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Fragility of the Kondo insulating gap against disorder: Relevance to recent puzzles
in topological Kondo insulators

Sudeshna Sen,1,2,* N. S. Vidhyadhiraja,3 Eduardo Miranda ,4 Vladimir Dobrosavljević,5 and Wei Ku 1,6,†
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Kondo insulators are strongly correlated systems in which a clean insulating gap emerges only at very low
temperature due to many-body effects involving localized f electrons. However, certain Kondo insulators,
like SmB6 and Ce3Bi4Pt3, display metallic behaviors at extremely low temperature and have defied current
understanding. Recent advances in topological effects in materials have raised attention on the protected surface
states in these “topological Kondo insulators” as a potential resolution to some of the puzzling behaviors. Here
we resolve these puzzles via a different route, by showing that the emergent Kondo insulating scale is extremely
vulnerable against a moderate degree of disorder, such that the gap is filled with a small number of states.
Therefore, the real samples are probably never truly insulating and this in turn compromises the essential building
block of topological considerations. Our results suggest strongly that systems like the Slater insulators would be
a more promising direction to extend the realm of topology to strongly correlated systems.

DOI: 10.1103/PhysRevResearch.2.033370

I. INTRODUCTION

In recent years, topological Kondo insulators [1] have
emerged as a new class of materials where both the physics of
strong electron correlations and/or topology could play a sig-
nificant role. Interestingly, however, in great contrast to typ-
ical topological insulators, these systems also exhibit seem-
ingly contradictory behaviors, for example, a low-temperature
metallic specific heat [2–4] and an insulating-like activated
transport at high temperatures [1,5–7]. Even more puzzling
is the observation of a saturated low-temperature resistiv-
ity [1,2,5–7]. Naturally this can be interpreted from the con-
ducting topological surface states [8–15]. However, the origin
of the experimental observations are also unclear, demon-
strating extensive sample dependence or influence from the
specific experimental design, indicating the possible role of
extrinsic effects [16–18]. Moreover, very recent observations
strongly suggest bulk conduction instead [19,20] and advocate
the essential role of disorder [19,21–23].

Thereby, several experimental observations in some of
these systems have called for unconventional theoretical
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interpretations. Not only are the low-temperature thermody-
namic properties of this bulk insulator at odds with con-
ventional knowledge; this material was recently found to
exhibit 3D quantum oscillations [24,25] typically associated
with metals. To date, while several propositions have been
attempted to understand such puzzling observations, including
charge-neutral quasiparticles [26–29] and conducting surface
states [3,6,14,30], no overall consistent picture has been ob-
tained.

One long-standing key issue is the role of disorder [31].
Even before realizing the connection with topological charac-
teristics, disorder had already been speculated to be responsi-
ble for the saturation of low-temperature resistivity [5]. More
recent studies further found significant sample variation in the
low-temperature properties of these systems, depending on
the synthesis methods and seed materials used [19,23,32,33].
Careful characterization of such samples indeed indicates that
even in the nominally purest samples, a minimal yet detectable
amount (<1%) of disorder [32] is present, the amount of
which appears to be correlated with their saturated value
of resistivity [32] and specific heat [2]. But, how can such
a small amount of disorder overcome the insulating gap of
0.01 eV scale, and are they necessarily itinerant? It is exactly
this question that we address in this work and provide a
microscopic physical mechanism explaining this issue.

II. MODEL

To illustrate this generic characteristic of all Kondo in-
sulators, we use a minimal model known as the periodic
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FIG. 1. Effect of disorder in a noninteracting band insulator.
The ground-state density of states (DOS) of a noninteracting band
insulator is plotted as a function of energy for different values of
standard Anderson-type disorder in site energies. W is a measure
of the fluctuation of site energy with values W = 0, 0.05, 0.2 eV.
Clearly, disorder has a negligible effect on the hybridization gap
straddling around the chemical potential located at zero energy. The
other parameters used are U = 0.0 eV and V = 0.089 eV.

Anderson model (PAM), consisting of itinerant noninteracting
d orbitals with on-site energy εd j and highly localized interact-
ing f orbitals with on-site Coulomb repulsion U and on-site
energy ε f . Additionally, the d and f orbitals hybridize via
a local coupling V , such that the Hamiltonian is given in
standard notation by H = Hd + Hf + Hhyb, where

H = −
∑
〈i j〉σ

ti j[d
†
iσ d jσ + H.c.] +

∑
jσ

(εd j − μ)d†
jσ d jσ

+
∑

jσ

ε f f †
jσ f jσ +U

∑
j

n f j↑n f j↓+V
∑

jσ

[d†
jσ f jσ +H.c.].

