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Higher topological charge and the QCD vacuum
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It is shown that gauge field configurations with higher topological charge modify the structure of the QCD
vacuum, which is reflected in its dependence on the CP-violating topological phase θ . To explore this, topological
susceptibilities and the production of axion dark matter are studied here. The formers characterize the topological
charge distribution and are therefore sensitive probes of the topological structure of QCD. The latter depends
on the effective potential of axions, which is determined by the θ dependence of QCD. The production of
cold dark matter through the vacuum realignment mechanism of axions can, therefore, be affected by higher
topological charge effects. This is discussed qualitatively in the deconfined phase at high temperatures, where a
description based on a dilute gas of instantons with arbitrary topological charge is valid. As a result, topological
susceptibilities exhibit a characteristic temperature dependence due to anharmonic modifications of the θ

dependence. Furthermore, multi-instanton effects give rise to a topological mechanism to increase the amount of
axion dark matter.
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I. INTRODUCTION

The vacuum structure of interacting quantum field theories
is inherently intriguing. In quantum chromodynamics (QCD)
and other gauge theories, it is well known that this structure
crucially depends on topological gauge field configurations
[1–5]. A vacuum state can be characterized by an integer, the
topological charge, and topological gauge fields describe tun-
neling processes between topologically distinct realizations of
the vacuum. The true vacuum is therefore a superposition of
all possible topological vacuum configurations. It is character-
ized by a free parameter, the CP-violating topological phase θ ,
acting as a source for topological charge correlations.

The topological nature of the QCD vacuum has impor-
tant phenomenological consequences. The axial anomaly in
QCD is realized through topologically nontrivial fluctuations.
They generate anomalous quarks correlations which explic-
itly break U(1)A and impact properties of hadrons [6]. Most
prominently, the large mass of the η′ meson is generated by
topological effects [1–3,7,8]. The fate of the axial anomaly at
finite temperature also determines the order of the QCD phase
transition in the limit of massless up and down quarks [9,10].
Furthermore, a nonzero θ introduces CP-violating strong in-
teractions. These would manifest in a nonvanishing electric
dipole moment of the neutron, dn. Recent measurements give
a stringent bound of |dn| < 1.8 × 10−26e cm [11], resulting
in θ � 10−10 [12,13]. This strongly suggests that there is no
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strong CP violation. The question about the existence and
nature of a physical mechanism to enforce θ = 0 remains to
be answered.

One resolution of this strong-CP problem has been sug-
gested by Peccei and Quinn (PQ) [14]. It involves the
introduction of a new complex scalar field, which has a global
chiral U(1)PQ symmetry. The PQ symmetry is broken both
explicitly, through the axial anomaly, and spontaneously. The
resulting pseudo-Goldstone boson, the axion a(x) [15,16],
couples to the gauge fields in exactly the same way as the θ

parameter, ∼(a/ fa + θ ) tr FF̃ , where F and F̃ are the gluon
field strength and its dual and fa is the axion decay constant.
This effectively promotes θ to a dynamical field, which has a
physical value given by the minimum of its effective potential.
Owing to the anomaly, the effective potential of axions is
determined by topological gauge field configurations, and its
minimum is at zero, thus resolving the strong CP problem
dynamically. Furthermore, the anomalous axion mass is very
small and, in order to be consistent with observational bounds,
axions couple very weakly to ordinary matter. This makes
axions attractive dark matter candidates [17–19]. Cold ax-
ions can be produced nonthermally through a field relaxation
process known as vacuum realignment [20–23]. The axion
relaxes from a, possibly large, initial value to its vacuum
expectation value at zero, thereby probing the global structure
of the θ vacuum. The production of cold dark matter through
the vacuum realignment mechanism of axions therefore is
particularly sensitive to the topological structure of the QCD
vacuum.

While the nature of topological field configurations in
the confined phase is still unsettled, at large temperatures
where the gauge coupling is small, a semiclassical analysis is
valid [24,25] and these field configurations can be described
by instantons [26], see Refs. [27–29] for reviews. Finite
temperature is crucial for a self-consistent treatment, since
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it effectively cuts off large-scale instantons. This is clearly
shown by numerous first-principles studies of QCD on the lat-
tice, both with dynamical quarks [30–35], and in the quenched
limit [36–39]. It has been demonstrated that the temperature
dependence of the lowest topological susceptibility χ2, which
measures the variance of the topological charge distribution,
is in very good agreement with the corresponding prediction
from a dilute gas of instantons for T � 2.5Tc, where Tc is the
pseudocritical temperature of the chiral phase transition. One
can therefore assume that the topological structure of the QCD
vacuum is described by instantons at large temperatures. This
is of relevance also for axion physics, since, for example, the
axion mass is proportional to the topological susceptibility,
χ2 = f 2

a m2
a.

Conventionally, only single-instantons, i.e., instantons with
unit topological charge, are taken into account in the de-
scription of the topological structure of the QCD vacuum
at large temperatures. The reason is that classically the ac-
tion of an instanton with topological charge Q in a dilute
gas is ∼e−8π2|Q|/g2

. Thus, in the limit of vanishing gauge
coupling g, multi-instantons with |Q| > 1 are subject to a
large exponential suppression. Furthermore, the moduli space
of multi-instantons coincides with that of |Q| independent
single-instantons, which are each characterized by a position
zi, a size ρi and an orientation in the gauge group Ui, with
i = 1, . . . , |Q| [40]. Yet, multi-instantons are distinct self-dual
gauge field configurations which, in general, cannot be inter-
preted as simple superpositions of single-instantons [41,42].
Since quantum corrections lead to an increasingly strong
coupling towards lower energies, multi-instantons could give
relevant corrections to the leading single-instanton contribu-
tion. Furthermore, it has been shown in [6] that there are
effects that are related uniquely to higher topological charge:
higher order anomalous quark interactions are generated only
by multi-instantons, which generalizes the classic analysis
for single-instantons [1,2]. Thus one has to assume that the
topological field configurations at large temperatures are in-
stantons of arbitrary topological charge.

Given this motivation, the effects of multi-instantons on
the vacuum structure of QCD are explored in this work. It
is assumed that at sufficiently high temperature in the decon-
fined phase, the topological structure of QCD is described
by a dilute gas of instantons of arbitrary topological charge.
This leads to a modification of the known θ dependence of the
QCD vacuum. It is reflected in the distribution of topological
charge, which is probed by topological susceptibilities. In
addition, as outlined above, axion cosmology is an interesting
application to showcase the effect of higher topological charge
on the QCD vacuum. To this end, the production of cold
axion dark matter via the vacuum realignment mechanism is
investigated here as well.

A semiclassical description of multi-instantons requires
knowledge of the partition function of QCD in their pres-
ence. At the next-to-leading order in the saddle point
approximation, the complete partition function is known for
single-instantons at finite temperature [1,2,24,25]. For multi-
instantons, it is only known in certain limits, see Refs. [43,44]
for reviews. The exact multi-instanton solutions [41] can be
expanded systematically if the size parameters ρi are small
against the separation |Ri j | = |zi − z j | for i �= j and i, j =

1, . . . , |Q| [42]. At leading order in this limit of small con-
stituent instantons (SCI), the partition function of QCD in the
background of a multi-instanton can be computed solely based
on the knowledge of the single-instanton solution. At next-
to-leading order, correlations between constituent instantons
need to be taken into account [6,45,46]. The resulting genuine
multi-instanton processes are studied in a qualitative manner
in the present work. Due to the large suppression of the instan-
ton density in the presence of dynamical quarks, it is expected
that, at least in the large temperature regime, multi-instanton
effects are most pronounced in quenched QCD, i.e., without
dynamical quarks. Hence, quenched QCD provides a good
laboratory to understand higher topological charge effects on
the QCD vacuum.

This work is organized as follows. The θ dependence in
a dilute gas of multi-instantons is derived in Sec. II. This
requires knowledge of the multi-instanton contribution to the
partition function, which is derived in detail in the SCI limit
in Sec. II A. The result is used to study topological suscepti-
bilities in Sec. III. Their temperature dependence is evaluated
numerically for quenched QCD in Sec. III A and discussed
for QCD in Sec. III B. The focus there is on systematically
investigating correction to the topological susceptibilities as
instantons with increasing topological charge are included.
The impact of multi-instantons on axion cosmology is studied
in Sec. IV. First, the resulting axion effective potential and the
production of axions via the vacuum realignment mechanism
are discussed in Secs. IV A and IV B. In Sec. IV C, axion
production is studied numerically in the quenched approxima-
tion. Finally, a critical discussion of the approximations used
here can be found in Sec. V, and a summary of the results in
Sec. VI. Further technical details are given in the appendices.

II. θ DEPENDENCE FROM A DILUTE GAS
OF MULTI-INSTANTONS

The starting point is a modification of the old story of
the θ dependence of the QCD vacuum. In the context of the
axial anomaly and the U(1)A problem in QCD, it has been
realized that the QCD vacuum has more complicated structure
which is related to the existence of topological gauge field
configurations [3–5]. Physical states can therefore be grouped
into homotopy classes of field configurations with a given
topological charge (or winding number) |n〉,

n = − 1

16π2

∫
d4x tr FμνF̃μν ∈ Z, (1)

where Fμν = [Dμ, Dν] is the field strength tensor with Dμ =
∂μ + Aμ the covariant derivative. F̃μν = 1

2εμνρσ Fρσ is the
corresponding dual field strength. Instantons of topological
charge Q can be interpreted as tunneling from state |n〉 to
state |n + Q〉, with the tunneling amplitude related to the
exponential of the classical instanton action, e−8π2|Q|/g2

. Due
to such tunneling processes, |n〉 cannot describe the vacuum
state in a unique way. Furthermore, states characterized by
different winding numbers are related to each other by large
gauge transformations. The true vacuum state, consistent with
gauge symmetry, locality and cluster decomposition is the θ
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vacuum,

|θ〉 =
+∞∑

n=−∞
e−inθ |n〉. (2)

An important property of this state is that the value of θ cannot
be changed by a gauge invariant operation. Hence, QCD falls
into superselection sectors, where each θ labels a different
theory.

