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Quantum criticality of magnetic catalysis in two-dimensional correlated Dirac fermions
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We study quantum criticality of the magnetic-field-induced charge density wave (CDW) order in correlated
spinless Dirac fermions on the π -flux square lattice at zero temperature as a prototypical example of the magnetic
catalysis, by using the infinite density matrix renormalization group. It is found that the CDW order parameter
M(B) exhibits an anomalous magnetic field (B) scaling behavior characteristic of the (2 + 1)-dimensional chiral
Ising universality class near the quantum critical point, which leads to a strong enhancement of M(B) compared
with a mean-field result. We also establish a global phase diagram in the interaction-magnetic field plane for the
fermionic quantum criticality.
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I. INTRODUCTION

Correlated Dirac semimetals are one of the most funda-
mental systems not only in condensed matter physics but
also in high-energy physics. They exhibit semimetal-insulator
transitions at some critical strength of interactions V = Vc >

0 at zero temperature, and magnetic/charge ordered states
are stabilized for stronger interactions V > Vc [1–22]. These
ordered phases correspond to the dynamically massive states
with broken chiral symmetry in high-energy physics. Interest-
ingly, criticality of the quantum phase transitions are qualita-
tively different from those of conventional magnetic/charge
orders in purely bosonic systems, which is dubbed fermionic
criticality. In these criticalities, bosonic order parameter fluc-
tuations are intimately coupled with gapless Dirac fermions,
which results in nontrivial quantum critical behaviors depend-
ing on fermionic degrees of freedom in addition to the order
parameter symmetry and dimensionality of the system [23].
The fermionic criticality has been discussed extensively by
various theoretical methods such as lattice model simula-
tions [1–14] and renormalization group calculations [15–21],
and now the basic understanding of these systems has been
well established.

Correlation effects in a Dirac system become even more
significant in presence of an applied magnetic field. It is
known that an infinitesimally small magnetic field induces a
magnetic/charge order for any nonzero interaction V , which is
called the “magnetic catalysis” [24–44]. A uniform magnetic
field B will effectively reduce spatial dimensionality d of the
system via the Landau quantization, d → d − 2. Therefore,
the system becomes susceptible to formation of a bound
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state by interactions. For example, in the (2 + 1)-dimensional
Gross-Neveu-Yukawa-type models, it is shown that in the
limit of the large number of fermion flavors Nf corresponding
to a mean-field approximation, the order parameter behaves
as M(B) ∼ B for weak interactions V � Vc, M(B) ∼ √

B near
the critical point V = Vc, and M(B) − M(0) ∼ B2 for strong
interactions V � Vc. Although the magnetic catalysis was
first studied in high-energy physics, it was also discussed
in condensed matter physics, especially for graphene and
related materials [36–44]. Recently, there have emerged a
variety of candidate Dirac materials with strong electron
correlations [45–49] which could provide a platform for an
experimental realization of the magnetic catalysis, and a
detailed understanding of this phenomenon is an important
issue.

However, most of the previous theoretical studies for
systems near quantum criticality are based on perturbative
approximations [24–44,50], and the true critical behaviors
beyond the large Nf limit are rather poorly explored. This
is in stark contrast to the correlated Dirac systems without
a magnetic field, for which there are extensive numerical
simulations in addition to the field theoretical calculations,
and critical behaviors have been well established [1–22].
Therefore, further theoretical developments are required for
clarifying the genuine nature of the quantum critical magnetic
catalysis.

In this work, we study quantum criticality of the field-
induced charge density wave (CDW) order in spinless Dirac
fermions on the two-dimensional π -flux square lattice, which
is one of the simplest realizations of the magnetic cataly-
sis. We use a nonperturbative numerical technique, infinite
density matrix renormalization group (iDMRG) which can
directly describe spontaneous Z2 symmetry breaking of the
CDW order [51–56]. It is found that the order parameter
exhibits an anomalous critical behavior, which characterizes
the fermionic criticality as clarified by a scaling argument with
respect to the magnetic length. Based on these observations,
we establish a global phase diagram for the ground state near
the quantum critical point.
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II. MODEL

We consider spinless fermions on a π -flux square lattice
at half-filling under a uniform magnetic field. There are two
Dirac cones in the Brillouin zone, and each Dirac fermion
has two (sublattice) components, which corresponds to a
case where the total number of Dirac fermion components
is four, similarly to the honeycomb lattice model [3–8]. The
Hamiltonian is given by

