
sufficient in determining the asymptotic form of C(τ ). And
we will see in Sec. IV the critical coupling K ∼ 1/Nh, which
also justifies working at small K . We therefore divide the free
energy as

F = FH + FK , (43)

where FH is the large-N contribution of the Higgs field, and FK

contains contributions from the large Fermi surface which are
first order in K . The analysis below amounts to an expansion
in the free energy to linear order in K about the critical point
g = gc. However, the value of gc itself depends upon K , and
this effect has to be treated more carefully.

1. Evaluation of FH

At zeroth order in K , the Higgs field contribution in
Eq. (15) is the same as the free energy computed in Ref. [32]:

FH (1/g, T )

3Nh
= T

2

∑
ωn

∫ � d2k

4π2
ln

[
k2 + ω2

n + [�(T )]2
]

− [�(T )]2

2g
. (44)

In this expression (and in the remainder of Sec. III D), it is
implied that �(T ) is to be evaluated at the saddle point of
Eq. (44) with respect to �(T ). We write the saddle point
Eq. (17), in a manner analogous to Eq. (37), as

∫ � d2k

4π2

(
T

∑
ωn

1

k2 + ω2
n + [�(T )]2

−
∫

dω

2π

1

k2 + ω2

)

= 1

g
− 1

g0
c

, (45)

where g0
c =4π/� is critical coupling at which �(T = 0)=0.

However, before inserting the evaluation of Eq. (44) into
Eq. (43), we have to apply a renormalization procedure which
is entirely analogous to converting perturbative field-theoretic
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expansions of critical phenomena from “bare” mass propa-
gators to “renormalized” mass propagators, in which some
perturbative terms are included to all orders [34]. Here, this
is essential for ensuring that our perturbative results in powers
of K hold not only in the perturbative regime where K� � T
but also in the limit T → 0 at the critical point. In the present
context, the “mass” is the distance of coupling 1/g from the
critical point 1/gc. At first order in K there is a correction to
the value of 1/gc which is computed in Appendix A to be

1

gc
= 1

g0
c

+ 1

g1
c

,
1

g1
c

= − K�

8π2

(
2 ln 2 − 1

2

)
, as κ → 0.

(46)

So we introduce a “renormalized” coupling 1/gR related to the
“bare” coupling 1/g via

1

gR
− 1

g0
c

= 1

g
− 1

gc
⇒ 1

g
= 1

gR
+ 1

g1
c

. (47)

Now when we evaluate the zeroth-order Eqs. (44) and (45) at
the renormalized coupling 1/gR we obtain at T = 0∫ � d2k

4π2

∫
dω

2π

[
1

k2 + ω2 + �2
− 1

k2 + ω2

]
= 1

gR
− 1

g0
c

.

(48)

Now we see from Eq. (47) that � = 0 precisely when the
renormalized “mass” 1/gR − 1/g0

c vanishes at the true critical
point where g = gc. After the substitution in Eq. (47), we
treat 1/gR as independent of K , and expand everything in
powers of the perturbative coupling K , just as is done in
renormalized mass expansions in field theory. So we need to
evaluate FH (1/g, T ) = FH (1/gR + 1/g1

c, T ) to linear order in
K . Here, we are aided by the fact that FH is a saddle point with
respect to variations in �(T ), so we need not account for the
shift in �(T ) to linear order. Indeed, we need only consider
the variation arising from the only explicit linear dependence
of Eq. (44) on 1/g. So we have from Eqs. (44) and (47)

FH (1/g, T ) = FH (1/gR, T ) − [�(T )]2

2g1
c

. (49)

Finally, we collect together the results of Sec. III D 1, perform
the frequency summations in Eqs. (44) and (45) to obtain the

final expression for FH

FH

3Nh
= �3

12π
+

∫ � d2k

4π2

[
1

2

√
k2 + [�(T )]2 − k

2

+ T ln
(
1 − e−

√
k2+[�(T )]2/T

)
− [�(T )]2

4
√

k2 + [�(T )]2
{1 + 2n(

√
k2 + [�(T )]2)}

]

− [�(T )]2

2g1
c

, (50)

where n(a) = 1/(ea/T − 1) is the Bose function, and the value
of �(T ) is related to � by∫ � d2k

4π2

[
1

2
√

k2 + [�(T )]2
{1 + 2n(

√
k2 + [�(T )]2)}

− 1

2
√

k2 + �2

]
= 0. (51)

The integrals over k are convergent as � → ∞ in both
Eqs. (50) and (51). Consequently, the corresponding contri-
bution to the free energy scales as T 3�H (�/T ), where the
scaling function �H was given in Ref. [32]. The renormalized
coupling gR appears only in determining the value of � in
Eq. (48), and we will express all remaining results in this
section in terms of �. In FK we can simply replace 1/g by
1/gR, because those terms are already first order in K .

