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Adiabatic and nonadiabatic behavior of the Carr-Purcell-Meiboom-Gill sequence
in time-dependent magnetic fields
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We investigate experimentally the effect of time-dependent magnetic fields on the spin dynamics of the Carr-
Purcell-Meiboom-Gill sequence. The measurements demonstrate that the evolution is controlled by an effective
Hamiltonian that is a function of the offset field and the sequence parameters. Over a wide range of offset fields,
ramp rates, and sequence parameters, the system follows the effective Hamiltonian adiabatically. In this regime,
the echo amplitudes exhibit characteristic modulations that reflect the changing directions of the eigenvector
associated with the zero-energy level. The experimental results are in excellent quantitative agreement with
theoretical predictions. Nonadiabatic events are observed at distinct offsets where the system becomes nearly
degenerate. These nonadiabatic events occur precisely at the field offsets predicted by theory. After passing
through such nonadiabatic regions, an abrupt change in the occupation of the zero-energy level is observed. In
the adiabatic regime, the effects of field fluctuations are demonstrated to be fully reversible, while the occurrence
of nonadiabatic events leads to hysteresis. The location and range of the adiabatic regions can be manipulated by
modifying the pulse parameters.
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I. INTRODUCTION

When a quantum system is driven through multiple avoided
energy-level crossings, the occurrence of nonadiabatic transi-
tions in the vicinity of these crossings can lead to interesting
quantum interference phenomena. A well-known example
is the so-called Landau-Zener-Stückelberg interferometry
technique, where a two-level quantum system is made to
repeatedly traverse avoided crossings and to undergo Landau-
Zener transitions [1]. The resulting constructive or destructive
quantum interference pattern, sensitive to the amplitude and
frequency of the driving field and the gap between the two
levels, has been used to demonstrate and simulate such quan-
tum phenomena as the universal conductance fluctuation and
the weak localization [2,3].

This interference effect associated with nonadiabatic tran-
sitions at the passage near avoided crossings has been
observed mostly in effective two-level systems with Rydberg
atoms [4] and superconducting qubits [5,6]. Hence, alternative
platforms to probe such interference phenomena are of inter-
est, in particular when the underlying effective Hamiltonian
can be readily modified or engineered. In our recent work
[7], we demonstrated theoretically that the magnetization of
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noninteracting nuclear spins 1/2, subjected to a long string of
repeating rf pulses and a temporally varying magnetic field,
shows similar interference effects. In the fast pulsing regime,
the observed magnetization is governed by a time-dependent
Hamiltonian that has the form of a Zeeman interaction with
an effective field �Beff . The strength and direction of �Beff can
be modified by the choice of experimental parameters of the
pulse sequence, such as the repetition rate and durations of
the pulses. Here we present experimental confirmations of
the occurrences of adiabatic passages and nonadiabatic transi-
tions in this system as predicted by the effective Hamiltonian
theory. The measurements were performed using standard nu-
clear magnetic resonance (NMR) techniques with the addition
of a controlled linear ramping of the external magnetic field.

The pulse sequence used in our experiments consists of an
initial excitation pulse followed by a long string of refocusing
pulses, separated by the echo spacing tE . The magnetization
is probed stroboscopically at the nominal echo times ktE ,
where k is a positive integer. This sequence is well known
in standard NMR applications where it is referred to as
the Carr-Purcell-Meiboom-Gill (CPMG) sequence [8,9]. It is
commonly used to probe dynamic processes [10,11], to en-
hance the signal [12], or to reduce decoherence due to external
noise or diffusion effects [13–15]. When used in quantum
measurement protocols, the technique is usually referred to
as dynamic decoupling [13]. This sequence also underlies es-
sentially all applications in grossly inhomogeneous magnetic
fields [16,17]. While the sequence was originally designed for
operation in a static external magnetic field, here we study
the response in the presence of a time-varying external field.
The main motivation is to explore new physics, but this in-
vestigation also benefits the understanding of conventional
measurements in unstable fields or when there is relative
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motion between the sample and measurement apparatus. We
consider here time-dependent external fields that can vary
during the CPMG sequence by an amount comparable to or
larger than the strength of the rf field.

