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Electrical band flattening, valley flux, and superconductivity in twisted trilayer graphene
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Twisted graphene multilayers have been demonstrated to yield a versatile playground to engineer controllable
electronic states. Here, by combining first-principles calculations and low-energy models, we demonstrate that
twisted graphene trilayers provide a tunable system where Van Hove singularities can be controlled electrically.
In particular, it is shown that besides the band flattening, bulk valley currents appear, which can be quenched by
local chemical dopants. We finally show that in the presence of electronic interactions, a nonuniform superfluid
density emerges whose nonuniformity gives rise to spectroscopic signatures in dispersive higher-energy bands.
Our results put forward twisted trilayers as a tunable van der Waals heterostructure displaying electrically
controllable flat bands and bulk valley currents.
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I. INTRODUCTION

The interplay between topology and correlations repre-
sents a highly fruitful area in condensed matter physics.
However, exploring unconventional states of matter requires
identifying systems where electronic correlations, topology,
and electronic dispersions can be realistically controlled. In
this regard, twisted van der Waals materials [1–8] provide a
powerful solid state platform to realize exotic quantum phe-
nomena. The tunability of twisted van der Waals materials
stems from the emergence of a band structure that can be
controlled by the twist between different two-dimensional
materials [9,10]. In particular, the different quantum states in
twisted graphene systems stem from the possibility of control-
ling the ratio between kinetic and interaction terms. In twisted
graphene bilayers, such tunability has allowed the realization
of superconductivity [1,2,4], correlated insulators, topologi-
cal networks [5,6], Chern insulators [11], and quasicrystals
[12–15]. As a result, current experimental efforts are focusing
on exploring new twisted van der Waals materials, with the
aim of finding platforms that allow for an even higher degree
of control [16,17].

From a quantum engineering point of view, applying a
perpendicular bias between layers [18] provides a versatile
way of tuning correlated states in twisted graphene multilay-
ers. This has been demonstrated in paradigmatic examples
of correlated states in twisted tetralayers (double bilayers)
[19,20] and twisted trilayers (monolayers/bilayers) [16,17].
Moreover, interlayer bias is known to generate internal val-
ley currents in twisted graphene bilayers [5,6,21,22], creating
topological networks at low angles [5,6,21] and generating
valley fluxes in flat band regimes [22]. This interplay of cor-
relations and topology in twisted graphene multilayers makes
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these materials a powerful platform to explore exotic states of
matter [23–26] in a realistically feasible manner.

From a theoretical point of view, electronic structure
calculations of a twisted graphene bilayer conducted with
real-space tight-binding models [10] or continuum Dirac
descriptions [9] capture the fundamental features of the
electronic dispersion. Nevertheless, internal coordinate opti-
mization can quantitatively modify the electronic dispersion
[27–34]. Well known examples of this are the growth of
AB/BA regions in twisted bilayers [29,35]. It is important
to note that studying twisted graphene multilayers from first
principles represents a remarkable challenge, due to the large
number of atoms present in a unit cell.

Here, by combining first-principles calculations and low-
energy models, we show that twisted graphene trilayers [36]
host flat bands whose bandwidth can be controlled electri-
cally. We address the impact of an interlayer bias from both
first-principles and effective models, showing that Van Hove
singularities can be merged electrically. We show that asso-
ciated with the interlayer bias, bulk valley currents emerge,
which are impacted by the existence of chemical impurities in
the system. We finally address the superconducting states in
these doped trilayers, showing that the nonuniform superfluid
density has an impact in high-energy bands.

Our paper is organized as follows. In Sec. II we show
the electronic structure of a twisted graphene trilayer from
both first-principles and low-energy models. In Sec. III we
explore in detail the impact of an electric field. In Sec. IV we
explore the effect of chemical impurities. In Sec. V we address
the impact of an emergent nonuniform superfluid density. In
Sec. VI we summarize our conclusions.

