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Dark solitons revealed in Lieb-Liniger eigenstates
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We study how dark solitons, i.e., solutions of one-dimensional, single-particle, nonlinear, time-dependent
Schrodinger equation, emerge from eigenstates of a linear many-body model of contact-interacting bosons

moving on a ring, the Lieb-Liniger model. This long-standing problem has been addressed by various groups,
which presented different, seemingly unrelated, procedures to reveal the solitonic waves directly from the
many-body model. Here, we propose a unification of these results using a simple ansatz for the many-body
eigenstate of the Lieb-Liniger model, which gives us access to systems of hundreds of atoms. In this approach,

mean-field solitons emerge in a single-particle density through repeated measurements of particle positions in
the ansatz state. The postmeasurement state turns out to be a wave packet of yrast states of the reduced system.

DOI: 10.1103/PhysRevResearch.2.033368

I. INTRODUCTION

The famous Lieb-Liniger (LL) model [1,2] describes par-
ticles moving along a circle and interacting via § interatomic
potential. Such a simple interaction turns out to be a well-
suited approximation for realistic interactions between neutral
slow atoms. Thus, the LL model and its extensions remain an
active research topic in theoretical and experimental physics
and mathematics [3-7].

The same system, of N atoms with contact interaction, is
often treated within a simple mean-field (MF) approximation,
based on the nonlinear Schrédinger equation (NLSE):

242
ih o pmr(x, 1) = [— 2’% + 8N —1)|omr(x, t)|2i|¢MF(x’ 1),
&)
where the wave function ¢y (x, t) is interpreted as an orbital
occupied by a macroscopic number of atoms, m is the particle
mass, and g is the interaction strength. The latter equation
(1) is useful in many areas of physics ranging from nonlinear
optics [8] to hydrodynamics [9,10]. It is also a rare example
of a model with physical applications supporting solitonic
solutions [11], observed in atomic gases [12], plasma [13],
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water waves [14], and ferromagnetic materials [15]. In the
case of gases, when their atoms repel each other, i.e., g > 0,
a soliton is a rarefaction in the atomic density, which moves
with a constant speed, preserves its shape, and is unusually
robust thanks to the balance between dispersion and nonlin-
earity [16]. In this case (g > 0), the soliton is called a dark
soliton, which can be either black or gray. Black solitons
are characterized by a zero-density dip, i.e., a point where
the atomic density is exactly zero and the phase of ¢yp(x)
undergoes a sharp 7 jump, while gray solitons have a nonzero
density dip with the phase jump strictly smaller than 5.

There is a puzzling link between the MF dark solitons
and the solutions of the underlying many-body LL model.
More than a decade after the seminal paper by Lieb [1], a
coincidence between the dispersion relations of dark solitons
and certain many-body eigenstates, the so-called type-II el-
ementary excitations, was observed in the weak interaction
limit [17,18]. The type-II excitations are simply the many-
body eigenstates that minimize the energy for a fixed total
momentum, sometimes called yrast states [19]. Together with
the type-I excitations (corresponding to Bogoliubov quasi-
particles [1]), they constitute two branches of elementary
excitations, with dispersion relations sketched in the left panel
of Fig. 1.

Why is the correspondence between the yrast states and
dark solitons bizarre? First, yrast states, as eigenstates of
the system, are stationary solutions, whereas the MF dark
solitons are solutions of time-dependent Eq. (1). Moreover,
the LL model includes all correlations between particles in
a linear Hamiltonian, while the MF approach gets rid of
mutual correlations but introduces the nonlinearity in the
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The idea behind
the proposed Ansatz
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FIG. 1. As shown in Ref. [1], among eigenstates of the Lieb-
Liniger model there are special states, forming two branches of the
many-body elementary excitations (left panel). In this paper, we
show that states forming the type-II spectrum, i.e., yrast states, can
be approximated by a superposition of the mean-field dark solitons
with relative phases (marked with color) depending on the solitons’
positions (right panel). We discuss the validity of a suitable ansatz
and use it to unify different views on correspondence between the
yrast states of the Lieb-Liniger model and the mean-field solitons
from the nonlinear Schrodinger equation.

description. Finally, the eigenstates of the many-body model
have to be translationally invariant. On the other hand, the
dark solitons do not obey this symmetry. As the natures of the
MF solitons and the yrast states are so different, the question
arises whether they have something in common other than the
same dispersion relation.

There have been efforts to show that the relation between
these objects is deeper and in particular that the MF soliton
can be extracted directly from the yrast states. In Refs. [20,21]
it was indicated that MF solitons are already hidden in a single
yrast state, and they will emerge in sufficiently high-order
correlation functions. In turn, in Refs. [22-25] it was shown
that MF soliton appears in a single-particle density, when
calculated for an appropriate superposition of many yrast
states. The other relations between the many-body states and
solitons were also presented in Refs. [24,26-29]. Still, these
interesting results leave the field in an unpleasant situation of
many seemingly unrelated views on the connection between
MF solitons and many-body yrast states.

Here, we unify different approaches by employing a simple
but powerful ansatz for the yrast state of the LL model in
the MF regime of parameters. We use this ansatz to show
that the state which appears after “measuring” many particles
drawn from a high-order correlation function is a random
superposition of yrast states. The mutual unification between
two approaches becomes apparent as we consider systems
consisting of hundreds of atoms close to the MF regime.

The paper is organized as follows. In Sec. II, we remind
readers of the LL model and yrast state and define the param-
eter regime we are interested in. Our ansatz for yrast states
is introduced in Sec. III. Validity of this ansatz is discussed
in Sec. IV. In Secs. V and VI, we show how the different
constructions of the MF solitons out of the yrast states pre-
sented in Ref. [20] and Refs. [22-24] prove to be different
views of the same object. To make this paper self-complete,
we describe in detail all relevant analytical previous results
and our numerical approaches in the Appendixes.

