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Coherently coupled two-component Bose-Einstein condensates (BEC) exhibit vortex confinement resembling
quark confinement in quantum chromodynamics (QCD). Fractionally quantized vortices winding only in one of
two components are attached by solitons, and they cannot stably exist alone. Possible stable states are “hadrons”
either of mesonic type, i.e., molecules made of a vortex and antivortex in the same component connected by a
soliton, or of baryonic type, i.e., molecules made of two vortices winding in two different components connected
by a soliton. Mesonic molecules move straight with a constant velocity while baryonic molecules rotate. We
numerically simulate collision dynamics of mesonic and baryonic molecules and find that the molecules swap
partners in collisions in general like chemical and nuclear reactions, as well as summarizing all collisions as
vortex reactions, and describe those by Feynman diagrams. We find a selection rule for final states after collisions
of vortex molecules, analogous to that for collisions of hadrons in QCD.
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I. INTRODUCTION

Ultracold atomic gases are experimentally controllable sys-
tems offering setups to simulate various problems in physics
[1–3]. For instance, Bose-Einstein condensates (BECs) are
superfluids admitting quantized vortices, i.e., vortices carrying
quantized circulations [4] known as global strings in cosmol-
ogy, and nucleation of vortices and detecting real-time dynam-
ics of them were achieved experimentally recently [5]. Among
various systems, coherently coupled two-component BECs
realized by the JILA group [6,7] are one interesting system for
understanding high-energy physics; when each component is
a different hyperfine state of the same atom, one can introduce
a Rabi (Josephson) coupling between them. Then they allow
vortex molecules, fractionally quantized vortices confined by
solitons (linearly extended objects) [8], which are suggested
to share several properties with confinement phenomena of
quantum chromodynamics (QCD), a theory of the strong
interaction consisting of quarks and gluons. Such fractional
vortex molecules have been extensively studied theoretically
[9–17], including sine-Gordon like solitons [18–21]. More-
over, such studies have been extended to three or more com-
ponents [22–27] as well as spinor BECs [28]. Similarities
with QCD were found by studying the dynamics of a single
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vortex molecule composed of two fractional vortices [14,16],
for which a vortex in the first component and that in the
second component are confined by a sine-Gordon soliton.
If the two vortices are at an equilibrium distance, then the
molecule is static. On the other hand, if they are slightly
more separated or instead pulled closer together, then the
molecule rotates clockwise or counterclockwise, respectively.
If they are further pulled to be more separated, then the
soliton connecting them is broken by creating another pair of
fractional vortices, and therefore fractional vortices can never
be liberated (unless the Rabi coupling is turned off). This situ-
ation resembles the confinement of quarks in QCD; the QCD
vacuum is considered to be a dual superconductor [29–31],
where chromoelectric fluxes are confined to color electric flux
tubes due to the condensation of magnetic monopoles. Then
quarks are confined by color electric flux tubes with energy
linearly dependent on the distance between them.

In Ref. [16], we previously indentified fractionally quan-
tized vortices winding in the first and second components as
an up-type vortex (or u-vortex for short) and a down-type
vortex (or d-vortex), respectively, borrowing the terminology
from quarks in QCD. Similarly, we have called an antivortex
of the first (second) component, the ū- (d̄-) vortex. In the
presence of the Rabi coupling, the elementally topological
objects are composite defects of u- and d-vortices and the
solitons connecting them. There are two possibilities for the
soliton to select the vortices in a pair on its two endpoints:
Either a vortex and an antivortex in the same component such
as u and ū (d and d̄) or vortices in different species such
as u and d (ū and d̄). We have called the former a mesonic
vortex molecule and the latter a baryonic vortex molecule
in analogy with QCD. Let us regard quantized circulations
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TABLE I. Topological winding numbers n1, n2, nS , and nR are
shown.

n1 n2 nS (baryon #) nR (color charge) 2nR

u 1 0 1/2 1/2 1
d 0 1 1/2 −1/2 −1
ū −1 0 −1/2 −1/2 −1
d̄ 0 −1 −1/2 1/2 1

ūu 0 0 0 0 0
d̄d 0 0 0 0 0
ūd −1 1 0 −1 −2
d̄u 1 −1 0 1 2

ud 1 1 1 0 0
ūd̄ −1 −1 −1 0 0

nS as the baryon number in QCD and the winding nR of
the relative phase between the two components as the color
charge. Then u- and d-vortices carrying fractional baryon-
number-like quarks carry a color charge and therefore cannot
exist alone. On the other hand, mesonic molecules ūu and
d̄d do not carry the baryon number like mesons, whereas
baryonic molecules ud carry one baryon number, but both do
not carry a color charge (color singlets) and therefore can exist
stably. Table I shows a summary of possible states.

In this paper, in order to further understand the similarities
between BECs and QCD, we focus on the few-body dynamics
of vortex molecules, more precisely their collisions, in con-
trast to previous works focusing on dynamics of either sin-
gle molecules [14–16] or many molecules describing vortex
lattices [12] or the Berezinskii-Kosterlitz-Thouless transition
[17]. Our numerical studies are twofold: the meson-meson
scattering and the meson-baryon scattering. First, we investi-
gate the meson-meson scattering of the same species (ūu-ūu).
First, we simulate head-on collisions (zero impact parameter)
by varying the incident angle. We show that the constituent
vortices swap the partners in collisions. The recombination
can be understood as a collision of the SG and anti-SG
solitons, and the swapping is nothing but the pair annihilation
and creation of the confining SG solitons. The simulation with
the initial relative angle π happens to show the right-angle
scattering of the two mesons, which is very common among
relativistic topological solitons. We then develop a useful
description by employing Feynman diagrams to describe the
various vortex collision events. We also study the meson-
meson scatterings with nonzero impact parameter.

We then study the meson-meson scattering of the different
species (ūu-d̄d). We find that in head-on collision with zero
relative angle, the scattering of the two SG solitons occurs.
For head-on collisions at smaller relative angles, the incoming
u and d mesons are converted into intermediate baryon and
antibaryon pairs during collisions. The intermediate baryons
rotate, and then they are reformed back into the mesons at
the second recombination. Forming the intermediate baryonic
state results in the shift of the outgoing line from the ingoing
one. We also study the scattering with nonzero impact param-
eters in this case, too.

Next we study the meson-baryon scattering (ūu and ud)
and find that the meson and baryon swap their constituent

u-vortices, with the new meson leaving while the new baryon
remains at slightly shifted point from the original baryon
position. For scattering of a long meson into a baryon, the
recombination takes place also in this case, so that a long and
kink bend baryon is formed at first stage, and subsequently a
long and bent molecule is unstable and soon disintegrates into
a shorter meson and a shorter baryon. As a result, the final
state comprises more molecules than the initial configuration,
resembling what happens in real hadron collider experiments.
We exaggeratedly call it a vortical hadron jet in the vortical
hadron collider (VHC) experiment.

We then further discuss a connection between BEC and
QCD comparing Polyakov’s dual photon model in 2 + 1
dimensions to the low-energy effective theory based on two-
component BECs. We also point out that the so-called Okubo-
Zweig-Iizuka (OZI) rule [32–34], which is a phenomenologi-
cal law concerning final states of hadronic collisions found in
the 1960s [35], seems to hold in vortex molecule collisions in
BECs.

This paper is organized as follows. In Sec. II, we intro-
duce our model and describe mesonic and baryonic vortex
molecules. In Secs. III and IV, we study the meson-meson
scattering of the same species (ūu-ūu) and of the different
species (ūu-d̄d), respectively. In Sec. V, we study the meson-
baryon scatterings (ūu and ud). In Sec. VI, we give comments
on a connection between BEC and QCD. Finally, Sec. VII is
devoted to a summary and discussion.

II. HADRONIC VORTEX MOLECULES

Theoretically, the dynamics of the condensates �i can be
described by the coupled Gross-Pitaevskii (GP) equations,[

ih̄
∂

∂t
+ h̄2

2m
∇2 − (

gi|�i|2 + g12|�î|2 − μi
)]

�i

= −h̄ω�î, (i = 1, 2), (1)

where we use the notation 1̂ = 2, 2̂ = 1, gi j represents the
atom-atom coupling constants, m is the mass of atom, and
μi represents the chemical potential of each component. The
first and second condensates �1,2 are coherently coupled
through the Rabi (Josephson) terms with the Rabi frequency
ω. Experimentally, such a coherent coupling was achieved by
the JILA group [7]. In the following, we assume

g1 = g2 ≡ g, μ1 = μ2 ≡ μ, (2)

and, for simplicity, we focus on a miscible BEC (g > g12) in
which both condensates spatially coexist with

|�1| = |�2| =
√

μ + h̄ω

g + g12
≡ v. (3)

If the Rabi interaction is turned off ω = 0, then the system
has two U (1) symmetries U (1)1 × U (2)2 defined by

U (1)1 : (�1, �2) → (eiα1�1, �2),

U (1)2 : (�1, �2) → (�1, eiα2�2). (4)

These symmetries can also be expressed as

[U (1)S × U (1)R]/Z2 : (�1, �2) → (eiα�1, e±iα�2), (5)
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where + is for U (1)S and − is for U (1)R, and Z2 represents
simultaneous rotations of U (1)S and U (1)R with angle α = π

for both components, which has been introduced to remove
a redundancy. When ω �= 0, the relative U (1)R is manifestly
broken. Namely, the number of atoms in each individual
component is not preserved, but the total number of atoms
across both components is preserved.

In the following, we will numerically solve the GP equa-
tion (1). For that purpose it is convenient first to rewrite it in
terms of dimensionless variables,

t̃ = μ

h̄
t, x̃i = h̄√

mμ
xi, ω̃ = h̄

μ
ω,

g̃12 = g12

g
, �̃i =

√
g

μ
�i. (6)

Then, the GP equation can be rewritten as[
i
∂

∂ t̃
+ 1

2
∇̃2 − (|�̃i|2 + g̃12|�̃î|2 − 1

)]
�̃i

= −ω̃�̃î, (i = 1, 2). (7)

Thus, the essential parameters are only ω̃ and g̃12. In what
follows, we will assume g̃12 �= 1.

