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Two-dimensional rogue waves on zero background in a Benney-Roskes model
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A prototypical example of a rogue wave (RW) structure in a two-dimensional (2D) nonlocal, nonlinear
Schrödinger model, namely, a variant of the Benney-Roskes (BR) system, is presented. The analytical method-
ology involves a Taylor series expansion of an eigenfunction of the model’s Lax pair, which is used to form a
hierarchy of infinitely many eigenfunctions. These are used for the construction of 2D RWs of the BR system by
the evenfold Darboux transformation. The obtained 2D RWs, which are localized in both space and time, can be
viewed as a 2D analog of the Peregrine soliton.
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I. INTRODUCTION

A two-dimensional (2D) rogue wave (RW) is a short-lived
large-amplitude wave, which is doubly localized in two spatial
variables x and y as well as in time t , and its modulus is
a rational function. Naturally, a RW solution of a suitable
2D partial differential equation could provide a dynamical
paradigm in a number of areas of physics, including nonlinear
optics, atomic Bose-Einstein condensates, and ocean waves
(see, e.g., the reviews in [1,2] as well as [3–6]. However, here
we report an analytical form of such a genuine 2D RW.

A candidate physically relevant model that may give rise
to purely 2D RWs is a nonlocal nonlinear Schrödinger (NLS)
model, where the field obeying a NLS-type equation is cou-
pled to a mean term. Such nonlocal NLS models may result
from multiscale expansion methods in physical systems where
the underlying governing equations feature quadratic nonlin-
earities; pertinent examples include water waves [7–10] and
optical media with nonresonant quadratic nonlinearities (de-
scribed by the coefficient χ (2) of the medium’s susceptibility
tensor) [11,12]. This motivates us to study such a nonlocal
NLS model, which is of the following dimensionless form:

iut + uxx − uyy + (2κ|u|2 + S)u = 0,

Sxx + Syy = −4κ (|u|2)xx, κ = ±1. (1)
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Here u(x, y, t ) represents the envelope of the wave packet,
so the actual wave field is given by the product of u(x, y, t )
and a carrier wave in the x direction, while S(x, y, t ) describes
the so-called wave-induced mean field, which in turn interacts
with the surface wave (in the context of water waves) or the
electric field envelope of the first harmonic (in χ (2) nonlinear
optical media). Furthermore, the parameter κ sets, in general,
the type of nonlinearity: κ = ±1 corresponds to defocusing
and focusing cases. Here we will consider the case κ = −1.

We should mention that, in the absence of the mean field
S(x, y, t ), Eq. (1) reduces to the (2 + 1)-dimensional NLS
equation. On the other hand, in the presence of S(x, y, t ),
Eq. (1) is a special case of a generalized Benney-Roskes
system (BRS) (first reported in Ref. [7]) [see Eq. (6.51) in
Ref. [13]]. In this model, the signs of the dispersion terms may
also change, giving rise, e.g., to an elliptic-hyperbolic [rather
than a hyperbolic-elliptic in Eq. (1)] structure. Equation (1)
corresponds to a suitable choice of the various signs (and
rescaling) of the BRS. For other choices of the signs, the BRS
can describe water waves and can be reduced to the Davey-
Stewartson (DS) equation [8]. Nevertheless, for our choice
of parameters, Eq. (1) does not describe water waves, as in
Refs. [8–10]. Following [13], we will refer to the model at
hand, Eq. (1), as a Benney-Roskes system, which is a focusing
version of the original DS equation.

Evidently, the BRS under consideration is a 2D extension
of the famous NLS equation [14,15]. The latter is known to
possess 1D rational RWs, i.e., the fundamental RW in the
form of the so-called Peregrine soliton [16–18], as well as
other higher-order RWs [19–22], which have been observed in
optical systems and water tank experiments [23–29]. Since the
BRS can be viewed as a nonlocal hyperbolic NLS equation, it
should be mentioned that its local counterpart, i.e., the 2D hy-
perbolic NLS, has been computationally explored in Ref. [30]
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in the context of deep water gravity waves, with the numerical
results suggesting that RWs may persist in such settings.

