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Microscopic theory for nematic fractional quantum Hall effect
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We analyze various microscopic properties of the nematic fractional quantum Hall effect (FQHN) in the
thermodynamic limit, and present necessary conditions required of the microscopic Hamiltonians for the nematic
fractional quantum Hall effect to be robust. Analytical expressions for the degenerate ground state manifold,
ground state energies, and gapless nematic modes are given in compact forms with the input interaction and the
corresponding ground state structure factors. We relate the long wavelength limit of the neutral excitations to
the guiding center metric deformation, and show explicitly the family of trial wave functions for the nematic
modes with spatially varying nematic order near the quantum critical point. For short range interactions, the
dynamics of the FQHN is completely determined by the long wavelength part of the ground state structure
factor. The special case of the FQHN at ν = 1/3 is discussed with theoretical insights from the Haffnian parent
Hamiltonian, leading to a number of rigorous statements and experimental implications.
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I. INTRODUCTION

For condensed matter systems with nontrivial topological
orders, the robustness of the topological properties at low
temperature usually requires the ground state to have a finite
energy gap to all excitations in the thermodynamic limit [1].
In general for such systems, the universal topological features
dominate the ground state response, and the geometric proper-
ties of the system are less important. The incompressible frac-
tional quantum Hall (FQH) states are such examples where
topological orders arise from strong interactions between
electrons, without needing protection of any symmetry. There
are also examples of compressible FQH states with no plateau
formation for the Hall conductivity, with anisotropic stripe or
bubble phases that are gapless and spontaneously break the
rotational/translational symmetry [2–10]. An interesting ex-
ception is the nematic fractional quantum Hall effect (FQHN),
which was recently discovered in experiments [11,12]. Here
we have examples where topological orders and nontrivial
geometric effects coexist: there is an anisotropic longitudinal
resistivity enhanced by low temperature, and at the same time
with a robust plateau for Hall conductivity.

It is generally believed that the robustness of the Hall
conductivity plateau in FQHN is due to the finite charge gap,
while the anisotropic longitudinal resistivity is a result of
the neutral excitations in the long wavelength limit becom-
ing gapless [13]. Such neutral excitations form a degenerate
ground state manifold. They are thus prone to spontaneous
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symmetry breaking. It is well known that the neutral excitation
in the long wavelength limit is a quadrupole excitation that
breaks rotational symmetry, potentially leading to anisotropic
transport [14,15]. Nontrivial geometric effects also arise in
experiments where rotational symmetry is explicitly broken
[16,17]. Several field theoretical studies of the FQHN have
been carried out, either by assuming that the neutral excita-
tions go soft in the long wavelength limit [13] or by adding
an attractive quadrupolar interaction [18,19]. These theories
capture the topological order and the nematic order from
spontaneous symmetry breaking, as well as the neutral and
charge gaps [20–22] in a phenomenological manner.

Microscopic theories are needed to better understand the
assumptions used in the field theoretical approaches. For the
FQHN most studies so far are based on numerical computa-
tions. Finite system analysis has established that the single
mode approximation (SMA) is exact for the neutral excita-
tions in the long wavelength limit [15]. This is true from
numerical calculations for all accessible system sizes, and is
expected to be true in the thermodynamic limit. The Jack poly-
nomial formalism, the composite fermion picture, and the first
quantized form of the neutral excitations are also constructed
to shed more insights on the nature of such many-body states
[15,23–27]. Numerical studies have tentatively shown that
short range interactions can lead to instability of the intrinsic
guiding center metric, and such “squeezed” Laughlin states
can harbor uniform nematic order [14]. It is, however, difficult
to show microscopically how assumptions in the FQHN field
theory can arise from bare interactions between electrons with
numerical studies. In particular, important physics happening
at the long wavelength limit is inaccessible given the relatively
small system sizes that can be computed numerically.

In this paper, we compute analytically the conditions for
the long wavelength limit (small q) of the neutral excitation
to go soft in the thermodynamic limit. Using the Laguerre
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polynomials as the basis, variational energies of the neutral
excitations at small q are controlled by two universal, tridi-
agonal characteristic matrices �(1), �(2) that can be computed
exactly and are independent of microscopic details. The SMA
at small q becomes exact eigenstates when it is degenerate
with the ground state, and we can identify it with the guiding
center metric deformation of the ground state. Thus the onset
of the FQHN can be understood as the case when the shear
modulus of the gapped ground state of the quantum fluid
vanishes [28].

We also identify trial wave functions for the gapless ne-
matic mode from spontaneous symmetry breaking, where the
spatially varying “nematic wave” can be shown explicitly.
While �(1) controls the neutral excitation gap, the dispersion
of the nematic mode is controlled by �(2). The tridiagonal
nature of �(1) and �(2) implies the dynamics of the FQHN
only depends on the long wavelength part of the ground
state structure factor, if the interaction is short ranged. The
analysis here can much simplify the numerical computation
of the nematic phase and its finite size scaling. The derived
results are applicable to FQH phases at any filling factor. The
necessary analytic conditions for the robustness of the FQHN
phases are also illustrated with numerical calculations using
the Laughlin state at filling factor ν = 1/3 as an example.

The FQHN phase at ν = n + 1/3 is also special, because
we can show that the quadrupole excitations are exact zero
modes of the Haffnian model Hamiltonian. We will thus
use it as an example to illustrate the validity of the general
methodologies (both analytic and numerical) proposed in this
paper. The connection to the Haffnian state also allows us to
derive a family of two-body interactions supporting robust
FQHN in the presence of a strong magnetic field, which
can be realized experimentally with suitable tuning of the
sample thickness and interaction screening. We also show the
presence of Landau level (LL) mixing can potentially help
stabilize FQHN in higher LLs, pointing to diverse conditions
for the experimental observations of the FQHN in the neigh-
borhood of the fully gapped Laughlin phase.