II. ELECTRONIC STRUCTURE OF TWISTED
TRILAYER GRAPHENE

The electronic structure of twisted graphene trilayers
[36–41] shows different features in comparison with twisted
graphene bilayers [10,42]. The electronic structure of small
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FIG. 1. (a) and (b) Sketch of the structure of a twisted graphene
trilayer, in which the top and bottom layers are aligned and are
twisted with respect to the middle one. (c) Colormap of a DFT-based
relaxed 2 × 2 supercell of a twisted trilayer. The colored pattern
corresponds to the difference � = z − zav between the z coordinate
of an atom in the surface layer and the average coordinate zav of
all atoms in the same layer. The AA stacking regions are colored
with darker tones whereas AB/BA stacking regions are colored with
lighter tones. Superimposed is the unit cell of the trilayer. (d) His-
togram showing the number of occurrences of each distance to the
average deviation value. Tiny deviations from flatness occur in the
central layer. Calculations were performed with DFT.

magic angle twisted bilayer graphene features four flat bands
lying around the Fermi level, with band splitting at the �

point of the Brillouin zone of the emergent moiré superlattice
[10,42]. Density functional theory (DFT) calculations have
shown results consistent with those effective models in twisted
graphene multilayers, yet quantitative modifications are ob-
served when including relaxation of the atomic coordinates
[29,30,43–45] and crystal-field effects [34,46]. Therefore, to
benchmark the electronic properties of twisted graphene mul-
tilayers, it is essential to start from a correct description that
takes into account the geometric corrugation and ab initio
electrostatics of the moiré system.

We consider a twisted trilayer structure in which the upper
and lower layers are aligned and the middle one is twisted
with an angle θ with respect to those [Figs. 1(a) and 1(b)].
In particular, in the following we consider a twisted trilayer
whose middle layer has a twisting angle of 1.9◦ with respect
to the external layers. A twisted multilayer like this can be
created with standard tear, rotate, and stack techniques [47].
The system of 5514 atoms is fully relaxed, allowing for lateral
and vertical displacement of the C atoms in the structure.
Figure 1(c) shows the colormap of one of the two equivalent
external layer relaxations. The color scheme represents the
vertical variation of each C atom at the surface with respect
to the average deviation within each layer. The darker areas
indicate a displacement of atoms out of the surface which oc-
curs predominantly in the AA stacking region. The histogram
of Fig. 1(d) shows that the number of atoms in the upper layer
whose vertical coordinate is above the average is twice as

FIG. 2. Electronic band diagrams of twisted trilayer graphene.
Localized states at the Fermi energy coexist with highly dispersive
state bands forming a Dirac cone in the conduction band. Applying
a small electric field perpendicular to the TTG, a reduction of all
band dispersions is induced. A stronger electric field removes the
Dirac cones and induces hybridization between electronic states.
Calculations were performed with DFT.

large as the atoms displaced in the opposite direction below
the average.

The first-principles electronic band diagram of the fully
relaxed structure of θ = 1.9◦ twisted trilayer graphene (TTG)
is shown in Fig. 2. In contrast with twisted bilayer graphene,
two highly dispersive bands coexist with four low-dispersive
bands grouped at the Fermi energy. The Dirac-like crossing
above the charge neutrality point leads to a small charge trans-
fer between the flat and dispersive bands even at half filling.
Additional flattening of the localized states can be induced by
application of an external electric field perpendicular to the
TTG surface. A field of 0.03 eV/Å reduces the dispersion of
all electronic states in the vicinity of the Fermi energy without
inducing any interband charge transfer. Increasing the strength
up to 0.25 eV/Å, a disruption of the linear bands is observed
and a hybridization of the flat bands with a neighboring state
increases their dispersion. It is observed that the application of
an interlayer bias generates Dirac crossings above and below
charge neutrality, as well as a variety of anticrossings (Fig. 2).

The first-principles calculations above show that the elec-
tronic structure of twisted trilayer graphene show strong
differences from the one of twisted graphene bilayers. In
particular, a highly dispersive set of bands coexists with the
nearly flat bands at charge neutrality. In order to explore more
in detail the physics and twisted trilayers, in the following we
exploit a low-energy model. We find that the tight-binding
model qualitatively reproduces the important features of the
band structure without including relaxations and additional
charge-transfer effects. Therefore, for the sake of simplicity,
we now use an unrelaxed structure for our tight-binding model
calculations. We take a single orbital per carbon atom, yield-
ing a tight-binding Hamiltonian of the form