(1)

where 〈i j〉 denotes nearest-neighbour hopping and ti j ∝
t/

√
N (in the limit when lattice coordination number,

N→∞).The last term in Eq. (1), Hhyb, results in the formation
of a hybridization gap, �g, in a half-filled lattice of the above
model. The half-filling condition in a clean Kondo insulator is
respected when the f -orbital occupancy n f and the d-orbital
occupancy nd together sum to n f + nd = 2 and the chemical
potential μ lies inside the gap. In a disordered system, these
occupancies are replaced by their disorder-averaged values,
such that for a disordered Kondo insulator, the former relation
should read as 〈n f 〉 + 〈nd〉 = 2, where 〈. . .〉 denotes disorder-
averaged values.

In the following sections we consider the effects of finite
disorder in a symmetric Kondo insulator. Before delving into
the fully interacting model, we first illustrate the role of
disorder in the U = 0 limit of the above model.

III. RESULTS

Disorder in a band insulator. Figure 1 gives an exam-
ple of the typical effect of a minute amount of disorder
on band insulators, containing a bulk insulating gap of full

width �g ≈ 0.016 eV, obtained by putting U = 0 eV and
V = 0.089 eV in Eq. (1). We simulate the disorder effects via
standard Anderson-type fluctuation of d-site energies ran-
domly distributed according as a Gaussian probability dis-
tribution function, P(εdi ) = 1√

2πW 2
exp(− 1

2ε2
di/W 2), with vari-

ance or disorder strength W and mean zero, such that 〈nd〉 = 1
on average. Furthermore, the band-filling constraint is given
by fixing n f ≈ 1 uniformly on all sites, while varying nd

locally via a spatially varying parameter εdi, drawn from the
distribution P(εdi ). Thus, within this model, W would not only
signify the local fluctuations in the d levels but additionally
implies fluctuations in the local density of states (LDOS)
of the conduction electrons [34], which would otherwise be
missed in the kind of mean-field theory adopted in this work.
In all our subsequent discussions based on the electronic
density of states, we choose the d electrons, as they are the
ones involved in the transport.

Before moving to the results, we would comment on how
robust the results of our model calculations could be to the
details of the microscopic model for disorder. Detailed inves-
tigations [34] have convincingly revealed that the resulting
power-law form of the distribution of Kondo temperatures
is remarkably robust and insensitive to any specific features
of the realistic disorder distribution. Nonlocal disorder cor-
relations (“Friedel oscillations”) lead to significant disorder
renormalization in the conduction band, which assumes a
generic Gaussian form, providing strong support for the usage
of an effective model such as the one used here.

In Fig. 1 we demonstrate the d-electron density of states for
such site energy fluctuations up to W = 0.2 eV. Expectedly,
one finds only negligible effects near the gap edge in the
resulting density of states. That is, the gap is extremely robust
against such weak disorder. This means that even for an under-
estimated resistivity (by assuming all the states are itinerant),
one would still obtain a large insulating-like resistivity at
low temperature, without saturation, unlike that observed in
Kondo insulators like SmB6. It turns out that the resolution
of the above issues lies in a novel characteristic of Kondo
insulators in general (topological or not), in contrast to typical
band insulators, namely an extreme sensitivity of local gap
features against disorder.

Disorder in a Kondo insulator. The model represented
by H is known to capture the nontrivial local physics of
Kondo screening at very low temperature in the regime when
Ut � V 2, where the very low energy physics is controlled
by the emergence of bound singlet states. These entangled
spin-singlet states, also known as the Kondo singlets, are
composed of antiferromagnetically coupled d and f elec-
trons via a spin exchange coupling J ∼ V 2/U and a binding
energy, the so-called Kondo scale ωK . The most dramatic
characteristic of the Kondo screening is the exponential (many
orders of magnitude) suppression of its energy scale from that
of the Hamiltonian (t , V , and U ), ωK ∝ e−1/(ρ0J ), where ρ0

represents the “bare” density of states of the d electrons at the
chemical potential. Consequently, near half-filling (number of
d electrons nd and f electron n f sums to 2 per atom), the co-
herent charge gap opening related to the periodic occurrence
of the Kondo singlets in a lattice is also very small, of the
order of the Kondo scale, �g ∼ ωK . A Kondo insulator is thus
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formed at exactly half filling, when the chemical potential falls
inside the charge gap.