The vacuum amplitude between in and out states at t =
−∞ and +∞, denoted by |θ〉− and +〈θ |, respectively, is then
given by

+〈θ |θ〉− =
∑

n

∑
m

eimθ e−inθ +〈m|n〉−

=
∑

ν

eiν θ
∑

n

+〈n + ν|n〉−,
(3)

with ν = m − n. The part after the exponential in the second
line of this equation describes the amplitude where in- and
out-state differ by a net-topological charge of ν. Using Eq. (1),
the θ -dependent generating functional Z[θ ] ≡ +〈θ |θ〉− can be
represented by the Euclidean path integral

Z[θ ] =
∑

ν

∫
D� e− S[�] − iθ

16π2

∫
d4x tr Fμν F̃μν

× δ

(
ν + 1

16π2

∫
d4x tr Fμν F̃μν

)
,

(4)

where the multifield � = (Aμ, q, q̄, c, c̄) contains the gluon,
quark, and ghost fields and S[�] is the action of gauge-fixed
Euclidean QCD. There can also be source terms, but they are
suppressed here for the sake of brevity.

So far, no reference to the nature of the topological
field configurations has been made. With the corresponding
remarks in Secs. I and V in mind, assume that these con-
figurations are given by instantons. In addition, assume that
the instantons are dilute, i.e., the spacetime distance between
each instanton is large against their effective size. It has been
demonstrated by numerous studies of QCD and Yang-Mills
theory on the lattice that these assumptions are justified at
temperatures above about 2.5Tc [30–39]. Note that, while the
overall power of the topological susceptibility with respect to
T measured on the lattice agrees very well with the predictions
of the dilute instanton gas, the prefactor is off. This can likely
be attributed to missing higher loop corrections, which can be
substantial in the hot QCD medium, see, e.g., the discussion
in Ref. [31].

What is new here is that the contributions of multi-
instantons with arbitrary topological charge Q are also taken
into account. Since their contributions to the path integral are
proportional to e−8π2|Q|/g2

at weak coupling, single-instantons
clearly dominate in the semiclassical regime. For a compre-
hensive discussion of the conventional dilute instanton gas,
see Ref. [47]. Yet, as discussed above, there is no reason to as-
sume that field configurations with higher topological charge
are not present. Since the θ dependence is directly linked to
the topological structure of the vacuum, it is conceivable that
it is affected by multi-instantons. Furthermore, it has been
shown in Ref. [6] that there are effects that can be related
uniquely to multi-instantons.

ν = −1 0 321
+-

ν = −1 0 321
+-

FIG. 1. Illustration of possible instanton configurations con-
tributing to the vacuum amplitude +〈2|1〉−, which is part of the
complete θ -vacuum amplitude in Eq. (3). The black sinosodial rep-
resents the vacuum, where each minimum corresponds to a different
winding number ν. In- and out-states are marked by − and +, respec-
tively. The blue lines show the vacuum transition due to instantons
and the red lines the transitions due to anti-instantons. The size of the
transition, i.e., the difference in winding from the starting point to the
endpoint of an instanton, correspond to its topological charge. The
upper figure illustrates a contribution where only single-instantons
are considered. Exclusively configurations of such type are taken into
account in the conventional dilute instanton gas. The lower figure
shows a similar contribution, but including multi-instantons. The
present analysis takes all possible configurations, including single
and multi-instantons, into account.

There are various possibilities to realize the vacuum ampli-
tude in Eq. (4) for a given ν in a dilute gas of multi-instantons.
If only single-instantons are taken into account, all configura-
tions where n1 instantons and n̄1 anti-instantons are distributed
in spacetime in a dilute way are allowed, as long as ν =
n1 − n̄1 is fulfilled. This can be generalized straightforwardly
for multi-instantons: One may “sprinkle” space-time with all
possible combinations of nQ Q-instantons, i.e., instantons with
topological charge Q, and n̄Q Q–anti-instantons, provided ν =∑

Q Q(nQ − n̄Q) holds. This is illustrated in Fig. 1. If not oth-
erwise specified, Q > 0 is used from now on. The difference
between positive and negative topological charge is made by
referring to instantons and anti-instantons, respectively.

The contribution of one multi-instanton A(Q)
μ to the vacuum

amplitude is given by the path integral in the background of
A(Q)

μ ,

eiθQ ZQ = eiθQ
∫
D� e−S[�+�̄(Q)], (5)

where � is the fluctuating multi-field and �̄(Q) =
(A(Q)

μ , 0, 0, 0, 0) is the background field. The underlying
assumption here is that the Q-instanton is the only topological
field configuration. This is certainly guaranteed in a saddle
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point approximation about the background field, where only
small fluctuations around the Q-instanton background are
assumed. In the dilute limit, the θ -vacuum amplitude Z[θ ]
is then completely described by a statistical ensemble of all
possible combinations of ZQ’s.

As mentioned above, a multi-instanton A(Q)
μ is described

by free parameters known as collective coordinates. They
can be interpreted as positions zi, sizes ρi and orientations
Ui ∈ SU(Nc) of Q constituent instantons with unit topological
charge [40–42]. As discussed in more detail below, the parti-
tion function ZQ can formally be written as an integral over
these parameters. It has been shown in Refs. [6,45,46] that if
the relative distances between the constituent instantons, |Ri j |,
are small against their sizes, ρi, the path integral factorizes
into individual contributions of the constituent instantons. The
underlying reason is that the interaction between instantons is
very short-ranged. At this leading order in the SCI limit, the
multi-instanton itself can be viewed as a simple superposition
of single-instantons. Furthermore, large-scale instantons are
suppressed at finite temperature [24,25]. This is the founda-
tion for using a dilute gas of single-instantons to describe the
topological structure of QCD at large temperatures.

Genuine multi-instanton processes can only contribute to
Eq. (5) at large temperature if the constituent instantons are
close together. Since ZQ involves integrations over all pos-
sible constituent instanton positions, there is a hierarchy of
instanton contributions. If all constituent instantons are far
apart, only single-instantons contribute; if two constituent
instantons are close together, genuine 2-instanton processes
contribute; and so forth until Q constituent instantons are close
together, which gives a genuine Q-instanton contribution.
Since instanton interactions are short ranged, n-instantons
with 1 � n � Q, contribute to ZQ roughly proportional to a
spacetime-volume factor VQ−n+1. One factor of volume V
always arises since only the relative positions of constituent
instantons matter.

ZQ can therefore be decomposed into a part that is only
due to q-instanton processes Z (q)

Q with q = 1, . . . , Q − 1, and
a genuine Q-instanton contribution ZQ,

ZQ =
Q−1∑
q=1

Z (q)
Q + ZQ. (6)

For ease of notation, Z (1)
1 = 0 is used for Q = 1, such that

Z1 = Z1. This forms the basis for a dilute gas of multi-
instantons, which incorporates subleading corrections to the
conventional dilute instanton gas. The distinction between
q-instanton and genuine Q-instanton processes in ZQ is neces-
sary to avoid double-counting in the total vacuum amplitude
of the dilute gas. Since in the classical limit the contribution
of Q single-instantons to the vacuum amplitude is exactly
the same as of a single Q-instanton, genuine multi-instanton
contributions are only due to quantum corrections.

The dilute multi-instanton gas is a statistical ensemble of
single- and multi-instanton processes ZQ. The resulting free
energy density, F = − 1

V lnZ , in the presence of a θ term is

then

F (θ ) = − 1

V ln
∑

ν

( ∏
Q

∞∑
nQ=0

∞∑
n̄Q=0

1

nQ!n̄Q!
ZnQ+n̄Q

Q

× eiθQ(nQ−n̄Q ) δν∑
Q Q(nQ−n̄Q )

)
= − 2

V
∑

Q

ZQ cos(Qθ ), (7)

where V = V/T is the Euclidean space-time volume. The θ

vacuum entails a sum over all ν, and the Kronecker delta at
the end of the second line enforces net winding ν for the sum
over all possible combinations of (multi-) instantons. Since
the sum over all possible multi-instanton configurations yields
all possible net windings, one can drop both the sum over ν

and the Kronecker delta. For reasons that become clear below,
it is convenient to define the θ -dependent part of the free
energy,

F (θ ) = F (θ ) − F (0) = 2

V
∑

Q

ZQ[1 − cos(Qθ )]. (8)

Hence, while the θ dependence generated only by single-
single instantons is simply ∼cos θ , the inclusion of multi-
instantons reveals a much richer structure. This result can be
viewed as an expansion of the free energy in terms of multi-
instanton contributions. It is worth emphasizing that, since
Q ∈ Z, the 2π periodicity of the θ vacuum is guaranteed also
here. The corrections due to multi-instantons are overtones to
the single-instanton contribution, which sets the fundamental
frequency.

A. Multi-instanton contribution from small constituent
instantons

To evaluate the free energy explicitly, knowledge of ZQ is
required. As discussed above, only certain limits are known,
one of them being the SCI limit. It uses that the exact
multi-instanton solution can be expanded systematically in
powers of ρ/|R| [42]. To leading order in this expansion, the
Q-instanton can be interpreted as a superposition of Q con-
stituent instantons with unit topological charge. Remarkably,
to order ρ2/|R|2, the path integral of QCD factorizes into
the contributions of the individual constituent instantons with
Q = 1 [6,45,46], which yields the first term of Eq. (6),

Z (1)
Q = 1

Q!
ZQ

1 . (9)

The combinatorial prefactor 1/Q! arises because the con-
stituent instantons can be treated as identical particles. Z1 can
be expressed in terms of the single-instanton density n1:

Z1 =
∫

d4z dρ n1(ρ, T ) ≡ VZ̄1. (10)

The single-instanton density only depends on the instanton
size and the temperature. The integration over the instanton
location z gives a factor of space-time volume V . n1 has been
computed to next-to-leading order in the saddle point approxi-
mation in Refs. [1,2,24,25,48–50], see Appendix A for details.
Provided that the constituent instantons are sufficiently far
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apart, any vacuum amplitude with net topological charge Q
can be described by a superposition of single-instanton pro-
cesses only. This is exemplified in the top figure of Fig. 1. The
Q = 1 contribution in Eq. (7) accounts for all these processes.