II. THE LIEB-LINIGER MODEL AND YRAST STATES

We will investigate eigenstates of the many-body system of
N bosons moving along a circle of length L governed by the
LL Hamiltonian [30]:

hz N N
A— 2 P
A= —%;axj-i-gZMx] X)), )

J. 1
j<

where x; denotes position of the jth particle. As this system
is translationally invariant, the values of total momentum P =
—ih 2]};1 d,; can be used to label the energy eigenstates, even
in the case with interaction. The exact solutions for the eigen-
states of the L. Hamiltonian (2) for repelling (g > 0) particles
have been known since 1963 [1]. Among the eigenstates,
there are special ones that are called elementary excitations,
which can be divided into two families. Before Ref. [1], the
approximated theories were applied to find energies of weak
perturbations of an atomic gas. This originated in a single
family of the Bogoliubov elementary excitations (identified
with the type-I excitations). Its dispersion relation is given by
En(P) =4 (5 + 25 [311.

The unexpected second family, revealed by the exact so-
lution presented in Ref. [1], consists of the aforementioned
yrast states. These are also called “one-hole excitations” [1]
and the lowest energy solutions for fixed total momentum
[19]. The yrast state with the total momentum of P = %K
is represented by |K), where K is an integer.

As the subject of this paper is the relationship between the
yrast states and solitons, we will restrict our considerations
to MF regime as the NLSE should work, in principle, only
there. That is, within the regime of weak interactions with
only slightly correlated atoms, in which quantum phenomena,
like the quantum depletion of the ground state, are small.
On the other hand, it is desirable to see the effects that are
substantially different from the ideal gas case. Therefore, we
require the healing length & := \/A°L/gmN, which is close
to the soliton width, be much shorter than the system size
L [32]. If we were to consider a small number of atoms,
the latter condition would lead to a large g, resulting in
strong interactions. Therefore, we are interested in the limit in

which number of atoms N converges to infinity, an interaction
2

strength g goes to 0, but the MF parameter ng := mﬁ—éz, with
n := N/L denoting a gas density, is fixed. In this limit, the
LL coupling constant y o g/N [1] decreases with the number
of atoms as (ng)/N?, indicating that indeed the system enters
quickly a weak interaction regime.

The MF regime defined in such a way is very difficult to
handle in the frame of many-body analysis, which is usually
limited to systems with small number of atoms N. Apart from
the few existing semianalytical results [22,24,25], the majority
of approaches are devoted to small systems of ~10-20 atoms
[20,21,33-36] solved with brute force methods or around
~100 atoms solved with sophisticated and time-consuming
numerics [28,29,37,38]. Our way around these numerical
difficulties is to use a natural and simple ansatz for the yrast
states in the MF regime.
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III. THE ANSATZ FOR YRAST STATES

Here we shall discuss, step-by-step, our construction of the
ansatz for the yrast states in the MF regime. The main building
block of the ansatz consists of a product state of N particles
occupying a single orbital ¢(x) represented by ]—[1}’:1 o(x;).
Next, the ansatz has to belong to the same momentum space as
the yrast state |K); i.e., the translation of the N-particle wave
function by Ax needs to be equivalent to multiplying it by a

2 "
factor ¢! T K2x:

Y1+ Ax, o xy + Ax) = €T KM Y (g, Lxy). (3)

For any orbital ¢, one may construct the states satisfying
above condition by taking a continuous superposition of
product states shifted by the translation operator e~ P/ and
multiplied by the phase factor ¢/ Z k¥ over all possible shifts y
(see Appendix B1 for formal justifications):

L N
W) =N [y EOT o0 - @

J=1

where N is a (real) normalization factor.

As a yrast state |K) is the lowest energy state for fixed
total momentum equal exactly to % and therefore the
task would be to find an orbital ¢ that minimizes the av-
erage energy of the state (4). Finding such orbital would
be a difficult task, as the average energy of the state (4) is
given by a complicated formula (see Appendix B4). On the
other hand, it is known that energies of the yrast states |K)
and MF solitons are related, at least in the weak interaction
regime [17]. Therefore, as the ansatz for yrast state we choose
the state (4) with ¢(x) = ¢pmr(x), where gyp(x — vt) is the
solitonic solution of the NLSE with the average single-particle
momentum (—i% d,) equal to 2w/ K/(NL):

L N
Vit = A [y [Tt = . 9
0

j=1

We also use state defined in Eq. (5) in the Dirac notation:

L ~
[Vansatz) = N/ dy eizvayg*iPY/ﬁ|¢MF>®N. 6)
0

The exact form of solitonic solution on the circle ¢yg is
quite complicated—we give the appropriate formulas and our
numerical methods for handling them in Appendix A.

The construction of the ansatz is sketched in Fig. 1—the
many-body ansatz is understood as a continuous superposition
of macroscopically occupied MF solitons. Each soliton in the
superposition (5) appears with a phase prefactor ¢/27%/L (dis-
tinguished in Fig. 1 with a color) depending on the position
shift y.

We remark that the ansatz follows the ideas partially spread
in the community that the yrast states should be somehow
related to the product states of MF solitons but with unknown
position of the density dips, i.e., smeared over the whole
circle as shown in Fig. 1. Such an ansatz was presented in
the context of Bose-Einstein condensation [39]. Condensate,
as defined via Penrose-Onsager criterion [40], is supposed
to appear in the system of bosons at very low temperature.
As show in Ref. [39], surprisingly, even at T = 0, when the
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FIG. 2. Expectation value of Lieb-Liniger Hamiltonian (10)
evaluated as a function of the mean-field parameter ng in the mean-
field approximation, solution of Eq. (1) (solid gray line), for the yrast
state (Appendix C) (empty yellow circles), for the ansatz (6) (green
crosses), and using perturbation theory (dashed burgundy line). In
the top panels N = 100, while in the bottom ones N = 500. The
parameter K is set to N/4 in the panels to the left and to N/2 in
the panels to the right, as indicated in the upper left corner of each
graph. The top panels share a common energy scale and so do the
bottom ones.

system is in a ground state, there may be no condensation
at all. This happens when the system has some continuous
symmetry, like the translational invariance in our case. Once
the symmetry is broken, for instance, by measuring positions
of few bosons, condensation may emerge immediately. The
situation presented in this paper is similar but the resulting
condensate is (i) not a ground state of the system and (ii) is
temporary as it may disappear in time [21,23].