The main focus of the present work is to offer explicit
analytical solutions for BRS RWs, which can be viewed as the
prototypical generalization of Peregrine solitons to genuinely
higher-dimensional settings. The relevance of such settings
in physical applications highlights the importance of a sys-
tematic toolbox enabling the identification of such solutions.
While the importance of this problem has been recognized and
other mathematically motivated (from integrability theory) 2D
extensions of RWs have been proposed [31], the present 2D
RW proposal constitutes a prototypical physically relevant
example in view of the above remarks.

Before proceeding, we review some key properties of the
BRS (1). First we note that it is a completely integrable system
via the inverse scattering transform and particularly by means
of the so-called ∂̄ method [32–34]. However, although the
relevant BRS has been originally developed in and considered
since the late 1960s, the construction of 2D RWs for this
system is still an open problem, strongly motivated by (a)
identifying a 2D RW that could be suitable for physical ap-
plications and (b) finding a 2D analog of the Peregrine soliton
solution.

In this work we present genuine 2D RWs of the BRS equa-
tion, decaying as O( 1

r′2 ), for a given time t , where r′ denotes
the radial distance from the center of the RW in the moving
reference frame (discussed below). Unlike higher-order mul-
tipole lumps [35] whose maximum amplitude approaches a
nonzero constant as t → ±∞, here we present two kinds of
solutions featuring different asymptotic behaviors for large |t |.

(i) The maximum value of the first-order RW decays ∼ 1
r′ to

0, which guarantees that this is indeed a RW wave “appearing
from nowhere and disappearing without a trace” [18].

(ii) The RW-lump solution’s maxima consist of a central
peak given by a lump and an outer ring given by a RW. Once
the RW disappears at large times, this solution reduces to a
lump of constant amplitude (at large times).

II. ANALYSIS

In what follows we provide an outline of the methods
and give the main results. We start by recalling the Lax pair
and Darboux transformation (DT) for the BRS [36–38]. The
relevant Lax pair is [36,38]

�y = J�x + U�, �t = 2J�xx + 2U�x + V �, (2)

with a constant diagonal matrix J = ( i 0
0 −i) and two potential

matrices

U =
(

0 u

v 0

)
, V =

(
(w + iQ)/2 ux − iuy

vx + ivy (w − iQ)/2

)
. (3)

Here the eigenfunction � = (ψ, φ)T (T denotes trans-
pose), the potentials u, v = κu∗(κ = ±1) ∈ C, the field Q =
2κ|u|2 + S ∈ R, and w ∈ R satisfying wy = −Qx − 2(uv)x

and wx = Qy − 2(uv)y are functions of the three variables x,
y, and t . As is typically the case in such integrable models, the
BRS is obtained from the compatibility of the Lax pair, i.e.,
�yt = �ty. Since S and Q are two auxiliary functions in the
BRS and its Lax pair, below we will focus on the u waveform.

The construction of the N-fold DT of the BRS necessi-
tates N eigenfunctions �k = (ψk, φk )T (k = 1, 2, . . . , N) and
�̃k = (φ∗

k , κψ∗
k )T, which are associated with a given “seed”

solution u and v, of the Lax pair equation (2). The N th-order
solution [38] of the BRS generated by the N-fold DT reads

u[N] = u + 2i
δ2

δ1
, (4)

where δ1 and δ2 are two determinants of �k = (ψk, φk )T

and �̃k = (φ∗
k , κψ∗

k )T (see the Appendix). The line RWs on
nonzero background were constructed in Refs. [38,39]. As
mentioned above, the defocusing BRS, for κ = 1, has no
smooth rational solutions; thus, hereafter, we focus on the
focusing case and set κ = −1.

