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Superconducting mechanism for the cuprate Ba2CuO3+δ based on a multiorbital Lieb lattice model
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For the recently discovered cuprate superconductor Ba2CuO3+δ , we propose a lattice structure which
resembles the model considered by Lieb to represent the vastly oxygen-deficient material. We first investigate the
stability of the Lieb-lattice structure and then construct a multiorbital Hubbard model based on first-principles
calculation. By applying the fluctuation-exchange approximation to the model and solving the linearized
Eliashberg equation, we show that s-wave and d-wave pairings closely compete with each other and, more
interestingly, that the intraorbital and interorbital pairings coexist. We further show that if the energy of the
d3z2−r2 band is raised to make it “incipient” with the lower edge of the band close to the Fermi level within a
realistic band filling regime, s±-wave superconductivity is strongly enhanced. We reveal an intriguing relation
between the Lieb model and the two-orbital model for the usual K2NiF4 structure where a close competition
between s- and d-wave pairings is known to occur. The enhanced superconductivity in the present model is
further shown to be related to an enhancement found previously in the bilayer Hubbard model with an incipient
band.
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I. INTRODUCTION

More than 30 years have passed since the discovery of
the high-Tc cuprates, but a full understanding of their physics
remains one of the most challenging problems in the con-
densed matter physics [1]. However, one strong consensus
has been reached: The CuO2 planes play an essential role
in the occurrence of superconductivity. Namely, the cuprates
have a layered perovskite crystal structure, where a copper
atom is surrounded by oxygens, typically with an octahedral
coordination. Since the octahedron is elongated in the c-axis
direction, the crystal field splitting makes the 3dx2−y2 orbital
have the highest energy among the 3d orbitals. Hence, the
d9 electron configuration results in a situation where the
electronic structure can be regarded as basically a single-band
system. Indeed, some of the present authors have shown
that there is a systematic material dependence, in which Tc

is basically increased as the one-band character (3dx2−y2 )
becomes stronger, i.e., when the energy of the 3d3z2−r2 orbital
is lowered below that of 3dx2−y2 , which is realized for higher
apical oxygen heights [2–5].
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The recent experimental discovery by Li et al. [6] of an-
other type of cuprate superconductor, Ba2CuO3+δ , is remark-
able in this context. The material, having a layered structure,
exhibits Tc = 73 K, which is much higher than that of “214”
La2−xSrxCuO4 [7] with Tc � 40 K, but more interestingly,
a dramatic feature, among others not seen in conventional
cuprates, is that a large amount of oxygen deficiencies exist
in the CuO2 planes [8]. Details of the sample preparation is
reported to be as follows: Ba2CuO3+δ samples are synthesized
in a tetragonal symmetry at a much higher pressure (18 GPa)
than usual and at a temperature of 1000◦C in a polycrystalline
form. This is in contrast with a lower pressure synthesis
in which only an orthorhombic phase is synthesized. This
implies that the tetragonal phase, even if metastable, is sta-
bilized with the high-pressure synthesis. The excess oxygens
Oδ are also added in the Cu-O planes by the extremely high
pressure synthesis with δ � 0.2. This immediately raises a
puzzle regarding the origin of the high Tc because the CuO2

planes should simply be disrupted at this level of O deficiency
from the conventional Cu-O plane. Another notable feature
in Ba2CuO3+δ is that the combination of the oxygen content
of 3 + δ � 3.2 and the +2 valence of Ba should make the
electron configuration significantly deviate from d9; namely,
an unprecedented amount of holes (as large as ≈ 40%) exist.
This sharply contrasts with the conventional wisdom for the
cuprates that superconductivity is optimized around 15% hole
doping [1]. Yet another curious feature is that each CuO
octahedron is compressed rather than elongated along the
c axis with the apical oxygen height smaller than the in-
plane Cu-O distance, so that the Cu 3d3z2−r2 orbital should
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FIG. 1. Cu-O plane in (a) the Lieb-lattice-type structure and
(b) the chain-type structure. The apical oxygen positions (not dis-
played) are all occupied in both cases. Ba atoms reside at the same
sites as in the K2NiF4-type structure. (c) A bird’s-eye view of the
Lieb structure with VESTA [45] software. Cu site 4 is not displayed
for clarity.

be higher approaching that of 3dx2−y2 , and so a multiband,
multiorbital situation is expected. These features are all in
strong contradiction with the high-Tc condition for the con-
ventional cuprates, which suggests that an alternative pairing
mechanism may be at work in this new material. Indeed, a
number of theoretical studies have proposed various pairing
mechanisms based on various lattice structures [9–14]. The
experimental finding of Ba2CuO3+δ may also shed a light
on the previous finding of Sr2CuO3+δ [15–17], which also
possesses a large amount of oxygen deficiencies and a Tc as
high as �90 K but a much lower superconducting fraction
than in the Ba2CuO3+δ .

Given this background, a theoretical challenge is that how
we can construct a model and fathom the structure of the
gap function for the material, which has hugely oxygen-
depleted CuO2 planes. Assuming that the deficiencies are
ordered, some candidates for the crystal structure have been
proposed. Liu et al. propose a chain-type structure, which
actually exists in Sr2CuO3 [10,18–20]. Li et al. predict a
ladder-type lattice based on an automated structure inversion
method [12]. Le et al. propose a structure where a matrix of
Ba2CuO4 with CuO2 planes is embedded in the background of
Ba2CuO3 [11]. More recently, another type of lattice dubbed
as the brick-wall model has been proposed [14].

Thus, the lattice structures considered so far (other than
the conventional K2NiF4 type) have one-dimensional natures
in some sense or other, but an experiment [6] suggests the
material has tetragonal symmetry. This has motivated us to
propose here another structure, depicted in Figs. 1(a) and 1(c),

as a candidate for the undoped Ba2CuO3 (“213” composition),
where by doping we mean adding excess oxygens. We call the
proposed structure the “Lieb-lattice type,” since it resembles
the model considered by Lieb [21] if we focus on the Cu sites
1, 2, and 3 in Fig. 1 and ignore Cu site 4, which is shown
to be electronically irrelevant. The model considered by Lieb
possesses a flat band in the band structure, and, in the context
of magnetism, it is theoretically proven that ferromagnetism
occurs at half-filling when the on-site repulsive interaction U
is turned on. A superconducting mechanism exploiting the
flat band of the Lieb lattice has also been proposed [22].
Lieb originally considered a class of models with different
numbers of sublattice sites, and superconductivity in such a
model in a quasi-1D structure has also been studied with the
density-matrix renormalization group [23]. Here, however, we
shall see that the model derived in the present study is actually
distinct from the original (single-orbital) Lieb model, since
the present material inherently has a multiorbital nature, as
we shall show.

We start with an investigation of the stability of the Lieb
lattice in terms of the total energy and phonon calculations for
the lattice structure of Ba2CuO3 and calculate its electronic
band structure. The obtained band structure is then used to
construct multiorbital models, for which we apply the fluc-
tuation exchange (FLEX) approximation [24,25] to study the
superconductivity. We show that s-wave and d-wave pairings
closely compete with each other, where we find a peculiar
case of coexisting intraorbital and interorbital pairings. We
further show that superconductivity is strongly enhanced if
we increase the energy of the d3z2−r2 band (from its original
position obtained by first-principles calculation for Ba2CuO3)
to make it “incipient” [23,26–44], where the lower band edge
comes close to the Fermi level within a realistic band filling
regime. In an even wider scope, we reveal that the Lieb model
has an intimate relation with the two-orbital model of the
K2NiF4 structure where a close competition between s-wave
and d-wave pairings is known to occur [9]. We finally point
out a relation between the enhanced superconductivity in the
present models and an enhancement found previously in the
bilayer Hubbard model with an incipient band.

