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Detecting chiral pairing and topological superfluidity using circular dichroism
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Realizing and probing topological superfluids is a key goal for fundamental science, with exciting techno-
logical promises. Here, we show that chiral px + ipy pairing in a two-dimensional topological superfluid can be
detected through circular dichroism, namely, as a difference in the excitation rates induced by a clockwise and
counterclockwise circular drive. For weak pairing, this difference is to a very good approximation determined by
the Chern number of the superfluid, whereas there is a nontopological contribution scaling as the superfluid gap
squared that becomes significant for stronger pairing. This gives rise to a competition between the experimentally
driven goal to maximize the critical temperature of the superfluid, and observing a signal given by the underlying
topology. Using a combination of strong-coupling Eliashberg and Berezinskii-Kosterlitz-Thouless theory, we
analyze this tension for an atomic Bose-Fermi gas, which represents a promising platform for realizing a chiral
superfluid. We identify a wide range of system parameters where both the critical temperature is high and the
topological contribution to the dichroic signal is dominant.
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I. INTRODUCTION

The realization and manipulation of topological superfluids
and superconductors is presently one of the most actively
pursued goals in physics. In addition to being interesting from
a fundamental science point of view, their Majorana edge
modes promise applications for quantum computing [1]. Zero-
energy states at the ends of one-dimensional (1D) nanowires
have been observed, consistent with the presence of Majorana
modes [2,3]. So far, the observation of topological super-
fluidity in 2D is missing. The most promising solid-state
candidate for a 2D topological superconductor is Sr2RuO4,
but the precise symmetry of the order parameter in this crys-
tal remains subject to intense debate [4–6]. It has recently
been shown that an atomic 2D Fermi gas immersed in a
BEC offers a promising platform for realizing a topological
superfluid [7–9]. The fermions form Cooper pairs with chiral
symmetry by exchanging sound modes in the BEC, and the
system offers sufficient flexibility so that one can tune the su-
perfluid critical temperature to be within experimental reach.
Experimentally, such a Bose-Fermi mixture has been realized
using 173Yb-7Li atoms, which constitutes an important step
towards an unequivocal realization of a topological px + ipy

superfluid [10].
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A key question concerns the detection of topological
superfluidity in atomic gases. Their topological properties
are not easily extracted from thermodynamic measurements
nor by using common probes such as radio-frequency
spectroscopy [11]. Contrary to the chiral edge modes of
single-particle band structures, which have been detected in
experiments [12], the observation of Majorana states [13,14]
is complicated by their small number and their particle-hole
nature.

It was recently proposed [15,16] and experimentally
demonstrated [17] that the topologically invariant Chern
number can be detected in atomic gases through circular
dichroism, namely, by analyzing excitation rates upon ap-
plying a circular drive. This topological probe was first
introduced for noninteracting Chern insulators [15], and later
applied to interacting many-body systems [18–20]. Inspired
by this approach, we hereby demonstrate that the chirality
of the px + ipy pairing is revealed in the circular dichroism
of the superfluid. For weak pairing, the differential excitation
rate obtained from opposite drive orientations, integrated over
the drive frequency, is shown to be determined by the Chern
number of the topological superfluid, in direct analogy with
Chern insulators [15]. However, in contrast with the latter
case, a nontopological contribution scaling as the superfluid
gap squared becomes significant for strong pairing. The result-
ing competition between maximizing the superfluid critical
temperature while detecting a genuine topological signature
is analyzed for a concrete atomic Bose-Fermi mixture. Us-
ing the strong-coupling Eliasberg equations combined with
Berezinskii-Kosterlitz-Thouless (BKT) theory, we identify
a wide and accessible parameter regime where the super-
fluid critical temperature is high and the dichroic signal is
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dominated by the topological Chern number. Our results
demonstrate that the dichroic probe offers an experimentally
promising pathway to detect topological superfluidity.