We are now in a position to construct RW solutions u
of the BRS starting from a zero seed solution u = 0, v = 0,
Q = 0, and w = 0 of Eq. (4) by the DT method. It is crucial
to find proper eigenfunctions �k associated with the zero
seed solution in the Lax pair equation (2) in order to find
RWs. Substituting this seed back into Eq. (2), we get a basic
eigenfunction �, namely,

ψ = ψ (b1, x, y, t ) = a1 exp[ib1(x + iy − 2b1t )],

φ = φ(b2, x, y, t ) = a2 exp[ib2(x − iy + 2b2t )], (5)

where

a1 = exp [b1(s0 + s1ε + s2ε
2 + · · · + sNεN )],

a2 = exp [b2(s0 + s1ε + s2ε
2 + · · · + sNεN )] (6)

are two overall factors added intentionally in order to in-
troduce more expansion coefficients si. Importantly, the two
components ψ and φ in the basic eigenfunction � are in-
dependent of each other under the condition of a zero seed
solution. Performing a Taylor series expansion for the above
basic eigenfunction � at (λ1, λ2)T, we obtain

ψ (λ1 + ε) = ψ [0] + ψ [1]ε + · · · + ψ [N]εN + O(εN+1),

φ(λ2 + ε) = φ[0] + φ[1]ε + · · · + φ[N]εN + O(εN+1), (7)

where

ψ [k] = 1

k!

∂kψ

∂bk
1

∣∣∣∣
b1=λ1

, φ[ j] = 1

j!

∂ jφ

∂bj
2

∣∣∣∣
b2=λ2

,

with k, j = 0, 1, 2, . . . , N . By a tedious calculation, we find
that (ψ [k], φ[ j] )T are analytical and infinitely many eigen-
functions of the Lax pair equation (2) are associated with
the zero seed solution; this is a different analytical structure
of eigenfunctions of the Lax pair for the BRS. Due to the
independence of ψ and φ, these eigenfunctions are classified
into two categories, i.e.,

(ψ [k], φ[k] )T, (ψ [k], φ[ j] )T (k �= j).

Note that ψ [k] contains k + 1 parameters sp (with p =
0, 1, 2, . . . , k) and λ1, while φ[ j] contains j + 1 parameters
sp (with p = 0, 1, 2, . . . , j) and λ2. Below, for simplicity,
we set s0 > 0, s j = 0 ( j � 1), and λ1 = −λ∗

2 = iλ (λ ∈ R).
Furthermore, hereafter, all results are discussed in a moving
reference frame, i.e.,

x′ = x, y′ = y − 4λt, r′ =
√

x′2 + y′2,
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FIG. 1. (a)–(c) Profiles of the first-order RW |u[1]
RW| in the (x′, y′)

plane for s0 = 1 at (a) t = 0, (b) t = 1, and (c) t = 200. (d)–(f)
Corresponding cross-sectional profiles of (a)–(c) along the x′ axis
at (d) t = 0, (e) t = 1, and (f) t = 200. The red circles are plotted
using the exact result 6

s0
for t = 0 and the approximate formulas r′

and |u[1]
RWcircle| for t �= 0.

which is more convenient in order to investigate the properties
of the obtained solutions.

To derive rational solutions u[N] of the BRS, we se-
lect �k = (ψk, φk )T = (ψ [2k−1], φ[2k−1])T (k = 1, 2, . . . , N)
in Eq. (4). Setting N = 1 and λ = 1, Eq. (4) yields a usual
first-order lump

u[1]
lump = − 2s0e2i(2t−y′ )

x′2 + y′2 + s2
0

and its maximum value |u[1]
lumpM | = 2

s0
. Setting N = 2 and

λ = 1, Eq. (4) yields a second-order rational solution u[2],
corresponding to the first-order RW of the BRS, namely,

u[1]
RW = 6s0NRW

DRW
e−2i(2t+y′ ), (8)

where

NRW = −x′4 + y′4 − 2s2
0x′2 + 4s2

0y′2 − s4
0

+ 12it
(
x′2 + y′2 + s2

0

)
,

DRW = (
x′2 + y′2 + s2

0

)3 + 12s2
0

(
x′2 + s2

0

)
y′2 + 144s2

0t2.

The solution u[1]
RW is a smooth and nonsingular RW as s0 > 0

on zero background, with the following properties.
(a) The modulus |u[1]

RW|, which is an even function of its
arguments, decays algebraically like O( 1

r′2 ) for any given
time t .