Note that H traditionally describes a Kondo insulator with
strictly on-site hybridization between the d and f orbitals. In
a realistic system, however, the spatial dependence of the hy-
bridization term may not be ignored because such a structure
could be responsible for generating the topological character-
istics. However, this consideration is nearly orthogonal to the
physics of local Kondo physics. To illustrate this point, let us
consider the following representative effective hybridization
(on a two-dimensional lattice) expanded around the special
points with band inversion across the Kondo gap: V (k) ∼
α + β(kx + iky) ∼ α + β[sin(kx ) + i sin(ky)]. As long as |α|
is smaller than |β|, such a hybridization would produce a
nontrivial topological structure. To more rigorously capture
the short-range hybridization, one can construct a properly
symmetric superposition of d orbitals from all sites surround-
ing the f -orbital site, to represent the same d-orbital degrees
of freedom, in a manner similar to the well-known Zhang-Rice
singlet, as demonstrated in [35]. This way, one can absorb the
most essential effects to the local Kondo physics through a
local hybridization between the f orbitals and the new (larger)
symmetrized d orbitals. This includes a proper symmetric
phase structure that leads to the topological characteristics
of SmB6. In fact, the community has recently witnessed a
renewed focus in the designing of model topological Hamilto-
nians for SmB6 (and systems alike) [36–41]. Note, however,
that this issue of global topology is a lower-energy physics
emerging below the higher-energy local Kondo gap scale.
Therefore, as far as the topological Kondo insulators are
concerned, the development of the bulk Kondo insulating gap
should display nothing peculiar, as compared to conventional
Kondo insulators.

Thus, for the purposes of demonstrating the genuinely non-
trivial role of Kondo disorder on the transport and thermody-
namic properties of Kondo insulators, we consider a spatially
local V . We solve the model described in Eq. (1) utilizing
the dynamical mean field theory (DMFT) framework [42] for
tackling the many-body effects due to the strongly correlated
f electrons and the coherent potential approximation (CPA) to
understand the effects due to disorder. The DMFT is formally
exact in the limit of infinite dimensions, where the interaction
self-energy becomes purely local in space but retains the
full temporal dynamics of the interaction self-energy. The
CPA applied to treat the disorder is a mean-field approach
to determine the disorder-averaged effective DMFT medium
seen by the f electrons, �ave(ω), obtained by solving a set
of self-consistent equations as outlined in Appendix A. The
CPA is known to give reliable results for regimes where
disorder-induced localization effects are negligible [31]. In
order to reliably capture the exponentially suppressed Kondo
energy scale, we obtain the local self-energy of the PAM
using the local-moment approach within the framework of
DMFT [43–47]. For further details on the implementation of
the algorithm within the disorder framework we redirect the
reader to Appendix A. Although these results should hold true
for any high-dimensional lattice where the local self-energy
serves as a reliable approximation, for all the results demon-
strated here we have used the Bethe lattice density of states for
the free conduction band, given by ρ0(e) = 2

πt [1 − (e/t )2]1/2;
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FIG. 2. Effect of disorder on the Kondo insulator density of
states. The zero temperature density of states (DOS) of the d elec-
trons of a Kondo insulator is plotted as a function of energy for
different values of d site energy fluctuation. The magnitude of fluc-
tuation is represented by W . In contrast to the U = 0 case (Fig. 1),
the Kondo insulating gap of a clean Kondo insulator (W = 0) starts
filling up at minimal disorder strengths (W = 0.1) rapidly evolving
into a pseudogap (W = 0.2, 0.25 eV), with a nonzero density of
states at the chemical potential. The parameters used for this figure
are U = 1.9 eV, V = 0.44 eV to generate a clean Kondo insulating
gap of full width �g ≈ 0.01 eV.

2t is the conduction electron full bandwidth (and t = 1 for all
the calculations presented).

Now we will show that unlike the typical charge gap in
band insulators, such a dramatically suppressed emerged gap
(and the local Kondo scale) is extremely sensitive to disorder.
It is worth mentioning that the general fragility of correlated
systems to disorder was to some extent discussed in past
work [31,34,48,49]. However, the precise consequences for
the thermal behavior of such disordered Kondo insulators
was not addressed. Other work restricted to binary type
(Kondo holes, ligand disorder) had also been reported previ-
ously [50,51], including a recent work demonstrating the role
of in-gap bound states due to nonmagnetic impurities [52];
the latter models however cannot produce a broad distribution
of Kondo scales, a key entity for observing the “fragile”
Kondo insulator scenario as discussed below. This fragility
of the Kondo insulating gap against disorder due to a broad
distribution of Kondo scales provides a natural explanation
of the above puzzles. We simulate the weak disorder in real
materials by adding to this model Anderson-type disorder in
the d-electron site energies, with fluctuations ∼0.2 eV, similar
to that used for the noninteracting case demonstrated in Fig. 1.

Instead of delving into the detailed low-energy dynamics
that would dictate this physical situation, a straight look at the
resulting conduction electron density of states (equivalently
the disorder-averaged c-electron spectral function) illustrated
in Fig. 2 immediately reveals the “fragility” of the Kondo
gap in great contrast to its noninteracting counterpart (Fig. 1).
With the incorporation of disorder, the prominent charge gap
rapidly fills out representing a “soft” gap at W = 0.1 eV and
evolving into a “pseudogap” with finite spectral weight at the
chemical potential, with a meager increase of W to 0.2 eV.
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FIG. 3. DC resistivity. The temperature-dependent DC resistivity
ρ(T ) is plotted for W = 0.25 eV, with T being plotted on a log scale.
In agreement with experimental observations, a resistivity plateau
sets in for temperatures T � 2 K, crossing over to a regime of
activated transport characteristic of Kondo insulators. In the inset we
plot ρ(T ) on a linear scale to highlight the activated transport for
T � 20 K with a transport gap � ∼ 0.003 eV.