H = −
∑

〈i, j〉
ti jc

†
i c j + V

∑

〈i, j〉
nin j, (1)

where 〈i, j〉 is a pair of the nearest-neighbor sites and the
energy unit is t = 1. The hopping is ti j = teiπyi exp(iAi j )
along the x direction on the y = yi bond and ti j = t exp(iAi j )
along the y direction. The vector potential is given in the
string gauge [57] with the period L′

x × Ly where L′
x is the

superlattice unit period used in the iDMRG calculations for
the system size Lx × Ly = ∞ × Ly. Typically, we use L′

x = 20
for Ly = 6 and L′

x = 10 for Ly = 10 (see also Appendix A).
Ai j = 0 corresponds to the conventional π -flux square lattice
without an applied field, while Ai j �= 0 describes an applied
magnetic field for a plaquette p, Bp = ∑

〈i j〉∈p Ai j . The mag-
netic field is spatially uniform and an integer multiple of a
unit value B = n × δB (n = 1, 2, . . . , L′

xLy) allowed by the
superlattice size, where δB = 2π/L′

xLy. The lattice constant
a as a length unit and the electric charge e have been set as
a = 1, e = 1, and the magnetic field is measured in the unit of
B0 = 2π .

The V term is a repulsive nearest-neighbor interaction
leading to the CDW state, and the quantum phase transi-
tion with B = 0 takes place at V = Vc  1.30t according
to the quantum Monte Carlo calculations for the bulk two-
dimensional system, where the criticality belongs to the
(2 + 1)-dimensional chiral Ising universality class [3–8]. On
the other hand, our cylinder system is anisotropic, and the
CDW quantum phase transition at B = 0 is simply a (1 + 1)-
dimensional Ising transition and critical interaction strength
depends on the system size Ly, which may be regarded as a
finite-size effect [58]. However, the system can be essentially
two-dimensional in space under a magnetic field when the
magnetic length lB = 1/

√
B becomes shorter than the sys-

tem size Ly. We will use this property to discuss the (2 +
1)-dimensional criticality. Note that the critical interaction
strength Vc  1.30t will be confirmed later within the present
framework.

In the following, we focus on the CDW order parameter,

M =
∣∣∣∣∣

1

L′
xLy

∑

i

(−1)|i|ni

∣∣∣∣∣, (2)

where the summation runs over the superlattice unit cell.
In the iDMRG calculation, we introduce a finite bond di-
mension χ up to χ = 1600 as a cutoff to approximate the
ground-state wave function in the form of a matrix product
state, and we can obtain the true ground state by a careful
extrapolation to χ → ∞ from the finite χ results [51–56] (see
also Appendix A). Generally, iDMRG with finite χ gives a
good approximation especially when the system considered is
gapful. As we will show, an extrapolation to χ → ∞ works
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FIG. 1. Extrapolation of the CDW order parameter M(B) for
the χ → ∞ limit at V = 0.50t . The blue (red) symbols are for
Ly = 6(Ly = 10), and the curves are power-law fittings. Each curve
corresponds to a magnetic field in the range 0 � B � 0.06B0.

well, because our system has a gap in presence of a nonzero B
due to the magnetic catalysis of the broken discrete symmetry
Z2 where there is no gapless Nambu-Goldstone mode. For
a comparison, we also discuss a two-leg ladder system with
Ly = 2 in Appendix B.

III. AWAY FROM QUANTUM CRITICAL POINT

Before discussing quantum criticality, we investigate the
magnetic catalysis when the system is away from the critical
point. First, we consider a weak interaction V = 0.50t < Vc =
1.30t for which the system at B = 0 is a Dirac semimetal
renormalized by the interaction. As exemplified in Fig. 1,
dependence of M(B) on the bond dimension χ used in the
calculation is negligibly small for Ly = 6, and it can be safely
extrapolated to χ → ∞ even for Ly = 10. Standard deviations
of the extrapolations are less than 1% and within the symbols.
Such an extrapolation can be done also for other values of V
as mentioned before, and all results shown in this study are
extrapolated ones.