(b) When r′ =
√

x′2 + y′2 = 0, the RW solution u[1]
RW re-

duces to

u[1]
RWc =

( − 6s3
0 + 72is0t

)
e−4it

s4
0 + 144t2

. (9)

Notice that |u[1]
RWc| reaches the maximum value 6

s0
at t = 0 [see

Figs. 1(a) and 1(d)], while it bears a (local) minimum value
thereafter, and finally decays like O( s0

2t ) ∼ 0 as |t | → ∞.

(c) When r′ 	 0, the maxima of |u[1]
RW| form a rectangular

perimeter profile at an intermediate stage [see, most notably,
Fig. 1(b) and also the associated cross section in Fig. 1(e)],
which eventually morphs into a circle (i.e., a nearly radial
pattern) at the final stage of the evolution [Figs. 1(c) and 1(f)].
At its maximum, the radius of this circle is given by

r′ =
√

x′2 + y′2 ∼ (6s0

√
2|t |)1/3 (10)

as |t | → ∞, while the corresponding intensity

|u[1]
RWcircle|2 ∼ 4

(3s0|t |)2/3
∼ 8

(r′)2
→ 0 (11)

as |t | → ∞ and r′ → ∞.
The symmetry and extreme values of the intensity with

s0 = 1 can be verified by the snapshots shown in Fig. 1, for
t = 0, 1, 200. Note that only profiles for t � 0 are shown
because |u[1]

RW| is an even function of t . The red circles denote
the maxima of |u[1]

RW|, which are plotted using the exact result
6
s0

for t = 0 and the approximate formulas r′ and |u[1]
RWcircle|

for t �= 0. There exists a deviation between the red circles and
the maxima in Fig. 1(e) because time t is too small for the
asymptotics to be valid. This deviation disappears in Fig. 1(f)
for (sufficiently) large time t = 200, which is well within the
asymptotic regime of Eq. (10).

An animation is provided in the Supplemental
Material [40] showing the dynamical evolution of the
first-order RW, which can be summarized as follows. At
the early stage of the evolution, for large and negative t ,
|u[1]

RW| appears from the background as a wide circle of low
intensity; gradually, it converges to a rectangular column
with four maxima at the intermediate stage and then a large
peak at t = 0. Next the RW follows the reverse path, initially
dispersing and eventually reverting to a nearly radial form for
large and positive t .

Here it should be pointed out that the first-order RW u[1]
RW

is very different from the multipole lump [35] of the focusing
Davey-Stewartson II equation (or the BRS), because the latter
has a nonvanishing amplitude as |t | → ∞. In addition, this
RW solution is naturally also different from the line RW [39]
of the focusing DS II (or of the BRS), since the latter is not
doubly localized in both x and y, but only in one of the two (in
the other, it features a line profile).

Extending this approach to N = 3, Eq. (4) yields a third-
order rational solution RW-lump solution uRW-lump of the BRS.
The explicit expression of uRW-lump is given in the Appendix.
Here we describe its principal dynamical properties.

(i) The modulus |uRW-lump|, which is an even function,
decays algebraically like O( 1

r′2 ) for any given time t .
(ii) When r′ = 0, the solution uRW-lump reduces to

uRW-lumpc = 12
( − s4

0 + 60t2 + 10is2
0t

)
e−4iλ2t

s0
(
s4

0 + 360t2 + 60is2
0t

) . (12)

The modulus |uRW-lumpc| reaches the maximum value 12
s0

at t =
0 [Figs. 2(a) and 2(d)], as a result of the interaction of the
RW and the lump. Then it returns to maximum value of the
first-order lump, i.e., |u[1]

lumpM | ∼ 2
s0

, as the RW disappears for
|t | → ∞.
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FIG. 2. (a)–(c) Profiles of the rogue wave–lump |uRW-lump| (|uRL|
in the figure for convenience) in the (x′, y′) plane for s0 = λ = 1 at
(a) t = 0, (b) t = 2, and (c) t = 200. (d)–(f) Corresponding cross-
sectional profiles of (a)–(c) along the x′ axis at (d) t = 0, (e) t = 2,
and (f) t = 200. The red circles are plotted using the exact formula-
tion 12

s0
for t = 0 and the approximate formulas 2

s0
(r′ = 0) and 2

√
6

r′
(r′ �= 0) for t �= 0.