How accurately does the energy of the ansatz agree with
the energy of the exact LL solution, the yrast state, as the
interaction strength increasing? In Fig. 2, we present the
energies as functions of the MF parameter ng, where n = N/L
is the gas density, for the yrast state with K = N/2 (black
soliton) and K = N/4 (gray soliton) and the corresponding
ansatz (6) (see Appendixes B4, B6, and C for the details of
computations). For the reference, we plot results obtained via
the first-order perturbation theory with interaction strength g
being a small parameter (dashed burgundy line). In this case,
the average energy is evaluated in the yrast state correspond-
ing to g = 0, which is a state with N — K motionless particles
and the remaining K of them with momentum 2n/7/L. Its
average energy is a linear function of interaction strength g

equal to K“z’fr:f; + £[N(N — 1) + 2NK — 2K?]. The second
reference curve is the average energy of the MF state, with N
atoms occupying a single orbital ¢y (solid gray line).

As expected, the energies of yrast state, MF state, and
ansatz are close to each other, even for such strong interactions

that first-order perturbation theory fails. Moreover, in the ideal
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gas limit, our ansatz (6) is exactly equal to the yrast state
limg_, ¢ |Yansaz) = limg_,o |K) for any K # 0 [32]. In the same
limit, the energy of the dark MF soliton is actually slightly
smaller than the energy of the yrast state (see Appendix B2).

The intuitive definition of an ansatz, together with the
apparent agreement between its energy and the energy of yrast
state, motivate us to use the ansatz (6) instead of yrast state
in our study on the correspondence between LL model and
NLSE. Before we shall do it, we discuss in more detail the
validity range of the ansatz.

IV. VALIDITY RANGE

We analyze the validity range by determination how well
our ansatz approximates the true yrast state for a given
strength of interaction. The most objective and unambigu-
ous measure of the similarity between two states is fidelity
[{¥ransatz | K )|2. However, to calculate it directly, one would
need to express the yrast state in the position representation
(or to express the ansatz in terms of quasimomenta from
solutions of the LL model), which would be an extremely
demanding task. Therefore, we propose a simple (but very
rough) lower bound for the value of fidelity, based on the
values of energies calculated independently in each of the
formalisms mentioned.

As the ansatz has a well-defined total momentum, it can
be decomposed into the basis of many-body eigenstates of the
same total momentum:

[Wansatr) = a0 |K) + ) et [K7), (7)

j=1

where |K/) is the jth excited eigenstate with total momen-

tum 28K and energy El, and 35 |a;|> = 1. The excited

eigenstates are listed in the ascending order with respect to
their energy, ie., EL . < E2 < E3. <.

exc ~X exc ‘exc
The average energy (Vansawz|H |Vansaz) can be expressed

with the help of Eq. (7) as

o0
2 2 i
Eansaz = ol Eyrast + Z lex; | Eelxc

i=1

> Eyrast + (1 — |oto]?) (Egye — Eyrast)s ®)

where we use an inequality E¢. > EelXC and Eyy, is the energy

of the yrast state with the total momentum 2’Z—hK . Therefore,
the fidelity between the ansatz (6) and the corresponding yrast

state, i.e., |atg|?, obeys the inequality

1
E - Eansatz

| (Wansatz | K) [P > =2
ansatz = El _ Eyrast

exc

=: Fp, ©))

where we introduced a fidelity bound Fjp.

In Fig. 3, we show how Fp decreases with increasing
interaction strength. First of all, we observe that data points
calculated for a different number of atoms, but for the same
value of mean-field parameter ng, are close to each other.
Second, we see that for small values of ng, the fidelity between
the ansatz and the yrast state has to be very high (close to
one). Here, it is worth stressing the fact that the relatively
small value of Fp for much bigger ng does not automatically

O K=N/4 | _6255 K=N/2 |
& ¥ o]
~0.8F X 1F B .
] % 8
20.6F % 1 F 8 1
2 ¥
ey Ll ¥
2045y N=20 ® 1 [v N=20 ¥
=[x N=100 % [ x N=100
0-2F 0 N=500 ()] [© N=500, (b)]
0 20 400 20 40

Mean-field parameter, ng [h*/mL?]

FIG. 3. A rough lower bound for the fidelity between the ansatz
(6) and yrast state, Fp (9), as a function of the mean-field parameter
ng obtained for N = 20 (triangles), 100 (crosses), and 500 (circles).
The parameter K is set to N/4 in the panel to the left and to N/2 in
the panel to the right, as indicated in the upper right corner of each
graph. The panels share a common vertical scale.

implicate uselessness of the ansatz for stronger interactions—
the fidelity may be still close to one but calculating it directly
would require much more advanced numerical methods and
would be unfeasible for a large number of atoms.

Given that for ng < 25 the ansatz is a good approximation
for the yrast state, we proceed to use it as a replacement for
the yrast state to unify the results of other groups. We will
benefit from the fact that for the ansatz many calculations may
be done analytically and the remaining necessary numerical
analysis is feasible even for large number of atoms.

V. DARK SOLITONS REVEALED IN HIGH-ORDER
CORRELATION FUNCTIONS

In this section, we study the emergence of dark solitons
out of a single yrast state as was done in Ref. [20]. To make
the comparisons with the literature results easier, we use the
second quantization formalism, in which the energy operator
(2) may be written as

~

L —R* 2.4 8 - 2.3 2
H =/ dx | =— ¥ ()2 W) + ST P )* [, (10)
0 Zm 2

where W (x) [¥¥(x)] is an annihilation (creation) field op-
erator of a boson at position x satisfying the commu-
tation relations [¥(x), ¥'(x")] = 8(x —x), [¥(x), ¥(x)] =
[@T(x), @T(x’)] = 0. The second quantization formalism is
also very handy in performing any computations within the
ansatz (see Appendix B).