For genuine multi-instanton processes, as shown in the
bottom figure of Fig. 1, correlations between constituent in-
stantons need to be taken into account. So while Eq. (9)
holds in case the constituent instantons are far apart, distinct
multi-instanton contributions arise when they overlap to some
extent. For the gauge fields themselves, these corrections are
of order ρ4/|R|4 [6,42]. However, due to the existence of
quark zero modes in the presence of instantons, the first cor-
rection to the leading-order SCI-limit arises at order ρ3/|R|3
[6]. In Ref. [6] the correlation of constituent instantons has
been computed explicitly for Q = 2. Here, this to generalized
to Q � 2.

The generating functional in the background of a Q-
instanton is defined in Eq. (5). It is instructive to write this in
terms of the QCD action in the chiral limit, i.e., with vanishing
quark mass matrix Mq, and an explicit bilinear quark term,

ZQ[J] =
∫
D� exp

{
− S[� + �̄(Q)]|Mq=0

+
∫

d4x ψ̄ (x) J (x) ψ (x)

}
, (11)

where the source J can be set equal to Mq to recover the
original action. For the following computation to be valid
also in the chiral limit at large temperature, it is useful to
keep a more general source J , which may have nontrivial
flavor and spinor structure. To next-to-leading order in the
saddle point approximation, ZQ[J] can be written in term of
the functional determinants of the fluctuating quark, gluon
and ghost fields. However, the instanton collective coordinates
arise from translations, dilatations and global gauge rotations
which are symmetries of the system, but yield inequivalent
instanton solutions. Thus, the collective coordinates corre-
spond to zero mode directions of the gauge fields. Fluctuations
around these directions cannot be assumed to be small and
need to be treated exactly. The functional integral over the
zero modes is replaced by and integral over the collective
coordinates, while the nonzero-modes can be computed in the
ordinary fashion [2,43,44].

In addition to the zero modes of gluons and ghost, due to
the axial anomaly, the Dirac operator has Nf Q left-handed
(right-handed) quark zero modes in the presence of a Q-
instanton (Q–anti-instanton) [1,51–54],

γμ

(
∂μ + A(Q)

μ

)
ψ (Q) = 0. (12)

The quark zero modes are functions of the collective coordi-
nates. The resulting generating functional can be expressed in
terms of the multi-instanton density nQ,

ZQ[J] =
∫ (

N
Q∏

i=1

d4zi dρi dUi

)
nQ({zi, ρi,Ui}) (13)

=
∫ (

N
Q∏

i=1

d4zi dρi dUi

)
n̄Q({zi, ρi,Ui}) det(Q)

0 (J ),

where N is the normalization of the collective coordinate mea-
sure. In the second line, the determinant over the zero modes
of quarks, det(Q)

0 (J ), has been separated from the instanton
density for later convenience. It is assumed that J is only a
small perturbation to the Dirac operator, such that it does not
affect the nonzero modes of the quarks.1

To systematically compute ZQ[J] in the SCI limit, the
ADHM construction [41] is used. The following explicit con-
struction is based on [42] for Nc = 2. The straightforward
generalization to any number of colors is done in the end. The
most general Q-instanton can be constructed algebraically
from two matrices M and N that obey the simple constraints
listed below. M is a (Q + 1) × Q matrix with quaternionic
matrix elements, which can be represented as 2 × 2 matrices

Mab = αμMμ

ab. (14)

Mμ

ab are real coefficients and αμ are the basis quaternions,

αμ = (12,−i
σ )μ, (15)

where 
σ are the Pauli matrices. For the construction of Q–
anti-instantons, one simply has to replace αμ by

ᾱμ = (12, i
σ )μ. (16)

M(x) is chosen to be linear in Euclidean space-time, x =
αμxμ,

M(x) = B − Cx. (17)

B and C are constant (Q + 1) × Q matrices of rank Q. M is
required to obey the reality condition

M†(x)M(x) = R(x), (18)

with the real, invertible, quaternionic Q × Q matrix R. Each
matrix element of a real quaternionic matrix is proportional to
α0 = 12. The quaternionic conjugate is defined as

(M†)0
ab = M0

ba, (M†)i
ab = −Mi

ba. (19)

N (x) is a quaternionic (Q + 1) column vector that obeys the
two constraints

N†(x)M(x) = 0,

N†(x)N (x) = 12.
(20)

Remarkably, Eqs. (18) and (20) determine M and N up to
8Q free parameters, which corresponds exactly to the number
of instanton collective coordinates for Nc = 2. The exact Q-
instanton is then simply given by

A(Q)
μ = N†(x)∂μN (x). (21)

To find M and N , one uses that Eqs. (18) and (20) allow
for the transformations M → SMT and N → SN , with an
unitary (Q + 1) × (Q + 1) matrix S and an invertible, real
Q × Q matrix T, without changing the instanton solution.
From Eqs. (17) and (18) follows that C†C is a symmetric, real,
invertible matrix. T can therefore be chosen such that C†C
is congruent to 1Qα0. Furthermore, the first row of S can be

1This is guaranteed if the source is identified with the mass matrix
of the light quarks. There are quantitative modifications for heavier
quarks [74,75], but they are irrelevant here.
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chosen such that the first row of C vanishes, and the other ma-
trix elements can be defined as S(i+1) j = C†

i j with i = 1. . . . , Q
and j = 1. . . . , Q + 1. After these transformations, B and C in
Eq. (17) assume the general form

B =
(

v

b̄

)
, C =

(
0

1Qα0

)
, (22)

where v = (q1, . . . , qQ) is a row vector of arbitrary quater-
nions qi and

b̄i j = δi j zi + bi j, (23)

is a Q × Q matrix with arbitrary quaternions zi and bi j . The
diagonal elements of b̄ are chosen to be given by zi and bii = 0
for all i = 1, . . . , Q. 12Q is the real, quaternionic Q × Q unit
matrix. It follows from Eq. (18) that the matrix b is symmetric,
bi j = b ji, and from 2Im Ri j = Ri j − R∗

i j = 0 follows:

2(zi − z j )
∗bi j − 2Re[(zi − zj)

∗bij]

= (q∗
j qi − q∗

i q j ) +
Q∑

k=1

(b∗
k jbki − b∗

kibk j ). (24)

Here, ∗ denotes the quaternionic conjugate, which corre-
sponds to the conjugate transpose of the matrix representation
in Eq. (14). Solving this equation is difficult in general. If the
qi are assumed to be real, then Eq. (24) is solved by bi j = 0.
As shown in Ref. [42] (and below), this leads to ’t Hooft’s
multi-instanton solution, where all constituent instantons have
the same orientation in the gauge group.

More general, self-consistent solutions can be constructed
by first noting that if bi j is chosen such that Re[(zi − zj)∗bij] =
0, then Eq. (24) can be written as

bi j = 1

2

zi − z j

|zi − z j |2
[
q∗

j qi − q∗
i q j +

Q∑
k=1

(b∗
k jbki − b∗

kibk j )

]
. (25)

This equation can be solved systematically in the SCI limit.
To this end, write the quaternion qi in terms of its modulus
and its phase,

qi = ρiUi, (26)

where ρi = √
q∗

i qi can readily be interpreted as the size of the
ith constituent instanton and Ui ∈ SU(2) as its gauge group
orientation. In the SCI limit ρi is assumed to be small against
|Ri j | = |zi − z j |. Hence, one can replace qi by ζqi, with |qi|
held fixed, and expand in powers of the small parameter ζ .
Then, the first nonvanishing contribution to bi j in the expan-
sion of Eq. (25) is of order ζ 2,

bi j = 1

2

zi − z j

|zi − z j |2 (q∗
j qi − q∗

i q j ) + O(ζ 4). (27)

Solutions to Eq. (25) to any power in ζ can be constructed
from this solution by iteration. For small constituent instan-
tons, the resulting series is guaranteed to be convergent. To
order ζ , one can therefore set bi j = 0 even for arbitrary
quaternions qi. This is sufficient for the present purposes. The

resulting matrix M is

M =

⎛⎜⎜⎝
q1 · · · qQ

z1 − x · · · 0
...

. . .
...

0 · · · zQ − x

⎞⎟⎟⎠ + O(ζ 2). (28)

With this, Eq. (20) can be solved easily,

N (x) = 1√
ξ0

⎛⎜⎜⎜⎝
u

x−z1
(x−z1 )2 q∗

1 · u
...

x−zQ

(x−zQ )2 q∗
Q · u

⎞⎟⎟⎟⎠ + O(ζ 2), (29)

where the normalization is determined by

ξ0(x) = 1 +
Q∑

i=1

ρ2
i

(x − zi )2
. (30)

u is an arbitrary unit quaternion. Different choices for u give
gauge-equivalent instanton fields. The simplest choice is u =
α0, which corresponds to the singular gauge. Indeed, plugging
this into Eq. (21) yields the Q-instanton to order ζ 2 in the SCI
limit,

A(Q)
μ (x) = 1

ξ0(x)

Q∑
i=1

Uiσ̄
μνU †

i ρ2
i

(x − zi )ν
|x − zi|4 + O(ζ 4). (31)

The anti-self-dual matrix σ̄ μν is defined as

σ̄ μν = 1
2 (αμᾱν − ανᾱμ). (32)

For self-consistency of this solution, x cannot be too close to
any of the constituent instanton locations zi. As long as

|x − zi| � ρi, (33)

the multi-instanton is guaranteed to be of order ζ 2. Otherwise,
higher-order corrections need to be taken into account, since
for |x − zi| ∼ ρi, Eq. (31) can be of order ζ−1; close to their
center, constituent instantons cannot be assumed to be small.
Note that the next correction to A(Q)

μ is of order ζ 4, so Eq. (31)
is accurate to order ζ 3. This observation is relevant for the
comparison to the quark zero modes below.