This paper will be organized as follows. In Sec. II we com-
pute the long wavelength energy gap of the neutral excitations
from the SMA in the thermodynamic limit and show that it
is determined by the universal characteristic matrix �(1). We
term such neutral excitations in the long wavelength limit as
the quadrupole excitations. In Sec. III we show the quadrupole
excitations can be identified as a uniform area-preserving
deformation of the ground state, both from the wave function
and the energetics perspectives. Thus the quadrupole excita-
tions harbour uniform nematic order [14]. In Sec. IV we derive
the expression of the spatially varying nematic order from the
trial wave functions of the gapless nematic mode in the FQHN
phase. We also show the quadratic dispersion of the nematic
mode is controlled by another universal characteristic matrix
�(2). In Sec. V we analytically investigate several families of
short range microscopic models and derive conditions for the
FQHN to be viable. In Sec. VI we carry out a preliminary
numerical analysis focusing on the Laughlin phase at filling
factor ν = 1/3, corroborating with the analytical results to
show tentative evidence of FQHN when the two-body interac-
tion is a family of linear combinations of the V̂ 2bdy

1 , V̂ 2bdy
3 , and

V̂ 2bdy
5 pseudopotentials derived from eigenstates of �(1). In

Sec. VII we discuss the contrasting natures of the quadrupole
and dipole neutral excitations at ν = n + 1/3, showing the
interesting connection of the quadrupole excitations to the
Haffnian model Hamiltonian, with various experimental im-
plications. In Sec. VIII we summarize the results of this paper
and discuss future works.

II. SMA IN THE LONG WAVELENGTH LIMIT

Let us start with a two-body Hamiltonian in a single
Landau level (LL) as follows:

Ĥ =
∫

d2q

4π
Vqρ̂qρ̂−q, (1)

where ρ̂q = ∑
i eiqaR̂a

i is the guiding center density operator
and R̂a

i are the guiding center coordinates with only matrix
elements between states in the same Landau level. It also
satisfies the commutation relation [R̂a

i , R̂b
i ] = −iεabl2

B, where
lB is the magnetic length. The number of electrons is given by
Ne and we set lB = 1. Assuming a fixed filling factor, Eq. (1)
is incompressible with both neutral and charged quasielectron
gaps, with ground state |ψ0〉 and energy E0. Defining the reg-
ularized guiding center density as δρ̂q = ρ̂q − 〈ψ0|ρ̂q|ψ0〉 =
ρ̂q − Neδ(q)

2πq with q = |q|, the GMP algebra [29] is given by

[
δρ̂q1

, δρ̂q2

] = 2i sin
q1 × q2

2
δρ̂q1+q2

. (2)

The regularized ground state structure factor is defined as
Sq = 〈ψ0|δρ̂qδρ̂−q|ψ0〉 and we also have the following rela-
tionship for fermions [30,31]:

sq = Sq − S∞ = −
∫

d2q′

2π
eiq×q′

sq′ . (3)

We now start with the family of SMA trial wave functions
|ψq〉 = δρ̂q|ψ0〉, which are orthogonal to the ground state with
variational energies Eq. The variational energy gap is thus
given by (see Supplemental Material [32])

δEq = 〈ψq|Ĥ|ψq〉
〈ψq|ψq〉 − E0 = 〈ψ0|[δρ̂−q, [Ĥ, δρ̂q]]|ψ0〉

2Sq
(4)

= 1

2Sq

∫
d2q′

4π
Vq′

[
2 sin

(
1

2
q′ × q

)]2

×(sq′+q + sq′−q − 2sq′ ). (5)

Here we assume rotational invariance. In the long wave-
length limit, the ground state structure factor is given by
lim|q|→0 Sq = ηq4, where η = Neκ/2 and κ is bounded below
by the Hall viscosity of the ground state [28]. By expanding
Eq. (5) to the leading order in q, and using Eq. (3), we have
the following expression:

δEq→0 = 1

2η

∫
d2q′d2q′′

8π2
Vq′ (q′

xq′′
x )2eiq′×q′′

sq′′ + O(q2)

= 1

512η

∫∫ ∞

0
dq1dq2Vq1 sq2 q1q2

[
0F1

(
1,−q1q2

4

)

+ 0F1

(
2,−q1q2

4

)]
+ O(q2). (6)
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Here q1 = |q′|2, q2 = |q′′|2, and 0F1(a, x) is the regularized
hypergeometric function (see Supplemental Material [32]).
For very short range interactions (e.g., with V̂ 2bdy

1 pseudopo-
tential [1]), δEq→0 > 0 and is buried in the continuum of
multiroton excitations. If Vq in Eq. (1) can be tuned such
that δEq→0 → 0, then |ψq〉 becomes an exact eigenstate,
degenerate with |ψ0〉, given that there is no level crossing from
V̂ 2bdy

1 → Vq.
To evaluate the numerator in Eq. (6), we first note that,

due to the property of the structure factor in Eq. (3), sq is a
linear combination of Laguerre polynomials Lm(q2) with odd
m. Expanding Vq in the same basis of Laguerre polynomials,
we have the following:

δEq→0 = 1

256η
�mn

(1)cmdn + O(q2), (7)

Vq =
∑

m

cme− q2

2 Lm(q2), sq =
∑

n

dne− q2

2 Ln(q2), (8)

�mn
(1) = 1

2

∫∫ ∞

0
dq1dq2e− q1+q2

2 q1q2Lm(q1)Ln(q2)

×
[

0F1

(
1,−q1q2

4

)
+ 0F1

(
2,−q1q2

4

)]
. (9)

Note that the two-body Haldane pseudopotential interaction
Hamiltonians are also given by the Laguerre polynomials:

V̂ 2bdy
n =

∫
d2q

4π
e− q2

2 Ln(q2)ρ̂qρ̂−q. (10)

Using the HardyHille formula, Eq. (9) can be further simpli-
fied to give

�mn
(1) = [(1 − m)mδm,2+n − (1 + m)(2 + m)δm,n−2

+ 2(1 + m + m2)δm,n](−1)m, (11)

where both m, n are odd integers and �mn
(1) is a tridiagonal ma-

trix. It is then useful to treat Vq, sq as vectors c, d, respectively,
in the basis of Laguerre polynomials, where d is completely
from the ground state. The dot product c · d gives the ground
state energy E0, and the variational energy gap is given by the
inner product:

δEq→0 = 1

256η
〈c, d〉�(1) + O(q2). (12)

Note that �(1) is a well-defined mathematical function
given by Eq. (11), while the only physical input to the Hamil-
tonian is given by c. There is a one-to-one mapping of d from
c, with the ground state of Eq. (1). For short range interactions
with cm = 0 for m > m0, we only need to consider dn with
n � m0 + 2. A more detailed analysis will be presented in
Sec. V.