When ω̃ = 0, both the U (1)1 × U (1)2 are spontaneously
broken in the ground state. As a consequence, there are two
kinds of topologically stable vortices supported by topolog-
ical winding number π1(U (1)1 × U (1)2) = Z × Z. A vortex
associated with the first U (1)1 at the origin, which we will call
the u-vortex, is given by

u-vortex : �̃1 = f̃ (r̃)eiθ , �̃2 = g̃(r̃), (8)

with r̃ =
√

x̃2
1 + x̃2

2. Similarly, a vortex associated with the
second U (1)2 at the origin, which we will call the d-vortex,
is given by

d-vortex : �̃1 = g̃(r̃), �̃2 = f̃ (r̃)eiθ . (9)

A u-vortex becomes an anti-u-vortex (we will refer to it as a
ū-vortex) by exchanging θ → −θ . Similarly, a d-vortex and
a d̄-vortex are replaced by θ → −θ . The profile functions f̃
and g̃ satisfy the following second-order ordinary differential
equations:[

1

2

(
∂2

∂ r̃2
+ 1

r̃

∂

∂ r̃
− 1

r̃2

)
− ( f̃ 2 + g̃12g̃2 − 1)

]
f̃ = 0, (10)

[
1

2

(
∂2

∂ r̃2
+ 1

r̃

∂

∂ r̃

)
− (g̃2 + g̃12 f̃ 2 − 1)

]
g̃ = 0. (11)

The appropriate boundary conditions are

lim
r̃→0

f̃ = 0, lim
r̃→∞

f̃ = ṽ0, lim
r̃→0

∂ g̃

∂ r̃
= 0, lim

r̃→∞
g̃ = ṽ0,

(12)

where we have defined

ṽ0 = 1√
1 + g̃12

. (13)

Figure 1 shows a typical numerical solution of f̃ and g̃ for
g̃12 = 0.5 as an example.

FIG. 1. The profile functions f̃ and g̃ of a u- or d-vortex for
g̃12 = 0.5. The Rabi term is suppressed (ω̃ = 0).

It is useful to introduce the pseudospin to distinguish u-
and d-vortices,

S = − ��†σ ��
��† �� , �� = (�1, �2), (14)

with the Pauli matrices σ. S is a real three-vector satisfying
|S| = 1, and so it can be thought of as coordinates of an
internal S2 target space. The pseudospin S is transformed as
a triplet 3 under the SU (2) transformation �� → U� with
U ∈ SU (2). Note that the SU (2) symmetry is the only man-
ifest symmetry which comes from part of the GP equations,
namely the gradient terms of Eq. (1). The remaining terms
of Eq. (1) generally do not respect the SU (2) symmetry
but instead respect the subgroup U (1)R ⊂ SU (2). Only when
g = g12 (g̃12 = 1) together with the fulfillment of condition
(2) is the system symmetry U (1)1 × U (1)2 enhanced to
[U (1)S × SU (2)]/Z2. Otherwise, the SU (2) symmetry is the
only approximate symmetry of the generic GP equation (1).
The u- and d-vortices have (�̃1(0, 0), �̃2(0, 0)) = (0, g̃(0))
and (g̃(0), 0) at their cores, so that their pseudospins are
S = (0, 0, 1) (up) and S = (0, 0,−1) (down), respectively.
Figure 2 shows the pseudospins of the u- and d-vortices.

When ω̃ = 0, the vortex number can be measured by

ni = 1

2π

∮
C

dθi = 1

2π

∫ 2π

0

dθi

dθ
dθ, (15)

where θi is the phase of �i (θi = arg �i) and C is a closed
curve in the x1-x2 plane.

FIG. 2. Vector plots of the pseudospin S(x1, x2) for the u-vortex
in panel (a) and d-vortex in panel (b) (constructed from the solution
given in Fig. 1) are plotted on the x1-x2 plane (x̃1,2 ∈ [−5, 5]). The
colors of arrows represent Sz. The Rabi frequency is set to ω̃ = 0.
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FIG. 3. Vector plots of the pseudospin S(x1, x2) for the ūu and
ud are plotted on the x1-x2 plane. The plot region of panel (a) is x̃1 ∈
[−10, 10] and x̃2 ∈ [40, 60] and that for panel (b) is x̃1 ∈ [−10, 10]
and x̃2 ∈ [−10, 10]. The color map is the same as the one in Fig. 2.
The Rabi frequency is set to be ω̃ = 0.05.

When ω̃ �= 0, neither the u- nor the d-vortex exists alone
since U (1)R is manifestly broken. The winding numbers
n1 and n2 are no longer good topological numbers. The
Rabi term effectively works as a sine-Gordon– (SG) type
potential,

VRabi = −2h̄ωv2 cos(θ1 − θ2), (16)

where we have set ψi = veiθi . Due to this, the u-vortex given
in Eq. (8) with (θ1, θ2) = (θ, 0) is inevitably attached to a SG
soliton at θ = π . For the same reason, the d-vortex given in
Eq. (9), the ū-vortex and d̄-vortex are also attached to a SG or
an anti-SG soliton. Under the nonzero ω̃, it turns out that the
following are more useful than n1 and n2:

nS = 1

2π

∮
C

dθS = 1

2π

∫ 2π

0

1

2

(
dθ1

dθ
+ dθ2

dθ

)
dθ = n1 + n2

2
,

(17)

nR = 1

2π

∮
C

dθR = 1

2π

∫ 2π

0

1

2

(
dθ1

dθ
− dθ2

dθ

)
dθ = n1 − n2

2
,

(18)

with θS = (θ1 + θ2)/2 and θR = (θ1 − θ2)/2. Here nS and nR

are topological invariants taking values in half integers when
ω̃ = 0. Once we turn on ω̃ �= 0, nR is no longer a topological
number. Though nR is not preserved, it has another physical
meaning: 2nR corresponds to the total SG soliton number
across the curve C. For a single u-vortex, we have 2nR = 1 for
any C which encloses it. We summarize n1, n2, nS , and nR in
Table I. From this, we see that u- and d̄-vortices are attached
by a SG soliton while ū- and d-vortices are attached by an
anti-SG soliton.

However, this is only a static picture. Since a semi-
infinitely long soliton costs infinite energy, it is dynamically
unstable and disintegrates into shorter solitons. A finite soli-
ton is terminated by two vortices, namely it forms a vortex
molecule with the SG soliton bounding two vortices. We can
figure out all possible types of molecules by seeing nR. Since
a vortex molecule is finite configuration, the corresponding
nR for a sufficiently large C enclosing it must be zero.
Therefore, there exist four kinds of molecules, ūu, d̄d, ud,
and ūd̄. We plot the pseudospins of ūu and ud molecules in
Fig. 3.

This phenomenon resembles quark confinement in QCD.
The quarks are elementary particles in nature, but they are
confined in the form of hadrons and we cannot remove in-
dividual quarks out from a hadron. Quarks in QCD resemble
our “elementary” u- and d-vortices in two-component BECs.
One might envisage that the isospin of up- and down-quarks
is a natural counterpart of the pseudospin. Furthermore, as is
well known, a hadron consists of several quarks whose total
color charge is zero [singlet of SU (3) color group]. Now,
it is natural to relate the U (1)R winding number nR of the
“elementary” vortices (u, d, ū, d̄) with the color charge of the
quarks. Namely, a hadron in a two component BEC is a singlet
state by means of nR = 0. Moreover, we can also relate the
U (1)S winding number nS of the elementary vortices (u- and
d-vortices have 1/2, and ū- and d̄-vortices have −1/2, wind-
ing number) with the baryon number of the quarks (a quark
has 1/3 and an antiquark has −1/3 baryon number). Hadrons
with baryon number +1(−1) are called baryons (antibaryons),
and those with no baryon number are called mesons in QCD.
Borrowing the terminology from QCD, we may associate a
ud-vortex molecule to a baryon since it has nS = 1 and the
ūd̄-vortex molecule to an antibaryon with nS = −1. Similarly,
we term the ūu molecule a u meson while the d̄d molecule
a d meson because they have nS = 0. Of course, though this
analogy between two component BECs and QCD is limited, it
is very useful. For example, the ūd meson does not exist in the
BEC system because its U (1)R winding number is not zero,
see Table I. We will give more details of a relation between
QCD and BECs in Sec. VI.

Let us next mention the dynamics of the mesonic and bary-
onic vortex molecules. A meson propagates with an almost
constant velocity toward the direction perpendicular to the
molecule. This motion can be understood by a Magnus force
between the vortex and the antivortex within the meson. For a
long meson the attractive force is dominated by the SG soliton
and therefore the moving speed is almost constant. On the
other hand, the attractive force originates in an intervortex
force that dominates for a shorter meson. Therefore, the
shorter meson moves faster. However, these observations are
valid only for a meson with reasonable length. If the meson
is too short, then it soon decays. If the meson is too long,
then it soon disintegrates [16]. We show a typical motion of
a u meson in Fig. 4. We initially place a meson whose length
is about 10 in terms of the dimensionless coordinate x̃i. We
put the meson at (x̃1, x̃2) = (0, 50) at t̃ = 0 (the pseudospin
of the initial state is given in the left panel of Fig. 3). It
moves downward and passes through the origin around t̃ =
100. During the simulation, the soliton periodically bends
forward and backward, and the distance between the u and
ū periodically gets shorter and longer.

On the other hand, a baryon moves very differently. It
does not propagate linearly but instead rotates with an almost
constant angular speed [14,16]. When the baryon is longer, the
motion is dominated by an attractive force due to the soliton.
On the other hand, when the baryon is shorter, the soliton
tension and the intervortex force compete. When g12 > 0, the
intervortex force is repulsive [36]. The shorter the baryon is,
the stronger the intervortex force is. On the contrary, when
the baryon is too short, the soliton tension becomes negligi-
ble. Therefore, the rotating speed of the baryon for g12 > 0
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FIG. 4. The upper panels (a1)–(a12) show the motion of a single u meson, and the lower panels (b1)–(b12) show the motion of a baryon. We
choose g̃12 = 0.5 and ω̃ = 0.05. The color corresponds to arg(�1) − arg(�2). The red corresponds to arg(�1) − arg(�2) = π while the blue
corresponds to arg(�1) − arg(�2) = −π . The upper panel (the horizontal region is x̃1 ∈ [−15, 15] and the vertical region is x̃2 ∈ [−20, 60]):
We place a single ū-vortex at (x̃1, x̃2) = (−5, 50) and u-vortex at (x̃1, x̃2) = (5, 50) at t̃ = 0 in the leftmost figure. The lower panel (the
horizontal region is x̃1 ∈ [−15, 15] and the vertical region is x̃2 ∈ [−15, 15]): We put u-vortex at (x̃1, x̃2) = (0, 4) and d-vortex at (x̃1, x̃2) =
(0, −4) at t̃ = 0. The motion of the molecule are shown, with snapshots at time intervals of δt̃ = 10.

becomes gradually smaller and it vanishes at an equilibrium.
For the baryon with g12 < 0, both the intervortex interaction
and soliton tension give attractive forces [36] so that such
an equilibrium does not exist. Similarly to the meson, very
long baryons quickly disintegrate. However, the baryon never
vanishes since the U (1)S winding number is topological.
Figure 4 shows a typical rotating baryon. We initially place
a baryon with length about 8 in the dimensionless units at the
origin at t̃ = 0 (the pseudospin of the initial state is given in
the right panel of Fig. 3). It rotates clockwise and returns to the
original angle around t̃ = 90. Similarly to mesons, it slightly
vibrates during the rotation. Baryons shorter than equilibrium
distance rotate counterclockwise.