2. Evaluation of FK

We turn next to the term FK in F , which contains all terms
which are linear in K corrections to FH in Eq. (44). We can
obtain these terms simply by evaluating the expectation value
of S f in Eq. (5) in the large Nh limit. So we obtain

FK

3Nh
= −1

2

∫ β

0
dτJf (τ )G2(x = 0, τ ), (52)

or in frequency space

FK

3Nh
= −1

2
T 2

∑
ωn,εn

J̃ f (ωn)

[∫ � d2k

(2π )2
G̃(k, εn)

][∫ � d2 p

(2π )2
G̃(p, εn − ωn)

]
. (53)

In Eq. (53) we use the Green’s function in Eq. (18) at zeroth order in K,

G̃(k, ωn) = 1

k2 + ω2
n + [�(T )]2

. (54)

To compute the free energy, we first evaluate the summation over εn in Eq. (53) using the identity

T
∑
εn

1(
ε2

n + a2
)
[(εn − ωn)2 + b2]

= 1

2ab

{
(b − a)[n(a) − n(b)]

ω2
n + (a − b)2

+ (a + b)[1 + n(a) + n(b)]

ω2
n + (a + b)2

}
. (55)

We also use Eq. (8) to evaluate by the contour integration method

T
∑
ωn

J̃ f (ωn)

ω2
n + c2

= πK cos(κc)

2κc
[1 + 2n(c)] + K

κ

∫ ∞

0
d�P

(
1

c2 − �2

)
sin(κ�)[1 + 2n(�)]. (56)
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Combining Eqs. (53), (55), and (56), and changing variables of integration from k, p to a = {k2 + [�(T )]2}1/2, b = {p2 +
[�(T )]2}1/2 we obtain

FK

3Nh
= − 1

16π2

∫ √
�2+[�(T )]2

�(T )
da

∫ √
�2+[�(T )]2

�(T )
db

{
πK cos[κ(a − b)]

2κ

[1 + 2n(a − b)][n(b) − n(a)]

+ πK cos(κ(a + b))

2κ

[1 + 2n(a + b)][1 + n(b) + n(a)] (57)

+ K

κ

∫ ∞

0
d�P

(
1

(a − b)2 − �2

)
sin(κ�)[1 + 2n(�)](b − a)[n(a) − n(b)]

+ K

κ

∫ ∞

0
d�P

(
1

(a + b)2 − �2

)
sin(κ�)[1 + 2n(�)](a + b)[1 + n(a) + n(b)]

}
.

Details of the evaluation of the integrals in Eq. (57) in the limit κ → 0 appear in Appendix B. We can analytically evaluate
the integrals while only dropping terms which scale as T 3 ln(•) and are exponentially small in the regime T � �. The omitted
terms are argued to scale as T d/z+1 in Sec. IV, and they preserve hyperscaling; they will be numerically evaluated in Sec. III E.
In this approximation we find as κ → 0 [recall that � ≡ �(T = 0)],

FK

3Nh
≈ − K

32πκ

(
√

�2 + �2 − �)2 − KT 2

24

[
� ln(2) − � ln

(
�

2�

)
− �

]

− K�3

16π2

[
ln(κ�) + 4

3
ln 2 − 5

6

]
+ K�2�

16π2

(
1 − �

2�

)[
ln(κ�) − 1

2

]
− K�[�(T )]2

16π2

[
2 ln 2 − 1

2

]
. (58)

We now analyze the structure of the main result of this
subsection in Eq. (58). An important observation is that the
term proportional to �[�(T )]2 cancels exactly with the cor-
responding term in Eq. (50) which arose from the shift in gc

to linear order in K , as shown in Eq. (46) and computed in
Eq. (A3) in Appendix A. This term is proportional to �, and
so could have led to hyperscaling violation. It is remarkable
that all hyperscaling violating terms exactly cancel: The me-
chanics of this cancellation is described in Appendix A.