III. NEMATIC ORDER FOR THE NEUTRAL EXCITATIONS

We now explore the nematic order of the neutral excita-
tions in the long wavelength limit by connecting them to the
anisotropic ground state from deforming the guiding center
metric of |ψ0〉. The area-preserving deformation generators
can be defined as �̂ab = 1

4

∑
i{R̂a

i , R̂b
i } with the following

closed algebra [28]:

[�̂ab, �̂cd ] = i

2
(εac�̂bd + εad�̂bc + εbc�̂ad + εbd�̂ac).

(13)

The family of anisotropic ground states can thus be defined
as |ξθ,φ〉 = eiαab�̂

ab |ψ0〉, with αab as a symmetric matrix. The
Bogoliubov transformation of the guiding center coordinates
is given by R̂′a = λa

bR̂b = e−iαcd �̂cd
R̂aeiαcd �̂cd

; thus |ξθ,φ〉 is the
ground state of Eq. (1) with the transformation in Vq: qa →
(λ−1)b

aqb, or q2 → gabqaqb, where gab is a unimodular metric
parametrized as follows:

g =
(

cosh θ + sinh θ cos φ sinh θ sin φ

sinh θ sin φ cosh θ − sinh θ cos φ

)
. (14)

For the rotationally invariant |ψ0〉, the variational energy of
|ξθ,φ〉 only depends on θ , which parametrizes the squeezing
of the metric, as follows (see Supplemental Material [32]):

lim
θ→0

δEα = 〈ξθ,φ|Ĥ|ξθ,φ〉 − E0 = 1

64
〈c, d〉�(1)θ

2. (15)

Comparing Eq. (12) and Eq. (15), we can see the variational
energy of the neutral excitations in the long wavelength limit
is related to the shear modulous 〈c, d〉�(1) of the ground state.
Thus, for small |q| and θ , |ψq〉 and |ξθ,φ〉 approximately have
the same energy with θ = 1/(2

√
η).

In general, |ψq→0〉 and |ξθ→0,φ〉 do not have to be related to
each other even when they have the same variational energy.
However, when 〈c, d〉�(1) → 0, they will belong to the same
manifold of degenerate ground states. Denoting φq as the
angle of the momentum, we can identify the following at small
q based on inversion symmetry, as long as |ψq〉 are the only
states degenerate with the ground state:

|ξθ,φq〉 ∼ |ψ±
q 〉 = 1√

2Sq
(|ψq〉 ± |ψ−q〉). (16)

This is the ground state of the FQHN after spontaneous sym-
metry breaking, and finite size numerical analysis indicates
that |ξθ,φ〉 could have uniform nematic order [14]. Thus, in the
long wavelength limit, |ψ±

q 〉 is equivalent to the guiding center
metric deformation of the ground state at q = 0, if the shear
modulus 〈c, d〉�(1) vanishes. This leads to the development of
the nematic order for the neutral excitations in this limit.

IV. GAPLESS NEMATIC WAVE AT CRITICAL POINT

The long wavelength spatial modulation of the nematic
order should give rise to the gapless excitations that are related
to the Goldstone mode. To identify these states let us first
define the operator of the local nematic order, which is a
slightly modified version from [14]:

N̂ =
∫ 2π

0

dθl

2π
e2iθl lim

|l |→0

1

|l |2 δρ̂(r + l/2)δρ̂(r − l/2), (17)

where l is an arbitrary point-splitting vector, θl is the angle of
l , and δρ̂(r) is the Fourier component of δρ̂q. For a transla-
tionally invariant state |ψ0〉, the nematic order is independent

033362-3



BO YANG PHYSICAL REVIEW RESEARCH 2, 033362 (2020)

of r, and we have

〈ψ0|N̂ |ψ0〉 = − lim
|l |→0

1

|l |2
∫ 2π

0

dθl

2π
e2iθ sl̃ , (18)

where sl̃ is defined by Eq. (3) with l̃a = l−2
B εablb, lB being

the magnetic length. Equation (18) is clearly zero if |ψ0〉
is rotationally invariant and nonzero if the structure factor
has a quadrupole symmetry. For the nematic ground state
established in Eq. (16), simple algebra gives us

〈ψ±
q |N̂ |ψ±

q 〉 = N (1)
q ± cos 2qrN (2)

q , (19)

where N (1)
q ,N (2)

q are two nonuniversal functions of q that can
be computed analytically (see Supplemental Material [32]).
Thus, at least when q is small enough, |ψ±

q 〉 is the nematic
mode with spatially varying nematic order given by the second
term in Eq. (19).

To look at the dispersion of this nematic wave, we can
expand Eq. (5) to the next order. When Eq. (12) vanishes at
the FQHN phase, we have (see Supplemental Material [32])

δEq→0 = 1

768η
〈c, d〉�(2) q

2 + O(q4), (20)

�mn
(2) = (−1)m[(2m − 1)(m − 1)mδm,2+n

+ (1 + m)(2 + m)(2m + 3)δm,n−2

− 2(1 + 2m)(1 + m + m2)δm,n]. (21)

It is important to note that the dispersion of the gapless
nematic mode is quadratic. The necessary condition for the
FQHN phase is thus 〈c, d〉�(1) = 0, 〈c, d〉�(2) > 0. Both �(1)

and �(2) are universal tridiagonal matrices independent of the
microscopic details of the Hamiltonians.

Effective field theories generally predict a linear gapless
Goldstone mode in the FQHN phase, from the long wave-
length fluctuation of the nematic director [13,18,20]. The ve-
locity of this Goldstone mode vanishes at the quantum critical
point (QCP) when the neutral mode becomes degenerate with
the ground state, leading to a quadratic dispersion from the
nematic amplitude fluctuation. The microscopic theory agrees
with this effective description in the neighborhood of the
QCP with 〈c, d〉�(1) ∼ 0, where the analytical derivation of the
variational energies and the quantum states are exact. Deep in
the isotropic phase where 〈c, d〉�(1) > 0, our calculations will
only be accurate if the SMA still gives good variational wave
functions of these Hamiltonians.