II. FORMULATION

We consider the Lieb-lattice-type structure for Ba2CuO3,
where the in-plane oxygen deficiencies are ordered as shown
in Fig. 1(a). Details of the Ba atom position and the unit cell
of this structure are depicted in Appendix A. We perform
structural optimization using the Vienna Ab Initio Simula-
tion Package (VASP) [46,47]. Here, we adopt the generalized
gradient approximation formulated by Perdew, Burke, and
Ernzerhof for the exchange-correlation energy functional [48]
and the projector augmented wave method [49] without the
inclusion of the spin-orbit coupling, and take an 8 × 8 × 8
k-mesh with a plane-wave cutoff energy of Ecut = 650 eV. We
also examine the dynamical stability of the Lieb lattice by per-
forming phonon calculation. We employ the finite displace-
ment method as implemented in the PHONOPY software [50] in
combination with VASP. We took a 2 × 2 × 2 supercell and a
3 × 3 × 3 k-mesh. Other conditions such as the energy cutoff

033356-2



SUPERCONDUCTING MECHANISM FOR THE CUPRATE … PHYSICAL REVIEW RESEARCH 2, 033356 (2020)

are the same as those adopted in the structural optimization,
which is always the case for phonon calculations in general.

For the optimized lattice structure, we obtain the elec-
tronic band structure taking a 6 × 6 × 6 k-mesh with a plane-
wave cutoff energy of Ecut = 550 eV. From the electronic
band structure, we extract the maximally localized Wannier
functions [51,52] using the WANNIER90 code [53]. Here we
disregard very small hopping parameters to simplify the mul-
tiorbital Lieb lattice models (see Appendix B for details).

In order to take account of the electron correlation effects
beyond the first principles band calculation, we further intro-
duce the on-site multiorbital interactions with a Hamiltonian,

Hint = U
∑
i,μ

niμ↑niμ↓

+ U ′ ∑
i,μ<ν,σ

niμσ niνσ̄ + (U ′ − J )
∑

i,μ<ν,σ

niμσ niνσ

− J
∑

i,μ �=ν

c†
iμ↑ciμ↓c†

iν↓ciν↑ + J ′ ∑
i,μ �=ν

c†
iμ↑c†

iμ↓ciν↓ciν↑.

(1)

Here, i denotes the sites, μ, ν indicate the orbitals, σ repre-
sents the spins, c†

iμσ creates an electron, and niμσ = c†
iμσ ciμσ .

Interactions are U , the intraorbital repulsion; U ′, the interor-
bital repulsion; J , Hund’s coupling; and J ′, the pair hopping.
We do not consider electron-phonon interactions, since our
aim is to investigate an electronic mechanism of supercon-
ductivity. To analyze the many-body effect, here we adopt the
FLEX approximation.

In the FLEX approximation, renormalized Green’s func-
tion is determined self-consistently from the Dyson equation,
where the self-energy is calculated by taking the bubble and
ladder diagrams that consist of the irreducible susceptibility,

χ0
l1l2l3l4 (q) = −T

N

∑
k

Gl3l1 (k)Gl2l4 (k + q), (2)

which is calculated from the renormalized Green’s function
G. Here q = (q, ω) stands for the wave vector q and the
Matsubara frequency ω, li denotes the orbitals, T is the
temperature, and N is the number of k points. In order to
avoid double counting of the effect of the electron interac-
tion already considered in the first principles calculation, we
subtract the ω = 0 component of the self-energy Re�(k, 0)
during the self-consistent loop following Ref. [54]. Hence, the
Fermi surface of the models remains unchanged even after
the correlation effects are taken into account by the FLEX
calculation. It should be noted that the double counting is not
rigorously avoided since �(k, ω = 0) in FLEX is not the same
as that in the DFT calculation.

Using the obtained Green’s function along with the spin
(χ̂s) and charge (χ̂c) susceptibilities,

χ̂s(q) = χ̂0(q)

1 − Ŝχ̂0(q)
, (3)

χ̂c(q) = χ̂0(q)

1 + Ĉχ̂0(q)
, (4)

which are matrices for multiorbital systems with the interac-
tion matrices given as

Sl1l2l3l4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U, l1 = l2 = l3 = l4,

U ′, l1 = l3 �= l2 = l4,

J, l1 = l2 �= l3 = l4,

J ′, l1 = l4 �= l2 = l3,

(5)

Cl1l2l3l4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U, l1 = l2 = l3 = l4,

−2U ′ + J, l1 = l3 �= l2 = l4,

2U ′ − J, l1 = l2 �= l3 = l4,

J ′, l1 = l4 �= l2 = l3,

(6)

we obtain the effective spin-singlet pairing interaction,

�̂(q) = 3
2 Ŝχ̂s(q)Ŝ − 1

2Ĉχ̂c(q)Ĉ + 1
2 (Ŝ + Ĉ), (7)

which is plugged into the linearized Eliashberg equation,

λ
μν (k) = − T

N

∑
q,mi

�μm1m4ν (q)Gm1m2 (k − q)

× 
m2m3 (k − q)Gm4m3 (q − k), (8)

where the gap function 
μν (k) is also a matrix. G in Eq. (8)
is the renormalized Green’s function obtained from the FLEX
calculation. Through G, the mass renormalization and finite-
lifetime effects are taken into account. The maximum eigen-
value λ of this equation reaches unity at T = Tc, so that λ

calculated at a fixed temperature can be a measure of Tc.
Throughout the present study, we calculate λ at T = 0.01 eV.
We refer to the eigenfunction of the linearized Eliashberg
equation as the gap function. Note that since Eq. (8) is a
linearized equation, the absolute value of the gap function
does not have any physical meaning, and only its relative
magnitude among different orbital components and its sym-
metry are relevant. Both the Green’s functions and the gap
functions are obtained first in the orbital representation, which
can be transformed into the band representation with a unitary
transformation. Green’s functions will be presented by tak-
ing its absolute value. Also, Green’s functions and the gap
functions will be presented for the lowest Fermionic Matsub-
ara frequency iπkBT , and the effective pairing interactions
�αββ ′α′ will be presented at the lowest bosonic Matsubara
frequency 0.

Assuming a rigid band obtained for the Lieb-lattice-type
model, we vary the band filling in a regime that contains a
case corresponding to Ba2CuO3+δ with a realistic δ ≈ 0.2. In
the calculation, we take 2048 Matsubara frequencies and a
16 × 16 × 2 k-point mesh. We have checked that calculation
taking 32 × 32 × 2 k-point mesh gives essentially the same
results.

III. RESULTS

A. Stability of the Lieb structure for Ba2CuO3

We start with the stability of the Lieb-lattice-type structure
for Ba2CuO3. The obtained total energy of the optimized lat-
tice structure is Etot (Lieb) = −33.95 eV. For comparison, we
have also performed structural optimization for the chain-type
structure of Ba2CuO3, shown in Fig. 1(b) (see Appendix A

033356-3



KIMIHIRO YAMAZAKI et al. PHYSICAL REVIEW RESEARCH 2, 033356 (2020)

(0,0,π)(0,0,0)(0,0,0) (π,π,0) (π,0,0)

FIG. 2. Phonon dispersion for the Lieb-lattice-type Ba2CuO3.

for the actual structure), whose total energy is estimated as
Etot (chain) = −33.99 eV. Thus, the total energies of the two
structures turn out to be quite close to each other; considering
the accuracy of the first principles calculation, a difference of
40 meV can be reversed, e.g., by the effects of the correlation
and/or excess oxygens not taken into account here [55].
Then, given the fact that the chain-type structure is known
to be realized in an existing material Sr2CuO3 [18–20] but
inconsistent with the tetragonal symmetry, the Lieb-lattice-
type structure may be considered as a realistic candidate for
the lattice structure of Ba2CuO3+δ . We further calculate the
phonon dispersion as presented in Fig. 2. We find that no
imaginary phonon modes are present for this lattice structure,
which suggests dynamical stability of the present Lieb-lattice
structure.