Before closing this section, let us mention that there
are significant differences between relativistic and nonrel-
ativistic dynamics of vortices. Both the linear propagation
of the mesonic molecule and the rotation of the baryonic
molecule are specific to the nonrelativistic system. Due to
these characteristic motions, molecules are quasistable. On
the contrary, in relativistic systems two vortices separate
(close) when the inter vortex force is repulsive (attractive),
so that no stable molecules can in general exist. In what
follows, we will make use of these nonrelativistic properties
and numerically simulate the scattering of mesonic and bary-
onic molecules in two-component BECs as a vortical hadron
collider.1

Here one comment is in order. Vortex dynamics in two-
component BECs in the absence of the Rabi interaction was
studied in Ref. [38,39], in which case fractional vortices are
liberated. Even in such a case, the dynamics can be quite
nontrivial; however, it is beyond the scope of the present
paper.

1The movies of our numerical simulations studied below are avail-
able as the Supplemental Material [37].

III. MESON-MESON SCATTERING: THE CASE OF ūu-ūu

A. ūu-ūu head-on collision

Let us begin with the most elementary process, namely
head-on collision of two mesons of the same species. Since we
have concentrated on the symmetric model under replacement
�1 and �2, we can choose the u mesons without loss of
generality. We prepare an initial configuration as follows.
First, we create a configuration (� (1)

1 , �
(1)
2 ) for the u meson

(ū1u1) corresponding to the one given in the leftmost panel
of the first row in Fig. 4. Similarly, we prepare another
configuration (� (2)

1 , �
(2)
2 ) for the u meson (ū2u2) by rotating

the ū1u1 by 180◦ around the origin. Then we superpose these
two configurations à la the Abrikosov as

�
(ini)
i = 1

v
�

(1)
i �

(2)
i , (i = 1, 2). (19)

In this way, we have the initial configuration which has two
incoming mesons ū1u1 at (x̃1, x̃2) = (0, 50) [precisely speak-
ing, we put a u-vortex at (x̃1, x̃2) = (5, 50) and a ū-vortex
at (x̃1, x̃2) = (−5, 50)] and the ū2u2 and (x̃1, x̃2) = (0,−50)
[we put a u-vortex at (x̃1, x̃2) = (−5,−50) and a ū-vortex at
(x̃1, x̃2) = (5,−50)]. With the initial configuration at hand,
next we numerically integrate the Gross-Pitaevskii equations.
The result is shown in Figs. 5 and 6.

Up to slightly before the moment of the collision (t̃ �
100), each meson moves straight toward the origin as if the
other meson does not exist. However, an interesting vortical
reaction occurs during the collision. It is a recombination
of the SG solitons binding the constituent vortices ū and u.
Before the collision, ū1u1 and ū2u2 are well separated, and the
SG solitons bridge ū1 and u1 and also ū2 and u2, respectively.
As can be seen in Fig. 6, ū1 and u2 (u1 and ū2) collide head
on, so that two distances between ū1 and u1 and then ū1 and u2

become comparable about the moment of the collision. Then
the SG solitons reconnect different pairs of ū and u from the
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FIG. 5. Two u mesons scattering: Color density plots of the relative phase arg(�1) − arg(�2). We initially (t̃ = 0) set the same u meson
(ū1u1) at (x̃1, x̃2 ) = (0, 50) as the one given in the leftmost panel of the upper line of Fig. 4 and the same u meson (ū2u2) but rotated by 180◦ at
(x̃1, x̃2) = (0,−50). They propagate linearly with almost constant speed and collide around the origin. During the collision, the sine-Gordon
(SG) solitons partially reconnect and the recombination takes place. As a consequence, the u mesons in the head-on collision scatter through a
right angle. We show the snapshots from t̃ = 40 (a1) to 150 (a12) with an interval δt̃ = 10, and the plot region is x̃1 ∈ [−40, 40] (horizontal)
and x̃2 ∈ [−40, 40] (vertical).

initial pairs. The new SG solitons are vertical, so that the
new outgoing mesons fly along the x1 axis. Namely, the u
mesons in the head-on collision scatter through a right angle
as a consequence of the recombination. We may describe this
process as follows:

ū1u1 + ū2u2 → ū1u2 + ū2u1. (20)

Note that the subscripts (1 and 2) are introduced just for our
convenience; the u1- and u2-vortices are the same vortices, so
they are indistinguishable. In analogy with chemical and nu-
clear reactions, we call processes concerning vortex molecules
such as Eq. (20) “vortical reactions.”

Note also that the right-angle scattering of two topological
solitons are common in relativistic field theories, such as with
magnetic monopoles or vortices. However, the right-angle
scattering is usually observed in the collisions of two solitons
with the same topological charges. The right-angle scattering
here is very different since mesons have zero topological
charge and it occurs as a consequence of the recombination.

Let us observe the recombination phenomena more
carefully. Figure 7 shows zoomed snapshots at t̃ =
95, 97.5, 100, 102.5. We should pay attention to the orienta-
tion of the SG solitons. Looking at the leftmost panel at t̃ = 95
of Fig. 7 from the top to the bottom along the x̃2-(vertical)
axis, the color first changes from red to blue, representing
the upper SG soliton, and then it changes back from blue to

red, representing the lower SG soliton. The deepest red region
corresponds to θ1 − θ2 = π while the deepest bluish region
corresponds to θ1 − θ2 = −π . Thus, when we focus on the
SG solitons, the head-on collision of the two u mesons is
nothing but a scattering of the SG and anti-SG solitons. As
can be seen in the panel at t̃ = 97.5 in Fig. 7, the SG soliton
and anti-SG soliton increasingly bend especially around their
centers due to an attractive force so that they collide before
the u- and ū-vortices at the edges of the SG solitons do. Then
their tips annihilate each other, and they proceed to complete
the recombination process; see transformation from t̃ = 97.5
to t̃ = 100 shown in Fig. 7. The annihilation of the SG soliton
and antisolitons can be clearly seen in Fig. 8 where we plot
the relative phase θ1 − θ2 on the x̃2 axis by the blue curve.
The SG soliton corresponds to the jump π → −π from left
to right of the horizontal axis (the x̃2 axis) while the anti-SG
soliton corresponds to the opposite jump from −π → π . They
collide and annihilate about t̃ = 100∼110. To be complete, let
us also look at the relative phase along the x̃1 axis. It is also
plotted in Fig. 8 by the red broken curve. The horizontal axis
corresponds to the x̃1 axis for the red broken curves. Before
the collision, no SG solitons exist along the x̃1 axis. However,
as the SG and anti-SG solitons along the x̃2 axis annihilate, a
new pair of SG and anti-SG solitons on the x̃1 axis are created.
Hence, we find that the recombination phenomenon is taken
over by the pair annihilation and creation of the SG solitons.

033373-6



COLLISION DYNAMICS AND REACTIONS OF … PHYSICAL REVIEW RESEARCH 2, 033373 (2020)

FIG. 6. A simplified plot of the u mesons scattering shown in Fig. 5. We put painted red disks (unpainted red circle) at the points
corresponding to the u (ū)-vortex centers. Gray regions bridging the u and ū-vortices show the SG solitons. The gray regions are those where
the relative phases take the values within 3 � | arg(�1) − arg(�2)| � π , which are numerically obtained from Fig. 5. It is easier to understand
the vortex and antivortex in this representation than Fig. 5.

B. ūu-ūu scattering at π/8 angle

Let us next study u meson scattering similar to that in
Sec. III A, but this time the upper and lower mesons are rotated
by −π/8 and π/8 from those in Fig. 5. One can see the

scattering behavior of the mesons in Figs. 9 and 10. Indeed, it
follows qualitatively in a similar way as in the previous case.
The mesons propagate linearly with almost constant speed
until they are close by, and then a recombination takes place
during the collision. Due to the tilts of incoming mesons,

FIG. 7. Zoomed snapshots for the horizontal region x̃1 ∈ [−15, 15] and the vertical region x̃2 ∈ [−15, 15] at t̃ = 95, 97.5, 100, 102.5 for
the u meson scattering given in Figs. 5 and 6. The horizontal SG soliton incoming from the top and the antisoliton from the bottom gradually
bend as they approach each other, and they partially annihilate at the tips and reconnect to form the vertical SG solitons.
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FIG. 8. The phase plots corresponding to the u meson collision in Fig. 5. The solid blue curves show the relative phase arg(�1) − arg(�2)
along the x̃2 axis of Fig. 5. The SG soliton coming from the right-hand side and the anti-SG soliton coming from the left-hand side collide and
annihilate. Similarly, the broken red curves show arg(�1) − arg(�2) along the x̃1 axis of Fig. 5. The SG and anti-SG solitons are pairwisely
created around the moment of collision.