II. TOPOLOGICAL RESPONSES IN SUPERFLUIDS

We first establish a connection between circular dichroism,
the Hall conductivity, and the Chern number of the superfluid.
Consider a 2D system of spin-polarized fermions described
by the Hamiltonian

H0 =
∫

d2r ψ†(r)

(
−∇2

2m

)
ψ (r)

+ 1

2

∫∫
d2rd2r′ ψ†(r)ψ†(r′)V (r − r′)ψ (r′)ψ (r), (1)

where ψ (r) is the fermion field and V (r − r′) is an interaction
giving rise to pairing, which may result from a p-wave Fesh-
bach resonance or, as we will consider later, from an induced
interaction. Within BCS theory, this p-wave superfluid can be
described by the Hamiltonian

HBCS =
∑

k

�
†
kHk�k, Hk = hk · τ, (2)

where �k ≡ [ak, a†
−k]

T
, hk = (Re �k,−Im �k, ξk )T , and

where τ = (τ1, τ2, τ3)T with τi the Pauli matrices. Here, ξk =
k2/2m − μ, where μ is the chemical potential, and �k is the
gap parameter (h̄ = 1 throughout). The latter is taken to have
chiral p-wave symmetry, i.e., �k = �keiφ , where φ is the po-
lar angle of the momentum k and k = |k|, since this gives the
lowest energy for p-wave pairing as it has no nodes [21,22].
Indeed, as �k ∝ k for k � kF due to Fermi antisymmetry,
we get �k ∝ kx + iky. This results in a topological phase
characterized by a Chern number C = −1 for μ > 0 whereas
C = 0 for μ < 0 [23]. The Chern number reads

C =
∫

d2k

4π

1

|hk|3 hk · ∂kx h × ∂ky h

=
∫

d2k

2π

[
vx

E3
k

Im
(
�∗

k∂ky�k
) + ξk

2E3
k

Im
(
∂kx �k∂ky�

∗
k

)]
, (3)

where vx = kx/m and Ek =
√

ξ 2
k + |�k|2 is the BCS quasi-

particle energy. The second term in the integrand scales as
�2

k/μ
2 so that the Chern number can be approximated by the

first term in the regime �k � μ.
We now show that the Chern number in Eq. (3) can be

extracted from circular dichroism, namely, by monitoring ex-
citation rates upon a circular drive [15,17]. We consider a
circular drive of the form

V±(r; q) = 2E (x cos 
t ± y sin 
t ) cos q · r, (4)

and we will set q → 0 at the end of the calculations, corre-
sponding to a uniform circular shaking [17]. This reads

V±(q) = E
i

[
−∂ ñ(q)

∂qx
± i

∂ ñ(q)

∂qy

]
e−i
t + H.c., (5)

in second quantization, where n(r) = ψ†(r)ψ (r) is the den-
sity operator, n(q) is its Fourier transform, and ñ(q) =
[n(q) − n(−q)]/2. Within linear response, the excitation rate

out of the ground state of H0 induced by V±(q) can be calcu-
lated using Fermi’s golden rule as

�±(q,
) = 2πE2
∑

f

∣∣∣∣
〈

f

∣∣∣∣∂ ñ(q)

∂qx
± i

∂ ñ(q)

∂qy

∣∣∣∣g
〉∣∣∣∣

2

× δ(E f − Eg − 
), (6)

where |g〉 and | f 〉 denote the ground and excited states of H0

with energy Eg and E f , respectively.
The observable of interest is provided by the differential

integrated rate (DIR), which is defined as [15]

�� = lim
q→0

1

2

∫ ∞

0
d
[�+(q,
) − �−(q,
)]. (7)

Substituting Eq. (6) into Eq. (7), we find

�� = −π iE2 lim
q→0

〈
g

∣∣∣∣
[
∂n(q)

∂qx
,
∂n(−q)

∂qy

]∣∣∣∣g
〉
, (8)

where we have used momentum conservation to eliminate
terms. We now use the continuity equation to write ��

in terms of the density-current correlation function. From
∂t n(r, t ) + ∇ · j(r, t ) = 0, we find

〈g|n(q)| f 〉 = 〈g|q · j(q)| f 〉
E f − Eg

, (9)

where the Fourier transform of the current reads

j(q) = (1/2mi)
∫

d2re−iq·r[ψ†(r)∇ψ (r) − H.c.]. (10)

Using Eqs. (8) and (9) and noting that

lim
qy→0

lim
qx→0

〈g|∂qy n(q)| f 〉 = lim
qy→0

lim
qx→0

〈g|n(q)/qy| f 〉, (11)

we find the relation

��/A = 2πE2σxy, (12)

which connects the DIR to the static Hall conductivity

σxy ≡ lim
qy→0

lim
qx→0

lim
ω→0

1

iAω
χ jx, jy (q, ω)

= lim
qy→0

lim
qx→0

lim
ω→0

1

iAqy
χ jx,n(q, ω). (13)

Here, A is the system’s area, and χA,B(q, ω) is the Fourier
transform of the retarded correlation function

χA,B(q, t − t ′) = −iθ (t − t ′)〈[A(q, t ), B(−q, t ′)]〉, (14)

with θ (x) the Heaviside function. We note that the specific
order of limits (taking ω → 0 before q → 0) is crucial, since
the more standard order limω→0 limq→0

1
iωχ jx, jy (q, ω) yields

zero for a translationally invariant system [24]; this subtlety
also arises when analyzing edge currents [25–28].