It is important to highlight that, deep in the nematic phase
when 〈c, d〉�(1) < 0 and the global ground state is no longer
isotropic, the long wavelength SMA may not be good trial
wave functions. This could lead to the microscopic theory
here not being able to capture the linear Goldstone mode, and
it does not preclude the existence of such linear dispersions
away from the critical point. On the other hand, moving
deep into the nematic phase generally implies moving further
away from the model Hamiltonians of the fully gapped FQH
states, which will likely close the charge gap and destroy
the FQHN phase. Gapless smectic or stripe phases are ex-
pected especially in higher LLs. It is also worth noting that,
unlike quantum Hall ferromagnets, the nematic director in
FQHN are not really physically measurable quantities. Both
the fluctuations of the nematic amplitude and the nematic

director lead to the fluctuation of the nematic order defined
in Eq. (17), associated with the quadratic gapless dispersion.
Further investigations are warranted both for the effective and
the microscopic theories in the nematic phase far away from
the QCP.

V. MINIMAL MODELS FOR NEMATIC FRACTIONAL
QUANTUM HALL EFFECT

To understand the dynamics of the FQHN phase from
microscopic Hamiltonians analytically as much as possible,
we start with the spectrum of �(1), which is real given that the
matrix is symmetric. The eigenvalues λ1 and corresponding
eigenvectors 	cλ1 satisfy the following relationship:

cλ1
k+2 =

(
λ − �k,k

(1)

)
cλ1

k + �k,k−2
(1) cλ1

k−2

�k,k+2
(1)

, (22)

where k is a non-negative odd integer and cλ1
−1 = 0. In partic-

ular, if the microscopic two-body interaction is 	c = 	cλ1 , we
then have limq→0 δEq = (λ1E0)/(256η), where E0 = 	c · 	d is
the ground state energy in the q = 0 sector. It is easy to check
that λ1 = 0 gives c0

k = const, which is not relevant for realistic
interactions.

We now focus on a special family of interactions with 	c
such that ck = cλ1

k for k � k0, and ck = 0 for k > k0. These
are interactions from the eigenvectors of �(1) but with a cutoff.
For the more realistic case where ck decreases with k, we need
to have λ1 < 0. Simple algebra leads to

δEq =
[
λ1E0 + �

k0,k0+2
(1)

(
cλ1

k0
dk0+2 − cλ1

k0+2dk0

)]
256η

+ O(q2).

(23)

Thus the variational energy gap requires three inputs from
numerical computations: dk0 , dk0+2, and the ground state
energy E0. This relationship is valid at any filling factor in
the thermodynamic limit.

A. k0 = 1

Without loss of generality, we always set c1 = cλ1
1 = 1. The

simplest case is for k0 = 1. For the Laughlin state at filling
factor ν = 1/3, it is the model Hamiltonian leading to E0 =
d1 = 0. This gives us

δEq = 3

128η
d3 − 15

128η
d3q2 + O(q4) (24)

from Eq. (23) and Eq. (20). The neutral mode is gapped with
a negative dispersion at q → 0, as it should be. This is also
true for filling factor ν � 1/3. More precisely, let Ne, No be
the number of electrons and number of orbitals respectively
on the sphere or disk geometry; we then have d1 = 0 for No >

3Ne − 2.
For No < 3Ne − 2, d1 does not vanish, and the variational

energy gap is given by

δẼq = 3

128η
(d3 − d1) + 3

384η
(3d1 − 5d3)q2 + O(q4). (25)

Thus for very short-range interactions (in the neighborhood
of pure V̂ 2bdy

1 pseudopotential), the necessary condition for a
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gapped translationally invariant ground state is for d3 > d1.
The global ground state will no longer be translationally
invariant with d1 � d3, and spontaneous symmetry breaking
will generally occur. For d1 > 5d3/3, the dispersion of the
neutral excitation is positive, indicating a possibility of the
charged gap and quantized Hall conductivity. We will explore
these possibilities in Sec. VI.

B. k0 = 3

For the case of k0 = 3, the model Hamiltonian is a linear
combination of the V̂ 2bdy

1 , V̂ 2bdy
3 pseudopotentials (with co-

efficients c1, c3). This can be fully tuned by λ1, with c3 =
1 + λ1/6. The physically relevant regime is thus for c3 >

0 and λ1 > −6. Let the eigenvectors of �(2) be 	cλ2 with
eigenvalue λ2; the following expression can be obtained with
some algebraic manipulation:

δEq ∝ λ1E0 + 20
(
c3d5 − cλ1

5 d3
)

+ [
λ2E0 − 180

(
c3d5 − cλ2

5 d3
)]

q2 + O(q4). (26)

Since we are only interested in the signs of each term, we
ignore the denominator in Eq. (26). We also have λ1 = 6c3 −
6, λ2 = 18 − 30c3, cλ1

5 = 1 + 4λ1/15 + λ2
1/120, and cλ2

5 =
11/25 − λ2/27 + λ2

2/5400. Given that E0 = 	c · 	d > c3d3, the
condition for the first line of Eq. (26) to be zero, and the
coefficient of the second line to be positive leads to a narrow
range in the parameter space of c3 and d5/d3 as shown in
Fig. 3. Note that d5/d3 is not an independent parameter. It is
fully dependent on 	c and the filling factor, and can in principle
be obtained in numerics by finite size scaling.

C. k0 = 5

We now look at model Hamiltonians with pseudopotential
combinations of V̂ 2bdy

1 , V̂ 2bdy
3 , and V̂ 2bdy

5 . For simplicity we
will only look at the case of c1 = cλ1

1 , c3 = cλ1
3 , and c5 =

cλ1
5 . While this does not cover all possible cases, it gives

much insight into the behaviors of such model Hamiltonians.
Similar to the case of k0 = 3, we can obtain the following
relationship:

δEq ∝ λ1E0 + 42
(
c5d7 − cλ1

7 d5
)

+ [
λ2E0 − 546

(
cλ2

5 d7 − cλ2
7 d5

)]
q2

+ (
cλ1

5 − cλ2
5

)
(682d5 − 180d3 − 546d7)q2 + O(q4).