FIG. 9. Two slightly tilted u mesons scattering: Color density plots of the relative phase arg(�1) − arg(�2). We initially (t̃ = 0) set the u
meson (ū1u1) at (x̃1, x̃2) = (50 sin π/8, 50 cos π/8) and the other u meson (ū2u2) at (x̃1, x̃2) = (50 sin π/8,−50 cos π/8). We only show the
snapshots from t̃ = 40 to 150 with interval δt̃ = 10, and the plot region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (horizontal).
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FIG. 10. A simplified plot of the u mesons scattering shown in Fig. 9. For details, see the caption of Fig. 6.

newly formed mesons are in different sizes and scatter off
toward the left and right directions as the previous case. The
asymmetry can also be seen in the speeds of the out-going
mesons. The meson ū1u2 moves faster than the meson ū2u1

as shown in Fig. 10. This is because the former is shorter

than the latter. Figure 11 shows zoomed snapshots at t̃ =
92.5, 95, 97.5, 100, in which we again observe that a partial
annihilation of the SG and anti-SG solitons leads to the
recombination. Compared to the previous case, the bend of
the SG solitons are smaller, because the bending points are

FIG. 11. Zoomed snapshots for the horizontal region x̃1 ∈ [−15, 15] and the vertical region x̃2 ∈ [−15, 15] at t̃ = 92.5, 95, 97.5, 100 for
the u meson scattering given in Figs. 9 and 10. The points where the incoming SG solitons bend steeply are not the centers. The incoming SG
solitons partially annihilate around the steepest bending point and reconnect to form vertical SG solitons.

033373-9



MINORU ETO, KAZUKI IKENO, AND MUNETO NITTA PHYSICAL REVIEW RESEARCH 2, 033373 (2020)

FIG. 12. Two tilted u meson scattering with π/4 angle: We initially (t̃ = 0) place one u meson (ū1u1) at (x̃1, x̃2) = (50 sin π/4, 50 cos π/4)
and the other u meson (ū2u2) at (x̃1, x̃2 ) = (50 sin π/4, −50 cos π/4). We only show the snapshots from t̃ = 10 to 200 with interval δt̃ = 10,
and the plot region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical).

not at the center and are instead shifted toward the edges of
the u1 and ū2.

C. ūu-ūu scattering at π/4 angle

Let us attempt to simulate one more u meson scattering
experiment by rotating further the incoming mesons by π/4.
As expected, the motion of the mesons before the collision is
almost unchanged from the previous two cases, see Fig. 12.
On the contrary, the states after the collision are distinctive.
First, we only observe one meson ū1u2 after the collision.
Looking at the moment of the collision in more detail, the very
short ū2u1 is created but it is soon annihilated, see Fig. 13. This
occurs because the relative angle of the incoming mesons is
too large. If we further rotate the initial mesons, then there is
not enough time for the SG solitons to bend in order to be an-
nihilated. Then the constituent vortices, u1 and ū2, are annihi-
lated and the two SG solitons join to form a long ū1u2 meson.

After the collision, the long meson ū1u2 runs toward the left
but such a long meson is unstable. As can be seen in Fig. 13,
it soon breaks up into two pieces, the baryon (u2d) and the
antibaryon (ū1d̄), by creating d- and d̄-vortices at the center of
the long SG soliton. It is notable that this process is specific
to two-component BECs and it has not been observed in

scalar BEC systems. The baryon u2d spins clockwise, whereas
the antibaryon spins counterclockwise; see the panels with
t̃ = 120-180 of Fig. 12. At the same time, the pair of baryon
and antibaryon behave as a pair of an integer vortex and an
anti-integer vortex. Thus, the baryon and antibaryon move
parallel toward the left direction. After a while, the baryon
and antibaryon join to form a meson d̄d with ū1 and u2 being
annihilated.

Thus the corresponding reaction process can be summa-
rized as

ū1u1 + ū2u2 → ū1u2 → u2d + ū1d̄ → d̄d. (21)

Note that the baryon number is preserved to be zero through-
out the reaction.

D. Interaction vertices and Feynman diagrams

Let us summarize the two u meson head-on scattering
events described above. We found that the scattering sensi-
tively depends on the collision angle which is direct evidence
for a meson to have a substructure. We have shown three
examples of the head-on collisions with relative angle π in
Fig. 6, 3π/4 in Fig. 10, and π/2 in Fig. 12. An overview of
the scatterings is shown in Fig. 14.
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FIG. 13. Zoomed snapshots for the horizontal region x̃1 ∈ [−15, 15] and the vertical region x̃2 ∈ [−15, 15] at t̃ =
90, 92.5, 95, 97.5, 100, 102.5, 105, 107.5 for the u meson scattering given in Figs. 12. The recombination, the pair annihilation of ūu,
and the pair creation of d̄d occur in order.

Here we describe these results from a particle physics point
of view. We first deal with the process given in Fig. 14(a),
whose vortical reaction is given in Eq. (20). The two incoming
u mesons scatter into the two outgoing u mesons. We interpret
this process as an elementary interaction among mesons.
Namely, this yields a meson-meson-meson-meson vertex.
In order to emphasize this viewpoint, let us give a three-
dimensional (3D) spacetime (two spatial and one temporal)
diagram given in Fig. 15(a). It corresponds to the scattering
experiment of Fig. 14(a), consisting of the world lines of
the constituent vortices together with the world sheet of the
SG solitons. The 3D diagram can be further simplified as in
Fig. 15(a). It is a 2D diagram and resembles the so-called
twig diagram (a sort of Feynman diagram which includes
only quark lines) known in QCD [33]. Resembling standard
Feynman diagrams in quantum field theories, an antivortex
is represented by a line with an arrow opposite to the time
evolution. Thus, we find a four meson vertex as an elemental
interaction among mesons.

The second process, corresponding to Fig. 14(b) is essen-
tially the same as in Fig. 14(a). So the scattering in Fig. 14(b)
is also described by the same four-meson vertex in Fig. 15.

Next, let us make a diagram for the third process, shown
in Fig. 14(c). This scattering is more complicated. Indeed,

the corresponding reaction formula given in Eq. (21) consists
of three proceeding steps. The Feynman diagram for this
scattering is given in Fig. 16 including a loop and three
different 3-vertices. The leftmost vertex of Fig. 16 is a meson-
meson-meson where all mesons are of the u type, as shown
as Fig. 17(a). The middle and rightmost vertices are meson-
baryon-baryon vertices, summarized as Figs. 17(b) and 17(c).

Once we get these elementary vertices, it is straightforward
for us to expect what kind of scattering events are possible
without performing numerical simulations. Therefore, our
next task is to track down all possible vertices. To this end,
symmetry is helpful. Our system has the symmetry F : �1 ↔
�2 due to the special choice of the parameters given in Eq. (2).
This ensures the “flavor” symmetry among the vortices
as F : (Xu(t ),Yu(t )) ↔ (Xd (t ),Yd (t )), where (Xu,d (t ),Yu,d (t ))
denotes the position of a u- or d-vortex at time t . Further-
more, the GP equations are invariant under the time-reversal
symmetry T : �i(x1, x2, t ) ↔ �∗

i (x1, x2,−t ), and the parity
transformation P : �i(x1, x2, t ) ↔ �i(x1,−x2, t ). Note that
the parity transformation in even spatial dimensions is iden-
tical to a reflection symmetry on an axis. With respect to
the vortices, the former transforms a u-vortex to a ū-vortex
as T : (Xu(t ),Yu(t )) ↔ (Xū(−t ),Yū(−t )). The same holds for
d- and d̄-vortices. Similarly, the latter also transforms

FIG. 14. Summary of u meson and u meson collider experiments: (a) corresponds to Fig. 6, (b) to Fig. 10, and (c) to Fig. 12. The plot
region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical).
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FIG. 15. Meson-meson-meson-meson vertex: The left panel is
a 3D diagram that describes (a) in Fig. 14. The right panel is a
Feynman diagram, which is a simplified 2D expression of the left
one.

a u-vortex to ū since it exchanges θ = arg (x1 + ix2) ↔
−θ = arg (x1 − ix2). Hence, the parity transformation is P :
(Xu(t ),Yu(t )) ↔ (Xū(t ),−Yū(t )) and similar for d- and d̄-
vortices. By using the F , T , and P transformations, we can
exhaust all possible diagrams as summarized in Fig. 18. For
example, the diagrams labeled by (mmmm1) and (mmmm2)
are exchanged by the F transformation, while those labeled
by (mmm1) and (mmm3) are related by the T transformation.
All the diagrams in Fig. 18 are invariant under the P transfor-
mation.

E. ūu-ūu collisions with impact parameters

The final process for the ūu-ūu collisions are scatterings
with impact parameters. The initial mesons are placed at
(x̃1, x̃2) = (±b̃, 50). First, we horizontally shift the initial
mesons of Fig. 6 by b̃ = 2.5 as shown in Fig. 19. The
scattering follows similarly to the head-on collision shown in
Fig. 6 except for a scattering angle. As can be seen in the
panel for t̃ = 100 in Fig. 19, the new mesons created after the
recombination are not vertical but diagonal.

As is naturally expected, the scattering angle gets smaller
as the impact parameter becomes larger. Figure 20 shows
a scattering with impact parameter b̃ = 5. Namely, the two
mesons are not initially overlapped horizontally. Nevertheless,
the recombination occurs during the collision, and the mesons
collide with a negative scattering angle.

If we initially place the mesons instead with a larger impact
parameter, then they pass through each other almost without
interactions. Figure 21 shows the scattering with the impact
parameter b̃ = 7.5. The mesons go almost straight with a
negative but small scattering angle. This suggests that the

FIG. 16. The one-loop diagram for ūu + ūu → d̄d correspond-
ing to Fig. 14(c).

FIG. 17. The three 3-vertices included in the one-loop diagram
in Fig. 16. The time direction is from left to right.

asymptotic meson-meson interaction is attractive. We summa-
rize the scatterings with impact parameters b̃ = 0, 2.5, 5, and
7.5 in Fig. 22.