From the remaining temperature dependent terms in
Eq. (58), we therefore obtain a simple expression for the
specific heat:

Cv

3Nh
= KT

12

[
� ln(2) − � ln

(
�

2�

)
− �

]
. (59)

The term proportional to � is independent of couplings, and
so contributes to the background γb term in Eq. (1): it can be
viewed as a finite enhancement of the mass of the background
fermions from the Higgs fluctuations. The remaining terms in
Eq. (59) correspond to free energy scaling T 3 ln(•), but are not
exponentially small for T � �; hence, they were not dropped
in Appendix B. These terms dominate the specific heat for
T � �, yielding a �-dependent coefficient for a linear-in-T
specific heat. As we will see in the renormalization group
analysis in Sec. IV, we expect � ln(�/�) to exponentiate
to �d/z−1, and so Eq. (59) contributes to the hyperscaling
preserving contribution term in Eq. (1). This is the dominant
singular term contributing to limT →0 Cv/T .

E. Numerical solution

We now turn to a numerical evaluation of the free energy
and specific heat in the K-expansion, and an evaluation of the
Greens function and decoupling fields in the self-consistent
theory, i.e., to all orders in K .

1. First order in K

Within the K-expansion, we focus on the features of the
specific heat Cv/T = C(H )

v /T + C(K )
v /T , coming from the

free-energy contributions F = FH + FK , with FH in Eq. (50)
and FK in Eq. (53). However, we reshuffle such that all K
dependence is collected into C(K )

v /T , which is achieved via

C(H )
v /T ≡ − ∂2

∂T 2

{
FH + [�(T )]2

2g1
c

}
,

C(K )
v /T ≡ − ∂2

∂T 2

{
FK − [�(T )]2

2g1
c

}
. (60)

For the evaluation, we take κ = 1/�, which requires we
use the full expression for g1

c presented in Eq. (A3). The
temperature dependence of �(T ) is obtained from Eq. (45).

Figures 1(a) and 1(b) look at the relative and combined
contributions of C(H )

v /T and C(K )
v /T , as a function of T

at fixed �. We see a nonmonotonic dependence in Cv/T ,
coming from the contribution C(K )

v /T , with a peak at a value
T ∼ �—this is further manifest in Fig. 1(d). Such a peak
indicates the change of regime from Fermi liquid � � T
to quantum critical � � T , and as such could be a useful
experimental [6–8] diagnostic of the critical point. In Fig. 1(c)
we plot C(K )

v /T versus � at fixed T , which demonstrates
a significant conclusion of the present analysis; that upon
tuning to the critical point � → 0, limT →0 C(K )

v /T (and hence
limT →0 Cv/T ) is enhanced. Figure 2 provides a surface plot of
Cv/T versus T and �, with fixed K = 10.

2. All orders in K

We now present aspects of the theory obtained to all orders
in K ; namely, the full bosonic mass gap �(1/g, K, T ), Greens
function G(τ ), and the saddle point of the bilocal field, i.e.,
C(τ ) and its Fourier transform C̃(ωn).
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FIG. 1. Specific heat contributions C (H )
v /T and C (K )

v /T , evaluated from Eq. (60). Everywhere κ = 1/�. In panels (a) and (b) as a function
of T at fixed �. Black, blue, orange, green, and red (from top-most to bottom-most curve) correspond to �/� = {0, 0.5, 2, 4, 8} × 10−2. In
panel (a) solid and dashed lines correspond to C (K )

v /T and C (H )
v /T , and for presentation we take K = 1. In panel (b) both contributions are

summed Cv/T = C (H )
v /T + C (K )

v /T , and we take K = 10. (c) C (K )
v /T as a function of � and fixed T : Blue (bottom-most), orange, green, and

red (top-most) correspond to T/� = {0.25, 0.5, 0.75, 1.0} × 10−2. The black dot-dashed line corresponds to the asymptotic form obtained for
the Fermi liquid regime in Eq. (59). (d) Cv/T vs. T/�(g), with K = 10 and same color scheme as in panels (a) and (b).

FIG. 2. Specific heat surface plot, Cv/T = C (H )
v /T + C (K )

v /T vs.
T/� and �/�, with K = 10.