The object of interest in Ref. [20] is a mth-order correlation
function

om(x) oc (KW (). 07 (- 1) W7 (x)
x WU (x-1). W (x)IK), (an

normalized to 1. From its mathematical structure, Eq. (11) is
identified as a probability density function (PDF) from which
one draws a random position x,, of the mth particle to be mea-
sured. In Ref. [20], function (11) is considered for increasing
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m after subsequent measurements of particles. It was observed
that p,, resembles density |¢yr|> of the MF soliton from the
NLSE (1). However, in Ref. [20] the agreement between MF
solitons and the mth-order correlation function of a yrast state
was demonstrated only for the healing length £ > L and for a
few particles, namely for almost a noninteracting system. In
contrast, in the present paper, the ansatz enables the study of
healing lengths much smaller than the size of the system L for
a large number of particles.

To that end, we employ the following procedure using
Eq. (11) with the yrast state |K) replaced by our ansatz
[Vansatz) (6). We begin with a computation of the single-
particle reduced density matrix p; which is used as a PDF
to draw a random position x;. Subsequently, we compute
second-order correlation function p, which again serves as
the PDF for the next random position x, draw. Repeating this
process m — 1 times outputs the m — 1 positions, parameters
of the marginal distribution p,,(x) (11), evaluated for the
ansatz (6) (for details of our calculations, see Appendix B3).

In the left panel of Fig. 4, we show samples of correlation
functions p,,(x) of different orders m calculated for the param-
eters ng =25, N =500, and K = 50, 125, 250. Densities
|dme(x))? of the solitonic solution of Eq. (1) are shifted so
that their notch positions overlap with that of p;s0(x) for direct
comparison. We observed that the notch position of p,,(x) is
determined early, i.e., for low-order correlation functions, and
stabilizes as m increases, with slight fluctuations dependent
on the random particle position draws. Even highly disruptive
particle measurements caused by unlikely draws, such as that
exemplified by pso(x) for K = 100 in Fig. 4, do not prevent
the formation of a dark soliton. It is important to mention that
every curve presented in Fig. 4 is a result obtained for a single
simulation. In all simulations we have made, the high-order
correlation functions always resemble the density of a MF
soliton. Note that our result corresponds to the short healing
length £ = 0.2L. We observe that the MF soliton emerges
from the correlation function as m increases. We also notice
that obtaining a very good agreement between the density
emerging from the many-body calculation and the MF soliton
requires calculation of high-order correlation function.

The agreement between the MF approach and the ansatz
encourages us to investigate the spatial phase, which is pe-
culiar for dark solitons. A phase arg{¢mr(x)} of the soliton
changes quickly within the density notch, but remains linear
far from it (see the thick gray line in the right panel of
Fig. 4). Therefore, when the system is in the solitonic state,
the majority of atoms moves along the circle with a constant
velocity, apart from the place of rarefaction where particles
move quickly in the opposite direction. We extract the phase
of the many-body wave function using

g1(x) oc (U7 (). BT (e NPT ()0 (0)
X W (1). W (xy)), 12)

evaluated for the ansatz (6) (for details of our calculations, see
Appendix B3). As shown in the right panel of Fig. 4, the phase
of g; converges to arg {¢vr(x)} for increasing m. The phase of
MF soliton is shifted by the same amount as the corresponding
density |¢yr(x)|? in the left panel.

— m=150
MF approach

= m=>50
m=100

— m=1
— m=25

-(a)

1.3
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FIG. 4. Left: The mth-order correlation functions p,, (11). Right:
Phase arg{g;} of the correlation function (12). Both are plotted
with respect to the position of mth particle x. Different solid
lines correspond to different orders m from the shallowest to the
deepest dip in the left panels m = 1 (violet), 25 (blue), 50 (green),
100 (yellow), and 150 (red). The thick gray line corresponds to the
mean-field (MF) solitonic solution of Eq. (1). Parameters: ng = 25,
N =500, and K = 50, 125, and 250 for the top, middle and bottom
rows, respectively, as indicated in the bottom-right corner of each
graph.

The above results prove that, indeed, the MF solitons
emerge in the high-order correlation function evaluated for the
ansatz (6) in the true MF regime with £ significantly smaller
than L.

On the other hand, in Refs. [22-24], the MF solitons
were constructed from the many-body eigenstates of the LL
Hamiltonian (2) in a completely different way, as explained in
the next section.

VI. DARK SOLITONS AS SUPERPOSITIONS
OF YRAST STATES

In the previous section, we have shown using our ansatz
that the MF solitons emerge in high-order correlation func-
tions. An opposite direction was taken in Refs. [22-25] where
the dark solitons are constructed as a specific superposition of
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yrast states. Namely, the MF product state is expressed as

lone) Y~ D ax K ), (13)
=

where ag/ are expansion coefficients (drawn from a chosen
distribution) and |K’)y denotes a yrast state of the system
with N particles and the total momentum 2’L’—ﬁK ’. A compre-
hensive discussion of different ax choices can be found in
Refs. [22-25].

An interesting question arises as to whether these two
approaches of linking the yrast states of the LL. model with
the dark solitons from the NLSE complement each other
or are completely unrelated. We shall answer this question
by appealing to the definition of the high-order correlation
function p,, (11) and using the ansatz (6) for the yrast state.

Calculation of any correlation function by means of the
second quantization requires the sequential action of the an-
nihilation field operators at some points in space. One can
say that such procedure conditions a system’s wave function.
Physically, it corresponds to an instantaneous destructive mea-
surement of certain particle positions. Thus, we introduce a
conditional wave function /") of the system in a state |v)
after measuring positions of m particles given by

19"y o U o)W o) .. T e)IP).

To maximize the reliability of such a measurement in any
theoretical considerations, it has to be performed according to
a multivariate probability distribution determined by the wave
function for a given state. Therefore, each position x; from
Eq. (14) should be taken from the particular PDF p; defined in
Eq. (11).