Remarkably, Eq. (31) corresponds to ’t Hooft’s multi-
instanton solution, but with arbitrary gauge group orientations
of the constituent instantons. Furthermore, since the single-
instanton in singular gauge is given by [26]

A(1)
μ (x; z, ρ,U ) = U σ̄ μνU † ρ2

(x − z)2

(x − z)ν
(x − z)2 + ρ2

, (34)

the multi-instanton to order ζ 3 in the SCI limit can be viewed
as a superposition of single-instantons,

A(Q)
μ (x) = 1

ξ0(x)

Q∑
i=1

A(1)
μ (x; zi, ρi,Ui ) + O(ζ 4). (35)

From Eq. (33) follows (x − zi)2 + ρ2
i ≈ (x − zi )2. Here and in

the following, this approximate identity is exploited whenever
it seems convenient.

For Nc > 2, one can simply embed SU(2) into SU(Nc) and
use the gauge group orientations Ui from this embedding [40].
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The corresponding collective coordinates are generated by all
global SU(Nc) transformations that yield inequivalent instan-
ton solutions. Since the embedding of SU(2) into SU(Nc)
has a stability group INc , i.e., a subgroup of SU(Nc) that
leaves the embedding unchanged, the collective coordinates
of the SU(Nc) instanton correspond to the quotient group
SU(Nc)/INc . Hence, the group integration in Eq. (13) is over
SU(Nc)/INc , with dUi the corresponding Haar measure.

Since, as proven above, the multi-instanton is a sim-
ple superposition of single-instantons in the SCI limit, it
has been shown in Refs. [45,46] that the resulting gauge
field contribution to the generating functional factorizes into
single-instanton contributions. Eq. (13) thus becomes

ZSCI
Q [J] = 1

Q!

∫ [ Q∏
i=1

d4zi dρi dUi n̄1(ρi )

]
det(Q)

0 (J ). (36)

The superscript SCI indicates that the SCI limit has been ap-
plied up to order ζ 3.

Next, the contribution of the quark zero mode determinant
needs to be computed. This requires knowledge of the quark
zero modes in the SCI limit. They are given by the solutions of
the Dirac equation, Eq. (12), in the background of the multi-
instanton in Eq. (31). This has first been done in [6] for Q = 2.
Here, this is generalized to arbitrary Q. Using the results of
Refs. [53,54], the quark zero modes can be obtained directly
from the ADHM solution constructed above,

ψ
(Q)
f i = ν (N†CR−1)i · ϕ. (37)

This is a left-handed Weyl spinor. ϕ is a constant spinor and
ν a normalization constant. The flavor index, f = 1, . . . , Nf ,
and the ‘topological charge’ index, i = 1, . . . , Q, denote the
Nf Q quark zero modes. Since the Dirac equation is diagonal
in flavor, one simply gets Nf copies of Q manifestly different
zero modes. Given the general form of the multi-instanton in
Eq. (21), it is a straightforward exercise to show that ψ

(Q)
f i as

defined above indeed solves Eq. (12).
With Eq. (28), R−1 can be computed from Eq. (18). C and

N are given in Eqs. (22) and (29). The resulting quark zero
modes for any Q are

ψ
(Q)
f i (x) = ψ

(1)
f i (x; zi, ρi,Ui )

−
∑
j �=i

Xi j (x, zi ) ψ
(1)

f j (x; z j, ρ j,Ui ),
(38)

where terms ∼ρn with n � 4 have been dropped and Eq. (33)
has been used to simplify the expression. This result is a sum
of the single-instanton quark zero modes,

ψ
(1)
f i (x; zi, ρi,Ui ) =

√
2

π2Nc

Uiρi[
(x − zi )2 + ρ2

i

]3/2

× γμ(x − zi )μ
|x − zi| ϕR

(39)

and a term which characterizes the overlap between the Q = 1
zero modes,

Xi j (x, zi ) = ρiρ j |x − zi|
[(x − zi )2 + ρ2

i ]3/2
. (40)

The zero mode in Eq. (38) is a left-handed Dirac spinor with
the right-handed constant spinor ϕαc

R , where α is a spinor index
and c is a color index. For Q < 0 this is replaced by a left-
handed spinor ϕαc

L . They are normalized to give ϕ
†
R/LϕR/L =

1Nc . The Q = 1 zero modes are normalized to give∫
d4x ψ

(1)†
f i (x; zi, ρi,Ui ) ψ

(1)
f i (x; zi, ρi,Ui ) = 1. (41)

Note that the gauge group orientation of ψ
(Q)
f i is that of the ith

constituent instanton, Ui. Eq. (38) is a direct generalization of
the result for Q = 2 in Ref. [6].

The Q = 1 quark zero mode (39) is of order ζ , while the
overlap term (40) is of order ζ 2. Hence, Eq. (38) implies that
genuine multi-instanton–induced quark zero modes appear
at order ζ 3 in the SCI limit. At order ζ , one simply has
ψ

(Q)
f i = ψ

(1)
f i + O(ζ 3). In this case, also the quark zero mode

determinant det0(J ) in Eq. (36) factorizes into independent
Q = 1 contributions, which then leads to Eq. (9). This gives
precise meaning to what has been called the leading order in
the SCI limit: it means that the small constituent instanton
expansion is carried out up to order ζ 2. Consequently, no
genuine multi-instanton corrections appear at leading order.

The next-to-leading order is ζ 3. As shown here, while the
multi-instanton solution, Eq. (31), does not change at this
order, the quark zero modes do. Hence, the only correction
to Eq. (36) at next-to-leading order in the SCI limit stems
from the quark zero mode determinant. This correction can
be computed from Eq. (38), again, as a direct generalization
of the computation in [6]. This is done next.

The quark zero mode determinant in Eq. (36) is

det(Q)
0 (J ) = det

∫
d4x ψ

(Q)†
f i (x) J (x) ψ

(Q)
gj (x), (42)

where the determinant on the right hand side is of the QNf ×
QNf matrix spanned by the zero modes. It is sufficient to look
at the contribution of the diagonal elements,

det(Q)
0 (J )|diag

=
∫ Nf∏

f =1

Q∏
i=1

d4x f i ψ
(Q)†
f i (x f i ) J (x f i ) ψ

(Q)
f i (x f i ), (43)

the computation of the other contributions is completely
equivalent. x f i are the locations of the sources. As discussed
above, the integration over all possible instanton locations
gives rise to numerous terms which lead, schematically, to
Eq. (6). For the dilute multi-instanton gas, one only needs to
identify the genuine Q-instanton contribution ZQ. With the
zero mode solution in Eq. (38), it is straightforward to identify
the relevant contributions. The key observation is that every
zero mode has a finite overlap with each constituent instanton.
This is reflected in the fact that each ψ

(Q)
f i depends on all

constituent instanton locations at next-to-leading order in the
SCI limit. This is not the case at leading order, where each
zero mode only depends on the location of one constituent
instanton. ZSCI

Q can therefore be extracted from the partition
function in Eq. (36) by considering the contributions to the
quark zero mode determinant where all zero modes overlap
at the same constituent instanton location. There are Q such
contributions. One of them, where all zero modes overlap at
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z1, reads explicitly

∫ ( Nf∏
f =1

Q∏
i=1

d4x f i

)

×
Nf∏
f =1

{[
ψ

(1)†
f 1 (x f 1; z1, ρ1,U1) J (x f 1) ψ

(1)
f 1 (x f 1; z1, ρ1,U1)

]

×
[ Q∏

j=2

ψ
(1)†
f j (x f j ; z1, ρ1,Uj ) J (x f j ) ψ

(1)
f j (x f j ; z1, ρ1,Uj )

]

×
[ Q∏

j=2

X2
j1(x f j, z j )

]}
. (44)

The other Q − 1 contributions are obtained by replacing z1

with one of the other constituent instanton locations. Note that
the terms in the second and third line of this expression only
depend on one location z1. The last term depends on all other
instanton locations and therefore quantifies the overlap.

The overlap term in (44) also depends on the source loca-
tions x f j . However, if all zero modes ψ

(Q)
f j (x f j ) are far away

from z1, but closer other z j , then the overlap at these different
points would dominate. The resulting contribution is not part
of ZQ, but of Z (q)

Q in Eq. (6). Only if all zero modes are
closer to one location zi than to the others (while still being
consistent with the SCI limit), i.e.,

ρi � |x f j − zi| � |x f j − z j |, (45)

the quark zero mode determinant generates a genuine Q-
instanton contribution. In this case, all zero modes for j �= i
are

ψ
(Q)
f j (x f j )||x f j−zi|�|x f j−z j | ≈ −X ji(zi, z j ) ψ

(1)
f j (x f j ; zi, ρi,Uj ).