H0 = −t
∑
〈i, j〉,s

c†
i,sc j,s −

∑
i, j,s

t̄⊥(ri, r j )c
†
i,sc j,s, (1)
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with t̄⊥(ri, r j ) = t⊥
(zi−z j )2

|ri−r j |2 e−β(|ri−r j |−d ), where d is the inter-
layer distance and β controls the decay of the interlayer
hopping. As a reference, for twisted graphene multilayers t ≈
3 eV and t⊥ ≈ 0.15t .1 Similar real-space models were used to
study a variety of twisted graphene multilayers [10,36,50,51],
providing a simple formalism to study the effect of dopants
and impurities [52,53]. However, in contrast to continuum
models [9,42,54], measuring of valley-related quantities with
a real-space-based formalism is nontrivial.

Twisted graphene multilayers have an approximate sym-
metry associated with the valley quantum number [9]. Valley
physics in both DFT calculations and the tight-binding model
are emergent symmetries, in the sense that valley are not
easily defined in terms of real-space chemical orbitals. This
limitation can be overcome by defining the so-called valley
operator [21,52,55] in the tight-binding description. With the
valley operator the expectation value of the valley can be
computed in a real-space representation [22,56]. The details of
the valley operator [21,52,55] are given in Appendix B. In the
following we take as the starting point the valley operator Vz.
With the previous operator, we can compute the valley flavor
of each eigenstate of the twisted trilayer supercell within the
real-space formalism as 〈Vz〉 = 〈�|Vz|�〉. It is worth noting
that this operator can be easily defined in the tight-binding
basis but not in the DFT basis. We finally note that the valley
operator Vz in the twisted moire system will show the valley
flavor in the original Brillouin zone of graphene, not in the
mini Brillouin zone of the twisted system.

With the previous formalism, we now compute the elec-
tronic structure of the low-energy model at the same angle
θ = 1.9◦ as in the first-principles calculations (Fig. 3). We
note that, besides some additional splittings observed in the
first-principles calculations (Fig. 2), the band structure ob-
tained with the low-energy model [Figs. 3(a) and 3(b)] gives
comparable results. As shown in Fig. 3(a), in the absence of an
interlayer bias the system shows nearly flat bands coexisting
with highly dispersive states. Whereas the nearly flat bands are
degenerate in valleys in the path shown, the dispersive states
belong to different valleys in different parts of the Brillouin
zone. It is also observed that the dispersive Dirac cones are
slightly displaced from charge neutrality, as observed in the
first-principles results.

We now move on to consider the effect of the interlayer
bias. An interlayer bias can be easily included in the low-
energy tight-binding model by means of

HV = V

2d

∑
i,s

zic
†
i,sci,s, (2)

where zi is the z position of site i, d is the interlayer distance,
and V is the strength of the interlayer bias. The full Hamilto-
nian in the presence of interlayer bias is thus H = H0 + HV .
When an interlayer bias is turned on [Fig. 3(b)], the valley
degeneracy in the G-K path is lifted and the dispersive bands

1At low energies the spectrum is invariant upon rescaling of the
interlayer coupling, which allows one to explore effective smaller
angles with smaller unit cells [48,49]. Our calculations are performed
with a rescaled t⊥ = 0.4t .

FIG. 3. (a) Band structure of a twisted trilayer at an angle of 1.9◦

(a) without and (b) with interlayer bias, showing dispersion analo-
gous to those found by first principles in Fig. 2. (c) Band structure at a
lower angle of θ = 1.6◦, showing a flattening of the bands. (d) Local
density of states at the Fermi energy, showing a triangular supercell
pattern. Note that part of the k path is different in comparison to
Fig. 2. Calculations were performed with tight binding.

show two crossings above and below the nearly flat bands,
analogously to the first-principles results. It is also observed
that the nearly flat bands are slightly modified by the interlayer
bias. As we will show below, such effect becomes stronger for
even smaller angles.

The last interesting point is related to the localization of
the different states in the supercell. This can be characterized
by means of the inverse participation ratio (IPR), defined as∑

i |�k (i)|4. Large values of the IPR correspond to states
localized in the moiré supercell, whereas small values corre-
spond to states delocalized in the moiré supercell. Focusing
now on a structure with a θ = 1.6◦ twisting angle, it is clearly
observed that the nearly flat bands show a substantially higher
degree of localization than the dispersive bands [Fig. 3(c)]. In
particular, the flat band states are associated with an emergent
triangular lattice in the supercell, as shown in the local density
of states (LDOS) of Fig. 3(d). In the following we will see
how these flat band states can be electrically controlled and
how the bias creates bulk valley currents associated with the
valley splittings.