(27)

Here λ1, λ2, cλ1
5 , cλ2

5 are defined the same way as in
Eq. (26), while cλ1

7 = −2/5 + 57c3/70 + 19c2
3/35 + 3c3

3/70
and cλ2

7 = −166/819+18899c3/24570+23c2
3/91 + 5c3

3/546.
Comparing to Eq. (26) we have an additional parameter d3.
For different values of d3/d5, we can determine the respective
narrow ranges of parameter space for c3 and d7/d5, in which
the FQHN phase is possible. This is captured in Fig. 1, for
the range of 0 < d3/d5 < 2. Not much can be done ana-
lytically at this stage, though at any specific filling factor,
some numerical computations can be performed to explore
the possibility of the FQHN phases at different values of λ1.

FIG. 1. Range of parameters where the FQHN is possible at
different values of d3/d5, as given by Eq. (27). The shaded area is the
range of c3 as given by the left axis. The line plot is the maximum
allowed value of d7/d5 at different values of d3/d5, as given by the
right axis. The heat map gives the maximum allowed value of d7/d5

for different values of c3 and d3/d5.

VI. NUMERICAL STUDIES

All results in Sec. V are valid in the thermodynamic
limit and are applicable at any filling factor. In this section,
we perform some preliminary numerical analysis at filling
factor ν = 1/3, about possible microscopic models for the
FQHN. While we are looking at a particular filling factor, the
methodologies for the numerical analysis described here can
be applied to any filling factors. A more specialized analysis
of the FQHN states for the Laughlin phase will be given in the
next section.

We will show that the analytic derivations from the pre-
vious sections can strongly constrain the parameter space for
the realization of FQHN in the thermodynamic limit. Thus,
numerically, we only need to look for the FQHN phase over
a much smaller parameter space in the form of the linear
combination of pseudopotentials. All numerical computations
in this work are done with the spherical geometry [33], and we
analyze the ground state wave functions and energy spectra for
reasonably large system sizes. While the comparison between
finite size scaling of numerical results and the analytical
results in Sec. V can never be conclusive, the results here
nevertheless illustrate the usefulness and limitations of finite
size numerical calculations.

The neutral gap of δEq→0 in this section is not computed
from the energy spectrum. Instead we use Eq. (12) to evaluate
the energy gap numerically from the ground state in the L = 0
sector alone. Not only is this a simpler calculation technically,
it also has smaller finite size effect. This is because �(1) is
calculated from the thermodynamic limit and the only size
dependent quantity is d. In addition, it allows us to compute
the energy gap in the limit q → 0, which is inaccessible from
the full spectra of the finite systems.

For the model Hamiltonian consisting of only V̂ 2bdy
1 pseu-

dopotential (i.e., c1 = 1, ci>1 = 0, or the k0 = 1 model), there
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FIG. 2. Value of d1/d3, computed from the ground state of the
V̂ 2bdy

1 interaction at different Hilbert spaces (indexed by the number
of electrons Ne and number of orbitals No). The Jain series are
highlighted with different colors, where the numbers in the brackets
are (Ne, No, ν ). The number on top of each Ne sector is the minimum
number of No included in the plot; for smaller No not included in this
plot we have d1/d3 > 1.

are no tuning parameters, and the variational energy gap of the
SMA state is completely controlled by d3 − d1 [see Eq. (25)].
In Fig. 2, we scan over all possible combinations of Ne, No

that are numerically accessible, and compute d1, d3 from the
ground state in the L = 0 sector (not necessarily the global
ground state). The numerical results show strong evidence
that for any FQH phases that can potentially be supported by
the k0 = 1 model (which in particular includes many Abelian
Jain states), the SMA states in the long wavelength limit are
gapped from the ground state in the L = 0 sector.

An interesting observation is that, with the V̂ 2bdy
1 model

Hamiltonian and for all finite size systems we have accessed,
the global ground state is in the L = 0 sector if and only
if the filling factor and the topological shift corresponds to
the Jain series, i.e., No = (2n + 1)Ne/n − n − 1, and their
particle-hole conjugates. These Hilbert spaces are highlighted
in Fig. 2. For all of these cases we have d1/d3 < 1, indicating
gapped neutral excitations as |q| → 0. For other combinations
of Ne, No where the global ground state is not in the L = 0
sector, it could be because the neutral excitations go soft
even for finite size systems (probably of unknown filling
factors), and they could still have a charge gap. However,
in all cases where No is reasonably large, d1/d3 < 1 as well.
There is thus no numerical evidence of the FQHN. For each
Ne, d1/d3 > 1 only when No is rather small. This implies that,
as Ne increases, we can only have d1/d3 > 1 at rather large
filling factors (ν � 0.75).

We now move onto k0 = 3 model Hamiltonians that are lin-
ear combinations of V̂ 2bdy

1 and V̂ 2bdy
3 pseudopotentials, where

without loss of generality we set c1 = 1. From the general
expression of Eq. (26), the allowed range of c3 and d5/d3

is given in the shaded area in Fig. 3(a), which is computed
analytically in the thermodynamic limit. In particular, the
FQHN phase is not possible in the thermodynamic limit
for 0.123 < c3 < 0.462. Any numerical evidence suggesting
otherwise is due to finite size effects.

FIG. 3. (a) Shaded region is the possible values of (c3, d5/d3)
for the FQHN phase, based on the analytical results of Eq. (26) in
the thermodynamic limit. The upper end of the vertical dotted lines
gives the upper bound of d5/d3 at different values of c3, also given by
the horizontal lines in the inset with the same color code. The inset
also shows the scaling of d5/d3 for different system sizes at different
values of c3. (b) The scaling of Eq. (26) for different system sizes and
different values of c3. The inset is the energy spectrum for c3 = 0.462
and the low-lying neutral modes are highlighted in red.

For the Laughlin phase at ν = 1/3, finite size analysis is
carried out at different values of c3, at which d5/d3 is com-
puted from the ground state (in the L = 0 sector). They show
that it is very unlikely for d5/d3 to be below the maximally
allowed value [see Fig. 3(a), inset] at all possible values of c3.
The scaling shows that the variational energy gap [first line
of Eq. (26)] also seems to be finite, which is consistent [see
Fig. 3(b)]. While the finite size energy spectrum does seem to
indicate softening of the neutral mode in the long wavelength
limit [see Fig. 3(b), inset] for some values of λ1, that most
likely will not be the case when larger system sizes become
accessible numerically.