In addition, Eq. (12) was obtained by taking the finite na-
ture of realistic systems into account. In particular, one would
obtain an additional factor of 1/2 for a strictly translationally
invariant system. Indeed, when deriving Eq. (8), we use that
〈A(q), B(q′)〉 ∝ δq,−q′ for a strictly infinite translationally in-
variant system. From this, it follows that limq→0〈n(q)n(q)〉 =
0 and such terms can be discarded. However, for a finite
physical system of size L, momentum is only defined with a
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resolution ∼1/L. This means that 〈n(q)n(q)〉 starts to become
nonzero for q � 1/L and in particular limq→0〈n(q)n(q)〉 =
〈n(0)n(0)〉 for a finite system, which leads to the extra factor
of 2 on the right-hand side of Eq. (12). Physically, it means
that a finite system cannot distinguish between a force with a
wavelength much greater than the system size from a uniform
force. We note that uniform circular shaking (q = 0) can be
realized in ultracold-atom experiments. We also point out that
Eq. (12) is universal: It can also be derived from Kramers-
Kronig relations [15,19,29,30], noting that the excitation rates
�±(
) are related to the power absorbed upon the circular
drive P±(
) = 
�±(
).

The Hall conductivity of a superfluid was previously shown
to be related to a Chern number; see Refs. [25,26] in the
context of chiral 3He superfluids. Using BCS theory, the
current-density correlation function can be written as [31]

χ jx,n(q) = −
∑

k

kx

2m
tr[G0(k − q/2)G0(k + q/2)τ3], (15)

where in shorthand notation k = (k, ωn) with ωn a fermionic
Matsubara frequency, and G0 is the BCS Green’s function. We
have

G0(k) =
∫ ∞

−∞

dω

(−π )

ImG0(k, ω)

iωn − ω
, (16)

where

ImG0(k, ω) = − π

2Ek

(
ω + ξk −�k

−�∗
k ω − ξk

)

× [δ(ω − Ek ) − δ(ω + Ek )]. (17)

Inserting this in Eq. (15) and performing the Matsubara sum
yields to first order in q,

lim
ω→0

χ jx,n(q, ω) = − iqx

V
∑

k

kx

2m

Im �k∂kx �
∗
k

E3
k

− iqy

2V
∑

k

kx

2m

Im �k∂ky�
∗
k

E3
k

. (18)

The first of these terms vanishes, since the summand is odd in
ky. This can be seen if we fix the phase of the gap function and
look at, for instance, the simple example �k = kx + iky. With
this, it is clear that

lim
q→0

lim
ω→0

χ jx,n(q, ω)

iqy
=

∫
d2k
8π2

kx

m

Im
[
�∗

k∂ky�k
]

E3
k

= C

4π
+ O(�2/μ2), (19)

where the last equality is obtained by comparing with the
Chern number in Eq. (3). In contrast with the case of Chern
insulators, where the Hall conductivity is genuinely topo-
logical in the thermodynamic limit [32], the Hall response
of the superfluid [Eq. (19)] contains a correction scaling as
O(�2/μ2). This result was previously related to the fact that
the edge current of a chiral p-wave superconductor is not
strictly topological, as opposed to the presence of edge (Ma-
jorana) states [33–35].

Finally, combining Eqs. (12) and (19) yields the central
result of this work,

��/A = (1/2)E2C + O(�2/μ2), (20)

which shows that the DIR related to the dichroic probe is
closely related to the Chern number of the superfluid phase:
This observable exhibits a jump proportional to the Chern
number to order O(�2/μ2) whenever the superfluid enters the
topological phase with C = −1.

III. DICHROIC PROBE FOR A TOPOLOGICAL
BOSE-FERMI MIXTURE

We now explore the dichroic probe for a concrete system
consisting of a 2D gas of fermionic atoms immersed in a 3D
BEC. The fermions interact by exchanging sound modes in
the BEC, which leads to an induced attractive interaction and
Cooper pairing [7]. Since both the range and strength of the
induced interaction can be varied, one can tune the mixture
in order to reach a high critical temperature. This makes such
a mixture a strong candidate for observing a chiral pairing.
Recently, progress towards realizing this goal was reported
with the experimental realization of a 173Yb-7Li mixture [10].
We now analyze how the dichroic probe can be used to detect
topological pairing in this specific system.