III. BAND FLATTENING AND VALLEY CURRENTS
BY AN INTERLAYER BIAS

We now move on to systematically analyze the effect of
an interlayer bias in the twisted graphene trilayer and in par-
ticular its effect on the low-energy density of states. Electric
biases in twisted graphene multilayers are known to give rise
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FIG. 4. (a) Evolution of the density of states as a function of the
interlayer bias for θ = 1.6◦. (b) Band structure at a finite electric
field depicting the localization of each state. (c) Valley polarization
of the low-energy states and (d) their layer polarization. (e) Spatial
localization of the nearly flat bands. (f) Local valley flux at one
electron per unit cell. The spatial maps in (e) and (f) are summed over
the three layers. Calculations were performed with tight binding.

to valley Hall currents [5,6,21,57–60] and represent an effec-
tive knob to control the low-energy electronic structure [18].
In the following we focus on the structure at θ = 1.6◦. As
shown in Fig. 4(a), the application of an interlayer bias merges
the original two Van Hove singularities of zero bias in a
single one, dramatically enhancing the low-energy density of
states. Interestingly, this merging of Van Hove singularities is
similar to the evolution with the twist angle in twisted bilayers
[10,42,61], with the key difference that in the present case the
merging is electrical, turning the process highly controllable
in situ.

We now focus on the flattest regime with finite bias, when
the two Van Hove singularities get merged. Figures 4(b)–4(d)
show the band structure of that regime. It is observed that
almost perfectly flat bands are present at the Fermi energy
[Figs. 4(b)–4(d)], accounting for the Van Hove singularity at
charge neutrality [Fig. 4(a)]. It is also observed that the states
remain highly localized in the unit cell as highlighted by the

IPR, whereas at higher energies the dispersive bands are delo-
calized in the moiré unit cell [Fig. 4(b)]. It is also observed
that the bands show perfect valley polarization [Fig. 4(c)],
so the interlayer bias creates intervalley scattering, in agree-
ment with continuum models. Given that the interlayer bias
breaks the symmetry between the top and bottom layers, it is
interesting to look at the layer polarization of the states 〈L〉,
defined by the layer polarization operator L = ∑

i,s zic
†
i,sci,s,

with zi the z component of the site i. As shown in Fig. 4(d), the
Dirac cones at the K and K ′ points above and below the flat
bands have a slightly opposite layer polarization. However,
such layer polarization is reversed at the � point [Fig. 4(d)],
highlighting that the states remain highly entangled between
all the layers.

We now explore how the band flattening is accompanied
by the emergence of bulk valley currents. The emergence
of valley currents associated with interlayer biases is a well
known effect in aligned graphene bilayers [57–60] and tiny-
angle twisted bilayers [5,6,21]. Such valley currents arise due
to the emergence of a nonzero local valley Chern number
[62] whose quantization is associated with the emergent valley
conservation [63]. In twisted systems, the local Chern number
is expected to change from region to region [6] due to the
locally modulated Hamiltonian. To address this local topolog-
ical property, in the following we compute the local valley flux
by means of the Berry flux density χV . The real-space valley
flux χV defines the valley Chern number as CV = CK − CK ′ =∫

χV (r, ω)d2r dω. The real-space valley flux χV can be com-
puted as [22,56,64]

χV (r, ω) =
∫

d2k
(2π )2

εαβ

2
〈r|GV

(
∂kα

G−1
V

)(
∂kβ

GV
)|r〉, (3)

where εαβ denotes the Levi-Cività tensor, GV the valley
Green’s function GV = [ω − Hk + i0+]−1Vz, Hk the Bloch
Hamiltonian, and Vz the valley polarization operator of
Eq. (B1).