For k0 = 5 model Hamiltonians, the addition of V̂ 2bdy
5

introduces additional variables c5 and d7, making thorough
numerical investigation difficult. We look at the special case
when 	c comes from the eigenvectors of �(1), i.e., ci = cλ1

i
for i = 1, 3, 5, and ci>5 = 0. From the analytic expression
of Eq. (27), we have rigorous results on the range of c3

in different scenarios. At filling factor ν = 1/3 numerical
computations show it is unlikely for d3/d5 > 2 in the ther-
modynamic limit for a wide range of c1 > c3 > c5. For each
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FIG. 4. Left panels are finite size scaling of (a) d3/d5, (b) d7/d5, and (c) numerator of δEq=0 for the k0 = 5 models with different values
of λ1, corresponding to different sets of values of c1, c3, c5. The right panels give the energy spectra with 11 electrons and 31 orbitals for
(d) λ1 = −3.5, (e) λ1 = −3.2, and (f) λ1 = −3. The low-lying neutral excitations are highlighted.

value of d3/d5, we can analytically calculate the possible
range of c3, d7/d5 from Eq. (27) for the FQHN phase. The
results are plotted in Fig. 1. In particular, only a small range
of c3 needs to be explored for the potential realization of the
FQHN at ν = 1/3.

Since there is a unique relationship between λ1 and (c3, c5),
different values of λ1 are plotted in Fig. 4, by diagonalizing
the full Hilbert space and extracting di from the corresponding
ground states. In the limit of Ne → ∞, d3/d5 seems to fall in
between 0.5 and 1.5 [see Fig. 4(a)]. From Fig. 1 we thus need
d7 ∼ 0.7 (without being too precise), and this also seems quite
possible from Fig. 4(b). For λ1 < −3.5, the finite size scaling
of Eq. (27) seems to clearly indicate that δEq→0 does not go
soft. On the other hand, for λ1 > −3.2, the finite size effect
becomes strong, potentially indicating the divergence of the
ground state correlation length and the closing of the neutral
gap in the long wavelength limit [see Fig. 4(c)].

We thus expect the minimal microscopic model for the
FQHN at ν = 1/3 consists of a linear combination of

V̂ 2bdy
1 , V̂ 2bdy

3 , V̂ 2bdy
5 . The results here apply to zero tempera-

ture, where spontaneous symmetry breaking can only happen
at δEq→0 = 0. It is possible to have a range of parameters
for the FQHN phase to be stable, especially if the interaction
is allowed to be more long ranged. At finite temperature,
the FQHN phase can be observed as long as the neutral
excitation gap δEq→0 is much smaller than the charge gap
�Ec, and the former is smaller than the thermal energy kBT ,
i.e., δEq→0 � kBT � �Ec. Thus, in a realistic experimental
setting, the FQHN phase could be stable against disorder and
small perturbations, as long as the charge gap is the dominant
energy scale.

VII. NEMATIC FRACTIONAL QUANTUM HALL FOR
THE LAUGHLIN PHASE

While the previous sections describe analytic and numeri-
cal methodologies for studying generic FQHN phases at any
filling factors, in this section we reveal more special properties
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of the Laughlin phase at ν = 1/3 that are relevant to the
FQHN. Not only do these special properties allow us to
extend the general results derived in the previous sections,
they also lead to much better understanding of the nature of
the softening of the neutral modes at ν = 1/3. A number of
favorable experimental conditions are also proposed, which
can lead to more robust realization of the FQHN phase and
even the observation of Haffnian-like FQH states [34,35], as
we will explain below.

A. Elementary excitations of the Laughlin phase

It is instructive to first go over the elementary neutral
excitations for the Laughlin phase. The low-lying neutral
excitations of the Laughlin phase have been well studied
[15,23–26,33,36]. In the long wavelength limit, the neutral
excitations are quadrupole excitations well approximated by
the projected density mode, or the single mode approximation
[29]. The model wave functions of the entire branch of the
neutral excitations (also called the magnetoroton mode, with
quadrupole excitations at small momenta and dipole exci-
tations at large momenta) can be constructed either using
the Jack polynomial formalism [15] and the corresponding
first quantized wave functions [26], or using exciton states
in the composite fermion picture [23–25]. At large momenta,
a magnetoroton mode is a neutral excitation that consists of
a pair of well separated quasielectron and quasihole. The
separation increases with the momenta, together with its
dipole moment. The interaction between the quasielectron and
quasihole thus becomes negligible at large momenta, and the
neutral excitation energy is equal to the energy of creating
one quasielectron and one quasihole (each in isolation). Thus
the charge gap is more or less the same as the neutral dipole
excitations at large momenta.

As the momentum of the magnetoroton mode decreases, so
does the separation between the quasielectron and quasihole
(and thus its dipole moment). In the long wavelength limit, the
dipole moment vanishes, with the quasielectron and quasihole
merging to form a uniform geometric deformation of the
Laughlin ground state. Such excitations do have nonvanishing
quadrupole moments. These characteristics of the neutral
excitations are universal and not just limited to the Laughlin
phase.

While the magnetoroton mode forms a continuous band of
dispersion, it is clear the excitation at the long wavelength
limit is qualitatively different from that at large momenta.
This is in particular reflected in their dynamical properties
as we will show shortly. The physical intuitions on how
the dynamics of the quadrupole and dipole excitations can
be affected by microscopic interaction can be made more
transparent with the root configurations of their model wave
functions as follows [15,37,38]:

1.1.0000100100100100 · · · L=2,
˚ ˚

1.1.0001000100100100 · · · L=3,
˚ ˚

1.1.0001001000100100 · · · L=4,
˚ ˚

1.1.0001001001001000 · · · L=5.
˚ ˚

(28)

Here each root configuration represents a monomial, or a
Slater determinant given by the occupation of orbitals in a
single LL. The digits going from left to right correspond to
orbitals going from the north pole to the south pole on the
spherical geometry, and “1” means the orbital is occupied,
while “0” means the orbital is unoccupied by the electron.
The solid and open circles beneath the digits indicate the
locations of quasiparticles (of charge e/3, when three consec-
utive orbitals contain more than one electron) and quasiholes
(of charge −e/3, when three consecutive orbitals contain
fewer than one electron). Each root configuration represents
a many-body wave function, where only bases “squeezed”
from the root configuration have nonzero coefficients. The L
sector to the right of the root configuration is the total angular
momentum quantum number on the sphere. The quadrupole
excitation is given by the state with L = 2, while the dipole
excitations are given by L > 0.