(46)

Hence, X2
j1(x f j, z j ) in (44) can be replaced by X2

j1(z1, z j ), and
equivalently for all other contributions

Owing to the different orientations in the gauge group, the
zero mode determinant has a nontrivial group structure. To
simplify this, one assumes that the source J does not depend
on color. In the physical case, the source is identified with the
quark mass matrix, J = ρMq, so this assumption is natural.
One can then exploit that the partition function involves the
integration over all possible orientations in the gauge group.
From the quark determinant, this is of the general form

∫ ( Q∏
i=1

dUi

) Nf Q∏
n=1

ϕ
†anαn
R U †anbn

in
U bncn

jn
ϕ

αncn
R , (47)

where the indices in and jn are drawn from 2Nf copies of
the set {1, . . . , Q}. The group integrations then result in a
combination of products of δanbnδbncn , involving permutations
of the indices and Nc-dependent coefficients [55,56]. Due to
the normalization of the spinors, ϕ

†
RϕR = 1Nc , the integration

in expression (47) leads to fully contracted Kronecker deltas.
The gauge group orientations can therefore be rearranged

arbitrarily. In particular, (47) is identical to∫ ( Q∏
i=1

dUi

) Nf Q∏
n=1

ϕ
†anαn
R U †anbn

in
U bncn

in
ϕ

αncn
R

=
Nf Q∏
n=1

ϕ
†cnαn
R ϕ

αncn
R . (48)

Thus, assuming the source J is independent of color, the gauge
group integration of the quark zero mode determinant in the
SCI limit is trivial. The second and third lines of (44), as
well as the other contributions both from different instanton
locations and off-diagonal contributions to the determinant,
therefore exactly correspond to the terms that arise from Q
copies of the Q = 1 zero mode determinant. Defining the
Q = 1 determinant as

det (1)
0,i (J ) = det

[ ∫
d4x f i ψ

(1)†
f i (x f i; zi, ρi,Ui )

× J (x f i ) ψ
(1)
gi (x f i; zi, ρi,Ui )

]
, (49)

where the determinant is only over flavor in this case, the
genuine Q-instanton contribution to the partition function in
the SCI limit, Eq. (36), is

ZSCI
Q [J] = 1

Q!

∫ [ Q∏
i=1

d4zi dρi dUi n̄1(ρi ) det (1)
0,i (J )

]

×
( Q∑

i=1

∏
j �=i

X
2Nf

ji (zi, z j )

)
. (50)

To next-to-leading order in the SCI limit, the multi-instanton
contribution to the partition function factorizes into single-
instanton contributions, multiplied by a nonvanishing overlap
term.

To proceed, it is convenient to specify the source J . The
canonical choice is the constant diagonal matrix

J f g
i j = ρiδi jM

f g
q , (51)

with the quark mass matrix Mq. Due to the normalization of
the quark zero modes, Eq. (41), the quark zero mode determi-
nant in Eq. (50) then becomes

det (1)
0,i (J ) = det (1)

0,i (ρiMq) =
Nf∏
f =1

ρim f , (52)

where m f is the mass of the quark flavor f . Only the overlap
term in Eq. (50) depends on the instanton locations now. More
specifically, it depends on the relative locations Ri j . Using
the explicit form of X (40), the integration over the instanton
locations is for Nf > 1:∫ ( Q∏

i=1

d4zi

)( Q∑
i=1

∏
j �=i

X
2Nf

ji (zi, z j )

)

=
∫ Q∑

i=1

d4zi

∏
j �=i

d4Ri j

(
ρiρ j |Ri j |

[R2
i j + ρ2

j ]3/2

)2Nf

=
∫ Q∑

i=1

d4zi

∏
j �=i

cNf ρ
2Nf

i ρ
4−2Nf

j , (53)
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with the Nf -dependent constant

cNf = π2 (Nf + 1)! (2Nf − 1)!

(3Nf − 3)!
. (54)

Defining the integrated overlap term as

IQ,Nf ({ρi}) = cQ−1
Nf

Q∑
i=1

∏
j �=i

ρ
2Nf

i ρ
4−2Nf

j , (55)

the final result for the genuine Q-instanton contribution to the
partition function at next-to-leading order in the SCI limit is

ZSCI
Q = 1

Q!

∫
d4z

( Q∏
i=1

dρi n1(ρi )

)
IQ,Nf ({ρi}), (56)

where the Q = 1 quark zero mode determinant has
been absorbed into the instanton density n1(ρi ) =
n̄1(ρi ) det (1)

0,i (ρiMq), which is discussed in Appendix A.
It is worth emphasizing that Eq. (56) is the result of a

systematic expansion of the exact ADHM solution for the
Q-instanton. There is only one integration over the instanton
location left. It can be interpreted as the integration over the
average location of the Q-instanton. The relative locations
have been integrated out to yield the overlap IQ,Nf . This is in
accordance with the general discussion that led to Eq. (6).

As reviewed in Appendix A, the instanton density n1(ρ)
depends nontrivially on ρ, so that the integrations over the
ρi in Eq. (56) can only be done numerically for each Q and
Nf . It is therefore not possible to express ZQ in closed,
analytical form here. For the present purposes, a simple ex-
pression of ZQ is desirable in order to qualitatively study
the θ -dependent free energy F (θ ) (8). A simple estimate is
facilitated by the fact that n1(ρ) has a pronounced peak at an
instanton size ρ̄, which can be interpreted as the effective size
a constituent instanton. Using this, the overlap term (55) can
be evaluated directly at ρ̄ for ZQ, and Eq. (56) becomes

ZSCI
Q ≈ V

(c̄Nf ρ̄
4)(Q−1)

(Q − 1)!
Z̄Q

1 , (57)

where Eq. (10) has been used. Since the instanton density
has a finite width, c̄Nf can be quantitatively different from
cNf . This result has an intuitive interpretation. The overlap
term IQ,Nf accounts for the correlation between Q constituent
instantons. It arises from the short-distance contribution of
the integration over their relative distances. The effective
volume of a constituent instanton, in turn, is ∼ρ̄4. Hence,
ZSCI

Q ∼ ρ̄4(Q−1) Z̄Q
1 reflects the effective geometric overlap

of the constituent instantons that is necessary in order for them
to be correlated. This also reflects the short-ranged nature of
instanton interactions.

The overlap contribution c̄Nf ρ̄
4 is, in general, flavor- but

also temperature-dependent. Here, one final simplification is
made by using that, as shown in Appendix A, the average
instanton size is approximately determined by the renormal-
ization scale parameter � via ρ̄ ≈ 1/2�. This motivates a
simple approximation,

c̄Nf ρ̄
4 ≈ �−4, (58)

which greatly simplifies the following analysis, as it then only
requires knowledge of Z̄1. The error of such an estimate can be

FIG. 2. The effective potential V (θ ) = F SCI(θ ), defined in
Eq. (59), for Ẑ1 = 0.1, 1, 3, and 6 (from dark to light red), normalized
by its value at θ = π . While the potential retains its 2π periodicity,
strong anharmonicities arise with increasing Ẑ1.

potentially large, but this is not relevant for the present analy-
sis, where qualitative effects of multi-instantons are explored.
Furthermore, while the magnitude of the contribution of the
overlap at order ζ 3 in the SCI limit is now known from the
analysis above, it is unknown for higher orders. In particular
the contributions from instantons themselves, not the quark
zero modes, is entirely unknown. Self-consistency of the SCI
expansion at next-to-leading order also restricts the present
result to be valid only far away from the constituent instan-
tons, see Eq. (33). Consistency in the full space-time region
requires higher orders in the SCI limit [42], where corrections
to Eq. (36) become relevant. A quantitative analysis therefore
requires a more detailed computation of multi-instanton cor-
relations, which is beyond the scope of this work.

The free energy is obtained by plugging Eq. (57) into
Eq. (8). The advantage of using Eq. (57) is that the sum over
all topological charges can be carried out analytically. The
result is

F SCI(θ ) = 2�4 Ẑ1
[
eẐ1 − cos(Ẑ1 sin θ ) eẐ1 cos θ

]
, (59)

with Ẑ1 ≡ Z̄1/�
4. For small Ẑ1, one recovers the well-known

result for Q = 1,

F SCI(θ ) = 2Z̄1(1 − cos θ ) + O
(
Ẑ2

1

)
. (60)

This is expected since the effect of multi-instantons depends
on the magnitude of the ‘tunneling amplitude’ ZQ. In the
SCI limit, Q-instanton corrections are relevant for all Q with
(Q − 1) � Ẑ1. So for Ẑ1 � 1, the free energy is dominated by
the conventional cos θ behavior, while for Ẑ1 � 1 sizable cor-
rections to this behavior become relevant. This is illustrated
in Fig. 2. Such corrections are referred to anharmonicities,
since for small θ the free energy is modified with respect
to the leading harmonic contribution ∼θ2. As noted above,
this might be misleading if one invokes an acoustics analogy,
because multi-instanton contributions are overtones of the
single-instanton contribution.
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III. TOPOLOGICAL SUSCEPTIBILITIES

The free energy F (θ ) generates moments of the topolog-
ical charge distribution, the topological susceptibilities χn,

χ2n ≡ ∂2nF (θ )

∂θ2n

∣∣∣
θ=0

= 2(−1)n+1

V
∑

Q

Q2n ZQ,

(61)

and all odd susceptibilities vanish, χ2n+1 = 0. In the dilute
multi-instanton gas, the differences between the susceptibil-
ities χn are due to the different powers of the topological
charge, Qn. Hence, if only Q = 1 is taken into account, all
susceptibilities are identical up to the sign,

χ2n

∣∣
Q=1 = 2(−1)n+1 Z̄1. (62)

In the SCI limit, the topological susceptibilities in Eq. (61)
resemble moments of the Poisson distribution and can be
expressed as

χSCI
2n = 2(−1)n+1�4 Ẑ1 eẐ1 T̃2n(Ẑ1), (63)

where T̃n(z) are polynomials which are related to the Touchard
polynomials defined in Appendix B.

It is sometimes convenient to parametrize the θ dependence
of the free energy in terms of deviations from the second
susceptibility χ2,

F (θ ) = 1

2
χ2θ

2

[
1 +

∞∑
n=1

b2n(T )θ2n

]
. (64)

Deviations from unity of the expression in the square brack-
ets hence are a measure for the anharmonicity of the θ

dependence of the free energy. The relations between the
anharmonicity coefficients b2n and the susceptibilities are

b2n = 2

(2n + 2)!

χ2n+2

χ2
. (65)

In case only single-instantons are taken into account, it fol-
lows from Eq. (62) that the dilute instanton gas predicts
constant values for these coefficients,

b2n

∣∣
Q=1 = 2(−1)n

(2n + 2)!
. (66)

For instantons of any topological charge in the SCI limit,
however, one finds

bSCI
2n = 2(−1)n

(2n + 2)!