In Fig. 2(a) we show the CDW order parameter M extrap-
olated to χ → ∞ for the system sizes Ly = 6 and Ly = 10
at V = 0.50t . The calculated results almost converge for Ly =
6, 10 and are independent of the system size, except for B = 0
where there is a finite-size effect due to lB = ∞, although
there is some accidental deviation around B  0.1B0. There-
fore, these results give the CDW order parameter essentially
in the thermodynamic limit Ly → ∞. In order to understand
impacts of quantum fluctuations, we also performed a mean-
field calculation for a comparison [59]. The critical inter-
action within the mean-field approximation is found to be
Vc = 0.78t , and the interaction V = 0.30t corresponds to the
same coupling strength in terms of the normalized interaction
g = (V − Vc)/Vc = −0.62. The iDMRG reuslts of M (blue
symbols) are larger than the corresponding mean-field results
(red symbols), M > MMF, which suggests that quantum fluc-
tuations enhance the order parameter even for the present
weak V . It is noted that the order parameter behaves roughly
as M(B) ∼ B as seen for small B, which is consistent with the
large Nf field theory [24–31].
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FIG. 2. (a) The CDW order parameter M at a weak coupling. The
blue symbols are the iDMRG results at V = 0.50t < Vc for Ly = 6
(squares) and Ly = 10 (circles), and the red symbols are the mean-
field results (V = 0.30t) for the same system sizes. (b) M at a strong
coupling V = 2.0t > Vc calculated by iDMRG (blue) and V = 1.20t
by the mean-field approximation (red). The interactions for iDMRG
and the mean-field approximation correspond to the same value of
the normalized coupling constant g.

Similarly to the weak interaction case, the CDW order
parameter M calculated by iDMRG (blue symbols) is en-
hanced at a strong interaction V = 2.0t > Vc compared to
the mean-field result MMF (red symbols) at the corresponding
interaction V = 1.20t (or equivalently g = 0.54) as shown in
Fig. 2(b). However, this is governed by the B = 0 values,
and an increase of M(B) by the magnetic field is roughly
comparable to that of MMF(B). The result that M > MMF

already at B = 0 is because they behave as M(V, B = 0) ∼ gβ

with β  0.5 ∼ 0.6 < 1 [3–8] while MMF(V, B = 0) ∼ gβMF

with βMF = 1 near the quantum critical point, and these criti-
cal behaviors essentially determine magnitudes of the CDW
order parameters away from the critical points. For B �= 0,
the order parameter behaves roughly as M(B) − M(0) ∼ B2

in agreement with the large Nf field theory [24–31].

IV. NEAR QUANTUM CRITICAL POINT

In this section, we discuss quantum criticality of the
magnetic catalysis based on a variant of finite-size scaling
ansatzes. Then, we establish a global phase diagram around
the quantum critical point in the interaction-magnetic field
plane, in close analogy with the well-known finite temperature
phase diagram near a quantum critical point.

A. Scaling argument

The enhancement of M(B) by the quantum fluctuations
can be even more pronounced near the quantum critical

FIG. 3. (a) The CDW order parameter M at the quantum critical
point V = Vc = 1.30t calculated by iDMRG together with the mean-
field result at V = 0.78t corresponding to g = 0. Definitions of the
symbols are the same as in Fig. 2. (b) M in the log-log plot. The black
solid line is the power law fitting M ∼ B0.355, and the black dashed
line is the large Nf result M ∼ √

B shown for the eyes.

point. Figure 3 shows the CDW order parameter at V = Vc =
1.30t (blue symbols) together with the mean-field result for
V = 0.78t (red symbols), corresponding to g = 0. Clearly,
the iDMRG result is significantly larger than the mean-field
result, and the enhancement is much stronger than that in
the weak interaction case. There are some deviations between
the results for Ly = 6 and Ly = 10 for small magnetic fields,
B � 0.01B0, due to a long magnetic length lB, and the CDW
order gets more strongly stabilized when the system size Ly