Transport and thermodynamics. The occurrence of such
“pseudogap” feature in the ground-state, bulk spectral
function would not only induce a plateau in low-T, DC
resistivity [ρ(T )] of such a system, but would also result in
a high-temperature insulator like activated transport as we
now demonstrate. In main panel of Fig. 3 we plot ρ(T ) on
a linear-log scale for W = 0.25. The saturation knee occurs
at a T ∼ 2 K in close agreement with experimental reports
on SmB6. In the inset we plot ρ(T ) on a linear scale to
highlight the activated transport regime at higher T ’s, char-
acteristic of insulators. Our model of a disordered Kondo
insulator produces an activated transport for T � 20 K with
a transport gap, � ∼ 0.003 eV, which is of the same order as
that reported in experiments on SmB6 [19,53–55].

Note that the activation behavior should correspond to the
size of the pseudogap, exactly as in any clean insulator. It is
not until the pseudogap-related thermal activation becomes
weaker at low temperature, due to the presence of the few
disorder-induced in-gap states, that the resistivity starts to
saturate. Since the clean Kondo gap is controlled by the local
Kondo physics (local density of states and hybridization), its
size and the associated activation behavior should be quite
robust (until saturation). That is, the cleaner the sample is,
the lower the temperature at which the resistivity saturation
should take place, and also the higher the magnitude of the
saturated resistivity. This expectation is consistent with the ex-
perimental findings of Ref. [19] where the most stoichiometric
(i.e., the cleanest) samples demonstrated a rather robust clean
Kondo gap.

In the following discussion we now show how our model
of disordered Kondo insulators not only gives rise to such
(weakly) metallic behavior, with finite conductivity at T =
0, but also a modified thermodynamic response, which is
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FIG. 4. Electronic specific heat. The specific heat (C) in units of
the universal gas constant (R) is plotted as a function of temperature
(T ) for a fixed disorder strength W = 0.25 eV. Clearly, the low-T
specific heat has an appreciable linear component as also observed
in experiments. We observe two regimes with a dominant linear
coefficient γ = 0.1, 0.05 K−1, respectively, the change of slope being
accompanied by a knee at ∼2 K. The lowest temperature reported in
the available experimental data for the specific heat of SmB6 is ∼2 K.
As demonstrated in the figure, our model predicts a γ ≈ 0.05R ∼
100 mJ K−2 mol−1 in the regime 2–8 K. Inset: The linear coefficient
γ is plotted as a function of T on a linear-log scale.

consistent with the “puzzling” experimental observations in
several Kondo insulators.

Among the several puzzling observations in Kondo insu-
lators SmB6 and Ce3Pt3Bi4 is the large low-T specific heat
contribution with a dominant T -linear contribution, shown
to be predominantly a bulk property [2,4,25,56]. We thus
turn our focus on to the thermodynamic response due to
the electronic specific heat, C(T ), and demonstrate how our
microscopic model reproduces such an experimental obser-
vation. In order to obtain C(T ) we first evaluated the to-
tal energy of the disordered system (within the framework
of CPA-DMFT; see Appendix C and Ref. [57] for more
details) and then calculated its derivative with respect to
temperature [58]. Figure 4 shows the computed specific heat
C(T ) in units of the universal gas constant, as a function of
temperature with R ≈ 8.3 J K−1 mol−1, for U = 1.9 eV and
V = 0.44 eV. The specific heat clearly depicts a low-T linear
behavior until T ∼ 2 K crossing over to higher temperatures
with a similar linear trend, albeit with a reduced linear co-
efficient. Thus, the observed C(T ) behaves as C(T ) = γ RT
exhibiting an enhancement in γ for T � 2 K as highlighted
in Fig. 4 (inset). It should be noted that the most recent
C(T ) measurements exhibit a significant sample dependence
with γ ∼ 10–50 mJ K−2 mol−1 [3,4,56,59]. As shown, our
calculations successfully bring out the general trends observed
in the experiments concerning candidate topological Kondo
insulators, namely SmB6 and Ce3Pt3Bi4, in regard to the
bulk thermodynamic response. The thermodynamic response
is also consistent with the observed transport in these systems.
Nevertheless, the γ value predicted by our calculations is
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FIG. 5. Distribution (P) of Kondo scales (ωK ). The distribution
of local Kondo scales P(ωK ) computed for different strengths of
fluctuation in the Anderson-type quenched disorder, viz., W = 0.2,
0.25, 0.3 eV. The solid lines are a guide to the eye. The bare
Hamiltonian parameters used are U = 1.9 eV, V = 0.44 eV.