The root configurations clearly show the increasing sepa-
ration of the quasielectron (clustered to the left, or the north
pole) from the quasihole, as the angular momentum increases.
They also encode dynamical properties of the excitations, as
we will show below.

B. Haffnian and the quadrupole excitation

The model wave function for the quadrupole excitation
(with L = 2) is the exact zero energy state of the Haffnian
model Hamiltonian (consisting of the linear combination of
three-body pseudopotentials V̂ 3bdy

3 , V̂ 3bdy
5 , V̂ 3bdy

6 ). In contrast,
the model wave functions for the dipole excitations (with L >

2) are the exact zero energy state of the Gaffnian [39] model
Hamiltonian (consisting of the linear combination of three-
body pseudopotentials V̂ 3bdy

3 , V̂ 3bdy
5 ). These did not seem to

be recognized before in the literature, but are easy to see from
the recently developed LEC formalism [40] (i.e., the L = 2
state satisfies the LEC condition {2, 1, 2} ∨ {6, 2, 6}, while the
L > 2 state satisfies the LEC condition {2, 1, 2} ∨ {5, 2, 5}),
using the root configurations in Eq. (28) and the associated
squeezed basis.

Using this insight, one can consider a theoretical model
with the following Hamiltonian:

Ĥλ = (1 − λ)V̂ 2bdy
1 + λĤhaff, (29)

where V̂ 2bdy
1 is the model Hamiltonian for the Laughlin

state at ν = 1/3 in the form of the Haldane pseudopoten-
tial, while Ĥhaff = V̂ 3bdy

3 + h5V̂
3bdy

5 + h6V̂
3bdy

6 is the Haffnian
model Hamiltonian with h5, h6 > 0.

Since Ĥhaff gives an energy punishment for all of the L > 2
neutral excitations, but not for the quadrupole excitation at
L = 2, we expect the softening of the quadrupole excitation as
λ increases. At λ = 1 the quadrupole excitation will be exactly
degenerate with the Laughlin state (both with zero energy)
even for finite systems. Equation (29) can thus be considered
as the model Hamiltonian capturing the essential physics for
the transition from the fully gapped Laughlin phase (at λ = 0)
to the FQHN phase when the neutral mode goes soft (at 0 <

λ < 1, since in the thermodynamic limit the gap may close at
some intermediate value of λ). We can now see that the FQHN
phase at ν = 1/3 is related to the Haffnian phase, which also
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FIG. 5. Energy spectrum of various model Hamiltonians from
exact diagonalization with 11 electrons and 31 orbitals, with h5 =
h6 = 1. The ground states in the L = 0 sector are set to zero and
the ground states in the L = 11 sector are normalized to unity.
(a) The spectra of Eq. (29). (b) The spectra of Eq. (30). (c) The
spectra of Eq. (31), modified by a small δV1. Only the multiro-
ton continuum from δV1 = 0.5 is included in the plot to avoid
clutters

occurs at ν = 1/3 but with a different topological shift as
compared to the Laughlin phase. While Ĥhaff is conjectured
to be gapless from the conformal field theory perspective, a
finite gap may open as λ decreases from 1 (in analogy to
the gap opening away from the Gaffnian model Hamiltonian
[41]), leading to an incompressible ground state with different
topological properties (though the quasihole excitations may
not be non-Abelian [42]). This interesting connection will be
explored in future works.

In Fig. 5(a) we look at the special case of h5 = h6 = 1
(other positive values give qualitatively same results). As
we tune λ away from zero in Eq. (29), there is very clean
numerical evidence of the quadrupole excitations going soft,

while the entire magnetoroton mode branch is well separated
from the multiroton continuum for all the spectra in the figure.
All energies are measured from the ground state energy in
the L = 0 sector. The ground state energies in the L = 11
sector (again measured from the L = 0 ground state energies)
are normalized to unity. This is the sector where a single
quasielectron-quasihole pair is maximally separated for the
system size of 11 electrons, so its energy can be considered
as the charge/dipole excitation gap. Thus Eq. (29) shows that
the neutral gap can be much smaller than the charge gap even
for finite systems.

C. Experimental relevance

It is interesting to look at more realistic interactions, using
the following model:

Ĥλ = V̂LLL + λĤhaff, (30)

where V̂LLL is the lowest Landau level two-body Coulomb
interaction. In this case, a very small amount of three-body
interaction (which can come from LL mixing) will signifi-
cantly soften the quadrupole excitations, as one can see from
Fig. 5(b). We suspect the similar is also true in the second
Landau level, but the numerical spectrum tends to be too
messy due to the strong finite size effect (given the more
long-range interaction). The results here do suggest that LL
mixing can play a very significant role for the FQHN in
realistic systems.

These understandings of the quadrupole excitations at
ν = 1/3 allow us to propose realistic two-body interactions
that favor the FQHN phase in various experimental settings.
At large magnetic field when Landau level (LL) mixing is
suppressed, we only have effective two-body interactions. A
useful two-body interaction can be proposed as follows:

V̂ 2bdy
haff = Ĥhaff + Ĥa

haff, (31)

where Ĥa
haff is the particle-hole conjugate of Ĥhaff, and in the

thermodynamic limit we have

V̂ 2bdy
haff = V̂ 2bdy

1 + 2

3

(
2 + h5 + 5h6

4 + 3h5 + h6

)
V̂ 2bdy

3

+
[

1 − 4

3

(
3 + h5

4 + 3h5 + h6

)]
V̂ 2bdy

5 , (32)

where we normalize the coefficient of V̂ 2bdy
1 to be unity. This

family of two-body interactions is expected to retain most of
the correlation properties of the Haffnian model Hamiltonian,
and indeed at the topological shift of the Laughlin phase
(No = 3Ne − 2), the ground states in the L = 0 and L = 2
sectors are very close in energy. For large systems the global
ground state tends to be in the L = 2 sector. We can thus
expect a phase transition when the L = 0 and L = 2 sectors
become degenerate, by small modifications of V̂ 2bdy

1 in V̂ 2bdy
haff .