For the sake of a self-consistent numerical treatment, the
Pauli-Villars procedure is ideal because it does not introduce
any sharp cutoffs. Because we also need to regulate the free
energy with the same procedure, we choose two subtractions:

G̃(k, ωn) = 1

k2 + �(ωn)
+ 1

k2 + �(ωn) + 2�2

− 2

k2 + �(ωn) + �2
, (61)

where we have defined

�(ωn) ≡ ω2
n + �2 − 2C̃(ωn) + 2C̃(0). (62)

This ensures a ∼[k2 + �(ωn)]−3 decay at large k and ωn.
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FIG. 3. Self-consistent saddle point solutions, with blue [bottom/top curve in (a)–(c)/(d)], orange, green [top/bottom curve in (a)–(c)/(d)]
corresponding to K = {0.01, 0.1, 1}: Solid lines correspond to the quantum critical mass gap �(T ) at g = gc, while dashed corresponds to
g > gc, whereby the zero temperature gap �(T = 0)/� = 2 × 10−3. (a) Inverse spatial correlation length, �(T, K ) ∼ ξ−1

x . Dash-dotted black
lines correspond to linear in T fits at small T , and are merely a guide to the eye. The curves for �(T ) at g = gc are consistent with log
correction obtained analytically in Eq. (40), whereby at larger K we expect larger log corrections. (b) C(τT )/(KT 3) vs. τT , (c) G(τT )/T vs.
τT , and (d) δC̃(ωn)/(K�2) vs. ωn, where δC̃(ωn) = 2C̃(0) − 2C̃(ωn) and the blue curve; in all cases T/� = 0.25 × 10−3.

For the free energy, the corresponding regularization is

∫ � d2k

4π2
ln[k2 + �(ωn)]

=
∫

d2k

4π2
{ln[k2 + �(ωn)] + ln[k2 + �(ωn) + 2�2]

− 2 ln[k2 + �(ωn) + �2]}, (63)

where the right-hand side decays as ∼[k2 + �(ωn)]−2 at large
k and ωn, and the saddle point equations of the free-energy
yield Eq. (61). The k integration is readily performed, and
upon applying this regularization scheme to the free-energy
Eq. (15), the corresponding saddle point Eqs. (16) and (17)

become

C(τ ) = Jf (τ )
T

4π

∑
ωn

e−iωnτ ln

{
[�(ωn) + �2]2

�(ωn)[�(ωn) + 2�2]

}
,

(64)

1

g
= T

4π

∑
ωn

ln

{
[�(ωn) + �2]2

�(ωn)[�(ωn) + 2�2]

}
. (65)

We provide the numerical solution of these saddle point
equations in Fig. 3. There our focus is on the critical cou-
pling g = gc, as well as one value of g > gc, chosen such
that �(T = 0)/� = 2 × 10−3. Having these two values of
g allows us to tease out the key qualitative features of the
saddle point solutions. Figure 3(a) shows the mass gap as
a function of T . The g = gc results are consistent with log

033390-9



SCAMMELL, SCHEURER, AND SACHDEV PHYSICAL REVIEW RESEARCH 2, 033390 (2020)

correction obtained analytically in Eq. (40). Figures 3(b) and
3(c) test the logarithmically violated scaling in Eq. (42) and
show the nonlinear influence of K on C(τ ) and G(τ )—from
the “large” time τT → 1/2 asymptotic, we see that in the
critical case g = gc, the deviation from linearity in K is likely
only as weak as logarithmic in K . These figures also show the
expected suppression of these functions for the case g > gc,
relative to the critical case g = gc, which becomes especially
pronounced at “large” times, τT → 1/2. Finally, in Fig. 3(d)
we show the frequency space behavior of δC̃(ωn) = 2C̃(0) −
2C̃(ωn).

IV. RENORMALIZATION GROUP ANALYSIS

This section will explore the nature of the 1/Nh corrections
to the Nh = ∞ theory presented in Sec. III. A complete
examination of such corrections requires determination of the
fluctuation propagator of the bilocal field C(x, τ, τ ′). Rather
than undertake this complex task, in this paper we will limit
ourselves to a renormalization group (RG) analysis in powers
of K within the large Nh expansion. We will be performing a
double expansion in powers of K and 1/Nh, with K ∼ 1/Nh.
To linear order in K , the RG equation for K follows from a
determination of the scaling dimension of S f in Eq. (5); this
was already computed in Ref. [15] and yields

dK

d�
= 2(1 − �Q)K + O(K2), (66)

where �Q is the scaling dimension of the O(Nh) order param-
eter Q�m in (6) at K = 0; this was computed in Ref. [15] to be

�Q = 1 − 64

3π2Nh
+ O

(
1/N2

h

)
. (67)

So we see the K is relevant at large but finite Nh.
The RG analysis is more easily carried out without using

bilocal fields. So instead of decoupling S f in Eq. (5) by the
bilocal field Cab in Eq. (11), we decouple it by a local field
D�m(x, τ ) [35];