∼100 mJ K−2 mol−1 (for 2 K < T < 10 K), which is slightly
overestimated compared to experimental reports.

The microscopic mechanism behind the fragile nature of
a Kondo insulator against disorder (and the related pseu-
dogap formation) can be understood as the following. The
randomness introduced by site energy fluctuations induces a
spatially nonuniform screening of the localized f electrons.
More precisely, the strength of this local screening depends
on the local hybridization function or quantum-mechanical
coupling [�(εd )] between the f electrons and the d electrons.
The local Kondo scale (ωK ) quantifying this process of Kondo
screening is thereby given by ωK ∝ exp[−1/�(εd )]. The f
electrons thus become extremely sensitive to this microscopic
fluctuation in the d-electron local density of states induced
by the local disorder. Consequently, a broad distribution of
“exponentially” small local Kondo scales emerges as illus-
trated in Fig. 5, where we demonstrate P(ωK ) for three
such closely spaced disorder values, namely, W = 0.2, 0.25,
0.3 eV. Within the local-moment approach impurity solver
used in this work, the Kondo scale ωK is synonymous with
the low-energy spin-flip scale, identified as the position of
the peak in the transverse spin polarization propagator that
quantifies the transverse spin-flip processes responsible for
the Kondo effect. For more details the reader is referred
to Appendix A. As shown in Fig. 5, these emerged scales
(spanning from 10−4 to 10−2 eV) are orders of magnitude
smaller than the clean lattice coherence scale.

Such a broad distribution of Kondo scales provides a
broad avenue of extremely low energy scales over which the
underlying Kondo insulator density of states is dramatically
influenced. Note that it is very important to precisely deter-
mine the “interaction renormalizations” via the emergent, ex-
ponentially small distribution of Kondo scales to demonstrate
that even a minute amount of disorder could kill the Kondo in-
sulating gap. Furthermore, our quantitative prediction prevails
in the regime of relevance to topological Kondo insulators.

The Kondo gap that would straddle the Fermi level in the
clean Kondo insulator would now move above or below the
Fermi level depending on the {εdi}, and the amount of spectral
weight acquired around the Fermi level would depend on the
underlying local Kondo scale, which could be exponentially
small as seen from Fig. 5. In fact, the local depletion or accu-
mulation of local d-orbital charge, nd , may also be reflected
as many-body quasiparticle or low-energy resonances in the
f and c spectral functions, in the vicinity of the Fermi level
(for details see Fig. 6 in Appendix A) on energy scales of the
order of the underlying Kondo scale. Thus in great contrast to
a noninteracting band insulator the Kondo insulating charge
gap is extremely fragile in the presence of such quenched
disorder, producing dramatically large effects on the low-
energy density of states with nominal site energy fluctuations.

It should be noted that for numerical reasons we cut off
the tails of the bare Gaussian distribution, P(εd ), such that
we have a bounded distribution in effect. Thus the plotted
P(ωK ) in Fig. 5 depicts a range of ωK ’s with a minimum ωK

and Fermi liquid behavior is expected to occur below this ωK .
For example, for W = 0.25 we expect Fermi liquid behavior
for ωK � 10−4 eV (1 K) in agreement with the specific heat
depicted in Fig. 4. In experiments, it is difficult to quantify
the amount and effects of disorder in a controlled manner
and a priori unclear what the bare disorder distribution is.
We believe that this cutoff of the rare realizations is justified
since the amount of disorder required to close the gap is very
small in comparison to the other energy scales of the bare
model. A detailed correlation between the obtained C(T ) and
the P(ωK ) and its evolution with increasing disorder is left as a
future work.

IV. DISCUSSION AND CONCLUSIONS

In summary, we demonstrate the extreme fragility of the
Kondo insulating gap against even a modest amount of
disorder, in dramatic contrast with conventional band insu-
lators. Consequently, Kondo insulators generically develop a
pseudogap that naturally accounts for the seemingly contra-
dictory observations (metallic versus insulating characteris-
tics) in several topological Kondo insulators.

In essence, our discovery of disorder-induced mid (bulk)
gap states and the sensitivity of local Kondo physics against
disorder implies that even if there exist spin-locking (topo-
logical) surfaces states, they are no longer strictly protected
against impurity scattering or hybridization with low-energy
bulk states, unless the samples are devoid of any impurities or
defects. Once the bulk Kondo gap, the building block of any
topological insulator, is undermined, any nontrivial physical
role of the surface states will be seriously compromised,
making them less relevant to the observable properties of the
materials.