T̃2n+2(Ẑ1)

T̃2(Ẑ1)
. (67)

Thus an explicit temperature dependence of the coefficients
bn is generated by the effects of higher topological charge.

A. Quenched QCD

Using these results, the topological susceptibilities includ-
ing the effects of all topological charges can be computed
from Eq. (63). For the dilute multi-instanton gas in the SCI
limit, the size of the multi-instanton contributions to the
θ dependence depends on the size of Ẑ1. As discussed in
Appendix A, light quarks lead to a substantial suppression
of the instanton density, so in order to study multi-instanton

effects within the approximations used here, it is instructive to
consider the quenched limit of QCD. In this case, the instanton
density of SU(3) Yang-Mills theory is used.

As shown in Appendix A, the renormalization group scale
is set by the instanton size relative to the renormalization scale
parameter �. Thermal corrections to the instanton density
only enter through the combination πT ρ [24,25]. All scales
are therefore measured relative to � here. Since the energy
scale of thermal fluctuations is ∼πT , the combination πT/�

sets the relevant thermal scale.
In Fig. 3, the results for the first nonvanishing suscepti-

bilities χSCI
2 , −χSCI

4 and χSCI
6 are shown. The results for the

conventional dilute instanton gas, which only accounts for
the effect of single-instantons, are compared to the results of
dilute gases including also 2- and 3-instantons, as well as all
possible Q-instantons in the SCI limit. In general, the effect
of higher topological charge amplifies the temperature depen-
dence of the susceptibilities. This leads to the general trend
that the topological susceptibilities decreases faster with T be-
fore they follow the behavior of the dilute single-instanton gas
at high temperatures. Such a behavior has been observed on
the lattice, see, e.g., Ref. [33]. Hence, multi-instanton effects
provide a microscopic explanation for this.

Within the range of temperatures considered here, the ex-
pansion of the dilute instanton gas in terms of the topological
charge Q converges rapidly. This is expected since the instan-
ton density itself is highly suppressed at large temperatures,
such that higher powers become less relevant.

To study the effect of anharmonicities induced by multi-
instantons, bSCI

2 , bSCI
4 , and bSCI

6 are shown as functions of
temperature in Fig. 4. As in Fig. 3, the conventional di-
lute single-instanton gas is compared to the result including
any topological charge, as well as with the results of an
expansion of the free energy up to Q = 2 and 3. The temper-
ature dependence of the anharmonicity coefficients is solely
due to multi-instanton effects. Computations of b2 on the
lattice above Tc show indications that, starting from the
single-instanton value −1/12 at very high temperature, b2

decreases slightly with decreasing temperature for T � 2.5Tc,
before it starts rising towards small temperatures [35–38].
As demonstrated here, multi-instanton corrections can explain
this behavior qualitatively. However, more precise studies are
required to corroborate this on the lattice.

B. QCD

As discussed after Eq. (60), the effects of gauge field
configurations with higher topological charge in the dilute
multi-instanton gas to leading order in the SCI limit depend
on the size of the partition function in the presence of a
single-instanton, Z1. It is determined by the instanton density
n1, which is significantly suppressed in the presence of light
quarks, see Appendix A and in particular Fig. 9. Hence, within
the approximations used here, the corrections to the leading
single-instanton behavior are negligible in QCD for most
practical purposes. Explicit numerical calculations show that
multi-instanton corrections only become relevant for suscepti-
bilities of very high order. For example, at πT

�
= 1.5, the effect

of 2-instantons on bSCI
6 is about 0.002%, while it is about 32%

for bSCI
20 . In either case, multi-instantons with Q � 3 can be
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FIG. 3. Topological susceptibilities χSCI
2 (a), −χSCI

4 (b), and χSCI
6 (c) as functions of temperature in a dilute gas of instantons of various

topological charges to next-to-leading order in the limit of small constituent instantons in quenched QCD.

neglected. The present approximations are discussed critically
in Sec. V.

IV. AXION COSMOLOGY

As outlined in Sec. I, the physics of axions is sensitive to
the topological structure of the QCD vacuum. Higher topolog-
ical charge effects on the cosmology of axions are explored
here.

A. Axion effective potential

Having the θ vacuum as the true vacuum with θ as a funda-
mental parameter of the theory begs the question which value
is the physical one? Since θ �= 0 implies CP-violation in QCD
through FF̃ , one can look corresponding processes in nature.
As discussed in Sec. I, measurements of the neutron electric
dipole moment put stringent lower bounds on θ , strongly
suggesting that its physical value is zero. The question about
the existence and nature of a physical mechanism to enforce
this remains to be answered.

Among the possible resolutions of this problem, the PQ
mechanism [14,57] is the one relevant for the present pur-
poses. In this case, the standard model is augmented by an
additional global chiral (axial) symmetry, U(1)PQ, and a com-
plex scalar field (and possibly other fields which are irrelevant
here), which is charged under U(1)PQ and couples to quarks.
This symmetry is spontaneously broken at a scale fa, giving
rise to a Goldstone boson, the axion a(x), related to the phase
of the complex PQ field. The classical PQ symmetry entails
a shift symmetry of a(x). Since U(1)PQ is a chiral symmetry,
it is anomalous. The only non-derivative interactions of the

axion are dictated by the chiral anomaly to be proportional
to FF̃ . The axion effective potential is therefore of the same
form as the θ -term, and one can define an effective vacuum
“angle,”

θ̄ (x) = faθ + a(x). (68)

Note that there is also a contribution from the finite quark
masses to θ̄ (x), but this is not relevant here since only θ̄ (x)
itself is of interest for the following discussion. For a more
complete discussion, see, e.g., Ref. [58].

The upshot is that the θ angle is replaced by a dynamical
field θ̄ (x) (which will also be referred to as the axion for sim-
plicity), so there is a physical value defined by the minimum
of the axion effective potential. It follows from the discussion
above that the axion effective potential V is identical to the
free energy density F . In the dilute multi-instanton gas
Eqs. (8) and (59) yield

V (θ̄/ fa) = 2

V
∑

Q

ZQ[1 − cos(Qθ̄/ fa)]

SCI≈ 2�4 Ẑ1
{
eẐ1 − 2 cos[Ẑ1 sin(θ̄/ fa)] eẐ1 cos(θ̄/ fa )

}
.

(69)

Hence, the superselection of the θ parameter is avoided el-
egantly by effectively promoting it to a dynamical field. The
effective potential in the SCI limit is shown for exemplary val-
ues for Ẑ1 in Fig. 2. Obviously, the vacuum expectation value
is at 〈θ̄〉 = 0, which renders the QCD vacuum CP-symmetric.
The topological susceptibilities computed in Sec. III can be
interpreted directly as the axion mass and its higher order

FIG. 4. Anharmonicity coefficients bSCI
2 (a), bSCI

4 (b), and bSCI
6 (c) as functions of temperature in a dilute gas of instantons of various

topological charges to next-to-leading order in the limit of small constituent instantons in quenched QCD.
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(nonderivative) self-interactions. Thus the temperature depen-
dence of axion self-interactions is modified by multi-instanton
effects.

B. Vacuum realignment

The specifics of how the axion couples to the standard
model besides the topological sector discussed above are
model dependent. There is a class of “invisible” axion models
originating from [59–62], which are consistent with bounds
from axion searches [63]. These models require U(1)PQ to be
spontaneously broken at a very high energy scale resulting in
an axion decay constant of fa � 109 GeV, rendering axions
very light and their interactions faint. Furthermore, cold ax-
ions can be produced through a field-relaxation mechanism
during the evolution of the universe, known as vacuum re-
alignment [20–23]. This makes axions viable candidates for
dark matter. In the following, the possible implications of
higher topological charge effects on the production of cold
axions are discussed on a qualitative level.

For illustration, the simplest realization of the vacuum
realignment mechanism is used. It is assumed that sponta-
neous PQ symmetry breaking occurs before inflation and that
the reheat temperature is smaller than the temperature for
PQ symmetry restoration. Note, however, that the qualitative
statements made here are more general. If PQ symmetry is
spontaneously broken in the very early universe, the resulting
axion is essentially massless since the instanton effects that
give rise to the axion mass,

m2
a = d2V (θ̄/ fa)

d θ̄2

∣∣∣∣
θ̄=0

= f −2
a χ2, (70)

are negligible at T ∼ fa in this regime. Thus, the axion
is strongly fluctuating around its vacuum expectation value
within the range θ̄/ fa ∈ [−π, π ]. In a sufficiently small patch
in space right before inflation, the axion field can be assumed
to have a homogeneous value θ̄0. Due to inflation, such a
patch is blown up in size and it is possible to have a single
homogeneous value θ̄0 for the axion within our causal horizon.
Furthermore, inflation dilutes all relics from the PQ phase
transition, such as topological defects, away. In the simplest
realization of the vacuum realignment mechanism, one as-
sumes that we live in one such domain. So it is assumed
that the axion is homogeneous throughout the whole universe.
Since fluctuations are redshifted away, it can be treated as a
classical field. Thus, starting from the random initial value
θ̄0, called the misalignment angle, the axion evolves in time
according to the classical equations of motion. For a more
detailed discussion, see, e.g., Refs. [17,18].