(iii) When r′ 	 0, maxima of |uRW-lump| form a rectan-
gular perimeter profile at the intermediate stage [Figs. 2(b)
and 2(e)], which subsequently reverts to a radial out-
going structure at the final stage [Figs. 2(c) and 2(f)]
of the evolution, in addition to the persisting lump at
the center. At its maximum, the radius of this circle is
given by

r′ =
√

x′2 + y′2 ∼ (288s0|t |2)1/5 (13)

as |t | → ∞, while the intensity at this circle is

|uRW-lump-circle|2 ∼ 2
√

3
2/5

(s0|t |2)2/5
∼ 24

(r′)2
(14)

as |t | → ∞ and r′ → ∞. It is worth observing that the max-
ima of |uRW-lump| can be decomposed as

∣∣u[1]
lumpM

∣∣ + |uRW-lump-circle| ∼ 2

s0
+ 2

√
6

r′

for |t | 	 0, supporting the asymptotic decomposition into a
lump and a RW as discussed above. Figure 2 presents the rel-
evant features through the snapshots of different times (t = 0,
2, and 200), incorporating, where possible, predictions of the
analytical formula, such as the location of the RW circle for
large t . The animation provided in [40] shows the dynamical
evolution of the RW lump. One can discern that (a) a lump in
the center always exists; (b) a RW appears as an outer ring
from the background at an early stage and then converges
gradually to the origin of coordinate as a large peak; (c) later,
the RW is dispersed to a circle and finally disappears into the
background again as |t | → ∞.

Higher-order RWs and RW lumps of the BRS can be
constructed by evenfold and oddfold DTs, respectively. For
instance, a second-order RW |u[2]

RW|, which is constructed by

FIG. 3. (a)–(c) Profiles of the second-order RW |u[2]
RW| in the

(x′, y′) plane for s0 = λ = 1 at (a) t = 0, (b) t = 100, and (c) t =
1000. (d)–(f) Corresponding cross-sectional profiles of (a)–(c) along
the x′ axis at (d) t = 0, (e) t = 100, and (f) t = 1000.

setting N = 4 in Eq. (4), is plotted in Fig. 3 (see also an
animation in [40]) with s0 = λ = 1. Both Fig. 3 and the an-
imation demonstrate again the appearance, convergence (to
r′ = 0), dispersion, and disappearance of the RW. Compared
with u[1]

RW, the second-order RW has (i) higher amplitude and
(ii) two rings of intensity maxima for large time t . Between
them, these harbor a 2D RW hole [see Figs. 3(e) and 3(f)]
during the evolution process. It is interesting to note that a
1D RW hole of the NLS equation has been experimentally
observed in a water tank [41].

III. CONCLUSION

We have reported an analytical structure of eigenfunctions
of the Lax pair associated with the zero seed solution for
a variant of the Benney-Roskes system. Substituting these
eigenfunctions into the evenfold Darboux transformation, we
found genuine 2D rogue waves of the BRS. We have thus
addressed the long-standing problem of the construction of
genuine RWs on zero background, decaying algebraically in
both space and time. This way, we provided a proper candidate
to describe RWs by means of a canonical 2D generalization
of the Peregrine soliton solution of the traditional 1D NLS
equation.

As noted above, the RWs were found to be localized in both
space and time, that is, as |t | and r′ → ∞, their maximum
amplitude decayed to 0 as 1

r′ . As a by-product, RW-lump solu-
tions of the BRS have been shown to be generated by oddfold
DT, which is localized in space only, because one lump of
this solution located at the origin approaches 2

s0
as |t | → ∞.

Multiring RWs (obtained through higher-order expansions)
also exist and feature RW holes between them.