increases from Ly = 6 to Ly = 10. This should be a general
tendency since the CDW phase at B = 0 extends to a smaller
interaction region when the system size increases [58]. From
this observation, we can discuss scaling behaviors of the CDW
order parameter in the thermodynamic limit as a function
of B near the quantum critical point. Indeed, as shown in
Fig. 3(b), the calculated M except for the smallest values of
B converge for different system sizes Ly = 6, 10, and M(B)
exhibits a power-law behavior for 0.02B0 � B � 0.1B0. The
finite-size effects are negligible in this range of the magnetic
field, and furthermore the scaling behavior would hold for
smaller magnetic fields down to B = 0 in a thermodynamic
system Ly → ∞, since M(Ly = 10) shows the scaling behav-
ior in a wider region of B than M(Ly = 6) does. If we focus
on 0.02B0 � B � 0.1B0 in Fig. 3, we obtain the anomalous
scaling behavior M(B) ∼ B0.355(6) by power-law fittings for
different sets of data points. This is qualitatively different
from the mean-field (or equivalently large Nf limit) result
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MMF ∼ √
B, which eventually leads to the strong enhance-

ment of M(B) compared to MMF(B).
The calculated magnetic field dependence of the CDW

order parameter near V = Vc implies a scaling relation char-
acteristic of the quantum criticality. Here we propose a scaling
ansatz for the leading singular part of the ground-state energy
density of a thermodynamically large (2 + 1)-dimensional
system,

εsing
(
g, h, l−1

B

) = b−Dεsing
(
bygg, byh h, bl−1

B

)
, (3)

where D = 2 + z = 2 + 1 = 3 with z = 1 being the dynami-
cal critical exponent and h is the conjugate field to the CDW
order parameter M. The exponents yg,h are corresponding
scaling dimensions, and the scaling dimension of the magnetic
length is assumed to be one, as will be confirmed later. For a
thermodynamic system, the magnetic length lB will play a role
of a characteristic length scale similarly to a finite system size
L. Then a standard argument similar to that for a finite-size
system at B = 0 applies, leading to

M
(
g = 0, l−1

B

) ∼ (
l−1
B

)β/ν ∼ Bβ/2ν, (4)

where β and ν are the critical exponents at B = 0 for the or-
der parameter M(g, l−1

B = 0) ∼ gβ and the correlation length
ξ (g, l−1

B = 0) ∼ g−ν . One sees that this coincides with the
familiar finite-size scaling if we replace lB with a system size
L [60]. The critical exponents of the CDW quantum phase
transition in (2 + 1) dimensions are β = ν = 1 in the mean-
field approximation, and the resulting M ∼ B0.5 is consistent
with our mean-field numerical calculations [61]. The true
critical exponents for the present (2 + 1)-dimensional chiral
Ising universality class with four Dirac fermion components
have been obtained by the quantum Monte Carlo simula-
tions at B = 0 and are given by (β = 0.53, ν = 0.80) [3,4],
which was further supported by the infinite projected en-
tangled pair state calculation [14]. Other quantum Monte
Carlo studies with different schemes and system sizes give
(β = 0.63, ν = 0.78) [5,6], (β = 0.47, ν = 0.74) [7], and
(β = 0.67, ν = 0.88) [8]. These exponents lead to β/2ν =
0.33, 0.40, 0.32, 0.38 respectively, and the scaling behavior of
M(B) found in our study falls into this range and is consistent
with them.

The homogeneity relation (3) and the critical exponent can
be further confirmed by performing a data collapse. According
to Eq. (3), the CDW order parameter for general g is expected
to behave as

M
(
g, l−1

B

) = l−β/ν
B 	

(
gl1/ν

B

)
, (5)

where 	(·) is a scaling function. This is a variant of the
finite-size scaling similarly to Eq. (4). When performing a
data collapse, we use the results for 0.02B0 � B � 0.1B0 so
that finite-size effects are negligible. As shown in Fig. 4,
the calculated data well collapse into a single curve, and the
critical exponents are evaluated as β = 0.54(3), ν = 0.80(2)
with Vc = 1.30(2)t . This gives β/2ν = 0.34(2), which is
consistent with β/2ν = 0.36 obtained from M(V = Vc, B) at
the quantum critical point (Fig. 3). Our critical exponents are
compatible with those obtained previously by the numerical
calculations as mentioned above and roughly with those by the
field theoretic calculations [1–22]. Our numerical calculations
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FIG. 4. Scaling plot of the CDW order parameter M(V, B) in
terms of g = (V − Vc )/Vc and lB = 1/

√
B. The blue squares are for

Ly = 6 and red circles for Ly = 10.

for the (2 + 1)-dimensional criticality are limited to rather
small magnetic lengths lB bounded by the system size Ly,
and we expect that more accurate evaluations of the critical
exponents would be possible for larger Ly with controlled
extrapolations to χ → ∞.