Due to the finite speed of sound in the BEC, the interaction
between the fermions mediated by the bosons is not instan-
taneous, thus giving rise to retardation effects. The latter are
included in the frequency-dependent Eliashberg equations as
explained in the Appendix. It has been shown that retardation
effects are small when the bosons in the BEC are light com-
pared to the fermions such as for the 173Yb-7Li mixture [36].
The induced interaction is then close to the static Yukawa form

V (r) = −a2
eff nBmB

π

exp(−√
2r/ξB)

r
. (21)

Here, nB and mB is the density and mass of the bosons, ξB =
1/

√
8πnBaB is the BEC healing length with aB the boson-

boson scattering length, and aeff is the mixed dimensional
Bose-Fermi scattering length.

According to Eq. (7), one should measure the differen-
tial rate �+ − �− integrated over all frequencies. However,
any real measurement necessarily introduces an upper cutoff
frequency 
c above which there is no signal [17]. Using
Eqs. (12) and (19), the resulting signal reads

��trunc(
c)

AE2
≡

∫
d2k

4π

kx

m

Im
[
�∗

k∂ky�k
]

E3
k

θ (
c − 2Ek ). (22)

The cutoff θ (
c − 2Ek ) reflects that the probe breaks pairs
with energy 2Ek in the long-wavelength limit. We note that
�� = lim
c→∞ ��trunc(
c).

In Fig. 1, we plot ��trunc(
c) for a 7Li-173Yb mixture with
a Bose-Fermi coupling n1/3

B aeff = 0.12, BEC gas parameter
n1/3

B aB = 0.1, and density ratio n1/2
F /n1/3

B = 0.5, where nF is
the 2D Fermi density. These results are obtained by first solv-
ing the BCS equations self-consistently at zero temperature
and then evaluating the DIR from Eq. (22). The numerical
solution indeed confirms the p-wave form of pairing �k =
�keiφ where �k ∝ k for small momenta.
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FIG. 1. The differential integrated rate ��trunc(
) between a
clockwise and counterclockwise perturbation as a function of the
cutoff frequency. The inset shows the difference in the heating rates
between a clockwise and counterclockwise perturbation as a function
of frequency.

The DIR is zero for cutoff frequencies below twice the gap,
i.e., for 
c � 0.1EF , where EF is the 2D Fermi energy, reflect-
ing that there is not enough energy in the probe to break pairs.
Above this threshold, the DIR quickly converges towards to
the Chern number for 
c � EF . Since � � 0.05EF � EF

for this set of parameters, the deviation of 2��/AE2 away
from the Chern number is small. We also plot in Fig. 1 the
differential rate at a given frequency 
,

1

2
[�+(
) − �−(
)] = ∂

∂

��trunc(
). (23)

This difference is large for frequencies just above the thresh-
old given by twice the gap, where the density of states of the
superfluid is highest, and Fig. 1 shows that one only needs to
measure the difference up to a few times the pairing gap to
resolve the Chern number.

One of the appealing features of the Bose-Fermi mixture is
that the critical temperature for the 2D superfluid can be tuned
to be close to the maximum value Tc/TF = 1/16 allowed
by BKT theory. Maximizing Tc will however also increase
the gap and thereby increase corrections to the DIR away
from the Chern number as seen from Eq. (20). To analyze
this tension, we plot in Fig. 2 the DIR �� at zero tem-
perature and the critical temperature Tc as a function of the
gas parameter n1/3

B aB for n1/2
F /n1/3

B = 0.5 and two different
Bose-Fermi interaction strengths. The critical temperature is
calculated by combining strong-coupling Eliashberg and BKT
theory, which includes the frequency dependence of the gap;
see Ref. [7] and the Appendix for details. We see that the
critical temperature increases with decreasing gas parameter,
reflecting that the range of interaction in Eq. (21), given by
the BEC coherence length, increases. The gap consequently
also increases, leading to a larger correction term for the DIR
away from �� = AE2C/2. Nevertheless, Fig. 2 shows that
there is a significant region where both the DIR is close to
the topological value and the critical temperature is close to
its maximum value Tc/TF = 1/16. Note that we expect our
calculation to give a lower bound on the DIR, since BCS
theory likely overestimates the gap.