As for the apical oxygen position determined by structural
optimization, its distance measured from the in-plane Cu site
turns out to depend on the site: 2.18 Å above Cu site 1, 1.96 Å
above Cu sites 2 and 3, and 1.82 Å above Cu site 4. Namely,
the sites with smaller oxygen coordination numbers have
lower apical oxygen heights. The average value is 1.98 Å,
which is substantially smaller than the value (2.42 Å) for
La2CuO4. We may note that this is qualitatively consistent
with the experimental value of 1.86 Å [6], if we consider
the fact that the excess oxygens in the actual material will
increase in-plane holes that should attract the apical oxygens.
In fact, for a cuprate La2−xSrxCuO4, it is actually observed
experimentally in Ref. [56] that hole doping by substituting La
with Sr (which has nearly the same ion radius as La) induces
reduction of the apical oxygen height from 2.42 Å (x = 0) to
2.30 Å (x = 0.2).

B. Electronic band structure of the Lieb lattice

From the optimized crystal structure, we obtain the elec-
tronic band structure as presented in Fig. 3, where we also
display the weight of the Cu dx2−y2 and Cu d3z2−r2 orbital
characters. The bands originating from the orbitals at Cu
site 4, which has no neighboring oxygens in the plane, have
energies very low, so that site 4 is irrelevant in the model
building. We then extract tight-binding models downfolded
in terms of the maximally localized Wannier orbitals. We
consider the two eg orbitals centered at each of the Cu sites
1, 2, and 3, which results in a six-orbital model, where the

FIG. 3. Upper panels: first principles band structure [(a), (b)] and
(projected) DOS (c) obtained for the Lieb-lattice-type structure for
Ba2CuO3. Lower panels: first principles band structure [(d), (e)] and
(projected) DOS (f) of Ba2CuO4 with the K2NiF4-type structure.
Blue lines represent the weight of the Cu dx2−y2 character [(a), (c)] or
Cu d3z2−r2 character [(b), (d)].

oxygen orbitals are implicitly taken into account through the
Wannier orbitals. The tight-binding band structure is shown
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FIG. 4. Band structure (blue lines) of the (a) six-orbital model and (b) two-orbital model of the Lieb lattice, with an enlargement on the
right. Superposed is the first-principles band structure (black lines). (c) Wannier orbitals in the six-orbital model with VESTA software. (d) Band
structure of the two-orbital model of the K2NiF4-type Ba2CuO4 superposed to the first-principles band structure.

in Fig. 4(a) (blue lines), which accurately coincides with the
first principles bands. The Wannier orbitals are depicted in
Fig. 4(c). In the six-orbital band structure, we notice that the
two lowermost bands are nearly flat, which originates from
the orbitals of sites 2 and 3 pointing to the direction where
oxygens are absent [orbitals 3 and 5 in Fig. 4(c)]. The two
bands in the middle are the bonding bands originating from
site 1 dx2−y2 [Fig. 4(c), orbital 1] and d3z2−r2 [Fig. 4(c), orbital
2], hybridized with the orbitals of sites 2 and 3 extended
toward site 1 and also toward the apical oxygens [Fig. 4(c),
orbitals 4 and 6]. An important point here is that the low
apical oxygen height makes the upper (lower) bonding band
mainly originated from the d3z2−r2 (dx2−y2 ) at site 1, because
the energy levels of these orbitals are inverted from those
in the conventional cuprates, as suggested in previous stud-
ies [6,9,11]. The top two bands are the antibonding bands from
the hybridization between site 1 and sites 2 and 3. Here, the
orbitals at sites 2 and 3, hybridized with site 1 orbitals, have

energy higher than site 1 dx2−y2 and d3z2−r2 orbitals because
the apical oxygens at sites 2 and 3 are closer to Cu.

In the actual material Ba2CuO3+δ , the Fermi level should
be shifted downward to intersect the middle two bands be-
cause the oxygen content is larger than in Ba2CuO3. There-
fore, we further construct a two-orbital model that extracts
the two middle bands, as shown in Fig. 4(b), by considering
dx2−y2 and d3z2−r2 Wannier functions centered at Cu site 1. In
this model, the orbitals of Cu sites 2 and 3, as well as the
oxygen 2p orbitals, are implicitly taken into account through
the Wannier functions. In this two-orbital model, we shall
sometimes refer to the dx2−y2 and d3z2−r2 Wannier orbitals as
orbitals 1 and 2, respectively. Note that although we cannot
rule out the possibility of a high-spin state, in the following
analysis we assume that the ground state is in a low-spin state.

We vary the band filling in the following FLEX calculation
assuming a rigid band in these models, where the correspon-
dence between the oxygen content and the band filling is as
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FIG. 5. Eigenvalue λ of the two-orbital model for s-wave (in-
traorbital s and interorbital d) and d-wave (intraorbital d and interor-
bital s) pairings plotted against the band filling. The parameter values
adopted are U = 2.0 eV, J = J ′ = U/10, and U ′ = U − 2J . In the
two-orbital model, we use U = 2 eV, which is somewhat smaller than
that of the conventional cuprates [62–64], to take into account the
wide spread of the Wannier functions across neighboring Cu atoms.

follows. In Ba2CuO3, the nominal Cu valence is +2, so the
electron configuration is 3d9 on average, that is, (three eg

electrons) × (four sites) = (12 eg electrons) per unit cell. Since
the eg orbitals at Cu site 4 are fully occupied by electrons,
there are 8 eg electrons per unit cell in the six-orbital model.
Namely, the band filling n, defined as the number of electrons
per spin per unit cell, is n = 4. Similarly, n = 3 corresponds
to Ba2CuO3.25. The band filling of the six-orbital model sub-
tracted by two gives that of the two-orbital model because the
bottom two occupied bands are ignored in the latter; namely,
n = 1 and n = 2 in the two-orbital model correspond to
Ba2CuO3.25 and Ba2CuO3, respectively. An interesting point
here is that the oxygen content of O3.25, which is close to
the actual experimental situation of ≈O3.2 [6] and implies
a large amount of hole doping (≈50%) in the usual sense
of the term, in fact corresponds to half-filling in the present
two-orbital model of the Lieb-type lattice. We shall indeed
see that the electron correlation effect are maximized and thus
superconductivity is optimized around this band filling.

For later reference, we have also obtained, via structural
optimization, the electronic band structure for the K2NiF4-
structured Ba2CuO4 by VASP taking a 8 × 8 × 8 k-mesh
with a plane-wave cutoff energy of Ecut = 550 eV [Figs. 3(d)
and 3(e)]. There, we construct a two-orbital model by extract-
ing the eg orbitals centered at the Cu sites [Fig. 4(d)]. We
shall discuss the relation between the Lieb lattice-type and
K2NiF4-type structures in the Discussions section.

C. Superconductivity

We now move on to the FLEX calculation for superconduc-
tivity. We start with the two-orbital model for the Lieb lattice.
Figure 5 plots the eigenvalue of the Eliashberg equation λ at
T = 0.01 eV for the s- and d-wave pairing symmetries. We
can see that the two pairing symmetries give somewhat close

values of λ, where the s wave slightly dominates within the
parameter regime studied. In both symmetries, λ is maximized
at n = 1. This is because electron correlation effects are
maximized around half-filling, and, as stressed above, we can
notice this band filling corresponds to the oxygen content of
O3.25, close to the actual material.