S f = 1

2

∫
d2xdτdτ ′ D�m(x, τ )G−1

f (τ − τ ′)D�m(x, τ ′)

−
√

K

Nh

∫
d2xdτD�m(x, τ )Ha�(x, τ )Ham(x, τ ). (68)

Here G−1
f is the operator inverse of G f (τ ) = 1/τ 2. The RG

analysis can now be carried out by standard diagrammatic
methods, using the Feynman graphs illustrated in Fig. 4. The
RG Eq. (66) contains a term of order K/Nh. The Ha� self
energy diagram in Fig. 4(d) contributes to the flow of K at
order K2, while the diagrams in Figs. 4(e)–4(j) contribute the
flow of K at order K2/Nh. It will be sufficient for our purposes
to only compute the diagram in Fig. 4(d), which represents
the RG implementation of the logarithmic factors discussed
in Sec. III. At external frequency ω and external momentum
p, we have

4d = 2K
∫

d2k

4π2

∫
dε

2π

−π |ε|
[(k + p)2 + (ε + ω)2]

= constant − Kω2
∫ �

�e−�

d2k

4π2

1

k2
, (69)

m

−π|ωn|
a

(k2 + ω2
n)−1

K

Nh

(a) (b)

(c)

(d)

(e)

(f)

(g)

(i)

(h)

(j)

FIG. 4. Diagrams for the RG computation. (a) Propagator of D�m.
(b) Propagator for Ha�. (c) Interaction vertex between D�m and Ha�.
(d) Self-energy renormalizations for Ha� at order K . (e)–(i) Self
energy diagrams at order K/Nh; the dotted wavy line is the gauge
propagator for Aaμ, and the dashed wavy lines represent B0 and B1,ab

propagators. (j) Vertex renormalization at order K/Nh. The vertex
renormalization at order 1/Nh was computed in Ref. [15] and is
not shown here. We do not compute diagrams (e)–(j) in this paper,
because they are needed to determine the RG fixed point in Eq. (74)
at order 1/Nh.

where e−� is the RG rescaling factor. This self energy can be
absorbed into rescalings of x, τ , and Hal via

x′ = xe−�,

τ ′ = τe−z�,

H ′
a� = Ha�e(d+z−2+η)�/2, (70)

where z is the dynamic critical exponent and η is the anoma-
lous dimension of Ha�. From Eq. (69) we obtain

η = 0,

z = 1 + K

4π
. (71)

Next, we determine from the first term in Eq. (68) that the
rescaling of D�m is

D′
�m = D�me(1+z)�. (72)

Finally, from the rescalings of the second term in Eq. (68),
we determine the leading correction to the flow equations in
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Eqs. (66) and (67),

dK

d�
= 128

3π2

K

Nh
− K2

2π
+ O

(
K

N2
h

,
K2

Nh
, K3

)
. (73)

The RG flow equation has an infrared stable fixed point at

K∗ = 256

3πNh
+ O

(
1

N2
h

)
. (74)

Note that the relevant direction associated with g − gc is still
present at this fixed point, which is our candidate for cuprate
criticality. From Eq. (71) we obtain the dynamic critical
exponent

z = 1 + 64

3π2Nh
+ O

(
1

N2
h

)
. (75)

The field Ha� is not gauge invariant, and so its anomalous
dimension η is not well-defined: it can be useful to define
a gauge-dependent η for intermediate steps in a computa-
tion, but it does not directly determine any observable. In
Eq. (71), we obtained η = 0 to leading order in K , but we have
not explicitly included a wave-function renormalization from
the gauge field. Indeed this wave-function renormalization
is an ingredient [15] in the computation of the anomalous
dimension of the gauge-invariant composite operator Q�m in
Eq. (67), which entered our RG flow Eq. (73).

We turn to the critical behavior of the free energy density.
In a theory obeying hyperscaling, we expect F ∼ T (d+z)/z =
T 1+2/z. Using the value of z in Eq. (71), and expanding in
powers of K , we obtain F ∼ T 3{1 + [K/(2π )] ln(•) + . . .}.
We see that this hyperscaling contribution to the free en-
ergy perfectly explains the T 3 ln(•) terms in F2 and F3 in
Appendix B.