FIG. 2. The critical temperature (red) and the differential inte-
grated rate �� (black) as a function of the BEC gas parameter n1/3

B aB

for two different Bose-Fermi interaction strengths.

To further illustrate the competition between maximizing
the critical temperature and measuring a value of �� de-
termined by the underlying topology, we plot �� at zero
temperature as a function of Tc in Fig. 3 for the same pa-
rameters as in Fig. 2. This demonstrates that in order for the
dichroic probe to yield a value close to that given by the
Chern number, one should cool to around T ∼ 0.06EF . Since
temperatures down to T � 0.03EF have been obtained for 2D
Fermi gases [37–39], this is within present day technology
making our scheme promising for detecting topological super-
fluidity. It also shows that a stronger Bose-Fermi interaction
strength is slightly more favorable, although the difference
between the two interaction strengths is small.

For T = 0, BCS theory has been shown to be surprisingly
accurate even for strong coupling where the Cooper pairs
are tightly bound and the system is in the so-called BEC
regime [40]. It follows that our calculation of the DIR is reli-
able even in this regime, where the correction term O(�2/μ2)
away from the quantized value is large. Any nonzero value
however indicates chiral pairing, since the DIR is zero in a
phase with time-reversal symmetry. Our scheme thus provides
a way to observe the topological phase transition to a trivial
phase when μ becomes negative deep in the BEC regime.

FIG. 3. The DIR as a function of the critical temperature for
the same parameters as in Fig. 2. The dashed line corresponds to
n1/3

B aeff = 0.1 and the solid line to n1/3
B aeff = 0.15.
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IV. CONCLUSION

We showed that chiral px + ipy pairing in a 2D superfluid
can be detected through circular dichroism. Contrary to the
case of topological insulators [15], the DIR is not purely dic-
tated by the Chern number due to a correction term scaling as
�2/E2

F , giving rise to a competition between maximizing the
critical temperature of the superfluid and observing the Chern
number from such a dichroic probe. As a concrete example,
we considered an atomic Bose-Fermi mixture. Using a com-
bination of Eliashberg and BKT theory, it was demonstrated
that there is in fact a wide range of values for the system
parameters where both the critical temperature is high and
the dichroic signal is close to the value given by the Chern
number. This, combined with the fact that a similar scheme
was recently successfully applied to detect topological order
in a Chern Bloch band [17], leads to the conclusion that the
dichroic probe is a strong candidate for detecting topological
px + ipy pairing in an atomic system.
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APPENDIX: CALCULATION OF THE SUPERFLUID
TRANSITION TEMPERATURE

Here, we outline the calculation of the superfluid transition
temperature for the 2D 173Yb gas immersed in a 3D 7Li
BEC. First, we solve the following frequency-dependent gap

equation at a finite temperature T [36],

�(p, iωn) = − T
∑

m

∫
dq

(2π )2
Vind(p − q, iωn − iωm)

× �(q, iωm)

ω2
m + E2(q, iωm)

, (A1)

where E (q, iωm) =
√

ξ 2
q + |�(q, iωm)|2. Here, the frequency-

dependent induced interaction Vind(q, iων ) is given by

Vind(q, iων ) = − nBmBg2

[(
1

κ+
+ 1

κ−

)

+ 1√
1 − (ων/gBnB)2

(
1

κ+
− 1

κ−

)]
, (A2)

where κ± =
√

2mBgBnB[1 ±
√

1 − (ων/gBnB)2] + q2. Along
with a number equation, this constitutes the Eliashberg equa-
tions of the superfluid [31].

Since the Fermi system is 2D, the superfluid transition
is driven by vortex-antivortex proliferation and the critical
temperature TBKT is determined by the Kosterlitz-Thouless
condition [7]

TBKT = π

8m2
F

ρs({�(iωn)}, TBKT). (A3)

Here, ρs is the superfluid mass density and is a function of
the gap parameters and the temperature. Neglecting the renor-
malization of the interaction between vortex pairs, ρs can be
estimated as

ρs = ρ0 + T

2

∑
n

∫
dp

(2π )2
p2 E2(p, iωn) − ω2

n[
ω2

n + E2(p, iωn)
]2 , (A4)

where ρ0 = mF nF . Solving Eq. (A3) self-consistently using
Eq. (A4) and the frequency-dependent gap parameters ob-
tained from Eq. (A1), we obtain the superfluid transition
temperatures shown in the main text.
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