The successful evaluation of the critical exponents strongly
verifies the scaling ansatz (3). Although the scaling ansatz
may be intuitively clear and similar relations were discussed
for the bosonic Ginzburg-Landau-Wilson theory in the context
of the cuprate high-Tc superconductivity [62–64], its validity
is a priori nontrivial, and there have been no nonperturbative
analyses even for the well-known bosonic criticality. This
is in stark contrast to the conventional finite system size
scaling at B = 0, which has been well established for various
systems [60]. The present study is a first nonperturbative
analysis of the lB-scaling relation, providing a clear insight
from a statistical physics point of view for the quantum
critical magnetic catalysis. Besides, the scaling ansatz could
be used as a theoretical tool for investigating some critical
phenomena similarly to the recently developed finite cor-
relation length scaling in tensor network states (see also
Appendix B) [14,58,65,66]. Based on this observation, one
could evaluate critical behaviors of the magnetic catalysis
in other universality classes in (2 + 1) dimensions, such as
SU(2) and U(1) symmetry breaking with a general number
of Dirac fermion components, by using the critical exponents
obtained for the phase transitions at B = 0 [1–22]. It would
be a future problem to clarify the exact condition for the lB
scaling to hold in general cases.

B. Phase diagram

The above discussions can be summarized into a global
phase diagram near the quantum critical point in the V -B plane
at zero temperature as shown in Fig. 5. Here we mainly focus
on the critical behaviors of the order parameter but not on
phase boundaries. In this phase diagram, there are two length
scales: one is the correlation length of the CDW order parame-
ter ξ at B = 0, and the other is the magnetic length lB. One can
compare it with the familiar finite temperature phase diagram
near a quantum critical point [67–69]. The length scale lB in
our case corresponds to a system size along the imaginary
time, Lτ = 1/T , in a standard quantum critical system at finite
temperature T . In a finite temperature system, anomalous
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FIG. 5. Schematic phase diagram in the V -B plane at zero tem-
perature and the B dependence of M(V, B) for fixed V in each
region. The CDW state at B = 0 is denoted as CDW0 and M0(V ) =
M(V, B = 0) ∼ (V − Vc )β . The crossover boundaries (dashed lines)
are characterized by lB  ξ .

finite temperature behaviors are seen when the dynamical
correlation length ξτ ∼ ξ z becomes longer than the temporal
system size, ξτ � Lτ , so that the critical singularity is cut off
by Lτ in the imaginary time direction [67–69]. Similarly in
the present system at T = 0, physical quantities will exhibit
anomalous B dependence when the spatial correlation length
ξ is longer than the magnetic length, ξ � lB, and the critical
singularity is cut off by lB in the spatial direction. In this
way, we can understand the scaling behavior M ∼ l−β/ν

B ∼
Bβ/2ν in close analogy with the finite temperature scaling
behaviors associated with a quantum critical point at B = 0.
On the other hand, the order parameter shows conventional
B dependence, M(B) ∼ B or M(B) − M(0) ∼ B2, when the
system is away from the quantum critical point, ξ � lB. We
note that our phase diagram would be qualitatively applicable
to an interacting Dirac system with a general flavor number Nf

including Nf → ∞ with β = ν = 1 [24,25]. It is also noted
that the Dirac semimetal phase will be extended to a B �= 0
region at finite low temperature [24,25,32–35,42–44], and the
critical behaviors can be modified as will be briefly discussed
later.

We would also expect that a similar phase diagram could
be seen even in a system with long-range interactions such as
QED-like theories in the massless limit, because it is consid-
ered that criticality of a quantum phase transition in a (2 + 1)-
dimensional Dirac system driven by a short-range interaction
is not affected by the long-range Coulomb interaction [9,19].
It is noted that, while the Coulomb interaction is (marginally)
irrelevant at the transition point, it will play an important role
at a weak coupling regime, and an order parameter could
behave as M ∼ √

B even for any small coupling [24,25].

C. Discussion

In this section, we discuss several issues in the magnetic
catalysis including possible future studies.