V. CONCLUSIONS

We have analyzed a model of optimal doping criticality in
the cuprates [15,16]. The underlying transition is a Higgs-
confinement transition in a SU(2) gauge theory, with the
Higgs field corresponding to the spin density wave order in
a rotating frame of reference. The Higgs field transforms as
an adjoint of the emergent SU(2) gauge field, and so is not
directly observable. However, gauge-invariant composites of
the Higgs field can break symmetries associated with charge
density wave, Ising-nematic, and time-reversal odd scalar
spin chirality orders. So the underdoped regime, which cor-
responds to the Higgs phase, can display one of these orders.
In addition, the Higgs condensate need not break the SU(2)
gauge symmetry completely, and any unbroken discrete gauge
symmetries can lead to bulk topological order with anyonic

excitations. The confining phase of the SU(2) gauge theory
corresponds to the Fermi liquid in the overdoped regime of
the cuprates.

A particularly difficult issue in the treatment of cuprate
criticality is the role of the fermions carrying the electromag-
netic charge. In many models, these fermions are fractional-
ized, and also carry emergent gauge charges: then there is a
singular renormalization of the fermionic excitations at the
Fermi surface, which is difficult to treat in a controlled man-
ner. In the model of Ref. [15] (and also in some earlier models
[17–19,22,23]), the electromagnetically charged fermions are
argued to be electron-like and have a large Fermi surface
(whose volume is given by the conventional Luttinger value).
We have shown here that a 1/Nh expansion allows a controlled
treatment of the consequences of such a Fermi surface. It leads
to a quantum field theory which is bilocal in time, with a
strongly coupled fixed point with dynamic critical exponent
z > 1.

We showed that the critical free energy obeyed hyperscal-
ing. At intermediate stages in our computation, hyperscaling
violating terms do appear; however we showed in Sec. III D
and Appendices A and B that such terms cancel after ac-
counting for fluctuation corrections to the position of the
quantum critical point. The resulting specific heat is described
by Eq. (1), with a smooth background linear in T specific heat,
and a singular hyperscaling preserving contribution. Plots of
Cv/T as a function of T and � (the Higgs gap, an energy
scale measuring distance from the quantum critical point on
the overdoped side) are shown in Fig. 1. There is a finite
enhancement of the background contribution γb, shown as the
first term in Eq. (59), which can be viewed as an increase
in the effective mass of the background fermions from the
Higgs fluctuations. The remaining terms in Eq. (59), belong
to the singular contribution obeying hyperscaling, and show
a �-dependent finite enhancement in the value limT →0 Cv/T
as the critical point is approached with � becoming smaller.
At a fixed �, we also found a nonmonotonic T dependence
in Cv/T at small �, with a peak at a value T ∼ �. This peak
is an indication of a crossover associated with the underlying
fluctuations of the Higgs field, and could be a useful experi-
mental [6–8] diagnostic of the critical point.
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APPENDIX A: POSITION OF THE CRITICAL POINT

We work at T = 0 and g = gc, when �(T ) = 0, and then the saddle point equations in Eqs. (16) and (17) become

∫ � d2k

4π2

∫
dω

2π

1

k2 + ω2 − 2C̃(ω) + 2C̃(0)
= 1

gc
, C̃(ω) =

∫
dε

2π
J̃ f (ε + ω)

∫ � d2k

4π2

1

k2 + ε2 − 2C̃(ε) + 2C̃(0)
. (A1)
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We manipulate these equations to obtain the first-order correction to g0
c = 4π/�. Keeping only the first-order term in K in the

second equation in Eq. (A1) we obtain

C̃(ω) − C̃(0) =
∫

dε

2π

∫ � d2k

4π2

[J̃ f (ε + ω) − J̃ (ε)]

k2 + ε2
. (A2)

Inserting this back into the first equation in Eq. (A1) we obtain our needed result for g1
c in Eq. (46)

1

g1
c

= 2
∫

dωdε

4π2

∫ � d2 p

4π2

∫ � d2k

4π2

[J̃ f (ε + ω) − J̃ (ε)]

(k2 + ε2)(p2 + ω2)2
. (A3)

We now evaluate these expressions analytically in the limit κ → 0. From Eq. (A2)

C̃(ω) − C̃(0) = −πK
∫

dε

2π

∫ � d2k

4π2

(|ε + ω| − |ε|)
k2 + ε2

= −K

4

∫
dε

2π
(|ε + ω| − |ε|) ln

(
�2 + ε2

ε2

)

= −K�ω

2π
tan−1

( ω

�

)
+ K�2

8π
ln

(
�2 + ω2

�2

)
− Kω2

8π
ln

(
�2 + ω2

ω2

)
. (A4)