IV. MESON-MESON SCATTERING: THE CASE OF ūu-d̄d

A. ūu-d̄d head-on collision at zero angle

Let us next study the scatterings of a u meson and a
d meson. We first collide the two mesons head on. The
initial configuration is prepared by superposing a u meson at
(x̃1, x̃2) = (0, 50) and the d meson at (x̃1, x̃2) = (0,−50) [pre-
cisely speaking, we put a u-vortex at (x̃1, x̃2) = (5, 50) and a
ū-vortex at (x̃1, x̃2) = (−5, 50), and a d-vortex at (x̃1, x̃2) =
(−5,−50) and a d̄-vortex at (x̃1, x̃2) = (5,−50)]. The result
of this scattering event is shown in Fig. 23, which one might
think is not so interesting compared to the ūu-ūu head-on
collision given in Fig. 5. Indeed, the two mesons seem to
pass through without an interaction, see Figs. 23 and 24. This
observation is true if we look at only the vortices. However, it
is not true for the SG solitons. As can be seen from Fig. 23,
this scattering can be understood as a collision of one SG
soliton (belonging to the u meson) and the other SG soliton
(belonging to the d meson). This can be seen by noting that
the color orders along the x̃2 axis are the same for the u and
d mesons. This situation is in contract to the meson-meson

FIG. 18. Feynman diagrams found in two u (d) meson scattering
experiments. The first row shows the meson-meson-meson-meson
vertices. The second row shows the meson-meson-meson vertices,
and the third row shows the meson-baryon-baryon vertices.
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FIG. 19. Meson-meson scattering (ūu-ūu) with an impact parameter. Initially, the two mesons are placed at (x̃1, x̃2) = (b̃, 50) and (−b̃, 50)
with the impact parameter b̃ = 2.5. We show the snap shots with t̃ = 50 ∼ 150 with interval δt̃ = 10. The panel at the bottom right corner is
a sequence of meson trajectories from the incoming and out-going collision. The plot region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40]
(vertical).

scattering in Fig. 5 in which the SG and anti-SG solitons
approach each other.

To see a nontrivial phenomenon in this scattering, let us
carefully observe the period of passing. Figure 25 shows
zoomed snapshots at t̃ = 97.5, 100, 102.5, 105. While the u-
and d̄- (d- and ū-)-vortices pass through each other, the SG
solitons largely bend toward the opposite direction compared
to Fig. 7 due to repulsive interaction between the SG solitons.
Thus, the distance between two SG solitons at the center
of mesons never vanishes, and the SG solitons backscatter.
Figure 26 shows the relative phase arg(�1) − arg(�2) on the
x̃2 axis. Throughout the scattering, there always exist two SG
solitons (corresponding to phase jumps from −π → π ). Since
they are topologically protected, they cannot be annihilated.
This is why their distance does not vanish and they backscat-
ter.

Thus, we found that the SG solitons backscatter, whereas
the vortices at the ends of mesons pass through each other.
Along with this observation, we conclude that the mesons
interchange the SG solitons before and after the head-on
collision.

B. ūu-d̄d scattering at π/8 angle

The collision of the u and d mesons studied in the previous
section is not so interesting in the sense that it does not include
recombination phenomena which commonly occurs for the u
and u meson scatterings. To see whether the recombination

is specific to the u and u meson scattering only, or if it is a
general effect for most scattering events, let us investigate the
collision of the u and d mesons at finite angles here and in the
next subsection.

Figure 27 shows the outlook of the head-on collision of the
u and d mesons with angle π/8. Compared to Fig. 9, the lower
ūu meson is replaced by d̄d. At a first glance, the mesons seem
to just pass through each other, just as the previous scattering
in Fig. 23. However, it is actually not so trivial. Since the
mesons are tilted, there is a certain period during which the
u-vortex at the lower edge of the u meson and the d̄-vortex at
the upper edge of the d meson exchange their positions, while
the remaining constituent vortices are left unchanged, see the
snapshot at t̃ = 100 of Fig. 28. Soon after, the second passing
of the remaining ū- and d-vortices follows; see the snapshot at
t̃ = 110 of Fig. 28. The interchange of constituent vortices is
accompanied by the recombination of the SG solitons. During
the period between the first and the second recombinations,
the molecules are not u and d mesons but the baryon ud
and antibaryon ūd̄. Indeed, the SG solitons bridge the u- and
d-vortices (ū- and d̄-vortices) in the snapshot at t̃ = 100 in
Fig. 28.

Thus, the simulation here implies that the recombination
can happen universally not only for the mesons of the same
species but also for the different species. We have not ob-
served the recombination presented in Fig. 23, because the
two mesons are placed to be exactly parallel during collision
dynamics.
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FIG. 20. Meson-meson scattering (ūu-ūu) with an impact parameter. Initially, the two mesons are placed at (x̃1, x̃2) = (±b̃, 50) with the
impact parameter b̃ = 5. We show the snapshots with t̃ = 50-150 with interval δt̃ = 10. The panel at the bottom right corner is a sequence of
meson trajectories from the incoming and out-going collision. The plot region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical).

FIG. 21. Meson-meson scattering (ūu-ūu) with an impact parameter. Initially, the two mesons are placed at (x̃1, x̃2) = (±b̃, 50) with the
impact parameter b̃ = 7.5. We show the snapshots with t̃ = 50 ∼ 150 with interval δt̃ = 10. The panel at the bottom right corner is a sequence
of meson trajectories from the incoming and out-going collision. The plot region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical).
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FIG. 22. The orbits (red, blue, black, and green) of centers of
the mesons during the meson-meson scatterings with the impact
parameters b̃ = 0, 2.5, 5, and 7.5 corresponding to Figs. 6, 19, 20,
and 21, respectively.

Let us cut out the period with created baryons and see their
motion in more detail. Figure 29 shows zoomed snapshots for

x̃i ∈ [−15, 15] at t̃ = 97.5, 100, 102.5, 105, and 107.5. The
baryon (antibaryon) formed after the first recombination ro-
tates counterclockwise (clockwise) until they are reformulated
back into the mesons. During the period with baryons, they
almost do not propagate. As a consequence, the meson orbits
before and after the collision slightly shift due to delay of
forming baryons.

C. ūu-d̄d scattering at π/4 angle

The observations in the previous subsection can be more
sharply seen in the scattering of the u and d mesons with
larger angle; we take π/4 here as an example. Figure 30
shows an outlook of the scattering process. Qualitatively,
it goes very similarly to that with the angle π/8 given in
Fig. 28. Namely, the incoming u and d mesons are converted
to the intermediate baryon and antibaryon pair at the first
recombination. The baryons rotate at their position without
propagating for a while. Then they are reformed back into the
mesons at the second recombination and propagate linearly
toward the boundary. However, the baryonic period in this
scattering is longer than the previous one because of the
steeper angle of the incoming mesons. Comparing Figs. 29
and 31, the baryonic period is t̃ � 97.5–105 for the former
while t̃ � 95–107.5 for the latter. A longer lifetime of the
baryonic period makes the rotation of the baryons easier to
discern.

FIG. 23. The u and d meson scattering: Color density plots of the relative phase arg(�1) − arg(�2). We initially (t̃ = 0) set the u meson
at (x̃1, x̃2) = (0, 50) and the d meson at (x̃1, x̃2) = (0,−50). They linearly propagate with almost constant speeds and pass through each other
without an interaction. We show the snapshots from t̃ = 40 to 150 with interval δt̃ = 10 and the plot region is x̃1 ∈ [−40, 40] (horizontal) and
x̃2 ∈ [−40, 40] (vertical).
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FIG. 24. A simplified plot of the u meson and d meson scattering shown in Fig. 23. We put filled red circles (open red circles) at the
points corresponding to the u- (ū-)-vortex centers. Similarly, we put filled blue circles (open blue circles) at the points corresponding to the d-
(d̄-)-vortex centers. Gray regions bridging the u- and ū-vortices (d and d̄) show the SG solitons. The gray regions are those where the relative
phases take the values within 3 � | arg(�1) − arg(�2)| � π .

As mentioned, the conversion of mesons to baryon and
antibaryon results in a delay of the orbits of the incoming and
outgoing mesons. In order to see the delay clearly, we show a
sequence of trajectories for the u and d meson scatterings with

π/8 and π/4 angles in Fig. 32. One can see the orbits of the
constituent vortices steeply bend at the timing of recombina-
tions. Since vertical motions of the vortices in Fig. 32 are sim-
ple shifts with almost constant speed, we can approximately

FIG. 25. Zoomed snapshots for the horizontal region x̃1 ∈ [−15, 15] and the vertical region x̃2 ∈ [−15, 15] at t̃ = 97.5, 100, 102.5, 105
for the u meson and d meson scattering given in Figs. 23 and 24. The SG solitons from the top and bottom gradually bend as they approach
each other by and backscatter, whereas the vortices at the ends of the mesons pass through each other. As such, the mesons interchange the SG
solitons during the collision.
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FIG. 26. The solid blue curve shows the relative phase arg(�1) − arg(�2) along the x̃2 axis of Fig. 23. The SG solitons coming from the
right- and left-hand sides collide and scatter backward. Throughout the scattering, the SG winding number (nS = 2) is preserved.

regard the vertical axis as time. Then the horizontal motions
would be interpreted as a phase shift which commonly appears
in soliton scatterings or particle scattering. The phase shift in

our system is due to the formation of unstable intermediate
baryonic states with finite lifetime. It is interesting that a phase
shift common for scattering is observed here, although the

FIG. 27. Scattering of the slightly tilted u and d mesons with angle π/8. We initially (t̃ = 0) set the u meson at (x̃1, x̃2) =
(50 sin π/8, 50 cos π/8) and the d meson at (x̃1, x̃2) = (50 sin π/8,−50 cos π/8). We only show the snapshots from t̃ = 40 to 150 with
interval δt̃ = 10, and the plot region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical).
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FIG. 28. A simplified plot of the u mesons scattering shown in Fig. 27.

mechanism is specific to our system and has not been reported
elsewhere.

D. Interaction vertices and Feynman diagrams

As in the u and u mesons scattering, we can interpret u
and d mesons scattering with Feynman diagram. The dia-
gram for Fig. 32 is a one-loop diagram given in Fig. 33(a).
It includes meson-meson-baryon-baryon vertices which are
shown in Figs. 33(b) and 33(c). They are invariant under the

F and P transformations while they are exchanged by the T
transformation. Hence, no more diagrams are generated by the
symmetries.