1. Comparison with conventional finite-size effects

In the previous section, we have discussed the effects of a
finite lB in analogy with the temporal size Lτ . Here we make

a comparison of the magnetic catalysis as a finite-size effect
in spatial directions with the conventional finite-size effects.
In a finite-size Dirac system with an isotropic linear system
size L in absence of a magnetic field, an order parameter M
(more precisely, a long-range order M =

√
〈M̂2〉) is usually

overestimated when compared with the thermodynamic value,
and it shows smooth crossover for a wide range of interaction
strength when the system size is fixed [1–13]. For different
system sizes, it behaves as M ∼ L−β/ν at the critical point
based on the conventional finite-size scaling ansatz. Similar
scaling relations hold also for an infinite system within a
framework of tensor network states where the system size L
is replaced by the correlation length due to a finite bond di-
mension (see also Appendix B) [14,58]. In this sense, at least
formally, the enhanced M by the magnetic field in the present
study is analogous to the overestimated M in a conventional
finite-size system without a magnetic field. Furthermore, these
two phenomena share a physical origin in common, i.e., the
dimensional reduction. As mentioned in Sec. I, a magnetic
field reduces the spatial dimensionality d → d − 2 via the
Landau quantization. Similarly, a small system size quantizes
the spatial degrees of freedom and possible wave numbers
are discretized. Consequently, the density of states at low
energy can become larger than that in the thermodynamic
limit and correlation effects can be amplified, which would
lead to enhanced or overestimated M. Therefore, the magnetic
catalysis can be regarded as a finite-size effect and is expected
to be a quite universal phenomenon. However, there is a
crucial difference that the finite lB effect can be observed
in an experiment as an anomalous B dependence M(B) ∼
l−β/ν
B ∼ Bβ/2ν , in contrast to the familiar finite-size scaling,

M ∼ L−β/ν .

2. Ground-state energy density

Although we have been focusing on the CDW order pa-
rameter, scaling behaviors will also be seen in other quantities
such as the ground-state energy density ε itself. According to
Eq. (3), ε of a thermodynamically large system is expected to
behave as

ε
(
g, l−1

B

) = ε(g, 0) + εsing
(
gl1/ν

B

)

l3
B

+ · · · . (6)

At the quantum critical point g = 0 (i.e., V = Vc), the prefac-
tor in front of l−3

B might be factorized as εsing(0) = C0v with
a constant C0 and the “speed of light” v characterizing the
underlying field theory with the Lorentz invariance [65]. Away
from the quantum critical point, the mean-field behaviors
will be qualitatively correct as we have seen in the CDW
order parameter M (Sec. III). Indeed, our iDMRG calcula-
tion and mean-field calculation suggest for a small magnetic
field l−1

B → 0, εsing(gl1/ν
B � −1) ∼ const > 0 in the Dirac

semimetal regime g < 0 (i.e. V < Vc), while εsing(gl1/ν
B �

1) ∼ l−1
B > 0 in the ordered phase g > 0 (i.e., V > Vc), which

is in agreement with the large Nf field theory [24,25]. Conse-
quently, the orbital magnetic moment morb = −∂ε/∂B will be
morb ∼ −√

B for the former (and also at the critical point) and
morb ∼ −B for the latter. Details of the ground-state energy
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density and the diamagnetic orbital magnetic moment will be
discussed elsewhere.

3. Finite temperature correction

Finally, we briefly touch on finite temperature effects
around T = 0. At finite temperature, the new length scale Lτ

is introduced, and we expect an anomalous T/
√

B scaling
in our system, by following a scaling hypothesis for the
singular part of the free energy density, fsing(g, h, l−1

B , L−1
τ ) =

b−D fsing(bygg, byh h, bl−1
B , bzL−1

τ ) with z = 1. For example, the
CDW order parameter would have a finite temperature correc-
tion given by M(B, T ) = Bβ/2ν�(T/

√
B) at the critical point

g = 0, where �(·) is a scaling function with the property
�(x → 0) = const. Since finite temperature effects are im-
portant in experiments, detailed investigations of them would
be an interesting future problem.