The average density in the conditional state (14) p(x) :=
(P x)) is equal to the (m + 1)-th-order correlation
function p,,+1 (11) studied in the previous section. Therefore,
to bridge the different views on the correspondence between
the MF solitons and yrast states, one has to verify whether
the conditional wave function (14) for |y) being a yrast state
can be represented as a wave packet of yrast states, each with
N — m atoms and different total momentum. As calculations
with the help of the exact many-body states would be limited
to a small number of atoms, we again refer to the family
of ansatzes (6) as an approximation for the yrast states with
different total momenta 2’L”—hK '

For the ansatz (6), one can easily find the conditional state
[41]

|1ﬁ$sa[z> & \,I\I(xm)‘:p(xmfl) cee ‘IA’(xl)Wfansatz)

(14)

L m
2 _ip —
0</ dye't® | |¢MF(xj—)’) e P | ) BN
0 ;
j=1

15)

Because of the factors ¢np(x; — ¥), the solitons centered close
to the positions x;, where a measurement occurred, enter the
conditional state with lower weights, as compared to solitons
with a density dip far from x;. The conditional wave function
[P ) is no longer an eigenstate of LL system with N — m
particles as it is not translationally invariant. However, we can
always decompose this state into the set of eigenstates of LL

E 1.00%
=
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N
o
£ oos0p 0 e
z rv N=100 g%
B o N=250
F 025
o | ¢ N=500 | ¢ N=500
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o?) 0.00 . L y . L .
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Number of atoms lost, m
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0.6F K= (€)1 [ K=3 (d)1]
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5 04| m=10 ° | fm=10
g o - o 102
= + 28
o |
- ¥ X o)
= 02f o 1¢F #x {0.1
x o+
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X. » O
o_ommm.%m Mﬁ&moo
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Total momentum, 27AK'/L

FIG. 5. Top: Sum of weights of the yrast subspace ), |axs ? as
a function of the number of atoms lost m. Each value for a given
m corresponds to a different stochastic sequence of particle posi-
tions measured {x;} obtained for N = 100 (triangles), 250 (circles),
500 (rhombus), and 1000 (crosses), with K set to N/10 in the left
panel and N/4 in the right one. Bottom: Five representative distribu-
tions of weights ax’ as functions of the total momentum for m = 10
(left) and m = 40 (right). Each symbol corresponds to a different set
{x;}. Parameters N and K are set to 1000 and N/10, respectively. The
mean-field parameter ng is equal to 25 for every graph.

model for N — m particles in the following way:

|1/;:[115atz> = ZGK’|K/>N—M + ijh”j)N—m’ (16)
K’ J

where |}y 1s an eigenstate of the system, which is not the
yrast state, and > lax/|* + Zj |b;|*> = 1. The question is
whether the conditional state [/4 ) remains in the subspace
of the yrast states in the form of a wave packet. To answer the
question, we calculate the overlap between the ansatz (6) and
conditional state (15), finding the weight of the yrast subspace
given by >, |ax/|* and the @} distribution [42].

In the top panel of Fig. 5, we present sum of weights
> lax:|* of the yrast subspace as a function of a measured
number of atoms m for ng = 25, N = 100, 250, 500, 1000
and a fixed total momentum K = N/10 (left) and K = N/4
(right). We observe that the greater the number of atoms N
correlates with the weight of the yrast subspace for a given
value of m being closer to 1. It means that, indeed, the
conditional wave function, which reveals the dark soliton, is
approximated by a superposition of the yrast states. In the bot-
tom panel of Fig. 5, we plot five representative distributions
of akg as functions of total momentum ?K’ for ng = 25,
N = 1000, K = N/10, m = 10 (left), and m = 40 (right). The
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resulting distributions differ from shot to shot but they give
the same single-particle density. Note that this agrees with
the existing literature where different distribution models were
considered.

Our efforts in bridging the dark solitons and the yrast
states also result in the unification of the previous attempts
done in the literature [22-25]. In this section, we have shown
that the dark solitons hosted in the nonideal gas of N atoms
and revealed by partial measurements can be almost exactly
expressed as a wave packet of the yrast states of a gas of
N — m atoms.

VII. CONCLUSIONS

We studied the correspondence between the yrast states
of the Lieb-Liniger Hamiltonian and the mean-field solitons
from the nonlinear Schrodinger equation. To this end, we
proposed a simple construction for the yrast state (5) based
on mean-field product states with appropriate phase factors.
Using this ansatz, we were able to unify previous literature
results and observations [20,22-25] about the subject at hand.

The conditional wave function, which results from anni-
hilation of m particles in the ansatz state at random positions,
reveals the ultimate utility of our approach. The single-particle
density evaluated in the conditional wave function is the mth-
order correlation function resembling the mean-field soliton,
as discussed in Ref. [20]. Moreover, the conditional wave
function is found to be a wave packet of yrast states of N — m
atom system with different total momenta, as analyzed in
Refs. [22-25]. As can be readily seen, our proposal com-
plements various preceding studies, reproducing their results
with a singular construction and thus tying them into a single
picture.

The measurements needed to break the translational sym-
metry could be realized spontaneously, due to particle losses
which are inevitable in the ultracold gases. We plan to study
this in detail, using many-body methods. Another remaining
question concerns dynamical stability of the conditional wave
function. In all previous works, the emerging solitonic profiles
were, unlike the mean-field solitons, blurred during evolution
[21,22,24,25]. Tt was argued that the time of blurring should
increase to infinity in the thermodynamic limit [21,23]. How-
ever, this hypothesis has to be verified. This can be done again
employing our ansatz.
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APPENDIX A: MEAN-FIELD SOLITONS

1. Mean-field gray solitons

The solitonic solution ¢yr(x) of NLSE (1) was discussed
several times in the literature [11,23,43]. Here we briefly
present the final formulas, in the form which was used to
produce results of this paper.