Related to these meson-meson-baryon-baryon vertices, we
observed in our previous work Ref. [16] that a long meson
disintegrates into three short molecules as

ūu → ud + d̄d + d̄ū. (22)

The Feynman diagrams corresponding to this and other re-
lated diagrams via the F , T , and P symmetries are presented

FIG. 29. Zoomed snapshots for the horizontal region x̃1 ∈ [−15, 15] and the vertical region x̃2 ∈ [−15, 15] at t̃ =
97.5, 100, 102.5, 105, 107.5 for the u meson and d meson for scattering events presented in Figs. 27 and 28. The mesons are converted into a
baryon and antibaryon pair for a short period.
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FIG. 30. Scattering of the tilted u and d mesons with angle π/4. We initially (t̃ = 0) set the u meson at (x̃1, x̃2) = (50 sin π/4, 50 cos π/4)
and the d meson at (x̃1, x̃2) = (50 sin π/4, −50 cos π/4). We only show the snapshots from t̃ = 40 to 150 with interval δt̃ = 10, and the plot
region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical).

in Fig. 34. Interestingly, these diagrams can be generated by
horizontally flipping an external leg of Figs. 33(b) and 33(c).
In a usual relativistic quantum field theory, the presence of
the vertex in Fig. 33(b) immediately means that the vertex of
the leftmost panel of Fig. 34 also exists as either a real or
virtual process. However, our theory here is not relativistic,

and, moreover, we are dealing with only real processes which
are solution of the GP equations. Therefore, for our system,
the vertex in Fig. 33(b) does not automatically ensure the
vertex of the leftmost panel of Fig. 34. We should emphasize
that we put the four diagrams of Fig. 34 in our list of the real
processes because we found them in real dynamics. To make

FIG. 31. Zoomed snapshots for the horizontal region x̃1 ∈ [−15, 15] and the vertical region x̃2 ∈ [−15, 15] at t̃ =
92.5, 95, 97.5, 100, 102.5, 105, 107.5, 110 for the u meson and d meson scattering given in Fig. 30.
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FIG. 32. Meson scattering trajectories for the u and d meson
scatterings with π/8 and π/4 angles given in Figs. 28 and 30.
The plot region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40]
(vertical).

this contrast clearer, let us mention another process which we
previously encountered in Refs. [14,16]:

ud → ud + d̄ū + ud. (23)

The corresponding Feynman diagram and the other diagrams
obtained via the F , T , and P transformations are given in
Fig. 35. By flipping the out-going external ud leg of the
leftmost diagram in Fig. 35, we can generate the diagram
shown in the left panel of Fig. 36. However, a real process
corresponding to this diagram does not seem to happen. This
is because a baryon ud and an antibaryon ūd̄ are a pair formed
from an integer vortex and an antivortex, so that they move
parallel with their distance kept constant, as can be seen in the
right panel of Fig. 36. Hence, we have learned that we cannot
freely flip any external legs of a vertex from left (right) to right
(left).

E. ūu-d̄d collisions with impact parameters

To make our study self-contained, let us repeat the same
simulations for ūu and d̄d, as those for ūu and ūu in Sec. III E.
Namely, we study the u and d mesons collisions with the
impact parameter b̃. As counterparts of Figs. 19, 20, and 21,
we do the same simulations by replacing the lower ūu meson
with the d̄d. The results are shown in Figs. 37, 38, and 39.
Comparing Figs. 21 and 39, it turns out that the asymptotic
interaction between the u and d mesons are much smaller than
the one between the u and u mesons. Therefore, we see that
the contact interaction dominates for the former.

FIG. 33. (a) The Feynman diagram corresponding to the real
processes in Fig. 30. [(b) and (c)] The meson-meson-baryon-baryon
vertices which are building blocks of the twig diagram (a).

V. BARYON-MESON SCATTERING

Our final vortical collider simulations are simulations of
scattering between a meson and a baryon. Since baryons do
not propagate linearly but instead rotate, we put a baryon
at the origin as a target. Then we put an incoming meson
sufficiently far from the target baryon, and they collide in a
similar manner to our other collider experiments. As expected,
details of the scatterings sensitively depend on the timings
of collision, namely geometric information such as relative
positions and angles of the baryon and meson. It is impossible
to simulate all cases, and so we introduce two typical collision
simulations which illustrate general features. In addition, we
exhibit one more example which has a special phenomenon, a
jet, which is reminiscent of hadron collider experiments.

A. Typical collisions

In this subsection, we exhibit two scattering simulations
whose initial configurations are given in Figs. 40(a) and 40(b).
For both instances, we put the same meson as the one given
in Fig. 4 at (x̃1, x̃2) = (50, 0). Similarly, the same baryon as
the one given in Fig. 4 is located at the origin. The meson
propagates toward the target baryon rotating at the origin. The
difference between Figs. 40(a) and 40(b) is that the initial
angles of the target baryon are different by 180◦, so that the
relative positions of the meson and baryon at the moment of
collision are different.

In Fig. 41, the scattering from the initial configuration in
Fig. 40(a) is shown. The u meson approaches the rotating
target baryon and they collide. After the collision, a u meson
propagates with a scattering angle of about 45◦ while the
baryon is left near the origin. This corresponds to the scatter-
ing event ūu + ud → ūu + ud which one might find nothing
interesting. However, as for the case of the meson-meson
scatterings, it is not so simple. One nontrivial phenomena that
occurs here is the recombination before and after the collision.
As can be seen in the panels with the time stamps t̃ = 90
and 100, the meson and baryon exchange the u constituent
vortices. Therefore, both the meson and baryon after the
collision are different from those before the collision. If we
express the initial meson as ū1u1 and the initial baryon as u2d,
then the process can be summarized as the following vortical
reaction:

ū1u1 + u2d → ū2u1 + u1d. (24)

To understand this better, let us carefully look at the collision
period. Figure 42 shows zoomed snapshots for x̃i ∈ [−15, 15]
around the collision. We find that the snapshots are qual-
itatively the same as those given in Fig. 7 for the ūu-ūu
scattering. As before, the recombination takes place together
with partial annihilation of the SG and anti-SG solitons.

The other scattering from the initial configuration
Fig. 40(b) is also shown in Fig. 43. The scattering goes almost
the same as the previous one. The u meson collides with the
target baryon, and a u meson is scattered while a baryon
is left near the origin. The scattering angle is now about
−45◦. The difference of the scattering angles is just due to
the relative position and angle of the meson and baryon at
the moment of the collision. Similarly to the first simulation,
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FIG. 34. The meson-meson-baryon-baryon vertices correspond to and relate to a long meson disintegration into a baryon, an antibaryon,
and a meson.

the meson and baryon experience the recombination once
during the collision. Therefore, the vortical reaction is the
same as Eq. (24). Nevertheless, detailed dynamical processes
of the recombination are not the same. To see the difference
clearer, let us zoom in on the collision moment shown in
Fig. 44. Unlike the previous case, the collision is accompanied
not by the SG and anti-SG solitons but the SG and SG solitons.
Hence, the recombination here is very similar to what we saw
in Fig. 25 for the ūu and d̄d meson scattering. Since the two
SG solitons repel each other, they cannot be close. Only one
set of the edges of the meson and baryon come across to
exchange ū1 of ū1u1 and d of u2d. Then a new meson ū1u2

goes away and a new baryon u1d remains near the origin
and keeps rotating. We have examined lots of collisions with
various initial configuration and have found that all of them
are qualitatively the same.

B. A vortical hadron jet

In high-energy physics, when hadrons collide with suf-
ficiently high energy, they fragment into quarks or gluons.
However, obeying the color confinement in QCD, no color
charged objects can exist alone. Therefore, these fragments
create new colored particles around them to form color neutral
objects, namely hadrons. A bunch of the hadrons forming a
narrow beam is called a hadron jet. Since our vortices also
obey the U (1)R confinement in BECs, which as we have seen
is quite similar to QCD, we expect that a hadron jet could be
observed also in BECs.

The propagation speed of a vortical meson is determined
by the length of the meson. Namely, we cannot freely change
the propagation speed of the mesons unlike relativistic parti-
cles in reality. The shorter the meson is, the faster it propa-
gates. However, there is a threshold of the minimum length
of the meson over which mesons are unstable to annihilate.
Therefore, we cannot give a large initial kinetic energy to

individual mesons. Hence, it is not easy to set up a simulation
with arbitrary high colliding energies in BECs. Indeed, as
we have seen in the previous subsections so far, the typical
scatterings do not yield any additional new hadrons. Con-
sequently, we change our strategy: Instead of using shorter
mesons, we take longer mesons. Thus, we prepare the third
initial configuration given in Fig. 40(c) in which the baryon
is the same as Fig. 40(a) but the meson is longer. It is shown
in Fig. 45 how the collision of a longer meson and normal
baryon occurs. Since the longer meson propagate at a slower
rate, it takes more time to reach the target baryon at the origin.
Thus, compared with Fig. 41, the baryon rotates slightly more
so that the relative angle between the meson and baryon
is also slightly different. However, the first reaction is not
affected by such a small difference. Namely, the meson and
baryon again experience the recombination accompanied by
a partial annihilation of the SG and anti-SG solitons. While
the corresponding vortical reaction process is the same as
Eq. (24), the details of the collision are shown in Fig. 46.
As before, a relatively short meson ū1u2 and a relatively long
baryon u1d1 form during the collision. The former flies away
with a smaller scattering angle. The latter baryon is very long
and bent. Then it soon disintegrates into smaller hadrons.
Indeed, it fragments by creating a d2 and d̄2 at a certain point
at the middle of the longer baryon. As a consequence, the third
hadron, d̄1d2 is emitted toward a similar direction of the first
meson ū1u2. We interpret the new hadron which appears as a
result of fragmentation of the confining SG soliton a vortical
hadron jet, though the jet consists of only two mesons ū1u2

and d̄2d1. The vortical reaction for it is

d1u1 → d̄2d1 + u1d2. (25)

The third meson d̄2d1 is very short. So it crawls under waves
of �i for a while and soon emerges again, see the panels with
t̃ = 130 and 140 in Fig. 45.

FIG. 35. The baryon-baryon-baryon-baryon vertices correspond to and relate to a long baryon disintegration into two baryons and one
antibaryon.
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FIG. 36. The baryon-baryon-baryon-baryon vertices correspond
to and relate to a long baryon disintegration into two baryons and an
antibaryon.

C. Feynman diagrams

We have found the two new vortical reactions summarized
in Eqs. (24) and (25) through meson-baryon scattering. They
can also be described by Feynman diagrams as before. The
corresponding diagrams are a meson-meson-baryon-baryon
vertex and a meson-meson-baryon vertex as shown in Fig. 47.
The former vertex is new in a sense that any of the discrete
symmetries F , T , and P cannot relate it to any of the previous
diagrams shown so far. Although the latter vertex has not also
been encountered before, it can be obtained by flipping an
external leg of the vertex (mbb4) of Fig. 18. However, as men-
tioned, the presence (mbb4) of Fig. 18 as a real process does
not immediately mean that the vertex (b) of Fig. 47 indeed
occurs as a real processes. Thus, we again put our emphasis
on the fact that we include the vertex (b) of Fig. 47 into our
diagram list because we have found it in our simulation.