Before we go any further, we have to carefully examine
the gap functions and the definition of the pairing symmetry.
Figure 6 displays the gap functions in both orbital and band
representations. Note above all that the gap function in the
present multiorbital system is a matrix. A curious finding
in Fig. 6 is that the pairing symmetry is inverted between
diagonal and off-diagonal matrix elements, i.e., s-wave di-
agonal elements are accompanied by d-wave off-diagonal
ones [Figs. 6(a) and 6(c)], while d-wave diagonal elements
are accompanied by s-wave off-diagonal ones [Figs. 6(b)
and 6(d)]. This occurs both in orbital [Figs. 6(a) and 6(b)] and
band [Figs. 6(c) and 6(d)] representations. We can trace the
curious phenomenon back to the hybridization between the
dx2−y2 and d3z2−r2 orbitals, where the hybridization has sign
structure in a dx2−y2 symmetry. In Fig. 5, we have abbreviated
the diagonal s-wave with off-diagonal d wave as s wave, and
the diagonal d with off-diagonal s as d wave. We will adopt
this abbreviation hereafter.

If we focus on the orbital-diagonal elements of the gap
function, the d wave has the cos(kx ) − cos(ky) form usually
encountered in similar analysis of the conventional cuprates.
In real space, this corresponds to a nearest-neighbor pairing,
whose wave function changes its sign upon 90-deg rotation.
On the other hand, the s-wave gap roughly has the form
cos(kx ) + cos(ky), which implies that this is basically an ex-
tended s-wave with a pair residing on nearest-neighbor sites.
We can compare the band representation of the s-wave gap
function with Green’s function |G(k)| in Figs. 6(e) and 6(f).
The ridges in |G(k)| represent the Fermi surface, and we have
two pieces for the Fermi surface in this two-orbital model as
seen from |G11| and |G22|. We can then realize that the gap
has a sign inversion across the two Fermi surfaces; namely,
we have here the so-called s±-wave gap function, as depicted
in the left panel of Fig. 7(b), which is reminiscent of the iron-
based superconductors [28,57] as far as the Fermi surfaces are
concerned.

If we now turn to the orbital-off-diagonal elements of the
gap function, the symmetries (s or d) are exchanged from
the diagonal elements as we have noted, but we can also notice
in Fig. 6 that the amplitudes of the off-diagonal elements are
comparable to those of the diagonal ones, which indicates
that the interorbital pairing has significant contributions. Now,
interorbital spin-triplet pairing has been studied in the multi-
orbital Hubbard model that has degenerate orbitals [58–61],
but in the present case the gap function has the symmetry

αβ (k) = 
βα (−k) that signifies a singlet pairing. We can
intuitively grasp, in real space, the coexistence of the inter-
and intraorbital pairings in Fig. 7(a), where both of intraorbital
and interorbital pairs reside on nearest neighbors, as we
have explained. Since pairing between electrons having large
energy difference is unlikely, this kind of pairing is peculiar to
systems where the two orbitals are close in energy.

We now grasp how the coexisting inter- and intraorbital
pairings arise. We find, in the typical parameter regime
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FIG. 6. For the two-orbital model, (a) the intraorbital s wave with interorbital d-wave gap functions. The portions of the gap functions that
change sign across the wave vector (π, π ) are indicated by yellow arrows (see the text). (b) The intraorbital d wave with interorbital s-wave
gap functions are displayed in the orbital representation. Panels (c) and (d) represent them in the band representation, respectively. Note that
since Eq. (8) is a linearized equation, the absolute value of the gap function does not have any physical meaning, and only its relative magnitude
among different orbital components and its symmetry are relevant. (e) The absolute value of Green’s function in the orbital representation,
while (f) shows them in the band representation. The parameter values adopted are n = 1.0, U = 2.0 eV, J = J ′ = U/10, and U ′ = U − 2J .

considered, that the diagonal components of Green’s function
(at the lowest Matsubara frequency) are larger than the off-
diagonal ones, with their real part much larger than the imag-
inary part, and that they satisfy Re[Gmm(k)]Re[Gll (−k)] > 0,
where m, l = orbital 1 (dx2−y2 ) or 2 (d3z2−r2 ). We can thus
roughly extract the contributions of these components in the
linearized Eliashberg equation as

λ
11(k) ∼ −�1111(q)G11(k − q)
11(k − q)G11(q − k),

(9)

λ
12(k) ∼ −�1212(q)G22(k − q)
21(k − q)G11(q − k),

(10)

λ
11(k) ∼ −�1221(q)G22(k − q)
22(k − q)G22(q − k),

(11)

λ
12(k) ∼ −�1122(q)G11(k − q)
12(k − q)G22(q − k),

(12)

for the intraorbital [Eqs. (9) and (12)] and interorbital
[Eqs. (10) and (11)] pair scattering channels with the Feynman
diagrams for the pairing interaction �αββ ′α′ as depicted in
Figs. 8(i) and 8(j) and Figs. 9(i) and 9(j). See Table I.

To identify which interaction parameters in the Hamil-
tonian dominate these pairing interactions, we calculate the
eigenvalue λ against the band filling for various choices of
(U,U ′, J, J ′) as shown in Fig. 10. Here we permit breaking
the orbital rotational symmetry (U ′ = U − 2J) in order to
extract the effect of each interaction. The pairing interaction
�αββ ′α′ for the varied interactions is depicted in Figs. 8 and 9.

TABLE I. The pairing interactions.

Pairing Pair scattering

�1111, �2222 Intraorbital Intraorbital
�1122 Interorbital Intraorbital
�1221 Intraorbital Interorbital
�1212 Interorbital Interorbital
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π
t12 (original) t12  = 0
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(b)

FIG. 7. (a) Schematics of the coexisting intra- and interorbital
nearest-neighbor pairings. In the upper figure, we depict the energy
level of the two orbitals centered at site 1 of the Lieb-type lattice
and the electrons occupying those orbitals and forming nearest-
neighbor pairs. Note that “nearest neighbor” here refers to the
nearest-neighbor unit cells rather than the sites. (b) The Fermi surface
at n = 1.0 for the original band structure of the two-orbital model
(left) and that of the band structure in the absence of the interorbital
hopping (right). The signs in the gap functions are indicated for the
s± wave (left) and d wave (right).

We find in Fig. 10 that increasing the interorbital interactions
U ′, J , and J ′, enhances λ. On the other hand, Fig. 10(c) shows
increasing the intraorbital U initially enhances λ, which is
rounded off for larger U . If we compare this with Figs. 9(a)–
(c) and 9(e)–(g), we reveal that increasing U ′, J , and J ′
enhances �1221 and �1212, which in turn enhances λ. On the
other hand, increasing U enhances �1111 [Figs. 8(a) and 8(d)]
and �1122 [Figs. 8(e) and 8(h)], but suppresses �1221 [Figs. 9(a)
and 9(d)] and �1212 [Figs. 9(e) and 9(h)]. The increase of �1111

enhances the intraorbital pairing while the increase of �1122

enhances the interorbital pairings, but the suppression of �1221

degrades intraorbital pairings while the suppression of �1212

degrades interorbital pairings, which is probably the origin of
the nonmonotonic behavior against the U variation.