We followed a procedure described in Ref. [23]. Solitonic
solution of NLSE is a running wave, ¢mp(x, 1) = ¢dmp(x —
vt), with speed v. In what follows, we will omit the time
dependence and give separately a solitonic density,

p(x) = lpur(0)I, (A1)
and its phase,

p(x) = Arg{pmr(x)},

and its speed v. The approach presented in Ref. [23] was de-
voted to the case of gray solitons, i.e., when ¢(x) is continuous
and p(x) is always larger than 0. The density and the phase
and the velocity of the dark soliton obeying NLSE, in terms
of four parameters denoted with a,, a,, a3 and k, are given by

p(x) = [a1 + (a2 — a3) sn*(g/az — arx), k1/N,
\/a2a3 l'[[ — Z—f am(,/g+/az — arx), k]

(A2)

v
o) =gt Vai(as —ar) ’
_ 44/02613 _
v = mn(] 612/611, k), (A3)

where sn(u, k) is the Jacobi elliptic function, IT is the incom-
plete elliptic integral of the third kind, with the modulus of
Jacobi’s elliptic function k, and am is the Jacobi amplitude.
Parameter a; has simple physical interpretation—it is the
minimal density in the solitonic solution. Periodic boundary
conditions for the phase and density and normalization con-
dition [ |¢pme|> = 1 lead to the following relations between
parameters ay, a», az, and the elliptic modulus k:

" 4K (k)[E (k) — K(k)]

| = o , (A4)
4 —(1-k

vy =y HKWIE®R) Lz(g KB o

a3:n+4K(k)E(k), (A6)

L%g
where K (k) and E (k) are the elliptic integrals of the first and
the second kinds, respectively.

To compute phase and density of a soliton that has a
desired minimum of the density a;, we first solve numerically
Eq. (A4) for the elliptic modulus &, and then we use Egs. (AS5)
and (A6) to find the remaining parameters a, and a3. Having
determined a;, a,, a3, and k, we can compute the soliton
wave function ¢yp(x) at any position x, using Egs. (A3)
and relation ¢pyp(x) = /p(x)e*®). The average momentum
(p) == ? f dx ()0 Py (x) is then computed numerically.

To find the MF soliton with target momentum piaeer =
2w hK/(NL), we repeat the steps described above varying a,,
until the numerically determined momentum matches parge;-
After a few bisection steps with respect to a;, the target MF
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0.4 introduces a discontinuity in the phase, a w jump, which is
1.0 the characteristic feature of a black soliton.
The minimal energy state in the space of functions with
_03 g 0.8 phase @ppack(x) is found with the split-step imaginary time
$ evolution, implemented as follows:
E 0.6 (1) We start with an arbitrary function ¢ (x).
= 0.2 b (2) We compute ¢(x) according to the split-step formula:
=
g 0.4 ~ s T
=i P) =T V), (A8)
dF 1
0.2 where V = glé(x)|? and T = —%8?. To act with the operator
0.0 . . 0.0 e~ 1% we apply Fourier transform F and its inverse 7!,
~0.50 —0.25 0.00 0.25 0.50 ’ 5 . R
Position, « [L] $x) = FI[Fe e Mg x)]
-1 T8t Vet
FIG. 6. Evolution of the density |¢(x, )|* governed by nonlinear =F {Fle |Fle ¢2(X i (A9)
Schrédinger equation (1). The mean-field black soliton ¢(x, =0)  to replace the cumbersome operator e®/2m% ith its
with density dip at x = 0, used as an initial state, was found numeri- Fourier representation.
cally according to steps (A8)—-(A11). The black line is the reference (3) We normalize the output of the previous step:
line—a trajectory of a point moving with the speed vy,cx = it /mL. .
7o P (x)
o o o P(x) := VTR (A10)
soliton is found—we stop bisection when relative discrepancy [ dx1p(x)l

between numerically computed momentum and the target
momentum is less than 1075,

2. Mean-field black solitons

The formulas presented in the previous section are derived
under the assumption that the density p(x) given in Eq. (A3)
is always greater than 0. Therefore, they cannot be used in the
case of a black soliton. In fact, already for a gray but very deep
solitons, Eq. (A4) becomes very demanding, as discussed in
Ref. [23] (see, for instance, Table 4 in Ref. [23] for the values
of the parameter k).

On the other hand, one can use the properties of the black
soliton to quickly find it numerically with other method. The
trick is to compute the lowest energy state of NLSE (1), but in
the space of functions with a given phase. We have learned
this method from Karpiuk [44] and used it successfully in
Ref. [45]. Precisely, we look for solutions with the phase

Polack (x) := m[sgn(x — L/2) — x/L],

where the signum function sgn is equal to 1 for positive
arguments and O for negative ones. The signum function

J

(A7)

(4) We define a new function ¢(x) as $(x) but with the
phase “overwritten” with @pjack:

B(x) = |p(x)] e, (A1)

We repeat steps (2)—(4) until the energy of ¢(x) converges.

The procedure described above was not proven to give the
exact result, although it may be rooted in the relations between
an yrast state and a ground-state solution for the interacting
bosons placed in a one-dimensional hard-wall box potential
[46], found by Gaudin [47]. We further verify numerically if
the final state ¢(x) is indeed the solution of the NLSE (1).
We use ¢(x) as an initial state ¢(x, + = 0) for the Eq. (1) and
check whether |¢(x, ¢ > 0)|? preserves its shape during evo-
lution and whether the density dip moves with the expected
speed. Example of such verification is presented in Fig. 6.
Additionally, we compare ¢ (x) with the series of the deepest
solitonic solution we were able to find with the methods for
gray solitons described in the previous section to check if they
converge to the black soliton found with the method describe
in this section.

APPENDIX B: THE ANSATZ

In the main text, we use the following ansatz for a yrast state |K),

L
Yansatz (X1, - .., XN) = N/ dy el%Ky H¢MF(xj -y
0

N
(B

J=1

where N is a normalization factor, and ¢yg(x) is the solitonic solution of the NLSE (1), which has the average momentum equal

2nh
to ZLK)N,

N L[t « 21 h
(P = —in / dx Gy ) dpr() = KN,
0

(B2)
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The normalization factor N from Eq. (B1) is evaluated from the normalization condition:

L L
2T gy By
1= <wansatz|wansatz> :NZ/ dy// dyelTK(y y)[<¢MF|®Ne #o y)/h|¢MF>®N]
0 0

L L L N
e .
=7 [Cay [Cayeton( [Cax g0 st -y + y’)) , (83)
0 0 0
where the overlap fOL dx ¢3(x) dpmp(x — y + ') and integrals over y and y" are evaluated numerically.