In a very recent work [60], the question of quantum oscil-
lations from disorder-induced in-gap states in band insulators
was studied within a phenomenological approach again show-
ing strong evidence of the observation of quantum oscillations
via disorder-induced in-gap states in low-gap insulators, but
this issue remains yet to be addressed for (topological) Kondo
insulators.
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APPENDIX A: CALCULATION OF THE SPECTRAL
FUNCTION

In the main text we reported the analysis of the electronic
spectra, DC resistivity, and the specific heat of disordered
Kondo insulators that requires the evaluation of the con-
duction electron spectral function. In this section we de-
scribe the DMFT-CPA theoretical framework that we use to
compute the single-particle dynamics, namely, the nonper-
turbative electronic self-energy of the correlated f electrons
including its full frequency dependence and the electronic
spectral functions in the presence of Anderson-type disorder
in the conduction electrons. For a clean system, the DMFT
framework maps a strongly correlated lattice to an auxiliary
strongly interacting impurity problem, which in this particular
case is a single impurity Anderson model (SIAM). In the
SIAM we have an strongly interacting impurity, with local
repulsive interactions embedded in a noninteracting host, that
is determined self-consistently within a computational frame-
work. In the presence of disorder this scheme maps the disor-
dered lattice onto an ensemble of impurity problems each of
which is embedded in a disorder-averaged effective medium.
In the following we outline the self-consistency equations
that constitute the above scheme for temperature, T = 0.
The same self-consistent iterative scheme follows for T > 0
as well.

The physical quantity that describes the single-particle
excitations in a many-body system is the Green’s function
or the “propagator.” For a clean Kondo insulator or heavy-
fermion metallic system within the framework of DMFT,
the d ( f ) electron Green’s functions Gd (ω) [G f (ω)] are
given by

Gd (ω) =
[
ω+ − V 2

ω+ − �̃ f (ω) − ε f
− �(ω) − εd

]−1

, (A1)

G f (ω) =
[
ω+ − �̃ f (ω) − V 2

ω+ − �(ω) − εc
− ε f

]−1

, (A2)

where the on-site energy for the d and f electrons, namely,
εd and ε f , are chosen such that the respective lattice filling
is maintained, which in turn determines whether we obtain a
Kondo insulator or a heavy-fermion metal and �̃ f (ω) denotes
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FIG. 6. Density of states in the presence of particle-hole asym-
metry. The f -electron (top panel) and the d-electron (bottom panel)
densities of states for various εd are plotted to demonstrate how a
variation of εd may not only introduce low-lying electronic states but
also induce low-lying sharp features on the order of the respective
Kondo scale.

the f -electron self-energy including the Hartree part. Note
that we have set μ = 0 such that all energies are measured
with respect to the Fermi level.

The quasiparticle spectra (or density of states) for a respec-
tive Kondo insulator could thus be derived to be

Dd (ω) ∼ ρ0

(
ω − εc − ZV 2

ω − Zε∗
f

)
, (A3)

D f (ω) ∼ Z2V 2

ω − Zε∗
f

ρ0

(
ω − εd − ZV 2

ω − Zε∗
f

)
, (A4)

where, ε∗
f is a renormalization incurred by the bare f level

due to the underlying many-body dynamics. The low-energy
behavior embodied in Eqs. (A3) and (A4) would be extremely
important in understanding why the Kondo gap is so fragile
against a minute amount of disorder in εd . A variation in εd not
only introduces low-lying electronic states inside the gap but
also generates sharp features over exponentially suppressed
energy scales. As a demonstration of this, we plot D f (ω)
and Dc(ω) in Fig. 6 (top and bottom panels, respectively) for
different values of εd .

Subsequently for a clean Kondo insulator, Gd (ω) =
[ω+ − V 2

ω+−� f (ω) − �(ω)]−1 and G f (ω) = [ω+ − � f (ω) −
V 2

ω+−�(ω) ]
−1, where � f (ω) is the conventional Hartree cor-

rected conventional self-energy of the correlated f electrons,
being purely local or momentum independent within DMFT.
The d electrons being itinerant hybridize with the nonin-
teracting (DMFT) host via the true hybridization function,
�(ω), while the quantity V 2

ω+−�(ω) = � f (ω) may be thought
of as an effective hybridization function for the otherwise
localized f electrons. Subsequently, the quantity �d (ω) =

V 2

ω+−�(ω) may be thought of as an effective d-electron
self-energy.
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In the presence of disorder, the above Green’s functions are
replaced by their disorder averages as the following:

Gd
ave(ω) = 〈

Gc
j (ω)

〉
=

〈[
ω+ − V 2

ω+ − � f j (ω)
− �ave(ω) − εd j

]−1
〉
,

(A5)

G f
ave(ω) = 〈

G f
j (ω)