Within the standard model of cosmology, a homoge-
neous, isotropic, expanding universe with vanishing curvature
is assumed. This is described by the Friedmann-Lemaitre-
Robertson-Walker metric

gμν = diag(1,−a2(t ),−a2(t ),−a2(t )), (71)

with the scale parameter a(t ) (not to be confused with the
axion). The Hubble parameter is H (t ) = 1

a(t )
da(t )

dt . The axion

field described by the classical action

Sa[θ̄ ] =
∫

d4x
√−g

[
1

2
gμν∂μθ̄∂ν θ̄ − V (θ̄/ fa)

]
, (72)

has energy-momentum

Tμν = ∂μθ̄∂ν θ̄ − gμν

[
1

2
gαβ∂αθ̄∂β θ̄ − V (θ̄/ fa)

]
. (73)

From this, one infers the time evolution of the homogeneous
axion field according to its classical equation of motion,

d2θ̄

dt2
+ 3H

d θ̄

dt
+ dV (θ̄/ fa)

d θ̄
= 0, (74)

and the energy density of the axion,

ρa ≡ T00 = 1

2

(
d θ̄

dt

)2

+ V (θ̄/ fa). (75)

Strictly speaking, the time evolution in Eq. (74) is incomplete.
There is an additional Friedmann equation determining the
Hubble parameter, which depends on the energy density of
the axion. For the timescales relevant here, the universe is to
a good approximation radiation-dominated and the axions do
not spoil that. Their energy density is negligible compared to
the contributions of radiation to the Hubble parameter.

The time evolution of the axion field in Eq. (74) has a
very simple heuristic interpretation if one assumes that an-
harmonicities in the axion effective potential are small. In
this case one has dV (θ̄/ fa )

d θ̄
≈ m2

a θ̄ , cf., Eqs. (64) and (70).
Naively (ignoring the explicit time dependence of H and ma),
Eq. (74) then has the form of a damped harmonic oscillator.
Its qualitative behavior is determined by the damping ratio
ζ = 3H/2ma. If the Hubble parameter dominates over the ax-
ion mass such that ζ > 1, the axion evolution is overdamped.
Since the Hubble expansion is much smaller than the Comp-
ton wavelength of the axion at early times, the axion decays
very slowly from the initial misalignment angle θ̄0 towards its
vacuum expectation value. At later times, when a substantial
axion mass is generated through instanton effects and the
Hubble expansion slows down, the system enters the under-
damped regime with ζ < 1. The axion then oscillates with
decreasing amplitude around its vacuum expectation value
θ̄ = 0.

Due to the strong time dependence of H and ma this sim-
ple picture is merely suggestive. Eq. (74) is therefore solved
numerically. However, the intuition from the damped oscilla-
tor helps to anticipate the possible effect that multi-instanton
corrections have on the time evolution of the axion. From the
axion potential in Eq. (69) shown in Fig. 2 one sees that the
anharmonicity indued by multi-instantons can lead to a flat-
tening of the potential around the maxima, or even turn them
into local minima. Thus, the ‘frequency term’ in the axion
evolution equation (74), ∼V ′′(θ̄/ fa), can become significantly
smaller than the corresponding result for the effective poten-
tial induced by single-instantons. If the initial misalignment
θ̄0 happens to be in this flattened region, the axion remains
frozen for a longer time before it starts a damped oscillation
around its vacuum expectation value for H2 � |V ′′(θ̄/ fa)|.
Figure 5 shown an example for the multi-instanton induced
axion effective potential at three different times. A similar
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FIG. 5. Multi-instanton induced axion effective potential for
quenched QCD at three different times t̄ = �/πT .

scenario, but originating from a noncanonical kinetic term of
the axions instead of topological field configurations, has been
discussed in Ref. [64]. Note that if Ẑ1 becomes large enough,
the anharmonic corrections in the SCI limit can induce a sign
change in V ′(θ̄/ fa) for intermediate values of θ̄ . In this case,
it is possible to increase θ̄ (t ), before it starts oscillating. This
possibility is commented on below.

C. Quenched-QCD axion

For the numerical solution of Eq. (74), it is assumed that
the universe is radiation dominated. The Hubble parameter
then is

H2(T ) = 8π3

90
g�(T )

T 4

m2
Pl

, (76)

with the Planck mass mPl ≈ 1.22 × 1019 GeV. For the ef-
fective number of radiative degrees of freedom, g� = 100 is
chosen for simplicity, see, e.g., Ref. [65] for a more refined
analysis. Converting temperature to time is done by using
that radiation domination implies t (T ) = 1

2H (T ) . As for the
topological susceptibilities, the axion effective potential is
computed in the SCI limit in Eq. (69), with Ẑ1 discussed in
Appendix A. As before, all scales are measured relative to �;
the relevant time scale is

t̄ = �

πT
. (77)

To highlight the effect of multi-instantons, an initial misalign-
ment angle close to the maximum of the potential, where
the flattening of the potential is most pronounced, and a
large axion decay constant, in order to push the onset of
the underdamped regime to lower temperatures, are chosen.
Specifically, θ̄0/ fa = 3.14 and fa/� = 4 × 1016 are used.
Given that this is only a toy model, the value for the axion
decay constant is not physical.

The time evolution of the axion is shown in Fig. 6. The
effect of the multi-instanton induced effective potential of
Eq. (69) (solid lines) is compared to the single-instanton in-
duced potential ∼cos(θ̄/ fa) (dashed lines). For the present
choice of parameters, one sees the qualitative behavior dis-
cussed above: the flattening of the potential due to the

FIG. 6. Time evolution of the quenched-QCD axion. Multi-
instanton effects delay the onset of the oscillating regime and
increase the oscillation frequency.

anharmonicities from multi-instanton corrections results in
a longer period of overdamping, where the axion is essen-
tially frozen at the misalignment angle. This can be read-off
from Fig. 5, which shows that the multi-instanton induced
axion effective potential flattens significantly in the over-
damped regime for t̄ � 0.54. In contrast, the single-instanton
induced effective potential retains its cosine-shape throughout
the whole time evolution. Once the Hubble expansion has
slowed down sufficiently, the time evolution is determined by
the curvature of the effective potential and the axion oscillates
around its vacuum expectation value 〈θ̄〉 = 0 with decreasing
amplitude.

Using this solution, the energy density of the axion can
be computed from Eq. (75). The result, again for the multi-
and single-instanton induced potentials, is shown in Fig. 7.
The energy density monotonously rises with time in the over-
damped region, where it is almost exclusively due to the
potential energy of the axion, and then slowly decreases in
the oscillating regime at later times. In addition to the rate of
decrease in the oscillating regime, the energy density today
crucially depends on how long the axion is frozen in the

FIG. 7. Time evolution of the energy density of the quenched-
QCD axion. Multi-instanton effects increase the energy density of
axions at later times.
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overdamped regime. Since multi-instanton effects can pro-
long this phase and delay the start of oscillations, they can
increase today’s energy density of cold axions. In addition,
owing to the steeper potential around the minimum, the ax-
ion field oscillates faster in the presence of multi-instanton
corrections. Hence, the larger kinetic energy also leads to a
larger energy density in the oscillating regime as compared
to the single-instanton induced axion potential. In summary,
higher topological charge effects can flatten the axion effec-
tive potential and therefore provide a topological mechanism
to increase the amount of axion dark matter today.

Following the discussion after Eq. (60), in Sec. III B and
Appendix A, the substantial suppression of the instanton den-
sity in the presence of light quarks leads to also a substantial
suppression of multi-instanton effects for the present approx-
imation to the topological structure of the vacuum. Hence,
while the mechanism discussed above is still present in QCD,
its effect could be negligible. Only axion self-interactions for
very high order are modified substantially by multi-instantons
in QCD, but their overall magnitude is tiny.

Note that the sign change of V ′ seen in Fig. 2 for very large
Z1 could lead to an increase of θ̄ (t ) at intermediate times,
additionally increasing also the energy density. However, Z1

does never become this large here in the relevant stage of
the axion evolution, so this possibility has not been further
explored.

V. DISCUSSION

Before the results are summarized, a critical discussion of
the assumptions and approximations made here is in order.

First, the actual size of the effects studied here obviously
depends on the quantitative impact of field configurations of
higher topological charge on the vacuum amplitude. A dilute
gas and the SCI limit have been used. A dilute gas can only
be valid at weak coupling for very high temperatures. Yet,
multi-instanton effects are relevant if the classical suppression
∼e−8π |Q|/g2

becomes less strong and effective instanton sizes
become larger. This is only possible away from the strict
weak-coupling limit at lower temperatures. Then, in turn,
other effects, such as interactions between (multi-) instantons
and (non-perturbative) quantum effects, also become increas-
ingly relevant. Furthermore, it has been argued that the effects
in QCD are small because light quarks suppress the instanton
density. The dynamical generation of quark mass at lower
temperatures might compensate this to some extent. To as-
sess the relative importance of these different effects, a better
understanding of the partition function in a Q-instanton back-
ground, ZQ, beyond the estimates based on the SCI limit used
here, is necessary. For this, the overlap between constituent
instantons has to be taken into account more accurately. There
is a priori no reason to assume that the SCI limit to a low
order is sufficient to accurately describe ZQ, and is therefore
the largest source of uncertainty here.

Second, it has been assumed that topological gauge field
configurations at large temperatures, i.e., well within the de-
confined phase, are described by instantons (or rather their
finite-temperature cousins, sometimes called calorons [25]).
It has been argued in [66] that the instanton picture is incom-
patible at large Nc in the confined phase. However, neither

is Nc large, nor are quarks confined here. As mentioned al-
ready, the assumptions regarding the nature of topological
field configurations made here are backed by numerous results
for topological susceptibilities by first-principles lattice gauge
theory methods. They all show that at large temperatures,
T � 2.5Tc, the behavior of the susceptibilities with respect
to T agrees with the predictions of a dilute instanton gas
[30–32,34,36–39]. Note that this is not contradicting the va-
lidity of a dilute multi-instanton gas, since, as shown here,
multi-instanton corrections are small at large temperatures and
might very well fit within the error bars of state-of-the-art
lattice results.

VI. SUMMARY

It has been shown that gauge field configurations with
higher topological charge modify the QCD vacuum. This is
reflected in corrections to the conventional dependence on the
CP-violating topological θ parameter.

At large temperatures well within the deconfined phase,
the topological structure of QCD can be described by a di-
lute gas of instantons. Even though multi-instantons with
topological charge Q > 1 are suppressed in the semiclassical
weak-coupling limit, their contributions to the path integral
are genuinely different from the single-instanton contribution.
Hence, the picture of a dilute instanton gas has been general-
ized to include instantons of arbitrary topological charge. Note
that this is very much in line with the findings in [6], where
it has been shown that there are anomalous quark correlations
which are only generated by multi-instantons.