From the first equation in Eq. (A1), the value of gc is then

1

gc
= �

4π
+ 1

2π

∫
dω

2π

(
1

ω2
− 1

�2 + ω2

)
[C̃(ω) − C̃(0)]. (A5)

So, evaluating ω integral

1

g1
c

= − K�

8π2

(
2 ln 2 − 1

2

)
, as κ → 0. (A6)

It is interesting to compare Eqs. (A3) and (A6) with that obtained from the derivative of FK with respect to T starting from
the expression in Eqs. (53) and (54). In taking this derivative, we ignore any T dependence that arises from the Matsubara
frequency summation: Such terms involve derivatives of Bose functions, which vanish exponentially at large argument and so do
not contribute to the ultraviolent divergent term FK ∼ �[�(T )]2 we are interested. Furthermore, it is important for our argument
that the T -dependence of �(T ) is compatible with the constraint Eq. (17), or more explicitly Eq. (B10). So we obtain

1

3Nh

∂FK

∂T
≈ ∂[�(T )]2

∂T
T 2

∑
ωn,εn

∫ � d2 p

4π2

∫ � d2k

(2π )2
J̃ f (εn + ωn)G̃(k, εn)G̃2(p, ωn). (A7)

Now, comparing Eq. (A7) with Eq. (A3) we see that the first term in Eq. (A3) has the same form as Eq. (A7). The only differences
are the frequency integration versus frequency summation, and the presence of the “mass” [�(T )]2 in the Green’s function in
Eq. (A7). However, these differences are not important for the ultraviolet �-dependence we are interested in. The second term
in Eq. (A3) is needed to cancel the 1/ω2 infrared divergence in the first term. There is no such infrared divergence in Eq. (A7)
because of the [�(T )]2 mass in G̃. If we were to add a term corresponding to the second term of Eq. (A3) to Eq. (A7), we would
have the concern that this introduces additional ultraviolet divergent terms not in FK . However, this does not happen because

−∂[�(T )]2

∂T
T 2

∑
ωn,εn

∫ � d2 p

4π2

∫ � d2k

(2π )2
J̃ f (εn)G̃(k, εn)G̃2(p, ωn)

≈
[∑

εn

∫ � d2k

(2π )2
J̃ f (εn)G̃(k, εn)

]
∂

∂T

[∑
ωn

∫ � d2 p

(2π )2
G̃(p, ωn)

]
(A8)

vanishes by the constraint Eq. (17) (up to terms involving derivatives of Bose functions that we are allowed to drop because we
are only interested in ultraviolet contributions). Therefore, such a term is not needed, and the correspondence between Eqs. (A7)
and (A3) is complete without it: This explains why the coefficient of the term divergent as ∼�[�(T )]2 in Eq. (59) matches
Eqs. (50) and (A6). The constraint Eq. (17) was crucial for this argument, as it was in evaluating FK to obtain Eq. (58) in
Appendix B.

APPENDIX B: EVALUATION OF FREE-ENERGY TERMS PROPORTIONAL TO K

This Appendix describes the evaluation of the integrals in Eq. (57). We will split Eq. (57) into various contributions, and take
the limit κ → 0,

FK = F1 + F2 + F3. (B1)
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The F1 contribution arises from the first two terms in Eq. (57); expanding in κ and using Eqs. (48) and (51) we obtain

F1

3Nh
= − K

32πκ

∫ √
�2+[�(T )]2

�(T )
da

∫ √
�2+[�(T )]2

�(T )
db[1 + 2n(a)][1 + 2n(b)] + O(κ) = − πK

2κg2
R

+ O(κ). (B2)

Using Eq. (48) we can write

�

4π
−

√
�2 + �2 − �

4π
= �

4π
− �2

8π�
+ . . . = 1

g0
c

− 1

gR
, (B3)

and so

F1

3Nh
= − K

32πκ

(
√

�2 + �2 − �)2 + O(κ). (B4)

So F1 is T -independent and a smooth function of �.
The F2 contribution arises from the last two terms in Eq. (57) but without the n(�) factor. Performing the � integral, we

obtain

F2

3Nh
= − K

16π2

∫ √
�2+[�(T )]2

�(T )
da

∫ √
�2+[�(T )]2

�(T )
db(ln(κ){a[1 + 2n(b)] + b[1 + 2n(a)]}

+ ln(|a − b|)(b − a)[n(a) − n(b)] + ln(|a + b|)(b + a)[1 + n(a) + n(b)])