〉
=

〈[
ω+ − � f j (ω) − V 2

ω+ − �ave(ω) − εd j

]−1
〉
,

(A6)

where j represents the disorder realization and, correspond-
ingly, εd j represents the random c-electron energy drawn
from some disorder distribution, P(εd j ), that in the current
case is represented by a Gaussian function with a mean
at 〈εd j〉 = εd

ave = 0, and the variance given by the disorder
strength, W . Notice that in the above equations, the CPA is
constituted in an arithmetic sum of the Gd

j (ω)’s, embodied
within the definition of 〈. . . 〉, and also in approximating
� j (ω) = �ave(ω) to be the same for all the disorder real-
izations. The disorder-averaged c- and f -electron spectral
functions may then be evaluated as Dd

ave(ω) = − 1
π

ImGd
ave(ω)

and D f
ave(ω) = − 1

π
ImG f

ave(ω), respectively.
The underlying lattice information is built in the equation

Gd
latt (ω) =

∫ ∞

−∞

ρ0(e)de

ω+ − εd
ave − �d

ave(ω) − e
= H[γave], (A7)

where a disorder-averaged c-electron self-energy, �d
ave(ω),

can be extracted from Eq. (A5), and H[γave] is the Hilbert
transform of γave = ω+ − εd

ave − �d
ave. Equation (A7) helps us

construct a new hybridization function,

�ave(ω) = γave − 1/H[γave]. (A8)

In the present calculations we use a semicircular den-
sity of states, corresponding to a Bethe lattice, that is
represented by ρ0(e) = 2

πt [1 − (e/t )2]1/2. This reduces to

�ave(ω) = t2

4 Gd
latt (ω). Equations (A5), (A7), and (A8) consti-

tute the DMFT self-consistency equations and determine the
disorder-averaged effective medium. At DMFT convergence,
Gd

latt (ω) = Gd
ave(ω) within some tolerance. Nonetheless, it is

worth mentioning that the qualitative features of the results
present are independent of the specific choice of the lattice.

The above flowchart hides the truly difficult part of this
entire calculation: obtaining the � f (ω; T ). So, we now com-
ment on the calculation of the interacting self-energy, � f (ω).
We use the local-moment approach to compute the f -electron
self-energy. The local-moment approach is a diagrammatic
perturbation theory based approach, built around the two
broken-symmetry, local-moment solutions (μ = ±|μ0|) of
an unrestricted Hartree-Fock mean-field approximation (note
that the notation for the local moment should not be confused
with the chemical potential). Subsequently, the physics due
to the Kondo effect embodied in spin-flip dynamics are built

in through an infinite-order resummation of a specific class
of diagrams that quantify the transverse spin-flip processes.
A low-energy spin-flip scale ωm is thereby generated and is
identified through the position of the peak of the imaginary
part of the transverse spin polarization propagator within this
approach. Physically and quantitatively, this low-energy scale
is of the same order as the Kondo scale ωK as mentioned in
this work. For more details about the local-moment approach
as used in impurity or clean and disordered lattice systems, we
urge the reader to refer to several previous works carried out
with this approach as outlined in Refs. [43–45,61]. For T > 0
the main difference occurs in the many-body diagrammatic
calculation of � f (ω; T �= 0) for a particular disorder realiza-
tion. This involves the calculation of the finite-temperature
spin polarization propagator. Full details of the structure
and implementation of the generic finite-T and asymmetric
Anderson impurity model are discussed in some of the early
works [43,45–47], which the reader is referred to for further
information.

For the disordered case, the calculations become enor-
mously complex as one now needs to obtain several such
Anderson impurity model solutions both at and away from
particle-hole symmetry including the capturing of exponen-
tially small Kondo scales spanning over approximately 6
orders of magnitude. It should also be noted that the con-
ventional numerical implementation of the local-moment ap-
proach discussed in the above references needs to be modified.
The respective modification was developed only recently and
outlined in great detail in Ref. [62]. We also state in passing
that the local-moment approach, in its current implementa-
tion, has its own drawbacks in regard to its applicability to
other Kondo correlated models like the Kondo model. Nev-
ertheless, in comparison to other state-of-the-art methods like
the numerical renormalization group or the continuous-time
quantum Monte Carlo method, the local-moment approach is
best suited for the current scheme of disordered correlated
models within the premises of DMFT-like scenarios.

APPENDIX B: TRANSPORT: DC CONDUCTIVITY

Within the framework of the DMFT, the knowledge of the
one-particle excitations represented by the Green’s functions
and their (ω, T ) dependencies are sufficient to determine
the transport properties. In particular, the absence of any
momentum dependence in the electronic self-energy leads to
the strict absence of any vertex corrections in the current-
current correlation function. Thus within DMFT [42], the
conductivity for a Bethe lattice is given by

σ (ω; T ) = σ0
t2

ω

∫ ∞

−∞
dω1

f (ω1) − f (ω + ω1)