We expect that these findings may motivate research ef-
forts towards the generation of 2D RWs in optical systems,
in a multidimensional extension of recent 1D experimental
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efforts, and pave new directions for RW research. More-
over, much like line solitons of the Kadomtsev-Petviashvili
II equation, which have been used to explain shallow water
wave patterns [42], the RWs of the BRS can also be used
for similar studies in optical or possibly atomic physics set-
tings. Additionally, one can also expect that systems described
by perturbed BRS or DS II models may still feature some
of the relevant phenomenology, as is the case, e.g., with
the Peregrine soliton solution and perturbations of the NLS
model [43–45].

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grants No. 11671219 and
No. 11871446) and the Natural Science Foundation of
Zhejiang Province (Grants No. LZ19A010001 and No.
LSY19A010002). P.G.K. and D.J.F. acknowledge that this
work was made possible by NPRP Grant No. 8-764-1-160
from Qatar National Research Fund (a member of Qatar Foun-
dation).

APPENDIX

1. Two determinants δ1 and δ2

Two determinants δ1 and δ2 are used in the N-fold DT, namely,

δ1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂N−1
x ψ1 · · · ∂N−1

x ψN ∂N−1
x φ∗

1 · · · ∂N−1
x φ∗

N

...
...

...
...

...
...

ψ1 · · · ψN φ∗
1 · · · φ∗

N

∂N−1
x φ1 · · · ∂N−1

x φN −∂N−1
x ψ∗

1 · · · −∂N−1
x ψ∗

N

∂N−2
x φ1 · · · ∂N−2

x φN −∂N−2
x ψ∗

1 · · · −∂N−2
x ψ∗

N

...
...

...
...

...
...

φ1 · · · φN −ψ∗
1 · · · −ψ∗

N ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and δ2 is the N + 1 row of δ1 replaced by a row vector η = (∂N

x ψ1, . . . , ∂
N
x ψN , ∂N

x φ∗
1 , . . . , ∂N

x φ∗
N ), which are given by Eq. (49)

in Ref. [38].

2. Rogue wave–lump solution of the Benney-Roskes system

The rogue wave–lump solution uRW-lump of the Benney-Roskes system is generated by a threefold DT, which is expressed
explicitly as

uRW-lump = 12s0NRW-lump

DRW-lump
e−2iλ(2λt+y′ ),

where

Re(NRW-lump) = − s10
0 + (20y′2 − 5x′2)s8

0 + (65y′4 + 60x′2y′2 − 10x′4 + 300t2)s6
0

− [10x′6 − 60y′2x′4 − (135y′4 + 900t2)x′2 + 75y′6 − 4500y′2t2]s4
0

− [5x′8 − 20x′6y′2 − (75y′4 + 900t2)x′4 − (10y′6 + 5400y′2t2)x′2 + 10y′8 − 900t2y′4 − 21 600t4]s2
0

− (x′4 − 3x′2y′2 + y′4 − 300t2)(x′2 + y′2)3,

Im(NRW-lump) = 10t
(
7s8

0 + 24s6
0x′2 + 66s6

0y′2 + 30s4
0x′4 + 90s4

0x′2y′2 − 60y′4s4
0 + 16s2

0x′6 + 30s2
0x′4y′2

− 60s2
0y′4x′2 − 26s2

0y′6 + 3x′8 + 6x′6y′2 − 6y′6x′2 − 3y′8),
DRW-lump = (

x′2 + y′2 + s2
0

)6 + 6s2
0

{
2160

(
s2

0 + x′2 + y′2)t4 + 24
[

7
5 s6

0 + 10s2
0

(
y′2 − 2

5 s2
0

)2 + 7s4
0x′2 + 5s2

0x′4 + x′6 + y′6]t2

+ s8
0y′2 + 4s6

0x′2y′2 + 2s6
0y′4 + 6s4

0x′4y′2 + 6s4
0x′2y′4 + 10s4

0y′6 + 4s2
0x′6y′2

+ 6s2
0x′4y′4 + 12s2

0x′2y′6 + s2
0y′8 + x′8y′2 + 2x′6y′4 + 2x′4y′6 + x′2y′8},

with Re and Im denoting the real and imaginary parts of NRW-lump, respectively. It is clear that this rational solution is smooth
and nonsingular as s0 �= 0. Note that s0 and λ are two real constants.
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