A salient feature here is that �αββ ′α′s all have peaks around
q = (π, π ). From Eqs. (9)–(12), the portions of the gap
function in the regions where Green’s function is large should
change sign across (π, π ) within 
11, 
12, and between 
11

and 
22 as indicated by yellow arrows in Fig. 6(a). Which
of the s- or d-wave pairings dominates should depend on
the shape of the Fermi surface; if we reduce the interorbital
hopping, the Fermi surface of the lower band is less warped
as depicted in Fig. 7(b) and the Fermi surface approaches
(π, 0)/(0, π ), which favors d-wave pairing because cos(kx ) −
cos(ky) has large amplitudes around (π, 0)/(0, π ). In the case
without the interorbital hopping (t12 = 0), however, we find
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(a) U=2.0 eV, U’ =1.6 eV, (b) U=2.0 eV, U’ =1.8 eV, 

(c) U=2.0 eV, U’ =1.6 eV, (d) U=2.5 eV, U’ =1.6 eV,

J=J’ =0.2 eV J=J’ =0.2 eV

J=J’ =0.4 eV J=J’ =0.2 eV

(e) U=2.0 eV, U’ =1.6 eV, (f) U=2.0 eV, U’ =1.8 eV, 

(g) U=2.0 eV, U’ =1.6 eV, (h) U=2.5 eV, U’ =1.6 eV,

J=J’ =0.2 eV J=J’ =0.2 eV

J=J’ =0.4 eV J=J’ =0.2 eV
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1 2
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FIG. 8. The interaction dependence of the effective intraorbital
interactions, �1111 [(a)–(d)], and interorbital interactions, �1122 [(e)–
(h)], of intraorbital pairs at the lowest Matsubara frequency. The
bottom panels depict the Feynman diagram of �1111 (i) and �1122

(j). Note that the pairing interactions are plotted over the range
0 � qx, qy � 2π to display the peak structure around (π, π ) clearly.

that the value of d-wave λ (≈0.1, not shown) is smaller than
that of s-wave λ for the original value of t12. Also, in the
absence of t12, the off-diagonal component, 
12, in the orbital
representation of the gap function vanishes. Therefore, we
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(e) U=2.0 eV, U’ =1.6 eV, (f) U=2.0 eV, U’ =1.8 eV, 
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FIG. 9. The interaction dependence of the effective interorbital
interactions of intraorbital pairs, �1221 [(a)–(d)], and of interorbital
pairs, �1212 [(e)–(h)], at the lowest Matsubara frequency. The bottom
panels depict the Feynman diagram of �1221 (i) and �1212 (j). Note
that the pairing interactions are plotted over the range 0 � qx, qy �
2π to display the peak structure around (π, π ) clearly.

arrive at a mechanism in which the effect of the interorbital
hybridization can enhance the superconductivity through the
coexisting intra- and interorbital pairings.

Finally, let us turn to the six-orbital model in its FLEX
results. We show the band-filling dependence of λ in Fig. 11,

(a) 
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FIG. 10. s-wave eigenvalue λ plotted against the band filling in
the two-orbital model for the interaction values varied in differ-
ent ways. (a) U ′ dependence with fixed U = 2.0 eV and J = J ′ =
0.2 eV, (b) J , J ′ dependence with fixed U = 2.0 eV and U ′ = 1.6 eV,
and (c) U dependence with U ′ = U − 2J and J = J ′ = U/10.

and the gap functions and Green’s functions in Fig. 12, for
s- and d-wave pairings. We find that the results are similar to
those obtained for the two-orbital model. Namely, s wave and
d wave closely compete with each other, and the intra- and
interorbital pairing components coexist. Further understand-
ing of the relation between the two- and six-orbital models is
given in the Discussions section below.
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FIG. 11. Eigenvalue λ in the six-orbital model for s-wave and
d-wave pairings plotted against the band filling. The interaction
parameters are U = 2.5 eV, J = J ′ = U/10, and U ′ = U − 2J . In
the six-orbital model, since the Wannier orbitals are localized to each
Cu atom, we use U = 2.5 eV, which is close to values evaluated for
the conventional cuprates [62–64].

D. Dependence on the level offset between the two orbitals

So far we have adopted the tight-binding parameter values
(the hoppings and the on-site energies) estimated by first-
principles band calculation and Wannierization. The obtained
maximum value of λ is about 0.3 at T = 0.01 eV, which is
not large enough to explain the Tc ≈ 73 K experimentally
found in Ba2CuO3+δ [6]. If we stick to these parameter values,
some additional pairing mechanisms (e.g., electron-phonon
interaction) which boost the Tc would be required. We note,
however, that there are some ambiguities in the parameter
values in the Hamiltonian, particularly the energy level offset
between dx2−y2 and d3z2−r2 orbitals. First, in the actual samples
used in the experiment with excess oxygens, the holes doped
into the planes may attract the apical oxygen more strongly
than theoretically estimated here, as we have mentioned
above. Indeed, the theoretical average apical height, 1.98 Å,
estimated here for Ba2CuO3, is larger than the experimental
value (1.86 Å). The excess oxygens themselves would repel
the apical oxygens, but this effect should be insignificant at
Cu site 1, where no additional oxygens can be coordinated.
The lowered apical oxygens at site 1 would further push up the
d3z2−r2 energy level. Second, the level offset may be affected
by correlation effects that are not taken into account in the
first-principles calculation. For instance, Ref. [65] studied
a nickelate superlattice system where the dx2−y2 and d3z2−r2

levels are inverted, and found that the correlation effect taken
into account with the dynamical mean-field theory pushes the
d3z2−r2 band just above the Fermi level to make its Fermi
surface vanishing.

With these considerations, let us probe how the eigenvalue
λ against the band filling changes when the level offset


E ≡ Ed3z2−r2 − Edx2−y2

is varied, in order to seek a possibility for a further en-
hancement of superconductivity. In Fig. 13, the eigenvalue of
the Eliashberg equation of the two-orbital model is plotted
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FIG. 12. The s-wave gap function in the six-orbital model in the
orbital representation (a) or the band representation (b), along with
Green’s function orbital representation (c) or band representation (d).
The parameter values adopted are n = 3.0, U = 2.5 eV, J = J ′ =
U/10, and U ′ = U − 2J .

against the band filling for various values of 
E , where the
d3z2−r2 level is changed. The result does reveal intriguing
features. If we first focus on the region around quarter-filling
n = 0.5 (one electron per two orbitals, corresponding to an
oxygen content of 3 + δ = 3.375), the λ is enhanced as 
E
increases. Here we find that the dominating pairing symmetry
changes from s wave to d wave. This is because the system
approaches a half-filled single-band system for higher d3z2−r2

level, favoring dx2−y2 -wave pairing [66]. This resembles the
situation in the conventional cuprates with nearly d9 electron
configuration (three electrons per two eg orbitals), where a
sufficiently low d3z2−r2 level results in an effective single-band
system comprising the dx2−y2 orbital and hence favors d-wave
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FIG. 13. The largest eigenvalue λ of the two-orbital model plot-
ted against the band filling for various values of the level offset,

E ≡ Ed3z2−r2 − Edx2−y2 . The original value is 
E = 0.47 eV. The
pairing symmetry is s wave, except for those symbols marked with
a dashed square where the symmetry is d wave. The interaction
parameters are U = 2.0 eV, J = J ′ = U/10, and U ′ = U − 2J . The
inset depicts the bare band structure with 
E increased by +0.5 eV.
The horizontal black line represents the Fermi level for n = 0.9.
We note that the FLEX calculation did not converge for some cases
around n = 1 due to large spin fluctuations, and hence the data points
for those cases are missing.

pairing [2–5]: The difference is that the d3z2−r2 is moved away
from the main band upward in the present case or downward
in the latter. However, the eigenvalue λ here is not so high as in
the typical single-band cuprates such as HgBa2CuO4 because
the band width is narrower.

If we now turn to the region around n = 1, 
E smaller than
the original value somewhat enhances the s-wave λ. We find
that a smaller 
E increases �1111 and �1122 (not shown), and
we speculate that the near degeneracy of the two orbitals fa-
vors the interorbital pairing through the enhancement of �1122

(the intraorbital scattering of interorbital pairs). The enhance-
ment of λ upon reducing 
E further confirms our statement
in Sec. III C that the interorbital hybridization, which induces
interorbital pairing, is favorable for superconductivity.