1. The Ansatz as an eigenstate of the total momentum operator

Let us start with a comment that MF product state
N
[ ] omrtx)) (B4)

does not have well-defined momentum; i.e., it is a wave packet of eigenstates with different momenta. In contrast, the ansatz (B1)
is an eigenstate of the momentum operator. To prove that we begin by showing that translation of all particles by an arbitrary
shift Ax is equivalent to multiplication by a global phase factor:

L N
Yansatz (X1 + Ax, ..., xy + Ax) = N/ dy el%Ky 1_[¢MF(xi + Ax — Y)
0 i=1

L— Ax N
=N / dye't ’l_[quF[xl 6 - a0 TEN N f dy ¢TI Gl — )

i=1
i 2K Ax t 1 PEKY ’ iZK Ax
= TN dy' e't | | OME(X — Y) = €' T T Yansa (X1, -, XN, (B5)
0 .
i=1

In the second to last equality, we have shifted the integration limits with no impact on its value due to the periodicity of integrated
function.
Using the relation above, one can explicitly check that ¥4, is indeed an eigenstate of P with corresponding eigenvalue
2nh
phiiy
—K:

N
P\Wansatz(xl’ coXN) = ﬁwansatz(xl + Ax, ..., XN + AX)|prx—0 = —ihi Z axjwansatz(xl + Ax, ..., Xy + AX)|ax=0
=1
= _lhaAXWansatz(xl + Ax, sy XNt Ax)|Ax:0 = _lhan[el L KAXWansalz(xlv sy xN):”Ax:O
27 h
= TKwansatz(xl’ co XN (B6)

Note that the ansatz is an eigenstate of the total momentum operator, irrespective of the choice of the orbital ¢(x). As discussed
in the main text, only with an appropriate choice of orbital does the ansatz become good approximation of the yrast state.

2. Comparisons between the mean-field product state and ansatz in the limit g — 0

As stated before, the MF product state (B4) is not a state with well-defined momentum and therefore it cannot be a good
approximation of the exact yrast state. That is why we have decided to consider a properly weighted, by a phase factor,
superposition of MF solitons. To get some insight into how these two are related, it is convenient to discuss their properties
in the limit g — 0. Here we discuss the case with mean total momentum % %, as for this one the analytical formulas are the
simplest. The MF orbital is
1 + e-‘riz%x

NOT

which we denote symbolically as |¢g_)0) f(|0> + |2 i/L)). The corresponding N-particle product state is a superposition
of the yrast states with coefficients given by square roots of the binomial distribution coefficients:

P8’ (x) = (B7)

20 1 ®N
s )Y = [ﬁqm + I2nh/L>)}

! ﬁ: <N>|n N — k. o, : k) (B3)
= TN 0 - — KRy 27 h/L - )
V2 gV
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where [ng : N — k, nozp/ : k) denotes the Fock state with N — k atoms in orbital with momentum 0 and k atoms in orbital with
momentum 27 /i/L. Similar analysis may also be done for any gray soliton [24]. The expectation value of kinetic energy is, as
expected, the same as for the exact yrast state |ng : N/2, nozp/r : N/2):

kQ2mh)>  2R°m? N
—0 —>0
(@ %" B Ner) 2NZ( ) ml>  ml? 2 (B9

However, for the mean value of interaction energy situation turns out to be slightly more complicated. We get

(¢§/I”F0|®NEmt|¢gﬁo = N Z ( ) ng: N —k, Moxn/L k|Eim|n() N —k, Nopn/L - k)
! ﬁ: N SIN(N = 1) + 2Nk — 2k%] = N(3N 3) (B10)
Nk k)2L T 4L ’
k=0

where in the first step we have used the fact than interaction energy operator Ei,, preserves the total momentum of the system and
therefore Vip (no : N — k, nogpnyr @ k|EiIng : N — k', nogpr 2 k') = 0. On the other hand, interaction energy of the yrast state
|n0 . N/2, Mawh/L - N/2> is

L N
(no : N/2, noxpnjr - N/2|Einelno : N/2, nogpyr : N/2) = i—L(3N -2). (B11)

We see that the expectation value of the mean-field product state’s energy is smaller than the energy of the yrast state. It must
be so, as the formula for interaction energy for the Fock state |ng : N — k, nazpy @ k): %[N (N — 1) + 2Nk — 2k?] takes its
maximum in K = N/2, and therefore increasing the impact of other Focks in MF product state may only decrease the energy.

We want to stress again that this result does not lead to contradiction with the definition of the yrast state (i.e., the state with
the lowest energy for given total momentum), as the MF product state is not an eigenstate of total momentum operator.

3. Conditional states, single-particle densities, and function g; after measurement of particle positions

The measurement of the particle positions is expressed by an action of the field operator W (x) on the ansatz. To some extent,
it can be evaluated analytically. If the particle has been measured at random position x;, then the conditional wave function

|1//ansalz) is given by
i R L P "
|1palnsalz> X \ll(xl)hpansalz) = Nf dy elTKy\ll(xl )eilpy/h|¢MF>®N
0
L 2 A~
= ,/\/f dy et U (x)) [pwp(x — ) &N
0

L
=N / dy e TR [N e (ry = lgue(r = )2V ], (B12)
0

where we used the fact that W (x)|f)® = f(x)|f)®¥~D, and introduced the proportionality symbol oc because the state
\il(x] )| WAnsatz) 18 not normalized.

By repetitive action of the field operator, we can write down a conditional state after m subsequent measurements which
occurred at random positions xj, X, ..., X!

m

m L
[P hnsar) | [ [ G | 1ansarr) o / dy e TR | TTome(x; — ) | lomr(x — )N (B13)
j=1 0

j=1

Given the conditional wave function, we write down its single particle density which is equal to (m + 1)-th-order correlation
functions used in the main text:

L L m
o1 () == (TT )V () = ||\if(x)|&;{lnm)||2 oc/o dy[o dy' | e TKO) ]_[¢K4F(x,-—y’)¢MF(xj—y)

j=1
L (N—m—1)
X P (x — Y )Pmp(x — y)[/o dzpyp(z — Y )mr(z — y)] } (B14)
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L L m
g1(0) == (¥ (@0)¥(0)) / dy / dy | TR T et — Y )wr(x; — )
0 0

j=1

L (N—m—1)
X Py (x — yﬁdw(—y)[/ dzye(z — Y mr(z — y)} } (B15)
0

4. Interaction and kinetic energy

Here we discuss our procedure of computing the interaction energy:

L L
Ein = § /O dx (W ansaee P TP )P ()W (0| Wansarr) = § /O dox (192 (0| Yransarz) 11 (B16)

where the square of the norm is in fact a double integral:

L L L N-2
192 (00| Wansaz) 1P = N*N(N = 1) / dy / dy e TKO [t — ¥ P pur(x — y)]z[ f dz ez — Y )pmr(z — y)} ,
0 0 0
B17)

where the last term under integral is an overlap between product states of orbitals ¢yr occupied by (N — 2) atoms, shifted

by (y — ). In the limit N — oo, the term J\/Z[fOL dz o3z — ¥)PME(z —y)]N ’ quickly decay at points y # y'. If this
term was approximated by a § function, precisely L3(y — '), then the interaction energy (B16) would coincide with the
interaction energy of a product of MF solitons. Yet, we keep this term and see that for our finite-size system it makes a
difference.

Similarly, we evaluate the kinetic energy

N

L L _hz
2
Ekin = / d-xl .. / d-xN w:nsatz(xls X2y oeny xN) Z %8.7(,' I/Iansatz(xlv X2y oens -xN)
0 0 ’

th L N—1
= dy / dy'e ’““’U dx1¢;‘4p(x1—y’)af,¢MF(x1—y)}[[o dz¢;4F<z—y/>¢MF<z—y)} , (B18)

where we used indistinguishability of bosons.

5. Overlap between the state after m measurements and yrast state

In Fig. 5, we present the projection of the state |/

ansaiz) ON the subspace of yrast states. This projection is evaluated as
|2, where

N—m
K=o lak’
ag = (K'|¥lr) (B19)

is the overlap between a state after m measurement and an yrast state |K’) with N — m atoms. We compute the values of ag
under an assumption that the ansatz (B1) is a fair approximation of the yrast state. Then ag: reads

L L m L (N—m)
ag = (K'[Vine) = NNk / dy f dy T EKD T pwr (xj — ) [ f dzab;zF;K/(z—y’)d)MF;K(z—y)} . (B20)
0 0 . 0
j=1

where we introduce another notation for solitonic solution of NLSE (1), ¢mpx, to indicate the momentum 277K /(NL). The
parameters x; are the random positions, at which particle were measured, drawn from probability density function (B14), and

N, N are the normalization factors of [/ ) and |K'), respectively.

6. Numerical methods

We discuss our numerical methods on an example of the interaction energy Eq. (B16). The computation requires
evaluation of overlap integrals A[w] : f dz pyp(2) omp(z — w) and Blw] : f dz [pye(2) dmr(z — w)] which we evaluate
for discrete values of shift w and store in a computer memory before the main computation. Then the interaction energy is
approximated by

NN — 1HYN? ,
Ein & ‘% ; ;B[y —Y1(Dly — y DV 2 TEOD (Ay ), (B21)
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where integrals [ dy were discretized to Zy with discrete values of y separated by Ay. The function D[y — y'] is equal to

Aly —y']fory > y and it is equal to (A[y’ — y])* otherwise. The results presented in Figs. 2 and 3 were evaluated on a numerical
grid 1000 points, i.e., with Ay = 0.001. Already for the simplest integration scheme possible, based on the rectangle rule, we

achieved converging results.

The results presented in other figures were not as sensitive to the numerical grid (as we were not interested in small
differences of energies evaluated in different approaches); therefore, we used a numerical grid with 80 points only, i.e., with

Ay = 0.0125.

APPENDIX C: THE LIEB-LINIGER EQUATIONS

Any eigenstate of LL Hamiltonian (2) is clearly defined by
a set of real numbers p;, so-called quasimomenta, satisfying
(see Eq. (2.15) in Ref. [2])

N
(—)N_le‘iﬁl’f =exp —ZiZarctan —h(pj —p) ,
mg

I=1
Viu Pj # Pl (C1)
where total momentum and total energy of such state may be

2
expressed respectively as 21;;1 p; and ZZJV: 1 % After taking
the logarithm of both sides of (C1) and multiplying by i, we

get

N
L ol —2 h(p; — p) VAN I
%pj— nl — E arctan| —— |; 12l # 1,

m
=1 8

N+1

I + €Z, (C2)

where I;’s are called Bethe quantum numbers, which uniquely
characterize the state of a system. It is worth noting that

the total momentum can be expressed as z’z—h ]}]:1 I;. The

ground state corresponds to {/; }IJ\.’=1 satisfying /41 — I; =1,
11 = —IN,i.e.,
N-1 N-=-3 N—1
N
Upkj= = {_T Ty -1,0,1,..., +T}
for odd N,
N-1 N-=-3 1 1 N -1
gy, = vt Vs vl
Uiz { 2 2 PR AR }
for even N.

(

Excitations of the type-1 (Bogoliubov states) and the type-1I
(yrast states), as well as the first excited state with total mo-
mentum 2’[—7’1( (for K > 2), may be generated by increasing
the value of appropriate /; by K:

(1) Bogoliubov states: I, = Iy + K,

(2) yraststates: Iy | _x = Ivy1-k + K,

(3) the first excited state: Iy, , = Ivjo-x + K.

One may check that in the limit g — 0 the formula for
the first excited states correctly reproduces the Fock state
with N — K + 1 particles in orbital with momentum 0, K — 2
particles with momentum 2n7i/L, and one with 2 x 2w h/L,
ie,|ng:N—K+1, Nopp/L - K -2, 227 k)L - 1).

1. Numerical evaluation

Choosing L, i*/mL?, and /L as the units of length,
energy, and momentum respectively, we get

N
pj=2ml; — ZZarctan(u>. (C3)
g
=1

For numerical convenience, instead of solving the above
system of N equations, we translate it to the problem of
minimizing the function of N variables:

N N 2
p]mir;N Z |:pj —2nl; + 2Zarctan(%>:| . (C4)

..... o =

which may be straightforwardly solved numerically even for
the number of particles N on the order of 500. Total energy of
such a state is given as

1
E= zzpﬁ. (C5)
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