In addition to this conceptual result, a key technical result
in the present work is the systematic derivation of the multi-
instanton contribution to the partition function in the SCI limit
for arbitrary topological charges, which has led to Eq. (56).
This required the explicit expression for the quark zero modes
generated in the background of a multi-instanton given in
Eq. (38). The computational techniques presented here, which
are based on the work in Refs. [6,42,45,46,53,54], pave the
way to compute higher-order corrections to the partition func-
tion in a multi-instanton background in the SCI limit.

There is a nice acoustics analogy regarding multi-instanton
corrections to the θ -dependent free energy of QCD: they give
rise to overtones to the fundamental frequency, which is set
by single-instantons. In the dilute multi-instanton gas in the
SCI limit, the θ -dependent free energy can be computed ana-
lytically, based on the known results for the single-instanton
density. This leads to a modification of the conventional cos θ -
behavior of the free energy. The resulting θ dependence of
QCD is reflected in the topological susceptibilities χn. If only
single-instanton effects are accounted for, all susceptibilities
are proportional to the first nonvanishing susceptibility χ2.
Higher topological charge contributions lift this “degeneracy”
and amplify the temperature dependence of these susceptibil-
ities towards lower temperatures. This is most clearly seen
in the anharmonicity coefficients b2n ∼ χ2n+2/χ2, which are
constant for single-instantons only. Multi-instantons give rise
to a characteristic temperature dependence of the anharmonic-
ity coefficients. Strong indications for the behavior of the
topological susceptibilities predicted here have been found on
the lattice at temperatures above Tc. Hence, multi-instanton
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effects can provide a microscopic explanation for various
qualitative features of topological susceptibilities observed on
the lattice in the deconfined phase.

An interesting application to showcase higher topological
charge effects is axion cosmology. Since the axion effec-
tive potential is determined by the θ dependence of QCD,
it is also sensitive to the effects investigated here. Again,
to accentuate these effects, a toy universe where axions are
coupled to quenched QCD has been considered. The results
on the topological susceptibilities directly apply to axion self-
interactions. The production of cold axion dark matter via
the vacuum realignment mechanism has been studied as an
example. Multi-instanton effects can flatten the axion effec-
tive potential around its maxima and, as a result, can delay
the time where the evolution of the axion switches from
the overdamped to the oscillating regime in an expanding,
radiation-dominated universe. In addition, the axion oscillates
faster. This leads to an overall increase in the energy density
of axions at late times, as compared to the case where only
single-instantons are taken into account. Hence, higher topo-
logical charge effects give rise to a mechanism that increases
the amount of axion dark matter.

As discussed in the previous section, on the one hand, the
effects studied here become very small if dynamical quarks
are taken into account within the present approximations. On
the other hand, multi-instanton effects can become relevant
only in a regime where semiclassical and dilute approxima-
tions begin to break down, at least to leading order. Thus,
a better understanding of the significance of higher topolog-
ical charge effects requires a more detailed understanding
of the impact of topological gauge field configurations on
the vacuum amplitude of QCD. This work is a first step in
this direction. Two major sources of uncertainty are the un-
known higher-order corrections to the vacuum amplitude in
a multi-instanton background in the SCI limit, and neglected
interactions between (multi-) instantons and anti-instantons.

Higher topological charge effects at lower temperatures, in
particular close to and in the confined phase have not been dis-
cussed here at all. As mentioned in the beginning, the reason is
that the nature of topological field configurations is unsettled
in this case. A possibility is to study topological effects in “de-
formed” versions of QCD. One example is Yang-Mills theory
on a small circle, where higher topological charge effects can
be addressed systematically [67]. At low temperatures, chiral
perturbation theory is valid and the θ dependence can be stud-
ied in a controlled manner. This is possible without explicit
knowledge of the nature of topological gauge field configura-
tions, since the θ angle can be rotated to the phase of the quark
mass matrix by an axial transformation. The θ dependence
is then encoded in correlation functions of pseudo-Goldstone
bosons in the chiral expansion. This way, contributions from
all topological charge configurations are taken into account
and the free energy also deviates substantially from the simple
cos θ behavior [68–71]. In this case, it is in principle possible
to extract the contributions from different topological charges
by means of a Fourier transformation of the free energy with
respect to θ [68]. However, connecting these results to the
present results is impossible since the regions of validity
of chiral perturbation theory and dilute instantons do not
overlap.

As a final remark, an interesting observation is that multi-
instanton effects lead to the possibility of metastable states
at θ = ±π , cf., Figs. 2 and 5. This could have interesting
phenomenological implications due to the possibility of spon-
taneous CP violation [72,73].
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APPENDIX A: INSTANTON DENSITY

The single-instanton density n1 has been computed in
Refs. [1,2,24,25,48,49]. In the modified subtraction scheme
(MS), it reads

n1(ρ, T ) = dMS

ρ5

(
8π2

g2

)6

exp

(
− 8π2

g2

)
× exp

[
− 2π2

g2
ρ2m2

D(T ) − 14A(πT ρ)

]
× det(1)

0 (Mq).

(A1)

det(1)
0 (Mq) is the functional determinant in the space of quark

zero modes and Mq is the quark mass matrix. The renormal-
ization scheme dependent constant dMS is

dMS = 2e5/6

π2(Nc − 1)!(Nc − 2)!
e−1.511374Nc+0.2614436Nf , (A2)

g is the running strong coupling. The renormalization group
scale is chosen to be determined by the instanton size relative
to the scale parameter �, g(ρ�). The two loop running both
in the exponential and the pre-exponential is used [6],

g2(x) = (4π )2

β0 ln(x−2)

[
1 − β1

β2
0

ln
(
ln(x−2)

)
ln(x−2)

]
, (A3)

with β0 = (11Nc − 2Nf )/3 and β1 = 34N2
c /3 − (13Nc/3 −

1/Nc)Nf . The in-medium corrections depend on the Debye
mass at leading order,

m2
D(T, μ) = g2

[(
Nc

3
+ Nf

6

)
T 2 + Nf

2π2
μ2

]
, (A4)

and the function

A(x) = − 1

12
ln

(
1 + x2

3

)
+ 0.0129

(
1 + 0.159

x3/2

)−8

, (A5)

is a numerical parametrization of the temperature-dependent
part of the one-loop determinant in the instanton background
[24,25,50]. Note that the instanton density has, at least at the
loop order considered here, a large renormalization scheme
dependence, the MS scheme, is just the canonical choice.

The instanton density for the pure SU(3) gauge theory [i.e.,
Nf = 0 and det0(Mq) = 1], which is used in the quenched
approximation, is shown in Fig. 8. First, one clearly sees the

033359-15



FABIAN RENNECKE PHYSICAL REVIEW RESEARCH 2, 033359 (2020)

FIG. 8. Instanton density n1(ρ ) of quenched QCD for various
temperatures.

suppression of the instanton density due to thermal correc-
tions. Second, the instanton density is peaked about

ρ̄ ≈ 1

2�
. (A6)

This justifies the use of an effective instanton size in Sec. II A.
The zero-mode determinant of quarks in the background of

a single-instanton is given by

det(1)
0 (Mq) = det

∫
d4x f i ψ

(1)†
f i (x f i ) ρiδi jM

f g
q ψ

(1)
gj (x f i ).

(A7)

The quark zero modes are defined in Eq. (39). Since the quark
mass matrix is diagonal in flavor, and one can assume that all
instanton sizes are the same in the SCI limit (i.e., ρi = ρ for
all i), the determinant simply gives a factor

det0(Mq) =
Nf∏
f =1

ρm f , (A8)

where m f is the constituent mass of quark flavor f . Strictly
speaking, this is only valid if Mq can be viewed as a small
perturbation of the Dirac operator such that the unperturbed
quark-eigenmodes can be used and only the lowest eigenvalue
is affected. For a more complete discussion, see Refs. [74,75].
For the present purposes, a qualitative discussion is
sufficient.

Fig. 9 shows a comparison between Ẑ1 = Z̄1/�
4, defined

in Eq. (10), for QCD with and without dynamical quarks. In
the former case, four quark flavors with mu = md = 3 MeV,
ms = 94 MeV, and mc = 1.27 GeV were chosen. The running
of the masses and threshold effects in the running of the strong
coupling have been neglected for simplicity. Z1 is suppressed
by about seven orders of magnitude if the four lightest quark
flavors are taken into account.

FIG. 9. Comparison between the single-instanton partition func-
tion Ẑ1 of QCD with and without dynamical quarks.

APPENDIX B: TOUCHARD POLYNOMIALS

The evaluation of Eq. (61) in the SCI limit involves a
summation of the form

T̃n(z) = z−1e−z
∞∑

Q=1

Qn zQ

(Q − 1)!
. (B1)

The polynomials T̃n are directly related to the Touchard poly-
nomials Tn via

T̃n(z) =
n∑

k=0

(
n
k

)
Tk (z), (B2)

and the Touchard polynomials are defined as

Tk (z) = e−z
∞∑

q=0

qk zq

q!
. (B3)

They can be written as

Tn(z) =
n∑

k=0

{
n
k

}
zk, (B4)

with the Stirling numbers of the second kind{
n
k

}
= 1

k!

k∑
i=0

(−1)i

(
k
i

)
(k − i)n. (B5)

The first few polynomials T̃n are given by

T̃0(z) = 1,

T̃1(z) = 1 + z,

T̃2(z) = 1 + 3z + z2,

T̃3(z) = 1 + 7z + 6z2 + z3, (B6)

T̃4(z) = 1 + 15z + 25z2 + 10z3 + z4,

T̃5(z) = 1 + 31z + 90z2 + 65z3 + 15z4 + z5,

T̃6(z) = 1 + 63z + 301z2 + 350z3 + 140z4 + 21z5 + z6.
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