Figure 4(f) shows the spatial profile of the valley flux
density at the Fermi energy χV (r) ≡ χV (r, ω = εF ) for a
chemical potential with one hole per unit cell. It can be ob-
served clearly that sizable valley currents appear in regions in
the complementary regions to the low-energy states, similarly
to other moiré systems [22,56]. Since the emergence of such
currents relies on valley conservation, terms in the system cre-
ating intervalley mixing are expected to substantially impact
them [6,65–67], as we address in the next section.

IV. IMPACT OF CHEMICAL DOPING

In this section we address the modification of the electronic
structure under both electrical and chemical doping. We start
with the study of the electric doping from first principles and
then move on to consider its effect in the low-energy effective
model.

We first address the impact of doping from first principles.
First-principles DFT calculations are employed to study the
modification of the band diagram of TTG upon doping with
both an extra charge and one of the layers with foreign species.
Uniform doping of the TTG is realized by introducing an
extra electron which is compensated with an equally uniform
background charge of opposite sign. This can be realized
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FIG. 5. Electronic band diagrams of three doped TTG config-
urations. The left panel shows electrostatic doping with one extra
electron. The middle panel shows that doping with a N atom causes
a similar effect but removes the Dirac point and converts TTG in a
tiny-gap semiconductor. The right panel shows that doping with a
B atom empties some bands at the Fermi level including the highly
dispersive bands. Calculations were performed with DFT.

experimentally via a field effect. Figure 5 shows that the
extra electron fill the flat states and align the Dirac point with
the Fermi energy. Small modifications in the electronic band
structure as a result of new electrostatic contributions is ob-
served, similarly to other twisted multilayer systems [68–71].

A similar effect can be induced with chemical doping,
namely, adding one N atom in substitution of a C atom. The
effects of chemical substitution have been extensively stud-
ied in graphene [72–81], including twisted bilayers [53,82].
Figure 5 shows the effect on the bands structure of one N
atom in one of the surface layers. The extra charge supplied
by the N atom shifts the chemical potential, increasing the
filling of the flat bands. A major difference with respect to the
electrostatic doping is the opening of a meV large band gap
as a result of the symmetry breaking imposed by the impurity
which also induces a mixing of the linear states with the less
dispersive states. These new anticrossings are due to the in-
tervalley scattering created by the chemical impurity and they
do not appear in the case of electrostatic doping. A similar
hybridization of electronic states is also observed when one
electron is removed by means of doping with a B atom, as
shown in Fig. 5. The chemical potential shift occurs in the
opposite direction and the filling of flat band states decreases.

We now consider the effect of a chemical impurity in the
tight-binding model. We model the addition of a chemical
impurity by adding to the Hamiltonian HD = w

∑
s c†

i,sci,s,
where i is the site that has been chemically replaced. We
take w = −2t , which is the typical energy scale expected
for a N dopant that yields results comparable to the first-
principles calculations. For the sake of concreteness we focus
on the case with interlayer bias, so our full Hamiltonian
is H = H0 + HV + HD. With the previous Hamiltonian, we
now compute the electronic band structure and project each
eigenstate onto the valley operator. The result is shown in
Fig. 6(a), where we see that small anticrossings appear as in
the first-principles calculations. The valley projection clearly
shows that such anticrossings are associated with intervalley

FIG. 6. (a) Band structure in the presence of a N impurity and
(b) valley current at charge neutrality. It can be observed that,
although the presence of a dopant creates a nonzero intervalley scat-
tering, the low-energy bands remain relatively flat. The emergence of
intervalley scattering can be seen in the depletion of the bulk valley
currents in (b). The valley flux in (b) is summed over the three layers.
Calculations were performed with tight binding.

mixing. The effect of the impurity in terms of intervalley
mixing can also be readily seen in the bulk valley currents. In
particular, the existence of the impurity is expected to strongly
perturb the original valley fluxes in the unit cell, depleting
the local value of the valley Chern number. This is verified
in Fig. 6(b), where we observe that the original valley fluxes
are impacted by the presence of the impurity.

Interestingly, despite the effect in terms of intervalley mix-
ing, the low-energy bands remain relatively flat, retaining their
associated large density of states. This suggests that correlated
states can still appear in chemically doped twisted trilayers. It
is worth emphasizing that despite this large density of states,
correlated phases relying on valley coherent states will be
strongly suppressed due to the impurity-induced intervalley
mixing. In particular, valley ferromagnet states and valley
triplet superconducting states will be depleted due to chemical
dopants. Nevertheless, conventional spin singlet and valley
singlet states are not affected by the presence of intervalley
scattering. Motivated by this, in the next section we address
the emergence of spin/valley singlet superconductivity and
show how the superfluid density impacts the high-energy dis-
persive states.