ω

× 〈
Dd

ave(ε, ω; T )
〉
ε

〈
Dd

ave(ε, ω + ω1; T )
〉
ε
, (B1)

where, 〈Dd
ave(ε, ω; T )〉ε=

∫ ∞
−∞ dερ0(ε)Dd

ave(ε, ω1; T ), with
σ0∼104−105 �−1 cm−1, Dd

ave(ε, ω; T )=− 1
π

ImGd
ave(ε, ω; T ),

and f (ω) is the Fermi distribution function. The DC
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FIG. 7. The specific heat of a Kondo insulator is plotted as Cv

vs T on a linear scale for U = 1.3, 1.9, 2.3. Inset: ln(CvT ) vs 1/T
is plotted to demonstrate the gradual crossover to a low-T activated
behavior of Cv . The solid black line depicts a straight line fit. The
expected trend of a decreasing magnitude of the slope with an
increasing U is also successfully captured within the simulation.

resistivity can then be evaluated as ρ(ω = 0; T ) ∝
{∫ ∞

−∞
−∂ f (ω)

∂ω
[〈Dc

ave(ε, ω; T )〉ε]2dω}−1. For the hypercubic
lattice,

σ (ω; T ) ∝ 1

ω

∫ ∞

−∞
dω1

f (ω1) − f (ω + ω1)

ω

× 〈
Dd

ave(ε, ω; T )Dd
ave(ε, ω + ω1; T )

〉
ε
. (B2)

APPENDIX C: SPECIFIC HEAT

In the following we outline the method and assumptions
underlying the calculation of specific heat for the system
studied. The reader is also requested to see Ref. [57]. Our
basic assumption underlying the treatment of the disordered
system lies in mapping the interacting disordered system onto
an ensemble of independent Anderson impurities, each of
which is embedded into a bath via a hybridization function,
which in turn depends on �ave(ω) and the local potentials,
εd j’s, as outlined in Appendix A, by Eqs. (A5)–(A8). The
specific heat for the original system is then calculated by
taking the average over the single-impurity results with the
appropriate distribution function, which in the current case is a
Gaussian. The calculation of specific heat would thus involve
the computation of the total energies of the ensemble of An-
derson impurities, such that Cv (T ) = ∂Eave

∂T , where Eave is the
disorder-averaged energy of the system. In the following, we
outline the equations determining the total energy calculation
of a single-impurity Anderson model.

The single-impurity Anderson model is represented as

HSIAM =
∑
kσ

εckc†
kck + ε f

∑
σ

f †
σ fσ + Un f ↑n f ↓

+
∑
kσ

Vkc†
kσ

fσ + H.c., (C1)

where εck represents the energy dispersion of the underly-
ing host of c electrons in which a correlated impurity site
represented by f electrons is embedded via the hybridization
energy denoted by Vk , such that the hybridization function is
given by

∑
k

|V |2
ω+−εck

= �(ω); n f σ denotes the occupancy of
the f electron with spin σ on the impurity site, and U is
the Coulomb energy cost to be paid when two electrons of
opposite spin sit on the impurity site; ε f is the on-site potential
energy of the impurity site. Here,

Eimp = ε f

∑
σ

〈n f σ 〉 + UD + 1

2
Ehyb

+ 1

π

∑
σ

∫
dωnF (ω)Im

[
G f σ (ω)ω

∂�(ω)

∂ω

]
, (C2)

where D is the double occupancy on the impurity site and
can be represented in terms of the single-particle spectral
function, Dσ

G = −ImGσ (ω)/π , and the imaginary part of the
single-particle self-energy, Dσ

� = −Im�σ (ω)/π , as follows:

〈n f ↑n f ↓〉 = �
↑
Hartree

U

∫
dω1 D↑

G(ω1)nF (ω1)

+ 1

U

∫
dω1 dω2 D↑

G(ω1)D↑
� (ω2)

nF (ω1) − nF (ω2)

ω1 − ω2

= n↑
occn↓

occ

+ 1

U

∫
dω1 dω2 D↑

G(ω1)D↑
� (ω2)

nF (ω1)−nF (ω2)

ω1 − ω2
,

(C3)

where nF is the Fermi distribution function. The term Ehyb

represents the energy of the impurity due to its hybridization
with the c electrons and is given by

Ehyb = − 2

π

∑
σ

∫
dω nF (ω)Im[�(ω)Gdσ (ω)]. (C4)

As mentioned earlier, we use the local-moment approach to
compute the impurity self-energy and the impurity properties
within the DMFT framework. While this approach comes with
its limitations its single-particle properties have been exten-
sively benchmarked with the numerically exact, numerical
renormalization group calculations. For the current case of
total energy calculation, and thereby the specific heat, we
ensured that it reproduces the basic features in some known
limits of the system under consideration. In Fig. 7 we there-
fore plot the computed Cv (T ) for a clean Kondo insulator. As
seen from Fig. 7, where we plot ln(TCv ) vs 1/T , the method
clearly depicts the expected trends for that of a clean Kondo
insulator, namely, a low-T activated behavior. It also correctly
depicts a decreasing magnitude of the slope with increasing
U ; this slope is also a measure of the hybridization gap.
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