What is even more interesting and realistic is the case of
larger 
E in the n = 1 regime (which does correspond to
3 + δ = 3.25, close to the experimental situation [6]). There,
λ corresponding to the s wave in Fig. 13 is strongly enhanced
when 
E is increased to some extent from its original value.
In this parameter regime, we find that the s wave strongly
dominates over the d wave. The maximum value of the s-wave
λ is as large as 0.6, which is close to the value obtained for
HgBa2CuO4, a superconductor with Tc � 100 K [67].

In fact, for 
E where λ is optimized, the bottom of
the d3z2−r2 band is close to the Fermi level (as indicated
in inset of Fig. 13). Recently, such a band lying just
above or below the Fermi level is referred to as an “incipient
band” and has received attention, especially in the context
of the iron-based superconductors [27–35,38], where hole
bands lying just below the Fermi level are observed in some

FIG. 14. The s-wave gap function for the two-orbital model in
the incipient-band case in the orbital representation (a) and the
band representation (b), along with Green’s function in the orbital
representation (c) and the band representation (d). The interaction
parameters are U = 2.0 eV, J = J ′ = U/10, U ′ = U − 2J , n = 0.9,
and 
E = 
Eoriginal + 0.5 eV.

materials [30,31,68–75]. In a wider context, the possibility of
the occurrence or strong enhancement of superconductivity
due to an incipient band has long been proposed for multiband
Hubbard models on various types of lattices [23,26,36,37,39–
44,76–82]. A salient feature in these cases is that the gap
function typically exhibits nodeless “s±-wave” symmetry.
Indeed, the gap function obtained for the present two-orbital
model exactly has a nodeless s±-wave symmetry, as displayed
in Fig. 14. Another prominent feature in the gap function is
that the interorbital pairing (off-diagonal element in the orbital
representation) is suppressed compared to the case with the
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FIG. 15. The pairing interactions for the two-orbital model in the
incipient-band case. The interaction parameters are U = 2.0 eV, J =
J ′ = U/10, U ′ = U − 2J , n = 0.9, and 
E = 
Eoriginal + 0.5 eV.

original value of 
E (Fig. 6). This may seem to contradict
with what we have concluded previously, namely, that the
interorbital pairing is favorable for the superconductivity. We
shall further discuss this issue in Sec. IV B. Also, if we look
in Fig. 15 at the effective pairing interactions for the incipient
band case, we can find that �1221, which describes the interor-
bital scattering of intraorbital pairs, is strongly enhanced. We
shall come back to the relation between the present model and
those in the previous studies also in Sec. IV.

IV. DISCUSSION

A. Relation with the K2NiF4-type structure

In the present Lieb-lattice model, s± and dx2−y2 waves are
found to compete with each other. A close competition be-
tween s± and dx2−y2 has been found in a previous theoretical
study, where the K2NiF4-type structure with a reduced apical
oxygen height was adopted [9,83]. It is an intriguing problem
how these are possibly related.

In Fig. 4(d), we have shown the first-principles band
structure of Ba2CuO4 in the K2NiF4-type structure. We can
notice that the band structure of the two-orbital model for the
K2NiF4-type structure is similar to that of Ba2CuO3 in the
Lieb-lattice structure [Fig. 4(b)], except for the band width.
This is in fact understandable because, in the Lieb lattice, site-
2 and site-3 orbitals extend toward site 1 [Fig. 4(c), lower right
panel], so that they can be regarded as playing a role of the
oxygen 2pσ orbitals in the K2NiF4 structure; in this structure,
the oxygen 2p orbitals have an energy somewhat lower than

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.6  0.8  1  1.2  1.4
n (band filling)

s-wave
d-wave

214-type Ba2CuO4

FIG. 16. Eigenvalue λ in the two-orbital model of the K2NiF4-
type structure for s-wave and d-wave pairings plotted against the
band filling. The interaction parameters are U = 3.0 eV, J = J ′ =
U/10, and U ′ = U − 2J .

the Cu 3d orbitals, while in the Lieb lattice, the site-2 and
site-3 orbitals have somewhat higher energies than the site-1
orbitals, presumably because the apical oxygen heights at sites
2 and 3 are lower than at site 1. The bandwidth of the latter
is narrower than the former because the electron hoppings
between Cu site-1 orbital and the Cu site-2 and site-3 orbitals
are smaller than those between Cu 3d and O 2p orbitals. We
can therefore state that, starting from the conventional CuO2

plane and removing the oxygens to form a Lieb lattice, we
unexpectedly encounter an analog of the CuO2 plane, on a
smaller energy scale. Since the band structures are similar, so
are the FLEX results. In Figs. 16 and 17, we show the FLEX
result for the two-orbital model of the K2NiF4-type structure.
We again end up with a close competition between s±-wave
and dx2−y2 -wave pairings, which is qualitatively consistent
with the previous random-phase approximation study [9]. We
note that the eigenvalue λ for the K2NiF4-type structure in
Fig. 16 is larger than that for the Lieb-lattice-type structure
in Fig. 5 because of the wider bandwidth, which might seem
more consistent with the experiment [6] from the viewpoint
of the high Tc, but this, of course, is not the case because
the K2NiF4-type structure does not take into account the large
amount of oxygen vacancies observed experimentally.

From the above consideration, we can make an interesting
observation that the relation between the two-orbital and six-
orbital models for the Lieb lattice is analogous to the relation
between the single-band Hubbard model and the three-band
d-p model in the conventional cuprates.

B. Relation with the bilayer model

We have found that s±-wave superconductivity is strongly
enhanced in the Lieb-lattice model when the d3z2−r2 band is
raised so that it becomes incipient. Such a strong enhance-
ment of s±-wave superconductivity reminds us of the bilayer
Hubbard model on a square lattice [39,42,43,76–80,84–92],
where enhanced superconductivity is found when one of the
bands is incipient [39,42,43,76–80]. However, the bilayer
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FIG. 17. The s-wave and d-wave gap functions in the two-orbital
model of the K2NiF4-type structure in the orbital representation (a) or
band representation (b), along with Green’s function in the orbital
representation (c) or band representation (d). The parameter values
are n = 1.0, U = 3.0 eV, J = J ′ = U/10, and U ′ = U − 2J .

Hubbard model is a single-orbital (one orbital per site) system
with two sites per unit cell. The enhancement of supercon-
ductivity in such a system is mediated by spin fluctuations
originating from the on-site U , which gives rise to the pairing
interaction between the bonding and antibonding bands, both
of which have equal weight of the two orbitals in a unit
cell. Similar enhancement mechanism of superconductivity in
multiorbital systems has been discussed in the context of the
iron-based superconductors, where portions of the electron
and hole Fermi surfaces having the same orbital character
interact via the effective interaction (�llll in the present no-
tation) enhanced mainly by the intraorbital U [93]. In the

present Lieb-lattice model and also in the two-orbital model
of the K2NiF4-type structure, the situation is distinct in that
the orbital character is quite different between the two bands.
The lower band has a strong dx2−y2 character, while the
upper band is dominated by d3z2−r2 character, so that here
the interorbital interactions (U ′, J, J ′) should be the key. The
present view that interorbital interactions play an important
role can be reinforced from the pairing interactions presented
in Fig. 15, where the interorbital pair scattering vertices (�1221

and �1212) are large, and also from the gap functions in Fig. 14,
where the sign of the gap function is reversed between dx2−y2

and d3z2−r2 orbitals. Figure 14 also shows that the orbital and
band representations resemble each other, which implies the
two bands have different orbital characters.