= − K�2

4πgR
ln(κ) − K

16π2

∫ √
�2+[�(T )]2

�(T )
da

∫ √
�2+[�(T )]2

�(T )

× db{+ ln(|a − b|)(b − a)[n(a) − n(b)] + ln(|a + b|)(b + a)[1 + n(a) + n(b)]}. (B5)

Finally, the F3 contribution arises from the terms containing the n(�) factor in the last two terms in Eq. (57),

F3

3Nh
= − 1

16π2

∫ √
�2+[�(T )]2

�(T )
da

∫ √
�2+[�(T )]2

�(T )

× db

{
+2K

∫ ∞

0
d��n(�)P

[
1

(a − b)2 − �2

]
(b − a)[n(a) − n(b)]

+ 2K
∫ ∞

0
d��n(�)P

[
1

(a + b)2 − �2

]
(a + b)[1 + n(a) + n(b)]

}
. (B6)

So far, the manipulations have been exact. Now we will evaluate the integrals while dropping terms which scale as T 3 ln(•)
and are exponentially small in the regime T � �.

The case of F3 is simpler, so we consider it first. In the stated approximation, the only significant contribution in Eq. (B6) is

F3

3Nh
≈ − K

8π2

[∫ ∞

0
d��n(�)

] ∫ √
�2+�2

�

da
∫ √

�2+�2

�

db
1

a + b

= −KT 2

24

[
� ln(2) − � ln

(
�

2�

)
− �

]
. (B7)

Finally, let us turn to the evaluation of F2. After interchanging the a and b integrands in Eq. (B5) so that all the Bose functions
are n(a), the b integration can be performed exactly, and we obtain

F2

3Nh
= − K�2

4πgR
ln(κ) − K

16π2

∫ √
�2+[�(T )]2

�(T )
da

[
−n(a)[a − �(T )]2

{
ln [a − �(T )] − 1

2

}

+ n(a){
√

�2 + [�(T )]2 − a}2

(
ln{

√
�2 + [�(T )]2 − a} − 1

2

)

+ (n(a) + 1/2){
√

�2 + [�(T )]2 + a}2

(
ln{

√
�2 + [�(T )]2 + a} − 1

2

)

− (n(a) + 1/2)[a + �(T )]2

{
ln[a + �(T )] − 1

2

}]
. (B8)
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Now we make the approximation described above, of dropping terms which scale as T 3 ln(•) and are exponentially small for
T � �; then some of the integrals can be evaluated:

F2

3Nh
≈ − K�2

4πgR
ln(κ) − K

16π2
�2(2 ln � − 1)

∫ ∞

�(T )
da n(a) − K

16π2

∫ √
�2+[�(T )]2

�(T )

× da

[
+(1/2){

√
�2 + [�(T )]2 + a}2

(
ln{

√
�2 + [�(T )]2 + a} − 1

2

)

− (1/2)[a + �(T )]2

{
ln [a + �(T )] − 1

2

}]

= − K�3

16π2

[
ln(κ�) + 4

3
ln 2 − 5

6

]
+ K�2�

16π2

(
1 − �

2�

)
ln(κ) − K

16π2

[
−�(T )�2

2
(2 ln � − 1)

+ [�(T )]2�

4
(−3 + 8 ln 2 + 2 ln �) + �2(2 ln � − 1)

∫ ∞

�(T )
da n(a)

]
. (B9)

In Eq. (B9), we have used an expression for gR that follow from the constraint Eqs. (48) and (51), which we write as∫ √
�2+[�(T )]2

�(T )
da[1 + 2n(a)] = 4π

gR
. (B10)

We also used Eq. (B3) to express gR in terms � and �. We can also use Eqs. (B10) and (B3) to write∫ ∞

�(T )
da n(a) = �(T ) − �

2
− [�(T )]2 − �2

4�
+ . . . . (B11)

Now inserting Eq. (B11) into Eq. (B9), we obtain

F2

3Nh
≈ − K�3

16π2

[
ln(κ�) + 4

3
ln 2 − 5

6

]
+ K�2�

16π2

(
1 − �

2�

)[
ln(κ�) − 1

2

]
− K�[�(T )]2

16π2

[
2 ln 2 − 1

2

]
. (B12)

It is notable that all terms of order ��2 ln �, ��2, and �2� ln � cancel, even though they appear at intermediate orders. This
is related to use of the constraint Eq. (17), and the discussion in the latter part of Appendix A.
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