V. SUPERCONDUCTING STATE

The large density of states close to charge neutrality
suggests that the twisted graphene trilayer can have su-
perconducting instabilities, similarly to twisted bilayers and
tetralayers. As shown above, with both electrostatic and chem-
ical doping the system shows a divergent density of state close
to charge neutrality. For the sake of concreteness we will
now focus on the electrostatically doped system, yet we have
verified that our results remain qualitatively unchanged with
chemical doping.

An emergent superconducting state is associated with
Fermi surface instability, yet its effect can give rise to second-
order perturbations above the Fermi energy. In order to
understand the potential impact at high energies, we first
briefly analyze the structure of the low-energy states. This
can be done by comparing the spatial distribution of the
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FIG. 7. (a) Normal state band structure in the absence of inter-
actions, with the color denoting the projection of the states on the
density of states at the Fermi energy. (b) Upon introducing interac-
tions, a nonzero superfluid density appears. (c) Electronic dispersion
associated with the self-consistent solution of (b), where we have
projected the eigenstates over the electron sector. (d) Electronic
dispersion projected in the electron sector for a uniform superfluid
density, highlighting that the high-energy anticrossings stem from the
nonuniform pairing. Calculations were performed with tight binding.

low-energy states with respect to the Fermi surface states.
In particular, we define the projection over the Fermi surface
states as R = ∫

d2r|�(r)|2ρF (r), with ρF (r) the local density
at the Fermi energy ρF (r) ∼ ∫ 〈r|δ(EF − H )|r〉. The quantity
R allows us to qualitatively distinguish which states are local-
ized in the same region at the Fermi surface states.

By computing the Fermi surface state projector R, it
observed that the states of the flat band are localized in sim-
ilar regions. In contrast, departing from the Fermi energy,
the states start to delocalize to other regions of the unit
cell [Fig. 7(a)]. This highlights the different orbital nature
of the nearly flat bands (in purple) and low-energy disper-
sive bands (in green). Importantly, and in stark contrast to
twisted graphene bilayers, the flat bands of this system are
not decoupled from the dispersive states, suggesting that the
superconducting states of this system will have a genuine
multiorbital nature.

Given the unavoidable entanglement between the flat
and dispersive bands, an effective model description of this
twisted trilayer cannot be easily performed. Therefore, in the
following we study the emergent superconducting state by
exploiting the full atomistic model, including all the bands
in our calculation. A variety of mechanisms have been sug-
gested to give rise to attractive interactions in these systems,
including phonon [83–85], Coulomb [86], and magnon fluc-
tuations [87,88]. For the sake of concreteness, we focus on
effective local attractive interactions, as employed in other

twisted graphene systems [83,84,89–94]

HI = −
∑

i

gc†
i,↑ci,↑c†

i,↓ci,↓ (4)

that we solve at the mean field level HMF
I =

−g
∑

i〈c†
i,↑c†

i,↓〉ci,↑ci,↓ + H.c., where 〈c†
i,↑c†

i,↓〉 is computed
self-consistently for the full Hamiltonian H = H0 + HV +
HMF

I , which we solve with the Bogoliubov–de Gennes (BdG)
formalism. The local attractive interaction g will give rise to
a net superfluid density, with a moiré momentum structure of
s-wave symmetry. In the following we set g = t and we verify
that our results remain qualitatively similar with smaller
interaction strengths. We note that although interactions are
local, that would lead to a nontrivial multiorbital structure in
the moiré orbital space.