Can we identify the reason why superconductivity is en-
hanced even when the incipient band has an orbital character
different from that of the main band? Let us propose a
succinct way to understand this. As shown in Appendix C, the
single-orbital (with one orbital per site) Hubbard model on a
bilayer square lattice [Fig. 18(a)] with an on-site interaction
U can be transformed into a two-orbital Hubbard model on a
(monolayer) square lattice with all the on-site intra- and in-
terorbital interactions being U/2 [94]. In this transformation,
the bonding and antibonding orbitals in the bilayer system,
comprising the two sites connected by the vertical interlayer
hopping t⊥, translate to the dx2−y2 and d3z2−r2 orbitals in the
monolayer system, with 
E playing a role of 2t⊥. In the
bilayer Hubbard model, whose noninteracting band struc-
ture is depicted in Fig. 18(b), superconductivity is found to
be strongly enhanced when one of the bands becomes (nearly)
incipient upon increasing t⊥ [39,42,43,76–79].

From the viewpoint of the transformation introduced here,
the result for the two-orbital model of the Lieb lattice thus
corresponds to that of the bilayer model in that supercon-
ductivity is strongly enhanced when the upper band becomes
incipient upon increasing 
E . The gap function of the Lieb
two-orbital model also resembles that obtained for the bilayer
model. We show in Fig. 18(c) the gap function of the bilayer
Hubbard model in the band representation. (Note that the band
representation in the bilayer model corresponds to the orbital
representation in the two-orbital model.) The parameter values
are determined from those for the Lieb two-orbital model with

E increased by +0.5 eV using the transformation given
in Appendix C. The nodeless s±-wave gap function indeed
resembles that of the two-orbital model. By “nodeless,” we
mean that the gap within each band does not change sign,
not only on the Fermi surface but over the entire Brillouin
zone. Also, the enhancement of the interaction �1221 for
the interorbital scattering of intraorbital pairs (Fig. 15) cor-
responds to the dominant pairing interaction in the bilayer
model that induces interband scattering of intraband pairs.
All these resemblances between the two-orbital model and
the bilayer model suggest that the transformation is approx-
imately valid even when U �= U ′ �= J . On the other hand, if
we look more closely, the gap function of the bilayer model
is nearly constant within each band [Fig. 18(c)], whereas that
of the present model exhibits momentum dependence, which
roughly has a cos(kx ) + cos(ky) + const. form. Namely, in the
bilayer model, the pairing in real space occurs basically within
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FIG. 18. (a) The bilayer square lattice, (b) band structure of this
model, and (c) the s-wave gap functions of the bilayer Hubbard
model in the band representation. The parameter values are n = 0.9,
t = −0.12, t ′ = 0.01, t⊥ = 0.5, and U = 3.

the same unit cell (connected by t⊥), while in the two-orbital
model a mixing of intra- and interunit cell pairings takes place.

The interorbital repulsion U ′ is usually known to enhance
charge or orbital fluctuations [95], which generally compete
with spin fluctuations in mediating Cooper pairing because
the charge and orbital (spin) fluctuations give rise to attractive
(repulsive) pairing interactions. An intriguing point to note in
the present case is that U ′ plays a crucial role in enhancing
spin fluctuations, as can be captured from the analogy with
the bilayer Hubbard model where spin fluctuations solely
dominate.

The two-orbital to bilayer transformation appears to be
approximately valid only when 
E is not too small; namely, s
wave dominates over d wave when 
E is small in the present
two-orbital model, while d wave is dominant in the bilayer
model with small t⊥ [77]. This is presumably because the
cos(kx ) − cos(ky) form of the hybridization cannot be trans-
formed into the bilayer square lattice form of the Hamiltonian
(with the off-diagonal elements in Eq. (C5) in Appendix C
having tetragonal symmetry), so that the transformation loses
its validity as 
E becomes smaller than the interorbital
hopping between dx2−y2 and d3z2−r2 orbitals. When 
E is
large, on the other hand, the interorbital hybridization loses its
significance, so that the transformation becomes more valid.
However, when 
E is small, the effect of the hybridization
will be prominent, so that d wave gives way to s wave, in
contrast to the bilayer model case, because, as mentioned in
Sec. III C, the interorbital hopping makes the s-wave pairing
more favorable.

We mentioned in Secs. III C and III D that the interorbital
hybridization is favorable for superconductivity. However, we
find that this is not the case when 
E is large as in the incipi-
ent band situation; there, if we turn off the interorbital hopping
t12, the interorbital component of the gap function 
12 van-
ishes, but λ is enhanced; namely, the better correspondence
to the bilayer model is more favorable for superconductivity.
Since the interorbital and the incipient-band enhanced pairing
mechanisms are essentially different, whether the presence of
interorbital pairing is favorable for superconductivity or not
depends on the magnitude of the level offset between the two
orbitals.

We note that apart from the problem of Ba2CuO3+δ , the
occurrence of s±-wave superconductivity in the cuprates was
also proposed for a model [96] of highly overdoped CuO2

monolayer grown on Bi2Sr2CaCu2O8+δ [97]. In this model,
the d3z2−r2 band lies below the dx2−y2 band as in the conven-
tional cuprates, but due to the large amount of holes, the Fermi
level not only intersects the dx2−y2 band but also intersects
the top of d3z2−r2 band. This resembles the incipient-band
situation of the present two-orbital model, if we make an
electron-hole transformation.

V. CONCLUSIONS

In the present study, we have proposed the Lieb lattice as
a candidate for the lattice structure of the newly discovered
superconductor Ba2CuO3+δ . We have shown from the total
energy that the proposed lattice structure is almost as stable as
the chain-type structure that is known to exist. The dynamical
stability of the proposed structure is also shown through a
phonon calculation.

Applying a FLEX approximation to the relevant two-
orbital and six-orbital models derived from the first-principles
band calculation, we find that coexistence of intra- and interor-
bital pairings arises due to the relatively small energy level
offset between the dx2−y2 and d3z2−r2 orbitals. As for the pair-
ing symmetry, s-wave and d-wave pairings closely compete
with each other, with the former dominating. Superconductiv-
ity is optimized around the band filling corresponding to the
oxygen content of 3 + δ = 3.25, which is close to that of the
actual material.
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The maximum eigenvalue of the Eliashberg equation is not
large enough to explain the observed Tc. While a cooperation
with other pairing glues such as phonons may be necessary
to fully understand the experiment, we have proposed an
alternative scenario for explaining the observed Tc by varying
the level offset between the two orbitals, which is motivated
from the consideration that the level offset may be larger
in the actual material Ba2CuO3+δ than its first-principles
estimation for Ba2CuO3. We have indeed found that s±-
wave superconductivity is strongly enhanced when the d3z2−r2

band is raised in energy so that it becomes nearly incipient
around the band filling corresponding to the oxygen content
of 3 + δ = 3.25. In this situation, in contrast to the case
with smaller level offset, the amplitude of the interorbital
pairing is small, while the interorbital pair scattering plays an
essential role.

We have then noted that both the band structure and the
FLEX results resemble those of the two-orbital model for
the K2NiF4-type structure. We have traced its origin back
to the fact that the Cu orbitals at sites 2 and 3 in the Lieb
lattice play the role of the oxygen 2pσ orbitals in the K2NiF4

structure, so that the electronic structure of the former is
analogous to that of the latter.

From this observation, we have further pointed out a re-
lation between the two-orbital model for the Lieb lattice and
the Hubbard model on the bilayer square lattice. When one
of the bands is incipient, the two models exhibit similar re-
sults regarding the enhancement of superconductivity and the
nodeless form of the gap function. The resemblance suggests
that the transformation between the two-orbital model and the
bilayer model, which is shown to be rigorous when the intra-
and interorbital interactions are equal, is valid to some extent
even when the interactions are not equal.