VI. A CONNECTION TO THE CONFINEMENT PROBLEM
IN PARTICLE PHYSICS

So far, we have investigated the topological objects in
nonrelativistic two component BECs in 2 + 1 dimensions. At
a glance, these seem to be very far from relativistic particle
physics in 3 + 1 dimensions. Nevertheless, the terminology
(u, d, meson, baryon, and so on) and the description by
Feynman diagrams borrowed from QCD are surprisingly fit
for BECs. Although a precise connection between QCD and
BECs is not clear at all, let us try to give some hints for
understanding it along with the observations by Son and
Stephanov in Ref. [8].

The key ingredient is duality. The vortices are particle-like
topological defects in 2 + 1 dimensions, and they are not
elementary constituents of the original models. Nevertheless,
it is known that a duality sometimes interchanges the defects
and elementary constituents. A classic example is the duality
between sine-Gordon solitons and fermions in the massive
Thirring model in 1 + 1 dimensions [40,41]. Another simple
example relevant to this paper is particle-vortex duality be-
tween the XY model and the Abelian-Higgs model in 2 + 1
dimensions [42,43], which gives insights for understanding
the fractional quantum Hall effect [44]. In the particle physics
context, the dualities have been expected to be a powerful
tool for us to understand nonperturbative dynamics in strongly
coupled systems.

On the other hand, one of the most important unsolved
problems in modern high-energy physics is the confinement
of colors in QCD. The quarks and gluons are elementary

FIG. 37. The initial configuration is the same as that in Fig. 19 except for the fact that the lower meson is not ūu but d̄d. The plot region is
x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical) and b̃ = 2.5.
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FIG. 38. The initial configuration is the same as that in Fig. 20 except for the fact that the lower meson is not ūu but d̄d. The plot region is
x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical) and b̃ = 5.

FIG. 39. The initial configuration is the same as that in Fig. 21 except for the fact that the lower meson is not ūu but d̄d. The plot region is
x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical) and b̃ = 7.5.
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FIG. 40. The three initial configurations for a u meson and a
baryon (ud) scattering. The region shown is x̃1 ∈ [−60, 60] (horizon-
tal) and x̃2 ∈ [−60, 60] (vertical). The meson is placed at (x̃1, x̃2) =
(50, 0) and the target baryon is at the origin.

constituents of QCD, but we cannot observe them at low en-
ergy since they are strongly confined to form hadrons. Widely
accepted picture of the confinement is that chromoelectric flux
from a quark is squeezed to form a flux tube. Then interaction
energy between (anti-)quarks is proportional to the separation
distance, and they are confined. Though this picture of con-
finement is quite plausible, it is merely qualitative. Indeed,
it is very difficult to prove analytically whether it occurs or
not in real QCD. Then, instead of QCD, many studies have
been done for QCD-like theories. An important milestone was
achieved by Seiberg and Witten in supersymmetric SU (2)
Yang-Mills theory [45,46]. They analytically showed that
condensation of the magnetic monopole indeed takes place at
low energy.

Another important remark was made by Polyakov [47]. He
considered a compact U (1) gauge theory in 2 + 1 dimensions

which can be obtained as a low-energy effective theory of the
Georgi-Glashow model with SU (2) gauge field coupled to an
adjoint scalar field φa (a = 1, 2, 3). In the ground state, the
adjoint scalar field develops a nonzero vacuum expectation
value φa = (0, 0, v) and breaks SU (2) down to its diagonal
compact U (1) subgroup. After integrating over all the massive
fields, we are left with a free massless photon of the compact
U (1) group at low energy. Since the photon has only one
polarization in three dimensions, it can be dualized to a
periodic scalar field ϑ ∈ [0, 2π ), a so-called dual photon,
which is related to the original U (1) gauge field Aμ by

Fμν = e2

4π
εμνρ∂

ρϑ, Fμν = ∂μAν − ∂νAμ, (26)

with μ, ν = 0, 1, 2 and e is a U (1) gauge coupling constant.
Under the duality relation, electric charges in the original
theory are interchanged by vortices in the dual theory as

ϑ (z) =
∑

a

qaIm log(z − za) (27)

with z = x + iy. Here za are positions of vortices and qa = ±1
are their charges. The dual photon is massless in perturba-
tion theory but it attains mass by means of nonperturbative
instanton (’t Hooft-Polyakov-type monopole) effects in the
Georgi-Glashow model. In the weakly coupled region, the
instantons interact with the Coulomb force and behave as
a dilute plasma. Then the Debye screening effect gives a
nonzero mass to the dual photon, which can be summarized

FIG. 41. The scattering of the meson ū1u1 and the baryon u2d with the initial configuration given in Fig. 40(a). The collision accompanies
the recombination at about t̃ = 90. The outgoing meson is ū1u2 and the new baryon u1d is left near the origin. We show the snapshots from
t̃ = 40 to 150 with interval δt̃ = 10, and the plot region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical).
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FIG. 42. Zoomed snapshots of Fig. 41 for the horizontal region x̃1 ∈ [−15, 15] and the vertical region x̃2 ∈ [−15, 15] at t̃ =
87.5, 90, 92.5, 95 are shown.

in the following low-energy effective theory [47–50],

Leff = e2

32π2
∂μϑ∂μϑ + cξη3 cos ϑ, (28)

with c being an undetermined parameter. The dimension full
parameter η is related to the mass MW of the massive gauge
bosons as η3 = M7/2

W /e. The so-called monopole fugacity ξ

is exponentially small as ξ = exp (− 2πMW
e2 ε), where ε is a

function of the ratio of MW and the Higgs mass Mφ , which
is known to be of order one. From Eq. (28), the dual photon
mass reads

M2
ϑ = 16π2cη3ξ

e2
. (29)

The nonperturbative instanton effects is responsible for
another important phenomenon, the charge confinement.

FIG. 43. The scattering of the meson ū1u1 and the baryon u2d with the initial configuration given in Fig. 40(b). The collision accompanies
the recombination at about t̃ = 90. The outgoing meson is ū1u2 and the new baryon u1d is left near the origin. We show the snapshots from
t̃ = 40 to 150 with interval δt̃ = 10, and the plot region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical).
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FIG. 44. Zoomed snapshots of Fig. 43 for the horizontal region x̃1 ∈ [−15, 15] and the vertical region x̃2 ∈ [−15, 15] at t̃ =
90, 92.5, 95, 97.5 are shown.

Introducing a prove charge in the Georgi-Glashow model
corresponds to putting a vortex in the dual theory as ϑ =
Im log z = θ (z = reiθ ). When we go around the vortex, ϑ

passes a potential peak once at θ = π . Namely, a semi-infinite
domain wall attaches at the vortex, and it corresponds to the
confining string attached to the prove charge in the original
picture. This is the standard understanding of confinement in
the compact QED in 2 + 1 dimensions.

Now we are in a position to observe a relation between the
dual theory (28) and the Gross-Pitaevskii equations (1) of the
2 component BECs. The Lagrangian for Eq. (1) is given by

LGP =
∑

i

[
− ih̄

2
(�i�̇

∗
i − �̇i�

∗
i ) − h̄2

2m
|∇�i|2 + μi|�i|2

− gi

2
|�i|4

]
− g12|�1�2|2 − VR, (30)

FIG. 45. The scattering of the meson ū1u1 and the baryon u2d with the initial configuration given in Fig. 40(c). The collision accompanies
the recombination, pair creation, and pair annihilation. A new meson d̄2d1 is emitted, which we interpret as a vortical hadron jet. We show the
snapshots from t̃ = 40 to 150 with interval δt̃ = 10, and the plot region is x̃1 ∈ [−40, 40] (horizontal) and x̃2 ∈ [−40, 40] (vertical).
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FIG. 46. Zoomed snapshots of Fig. 45 for the horizontal region x̃1 ∈ [−15, 15] and the vertical region x̃2 ∈ [−15, 15] from t̃ = 100 to
117.5 with interval δt̃ = 2.5 are shown.

with VR = −h̄ω(�1�
∗
2 + �∗

1 �2). Then we truncate this by
substituting the expression of the condensates �i = (v +
ri )eiθi into Eq. (30) and by integrating out the amplitude modes
ri [8,16]:

L̃GP = L̃S + L̃R, (31)

FIG. 47. (a) Meson-meson-baryon-baryon vertex corresponding
to the real process for Eq. (24). (b) Meson-meson-baryon vertex
corresponds to the real process for Eq. (25).

with

L̃S = h̄2

g + g12
θ̇2

S − h̄2v2

m
(∇θS )2, (32)

L̃R = h̄2

g − g12
θ̇2

R − h̄2v2

m
(∇θR)2 + 2h̄ωv2 cos 2θR, (33)

where we have ignored constants and dealt with the Rabi
term perturbatively. Here θS = (θ1 + θ2)/2 is a phonon and
θR = (θ1 − θ2)/2 is known as the Leggett mode or phason.
Note that the potential term in Eq. (33) is identical to VR

given in Eq. (16). Now, we would like to identify Leff in
Eq. (28) with L̃R in Eq. (33). This can be achieved by making
a correspondence as

ϑ ⇔ 2θR, (34)

e2

8π2
⇔ h̄2

g − g12
, (35)

cξη3 ⇔ 2h̄ωv2, (36)
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FIG. 48. Disconnected diagrams for ūu decay.

and we have rescaled the spatial coordinate as x̃i =√
m

(g−g12 )v2 xi in Eq. (33).

The presence of the additional massless scalar field θS is
a crucial difference between the Polyakov’s dual theory (28)
and the low-energy effective theory of the BECs in (31). We
envisage a gauge theory whose gauge symmetry is broken
like U (1)S × SU (2) → U (1)S × U (1)R as an electric dual of
the two-component BECs. Thanks to the additional θS , we
have two different species of the vortices, namely u- and d-
vortices, and we can deal with not only the mesonic molecules
but also the baryonic molecules unlike the original Polyakov’s
model. Furthermore, we emphasize that one of the nicest
features of the two-component BECs is accessibility to the
dynamical aspects of the confining phenomena as we have
shown in this work.