By solving the previous self-consistent problem, we find
that the superfluid density is nonuniform in the moiré unit
cell [Fig. 7(b)], stemming from the nonuniformity of the
low-energy states. By projecting the BdG eigenstates in the
electron sector via the electron projector Pe, we observe that
the net nonuniform superfluid density �↑↓(ri ) ∼ 〈c†

i,↑c†
i,↓〉

gives rise to a full gap in the Brillouin zone in the super-
conducting state. This phenomenology is similar to the one
found in twisted graphene bilayers. More interestingly, be-
sides the gap opening at the chemical potential, anticrossings
appear in high-energy bands when the self-consistent pair-
ing is included [Fig. 7(c)]. It is worth emphasizing that, in
the presence of a uniform pairing artificially imposed, the
high-energy anticrossings disappear, leading only to the gap
opening at charge neutrality [Fig. 7(d)]. The emergence of
gap openings away from charge neutrality is associated with
the intrinsically multiorbital nature of the superconducting
state and stems from the nonunitarity of the superconducting
matrix in orbital subspace [95,96]. Interestingly, this shows
that signatures of the superconducting state can be obtained
by analyzing the system away from the chemical potential
and could provide powerful spectroscopic signatures [97,98]
of the superconducting state.

VI. CONCLUSION

By combining first-principles calculation and low-energy
effective models, we have shown that twisted graphene tri-
layers realize tunable electronic systems. In particular, it
was shown that nearly perfect flat bands can be electrically
controlled, which coexist with highly dispersive states. Inter-
estingly, such electric flattening of the bands is accompanied
by the emergence of bulk valley currents. We have found from
both first-principles and low-energy calculations that chemical
doping does not destroy the flat bands, yet it substantially
impacts the bulk valley currents. This suggests that chemical
doping of twisted graphene trilayers could provide an intrinsic
way of providing the necessary electronic doping required
for the emergence of a superconducting state. We finally
demonstrated that an emergent superconducting state would
give rise to spectroscopic changes in the high-energy bands,
associated with the nonuniform superfluid density. Our results
highlight the rich physics of twisted graphene trilayers and
provide a starting point to explore the interplay between flat
bands, correlation, and dispersive states in twisted graphene
multilayers.
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APPENDIX A: FIRST-PRINCIPLES CALCULATIONS

A description of the coupling between the graphene layers
was conducted through self-consistent calculations with the
SIESTA code [99] within a localized orbital basis set scheme.
Paramagnetic calculations were conducted using a double-ζ
basis set and the local density approximation approach [100]
for the exchange-correlation functional was used. Atomic po-
sitions of systems formed by over 5514 atoms were fully
relaxed with a force tolerance of 0.02 eV/Å. The integration
over the Brillouin zone was performed using a Monkhorst
sampling at the � point. The radial extension of the orbitals
had a finite range with a kinetic energy cutoff of 50 meV.
A vertical separation of 35 Å in the simulation box prevents
virtual periodic parallel layers from interacting.

APPENDIX B: VALLEY OPERATOR

The valley is an emergent quantum number in graphene;
as a result, it is not apparent how a valley operator can be de-
scribed in a real-space tight-binding basis. A simple procedure
to define the valley expectation value in a tight-binding model
is by noting that for the z component of the valley, we are
looking for an operator with eigenvalue +1 for states in one
valley and −1 for states in another valley. This would be ac-
complished by a Hamiltonian that realizes a valley-dependent
chemical potential. Let us first focus on a honeycomb lat-
tice and take the real-space operator in a honeycomb lattice
[21,52,55]

Vz = i

3
√

3

∑
〈〈i, j〉〉,s

ηi jσ
i j
z c†

i,sc j,s, (B1)

where 〈〈i, j〉〉 denotes next-nearest-neighbor sites, ηi j = ±1
for clockwise or counterclockwise hopping, and σ

i j
z is a Pauli

matrix associated with the sublattice degree of freedom. The
previous operator is diagonal in the sublattice and is propor-
tional to the identity matrix in reciprocal space ( f (k) 0

0 f (k)),
with f (k) the Fourier transform of the real-space hopping. It is
easily shown that f (k) ≈ +1 close to the K point and f (k) ≈
−1 close the K ′ point, and as a result such next-nearest-
neighbor hopping allows us to compute the expectation value
of the valley for a specific state. In particular, by taking the

FIG. 8. Valley expectation value for the minimal unit cell (a) of a
honeycomb lattice and (b) in an 8 × 8 supercell. The valley operator
is projected on (c) the states of a graphene zigzag ribbon and (d) a
biased aligned Bernal-stacked graphene bilayer. The projection of
the valley operator for a biased twisted graphene bilayer is shown for
rotation angles of (e) 10◦ and (f) 5◦. We set V = 0.05t in (d)–(f).

expectation value 〈Vz〉 = 〈�|Vz|�〉, we will obtain 〈Vz〉 ≈ 1
if � is a state belonging to valley K and 〈Vz〉 ≈ −1 if � is
a state belonging to valley K ′. This can be clearly seen in
Fig. 8(a), where we show the valley expectation value for
the states of the honeycomb lattice, showing that the states
around valley K have eigenvalue +1 and those around K ′ have
eigenvalue −K ′.