V. SUMMARY

We have discussed quantum criticality of the magnetic
catalysis in spinless fermions on the π -flux square lattice by
nonperturbative calculations with iDMRG. We found the scal-
ing behavior of the CDW order parameter M(B) characteristic
of the (2 + 1)-dimensional chiral Ising universality class, and
established a global phase diagram near the quantum critical
point. The present study is a first nonperturbative investigation
of fermionic quantum criticality under a magnetic field and
could provide a firm basis for deeper understandings of other
related systems.
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APPENDIX A: QUICK OVERVIEW OF iDMRG

In this Appendix, we briefly touch on the basics of
iDMRG [51–56]. The DMRG is a variational method to accu-
rately simulate a target quantum state based on the framework
of matrix product states. A ground state in a one-dimensional
system can be expressed in the form of a matrix product state,

|�〉 =
∑

i1,··· ,iN
Tr[M[1]i1 · · · M[N]iN ]|i1, · · · , iN 〉, (A1)

where N is the system size and {|i1, . . . , iN 〉} is a local basis.
The matrix M is decomposed to M = UV † by the singular
value decomposition, and only the largest χ singular values
in the diagonal matirx  are kept in numerical calculations.
This works quite well particularly for a gapped system where
the singular values decay exponentially in χ . The optimal
matrices are found by minimizing the variational state energy.

In iDMRG, we assume that the matrices {M[k]} have a
periodicity N ′, such that M[k] = M[k+N ′]. This enables us to

formally consider an infinitely large system by repeating the
unit cell structure,

|�〉 =
∑

Tr[· · · M[N ′]i0 M[1]i1 · · · M[N ′]iN ′ M[1]iN ′+1 · · · ]

× | . . . , i0, i1, . . . , iN ′ , iN ′+1, . . . 〉. (A2)

One can also use this scheme to study a two-dimensional
system by introducing a “snake-like trace” of the two-
dimensional lattice and regarding it as a one-dimensional
system with long-range hopping and interactions. In our study,
we consider Lx × Ly = ∞ × Ly system with the period L′

x
along the x direction. This system can be regarded as an
infinite one-dimensional system with the period N ′ = L′

x ×
Ly, and such a one-dimensional system can be described by
a matrix product state. Detailed discussions and applications
can be found in the literature [51–56].

APPENDIX B: TWO-LEG LADDER

We briefly discuss numerical results for a two-leg ladder
system at half-filling for a comparison. Here we do not use
the χ → ∞ extrapolation but instead apply correlation length
scaling for several values of χ . The two-leg ladder system
has been extensively investigated with and without magnetic
fields [58,70], but criticality of a magnetic-field-induced order
has not been examined before to our best knowledge. We
consider the Hamiltonian (1), where, instead of the string
gauge, the hopping integrals are now ti j = teiφ/2 along the

FIG. 6. (a) The CDW order parameter M for several values of the
interaction V calculated by iDMRG with the fixed bond dimension
χ = 200. (b) The scaling plot of M at the critical point V = Vc =
2.8678t in terms of the reduced coupling g = (B/B0)2 and the
correlation length due to the finite bond dimension ξχ . The critical
exponents are fixed as β = 0.125 and ν = 1. The bond dimensions
used in the calculation are χ = 20–200.
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chain-1, ti j = −te−iφ/2 along the chain-2, and the interchain
hopping ti j = t . This realizes a magnetic field B = φ/a2 with
the lattice constant a = 1, but note that the magnetic length
plays no role in the present two-leg ladder since the system
size in the y direction is only Ly = 2.

Figure 6(a) shows the CDW order parameter M as a
function of the magnetic field B for various interaction
strengths. Differently from the cylinder geometry discussed
in the main text, M remains zero for some range of B �=
0 when the interaction V is smaller than the critical value
Vc(Ly = 2) = 2.8678t . The field-induced phase transitions for

V <Vc(Ly = 2) are so sharp that it is difficult to numerically
identify the nature of these phase transitions. On the other
hand, M(B) at the critical point exhibits the conventional (1 +
1)-dimensional Ising criticality with the critical exponents
β = 0.125, ν = 1 as shown in Fig. 6(b). Here the reduced
coupling constant is chosen as g = (B/B0)2, and the cutoff
length scale is the correlation length due to the finite bond
dimension ξχ computed from the second largest eigenvalue of
the transfer matrix. The Ising criticality is consistent with the
previous study for the two-leg ladder with no magnetic field
whose criticality is described by free Marajona fermions [58].
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