In Fig. 5(c), we add a small amount of V̂ 2bdy
1 to Eq. (31) to

monitor the dispersion of the magnetoroton mode. While we
do not have a well-separated gap between the magnetoroton
mode and the multiroton continuum for the finite systems, the
behaviors of the magnetoroton mode are qualitatively similar
to Figs. 5(a) and 5(b).
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The resulting two-body interaction for stabilizing the
FQHN phase agrees qualitatively with what we obtained from
the general approach in Sec. VI. It also gives a better under-
standing of why the minimal models for the FQHN at ν =
1/3 should consist of V̂ 2bdy

1 , V̂ 2bdy
3 , V̂ 2bdy

5 , since it is derived
from the parent Hamiltonian of the Haffnian state with two
freely tunable parameters h5, h6. Given that with the V̂ 2bdy

1 and
LLL Coulomb interaction the quadrupole excitation energy
is high up in the continuum [see the black and red dotted
line plots in Fig. 5(b)], the FQHN phase requires interaction
to be more long range than V̂ 2bdy

1 , but shorter range than
the LLL Coulomb. This can be achieved at large magnetic
field by properly tuning the sample thickness and/or dielectric
screening. With the model Hamiltonians of the FQHN phase,
the desirable range of experimental parameters can now be
computed analytically.

In higher LLs, the two-body interaction is long ranged
and definitely differs more from the model FQHN Hamil-
tonian. While this does not preclude the realization of the
FQHN phase, numerical analysis becomes more difficult due
to stronger finite size effect. However, we also expect stronger
LL mixing at higher LLs. The connection to the Haffnian
model Hamiltonian clearly suggests that LL mixing could be
helpful in realizing the FQHN phase. Note that V̂ 3bdy

3 , V̂ 3bdy
5

do not affect the quadrupole or dipole excitations, since they
all live in the null space of these two pseudopotentials. It is
V̂ 3bdy

6 that is playing the important role here, since it is the
only pseudopotential that punishes the dipole excitations, but
not the quadrupole excitations. Starting from the fully gapped
Laughlin phase, we thus need a small positive V̂ 3bdy

6 to push it
into the FQHN phase with a vanishing neutral gap.

The effective two-body and three-body interactions in the
pseudopotential basis can be analytically computed for re-
alistic samples with various tuning parameters (e.g., sample
thickness, screening, band dispersion, in-plane magnetic field,
etc.) [43]. One can design suitable samples for the robust
realization of the FQHN based on detailed calculations, which
we will present elsewhere. In general, we would like the
two-body interaction to be dominated by V̂ 2bdy

1 , but with the
vanishing long range part from V̂ 2bdy

n with n > 5. When the
LL mixing effect is not negligible (e.g., intermediate magnetic
field), we would like a positive V̂ 3bdy

6 to further stabilize
the FQHN. A negative V̂ 3bdy

6 , on the other hand, could open
the neutral gap at ν = n + 1/3. However, it could still favor
FQHN at ν = n + 2/3, which is where the anti-Laughlin
phase is realized.

VIII. CONCLUSIONS

We have computed analytically the dynamical behaviors
of the neutral excitations in the long wavelength and thermo-
dynamic limit, which is applicable to any FQH phase with
a charge gap. Such excitations are quadrupole excitations,
with its gap and dispersion relations captured by two univer-
sal tridiagonal matrices that are independent of microscopic
details. Both the nematic order and the gapless modes from
spatially varying nematic order are studied, and we can show

that such nematic wave dispersion is quadratic at the quantum
critical point. Specific criteria for the FQHN phase to be
robust are also derived, which are necessary (though not
sufficient) conditions for the coexistence of the anisotropic
transport and the topologically protected Hall conductivity
plateau.

In addition, we show that the gap of the quadrupole ex-
citation and its dispersion in the long wavelength limit can
be completely determined from the ground state properties,
given the universality of the characteristic matrices in the ther-
modynamic limit. This provides another approach in studying
the potential transition from isotropic to FQHN phases both
analytically and numerically at the microscopic level. Numer-
ical analysis on the Laughlin phase at filling factor ν = 1/3
for reasonably large system sizes shows evidence that the
phase transition is only likely for microscopic Hamiltonians
that are linear combinations of at least three leading Haldane
pseudopotentials (i.e., V̂ 2bdy

1 , V̂ 2bdy
3 , V̂ 2bdy

5 ). We also show at
this filling factor the FQHN is strongly connected to the
Haffnian phase, a competing topological phase at the same
filling factor but with a different topological shift. The analyt-
ical results can narrow down the parameter range for the short
range interactions, allowing us to see tentative evidence of the
softening of the neutral excitations in the fermionic systems.
Several favorable experimental conditions are proposed where
the neutral gap in the long wavelength limit is likely to be
much smaller than the charge gap.

The characteristic matrices derived in this work show that
the dynamics of the quadrupole excitations has universal
aspects that can potentially be useful for constructing ef-
fective theories for the FQH effects. From the microscopic
perspective, more work is needed to fully understand the
competition between the quadrupole gap and dipole gap for
different FQH phases. The latter essentially gives the charge
gap of the FQH fluid, and needs to be finite for the quantum
fluid to be incompressible. Our results tentatively suggest that
while short range interaction generally supports a finite charge
or dipole gap, it can nevertheless lead to softening of the
quadrupole gap. For example, the k0 = 5 model Hamiltonians
we analyzed in the paper have a much shorter range than
the lowest Landau level Coulomb interaction. On the other
hand, for very short range interaction (e.g., k0 = 1 or k0 = 3
models), the quadrupole gap becomes very large and merges
into the multiroton continuum. The underlying physics of such
behaviors is still not well understood.

In our numerical analysis we ignored the q4 coefficient
of the structure factor, which is the denominator of the
quadrupole gap. This should be justified since it is bounded
from below by the Hall viscosity [28]. Perturbation from the
V1 model Hamiltonian should only have the possibility of
increasing the coefficient (thus reducing the quadrupole gap
further). Nevertheless, more detailed numerical analysis is
needed to see if including the q4 coefficient can give clearer
finite scaling of various aspects of the quadrupole excitations.
The results in this work are also applicable for any filling
factors. It is interesting to explore the possibility of the FQHN
phases in other filling factors, especially for the non-Abelian
phases where there are multiple branches of the low-lying
neutral modes.
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