The valley operator allows us to easily track the valley
flavor of the electronic states in various situations. Let us
now show some of them for the sake of clarity. The sim-
plest case consists of the electronic structure of a supercell
of a honeycomb lattice. In particular, we show in Fig. 8(b)
the band structure for an 8 × 8 supercell, indicating that the
valley operator allows following the original valley flavor of
the states in the folded band structure. It is worth noting
that such an operator can be defined in a graphene structure,
without requiring two-dimensional periodicity, for example,
for graphene nanoribbons. In particular, we show in Fig. 8(c)
the band structure of a zigzag graphene nanoribbon, demon-
strating that the valley operator correctly identifies the valley
flavor of each state.
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FIG. 9. Band structure of the biased twisted trilayer in the normal
state, showing (a) only the electron sector and (b) both the BdG
electron and hole sectors. (c) When a nonzero superfluid weight is
included, anticrossings in the high-energy bands do not appear for
a uniform superfluid matrix � ∼ I. (d) In contrast, anticrossings
at high energies emerge for a self-consistent nonuniform superfluid
weight due to the nonzero matrix element � = 〈�n,k|�̂|�l,−k〉 = 0.

The valley operator can be easily extended to graphene
multilayers. In particular, by defining the valley operator of
layer α as Vα

z , the total valley operator is defined as Vz =∑
α Vα

z . Let us first illustrate this with a simple graphene mul-
tilayer, an electrically biased Bernal-stacked graphene bilayer.
In this situation shown in Fig. 8(d), we again observe that
the multilayer valley operator correctly identifies the states
belonging to the different valleys. This very same idea can

be used for twisted graphene multilayers. In particular, in
Figs. 8(e) and 8(f) we show that in a biased twisted graphene
bilayer at angles of 10◦ [Fig. 8(e)] and 5◦ [Fig. 8(f)], the valley
operator correctly identifies the microscopic valley of each
state.

APPENDIX C: ORIGIN OF HIGH-ENERGY
ANTICROSSINGS IN THE SUPERCONDUCTING STATE

In the following, we elaborate on the origin of the high-
energy anticrossings in the superconducting state. Let us
start with the band structure of the biased twisted trilayer
graphene, as shown in Fig. 9(a). By extending the spec-
tra in a Bogoliubov–de Gennes formalism, hole replicas of
the original states appear. This is shown in Fig. 9(b) for
� = 0, where the blue bands denote electronlike bands and
red bands denote the hole replicas. It is worth noting that
in this situation, electronlike and holelike bands above the
chemical potential cross and therefore a nonzero superfluid
weight can potentially lead to anticrossings, as such terms
couple electron and hole sectors. Let us now turn to a spa-
tially uniform superfluid weight, as shown in Fig. 9(c). In this
situation, it is observed that for the electronlike and holelike
bands crossing above the chemical potential, no anticrossings
appears. The coupling between the electron and hole states
above the chemical potential is proportional to the overlap
of the single-particle wave function �n,k with the supercon-
ducting matrix �̂ and takes the form � = 〈�n,k|�̂|�l,−k〉,
with n = l . For uniform superfluid density �̂ ∼ I, with I
the identity matrix, we have � = 0 from the orthogonality
of the wave functions and therefore no anticrossings appear
in the high-energy bands of Fig. 9(c). In stark contrast, when
the superfluid weight is nonuniform in space we have �̂ ∝ I
and we generically have � = 〈�n,k|�̂|�l,−k〉 = 0, leading to
an effective anticrossing between the states. As a result, the
appearance of anticrossing in the high-energy bands is a direct
consequence of the nonuniform superfluid weight. We finally
note that this argument relies on the original time-reversal
symmetry of the twisted trilayer graphene Hamiltonian.
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