Considering the duality pictures, we ask ourself again what
the physical meaning of the Feynman diagrams is. Although
we have no rigorous arguments, the classical diagrams of
the u- and d-vortices would correspond to quantum Feynman
diagrams of the elementary particles of the dual theory. For
example, the classical one-loop diagram in Fig. 33 seems
to be mapped onto the quantum one-loop diagram in the
dual theory. If we could compute a quantum quantity from
the dynamics of some classical topological defects in a very
different theory, then it is interesting. We have no further
observations pushing the idea forward, so we leave it as an
open question at this moment.

Finally, as a possible clue for pinning down the con-
nection between particle physics and two-component BECs,
let us briefly mention the OZI rule [32–34], which is a
phenomenological rule of QCD determined in the 1960s
[35]. The OZI rule explains the narrow decay width of the
vector meson. Kinematically, the decay φ(s̄s) → π+(d̄u) +
π0(d̄d) + π−(ūd) dominates the other decay process φ(s̄s) →
K+(s̄u) + K−(ūs) because the phase space of the former pro-
cess is much larger than the latter. Nevertheless, the process
φ → 3π is highly suppressed relative to φ → K+K−. The
OZI rule in QCD is a phenomenological postulation that di-
agrams with disconnected quark lines are suppressed relative
to connected ones. It seems natural for us to ask whether a
similar rule holds for hadronic molecules in two-component
BECs or not. In order to answer this question, let us consider
the decay of a ūu mesonic molecule and verify whether the
diagrams given in Fig. 48 are observed. Throughout this
work, we have met the decay diagrams of ūu three times. The
first and the second ones are given in Fig. 18 (mmm3) and
(mbb1), respectively. The third one is the leftmost diagram of
Fig. 34. None of them are disconnected diagrams. Moreover,
not only these three diagrams but also all the diagrams we en-

countered so far are connected diagrams. Thus, we have found
an empirical rule that diagrams with disconnected vortex lines
are highly suppressed relative to connected ones. Namely, the
OZI rule seems to hold even in BECs. The OZI rule in QCD
is explained as follows. Disconnected quark lines are indeed
connected by internal gluon lines. High momentum transfer
by the gluons makes the QCD coupling constant small, so
that such channels are highly suppressed. Thus, the QCD OZI
rules is a consequence of a quantum effect. On the other hand,
the dynamics of vortical hadrons in BECs essentially obeys
the classical GP equations. We expect that a counterpart of the
gluon is the classical wave functions �i, and the classical OZI
rule in BECs corresponds to the quantum OZI rule in QCD via
a duality. As mentioned, we do not have a precise connection
between QCD and BECs. This is another open question.

VII. SUMMARY AND DISCUSSION

In this work, we have investigated the dynamics of the
vortex molecules in two-component BECs by numerically
solving the Gross-Pitaevskii equations (1). This paper is inline
with previous works [8,14,16] focusing on the confinement
property of fractional vortices by the SG solitons. While the
dynamical property of an individual molecule, such as preces-
sion and disintegration, were figured out in Refs. [14,16], here
we have studied the scattering and collision of molecules. Our
numerical studies are twofold: the meson-meson scattering
and the meson-baryon scattering.2

In Sec. III, we have dealt with the meson-meson scattering
of the same species (ūu-ūu). First, we have demonstrated three
simulations of the head-on collisions (zero impact parameter)
by varying the incident angles, which are summarized in
Fig. 14. We have found that the mesons collisions involve
the vortical reaction given in Eq. (20). Namely, the con-
stituent vortices swap their partners. We also showed that the
recombination can be understood as a collision of the SG
and anti-SG solitons, and the swapping is nothing but the
pair annihilation and creation of the confining SG solitons
as can be seen in Fig. 7. Of course, the details of the final
states sensitively depend on the initial incident angle. The
simulation with the initial relative angle π happens to show
the right-angle scattering of the two mesons, which is very
common among relativistic topological solitons. On the other
hand, the scattering with smaller angle π/2 exhibits a more
complicated out-going state involving pair creation of a new

2For both the simulations, the nonrelativistic nature of the GP
equations is crucial since it ensures that the molecule size is kept
finite and constant even though the constituent vortices are pulled
by the SG soliton. In relativistic models, this cannot happen because
the molecules soon shrink. Especially, it is very difficult to prepare
mesonic molecules which soon decay into radiation. The cost we
have to pay is that both the precession speed of a baryonic molecule
and the translation speed of a mesonic molecule are determined by
the molecule size [16], but we can, nevertheless, make use of such
dynamical properties (the precession of baryons and the translation
of mesons) for planning scattering experiments of the mesons and
baryons. Indeed, our numerical simulations provide quite rich and
interesting results as we have described above.
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meson and a subsequent pair annihilation of the original
meson. In principle, there are a plethora of possible different
scattering events depending on the model parameters, initial
configurations, and so on. Clearly, solving numerically the GP
equations for every possible parameter combination is not a
good strategy. To avoid this inefficient approach and to get an
efficient outlook, we developed a useful description by using
Feynman diagrams. A fractional vortex corresponds to a line
with an arrow toward the time direction, whereas an antifrac-
tional vortex is expressed by a line with an arrow opposite to
the time direction. The elementary vertices found through the
meson-meson scatterings with the aid of time reversal and the
parity transformations are summarized in Fig. 18. These are
the building blocks of the real scattering processes. We have
also studied meson-meson scattering with nonzero impact
parameters. It is found that the scattering angles depend on
the impact parameter: The smaller the impact parameter, the
larger the scattering angle. By increasing the impact parame-
ter, the scattering angle is eventually reduced and crosses zero
and becomes negative. Then, it asymptotically becomes zero
as the impact parameter is taken to be infinity.

In Sec. IV, we have turned to studying the meson-meson
scattering of the different species (ūu-d̄d). We have repeated
the numerical simulations similarly to those in Sec. III. The
head-on collision with zero relative angle seems to be less
interesting at a glance: The two mesons just pass through
each other, see Fig. 24. However, we have found that the
scattering of the two SG solitons occurs. They recoil, and
the molecules interchange the SG solitons before and after
the collision. However, studying the head-on collisions with
the smaller relative angle is more interesting. We have found
that the incoming u and d mesons are converted into the
intermediate baryon and antibaryon pair during the collision.
The intermediate baryons rotate and are then reformed back
into the mesons at the second recombination. Forming the
intermediate baryonic state results in the shift of the outgoing
line from the ingoing one, see Fig. 32. As before, we have
described the numerical simulations using Feynman diagrams
and divided them into the elementary vertices. The newly
found vertices are shown in Figs. 33. In addition, we also
have put the new vertices in Figs. 34 and 35, correspond-
ing to the disintegrations of the meson and baryon found
in Refs. [14,16]. We also have studied the scatterings with
nonzero impact parameters but the results are not so dramatic
as those for the mesons of the same species.

In Sec. V, we have studied the meson-baryon scatterings
(ūu and ud). We have propagated the meson toward the
baryon positioned at the origin. The observed variation in
scattering arises from the difference of the relative angles of
the two molecules at the collision point. We have examined
two initial configurations (the molecules are initially parallel
and antiparallel) given in the leftmost and the middle panels
of Fig. 40. We have found that there are no qualitatively large
differences between the two cases. In both cases, the meson
and baryon swap their constituent u-vortices, and the new
meson goes out while the new baryon stays at slightly shifted
point from the original baryon point. Much more interesting
things happen when we scatter a long meson to the baryon.
The typical initial configuration is given in the rightmost panel
of Fig. 40, and the scattering goes as shown in Fig. 45. The

recombination takes place also in this case, so that a long
and kink bend baryon is formed at first stage. However, such
a long and bent molecule is unstable and soon disintegrates
into a set of shorter mesons and baryons. As a result, the
final state includes larger numbers of molecules than the
prepared one. This somehow resembles what happens in real
hadron collider experiments. When we collide two hadrons in
a hadron collider with sufficiently large energy, thousands of
hadrons come out as a hadron jet. Although our final state
consists of only a few hadrons, we exaggeratedly call it a
vortical hadron jet in the VHC experiment. It is surprising
to us that the simple classical system (1) includes such rich
phenomena somehow common to QCD which needs highly
quantum regimes.

In Sec. VI, we have made supplementary comments in
order to make a connection between QCD and BECs clearer.
We have compared Polyakov’s dual photon model in 2 + 1
dimensions to the low-energy effective theory based on two-
component BECs. We have seen the latter is an extension
of the former, and so we expect the confinement of the u-
and d-vortices studied here would shed some light on the
confinement of elementary particles. An advantage of using
BECs is that we can easily access dynamical aspects of the
confinement which is in general difficult with QCD. As a
related topic, we have also pointed out that a similar rule to
the OZI rule in QCD seems to hold in BEC systems.

To close this paper, let us list what we have not done in
this work. All the numerical analysis in this paper has been
done under the condition of Eq. (2). Therefore, the u- and d-
vortices have the same masses. The dynamics of the hadronic
molecules for generic cases will be surely more complicated,
but they might be more similar to QCD since the quarks
have different masses in nature. Furthermore, we considered
the model with two condensates. This is the reason why we
have two different species, the u- and d-vortices. If we include
three or more condensates, then we can consider hadrons
consisting of more than two constituent vortices [23,24]. It
would be especially interesting to study molecules such as
a proton like molecule uud and a neutron like molecule
udd to simulate situations closer to QCD. It might also be
interesting to take into account the vortical hadrons at finite
temperature and/or density. In QCD, there exist several phases
such as quark gluon plasma and color superconducting phase.
Exploring the phase diagram of the vortex matter in BEC
would shed some light on the phase diagram of real QCD,
see Ref. [51] for vortices in color superconductors in QCD.

Finally, we should in the future perform a comprehensive
analysis of the connection between BECs and QCD. The
results obtained in this work together with the previous studies
of Refs. [8,16] support that these two very different theories
are indeed related through dualities. However, as it currently
stands this relationship is just an analogy, although it should
be stated that the many notions of QCD can be accommodated
by a theory describing a weakly interacting BEC. A key
idea then for developing this connection further would be to
develop our Feynman diagram approach used in this work,
which was found to be very useful for describing the dynamics
of vortices in BECs. In the context of quantum field theories,
the use of Feynman diagrams is an aid to computation, since
they allow one to compute scattering amplitudes. On the other
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hand, it is unclear to us what computational benefit this ap-
proach has for BEC systems. In order to clarify this point, it is
important to understand how these two models are connected
via a duality, as well as the quantization of fractional vortices
and their molecules in two component BECs. We focus on
these points in the future.
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