In the present study, we have focused on the 2-1-3 compo-
sition and varied the band filling assuming a rigid band. It will
be an interesting and important future problem to explicitly
investigate the effect of the “+δ” excess oxygens.
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APPENDIX A: THE CRYSTAL STRUCTURES OF THE
LIEB-LATTICE-TYPE AND THE CHAIN-TYPE Ba2CuO3

In the main text, we have proposed a Lieb-lattice-type
structure for Ba2CuO3 and discussed the stability for com-
parison with the chain-type structure. For their stacking ge-
ometry, we show the detail in Fig. 19 as the side views of
these structures that we actually use in the first-principles
calculation. For the Lieb lattice, layers are stacked in such
a way that the in-plane components of the translation vector
between adjacent layers are always ≈( 1

4 , 1
4 ) in units of the

lattice constants, as depicted by a side view [Fig. 19(a)]
and also by a top view (Fig. 20) of the Cu-O planes. This

Ba Cu

O

(a)

(b)

Lieb-type (side view)

chain-type (side view) 

Ba

Cu 1

Oa3 a1,a2

Cu 2,3

FIG. 19. Side views of (a) the Lieb-lattice-type and (b) chain-
type structures, depicted with VESTA software. In panel (a), we
indicate the translation vectors a1, a2, and a3. Parallelograms formed
by blue lines delineate the unit cells.

stacking pattern breaks tetragonal symmetry as can be seen
from Fig. 20; in fact, one way to strictly preserve this symme-
try is to have four layers in a unit cell, where the in-plane
components of the translation vector between neighboring
layers are ≈( 1

4 , 1
4 ), ( 1

4 ,− 1
4 ), (− 1

4 ,− 1
4 ), and (− 1

4 , 1
4 ), but

that would result in a very large unit cell. We adopt the
structure depicted in Figs. 19 and 20 to reduce the size
of the unit cell and hence the calculation cost. In practice,
however, we find that the structure we adopt approximately
preserves tetragonal symmetry in that the tight-binding pa-
rameters of the obtained models possess tetragonal symmetry
within the accuracy ≈10−4 eV. As explained in Appendix B
below, these small parameters are disregarded in the FLEX
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layer 2

layer 1

a2

a3 a1

Cu

O

FIG. 20. A top view of the stacked Cu-O layers of the Lieb-
lattice-type structure. The translation vectors are also indicated as
in the previous figure.

calculation, so that the Hamiltonian used in FLEX preserves
the tetragonal symmetry.

APPENDIX B: THE TIGHT-BINDING PARAMETER
VALUES FOR THE LIEB-LATTICE MODELS

Here we give the tight-binding parameters of the six-orbital
[Fig. 4(a)] and two-orbital [Fig. 4(b)] Lieb-lattice models
obtained by the first-principles calculation with WANNIER90.
In order to simplify the multiorbital models, we disregard
small hopping parameters |t | < 1.0 × 10−2 eV in the six-
orbital model or |t | < 5.0 × 10−2 eV in the two-orbital model.

In the six-orbital Lieb lattice model, we label the Wannier
orbitals in a unit cell as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2

3

4

5

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

orbital 1 at site 1

orbital 2 at site 1

orbital 3 at site 2

orbital 4 at site 2

orbital 5 at site 3

orbital 6 at site 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

where the orbital numbers are depicted in Fig. 4(c). The
kinetic energy in the multiorbital Hamiltonian is given
in terms of the hopping parameters tlm obtained by
WANNIER90 as

HKin =
∑
klmσ

∑
R

tlm(R)eik·Rc†
klσ ckmσ , (B2)

where l and m denote the orbitals and R is the basic translation
vector. Let us display the hopping integral matrix tlm(R) [eV]
for each basic translation vector R:

For R = (0, 0, 0),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.51 0 0.15 0.34 −0.15 −0.34

0 2.98 0.08 0.23 0.08 0.23

0.15 0.08 1.10 1.34 0 0

0.34 0.23 1.34 2.51 0 −0.04

−0.15 0.08 0 0 1.10 1.34

−0.34 0.23 0 −0.04 1.34 2.51

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

For R = (0,−1, 0),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.09 0.05 0 0 0 0

0.05 −0.03 0 0 0 0

0.15 0.08 0 0 0 0

0.34 0.23 0 −0.03 0 −0.04

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

For R = (0,+1, 0),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.09 0.05 0.15 0.34 0 0

0.05 −0.03 0.08 0.23 0 0

0 0 0 0 0 0

0 0 0 −0.03 0 0

0 0 0 0 0 0

0 0 0 −0.04 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B5)

For R = (−1, 0, 0),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.09 −0.05 0 0 0 0

−0.05 −0.03 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−0.15 0.08 0 0 0 0

−0.34 0.23 0 −0.04 0 −0.03

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)

For R = (+1, 0, 0),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.09 −0.05 0 0 −0.15 −0.34

−0.05 −0.03 0 0 0.08 0.23

0 0 0 0 0 0

0 0 0 0 0 −0.04

0 0 0 0 0 0

0 0 0 0 0 −0.03

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B7)

For R = (+1,−1, 0),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 −0.04

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B8)
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For R = (−1,+1, 0),⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −0.04 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B9)

In the two-orbital Lieb-lattice model, we label the Wannier
orbitals as (

1

2

)
=

(
dx2−y2 at site 1

d3z2−r2 at site 1

)
. (B10)

The hopping integral matrix for each R is given as follows:
For R = (0, 0, 0),

(
2.20 0

0 2.67

)
. (B11)

For R = (±1, 0, 0),
(−0.15 0.12

0.12 −0.11

)
. (B12)

For R = (0,±1, 0),
(−0.15 −0.12

−0.12 −0.11

)
. (B13)

APPENDIX C: THE RELATION BETWEEN THE
TWO-ORBITAL MODEL AND THE BILAYER MODEL

Let us explain here the relation between the single-orbital
(one orbital per site) bilayer model and the two-orbital
model [94]. We label the two sites in a unit cell of the bilayer
lattice as i = 1, 2, and the orbitals in the two-orbital model as
a, b = α, β. The on-site interaction part of the Hamiltonian of
the bilayer Hubbard model is

Hbilayer
int = U

∑
m

∑
i=1,2

nmi↑nmi↓, (C1)

where m labels the unit cell. With a transformation R
defined as(

dmασ

dmβσ

)
= R

(
cm1σ

cm2σ

)
= 1√

2

(
1 1

−1 1

)(
cm1σ

cm2σ

)
, (C2)

we go from the site basis (c) to the bonding-antibonding
orbital basis (d). Then Eq. (C1) is cast into

U

2

∑
m,a

nma↑nma↓ + U

2

∑
m,a �=b

nma↑nmb↓

− U

2

∑
m,a �=b

d†
ma↑dma↓d†

mb↓dmb↑

+ U

2

∑
m,a �=b

d†
ma↑d†

ma↓dmb↓dmb↑. (C3)

Namely, we end up with a two-orbital model where the on-site
intra- and interorbital interactions all have the same strength,
U/2.

We can also show how the kinetic energy part of the
Hamiltonian is transformed. Let ckiσ , c†

kiσ be the Fourier
transform of cmiσ , c†

miσ . The kinetic energy part is then given
in momentum space as

Hbilayer
Kin = (c†

k1σ
c†

k2σ
)Ĥ (k)

(
ck1σ

ck2σ

)

= (c†
k1σ

c†
k2σ

)

(
ε1(k) ε′(k)

ε′(k) ε2(k)

)(
ck1σ

ck2σ

)
. (C4)

For instance, for the bilayer model on a square lattice with
only the in-plane nearest-neighbor hopping t and the ver-
tical interplane hopping t⊥ [Fig. 18(a)], ε1(k) = ε2(k) =
2t[cos(kx ) + cos(ky)], and ε′(k) = t⊥. With R, Ĥ (k) is trans-
formed as

RĤ (k)R†

= 1

2

(
ε1(k) + ε2(k) + 2ε′(k) ε2(k) − ε1(k)

ε2(k) − ε1(k) ε1(k) + ε2(k) − 2ε′(k)

)
.

(C5)

We can thus see that the term t⊥ contained in ε′ corresponds
to the energy offset 
E between the two orbitals.
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