The paper is organized as follows. The theoretical treat-
ment is reviewed in Sec. II. Section III presents the
experimental setup and Sec. IV presents the measurements
and main results. We demonstrate that the response is well
described by the effective Hamiltonian approach presented in
[7]. The experimental results can be characterized by regions
of adiabatic behavior that are interrupted by nonadiabatic
events. The summary in Sec. V discusses the implication of
these results.

II. THEORETICAL CONSIDERATIONS

The theoretical analysis in [7] is based on the inspection
of a single refocusing cycle, in which the evolution of the
magnetization for a complete cycle is defined by an unitary
operator governed by the effective Hamiltonian

Heff = h̄γ �Beff · �S = h̄
α(ω0; ω1, tE , tp)

tE
n̂(ω0; ω1, tE , tp) · �S.

(1)

Here �S = (S1,S2,S3) are the generators of rotations with
respect to the three axes in the Cartesian coordinate system
with their matrix elements given by (Sk )i j = −iεi jk . In ad-
dition, �Beff is the effective magnetic field that characterizes
the average Hamiltonian of a refocusing cycle and γ is the
gyromagnetic ratio. The magnitude of �Beff is proportional
to the phase α and its direction is given by the unit vector
direction n̂. The quantities α and n̂ (and therefore the effec-
tive Hamiltonian) depend on the offset between the Larmor
and rf frequencies ω0 ≡ γ B0 − ωr f , the nutation frequency
ω1 ≡ γ B1,⊥/2, the echo spacing tE , and the duration of the
pulses tp. Explicit forms of these dependences are given in
Appendix A. It is worth noting that the effective Hamiltonian
can be further modified by replacing the single rf pulses by
composite or frequency modulated pulses [18].

Now the most economical way to analyze the echo-to-echo
propagation of the magnetization is to decompose it into its
eigenmodes. Critically, the effective Hamiltonian in Eq. (1)
has a zero-energy eigenmode with the corresponding eigen-
vector n̂. We will refer to this mode as the CPMG mode with
its corresponding unitary evolution having unity eigenvalue.
The initial excitation pulse of the CPMG pulse sequence is de-
signed to populate this particular eigenmode. Magnetization
of this eigenmode is consistently refocused from echo to echo,
even in the presence of field inhomogeneities. The evolution
of this mode is characterized by the absence of a dynamic
and geometric phase. In contrast, the other eigenmodes [usu-
ally referred to as Carr-Purcell (CP) modes] for the unitary
evolution have eigenvalues of the form e±iα that vary with
ω0. In the presence of spatial field inhomogeneities across
the sample, this dispersion gives rise to a rapid echo-to-echo
dephasing of the CP magnetization component, in analogy to
common T ∗

2 dephasing of the free-induction decay. Therefore,
the detected signal is typically completely dominated by the
CPMG component.

With a time-dependent external field B0(t ), it was shown
in [7] that in the fast pulsing regime, the evolution of the
magnetization from echo to echo is again governed by a
time-dependent effective Hamiltonian. To the lowest order,
the time-dependent effective Hamiltonian closely follows the
form of Eq. (1) and can be approximated as

Heff = h̄γ �Beff (t ) · �S ≈ h̄
α(ω0(t ))

tE
n̂(ω0(t )) · �S. (2)

When the external field is changed sufficiently slowly, we ex-
pect that the magnetization follows the evolving eigenmodes
adiabatically. The magnetization of the CPMG components
is effectively spin locked to its eigenvector, as shown in
Eq. (B1). On resonance, this eigenvector lies in the transverse
plane, but it acquires a longitudinal component as the ampli-
tude of the external field is increased. This change in direction
is a nonmonotonic function of ω0 and results in a system-
atic modulation of the detected signal as the applied field is
changed. In the adiabatic regime, the change of signal induced
by a fluctuating external field is reversible and independent of
the path of the fluctuation.

To stay in this adiabatic regime, the adiabatic condition
A � 1 has to be fulfilled. As discussed in detail in [7], the
adiabaticity parameter A ≡ ν0,crit/(dω̃0/dτ ) is the ratio of
the instantaneous critical velocity ν0,crit , an intrinsic param-
eter, and the dimensionless ramp rate of the external field
dω̃0/dτ ≡ d ω0(t )

ω1
/d t

tE
, an experimental parameter. The criti-

cal velocity ν0,crit is controlled by the change of the direction θ

of the eigenvector n̂ with offset frequency ω0 and the strength
of the effective field α/tE = γ | �Beff |: ν0,crit ≡ α/(dθ/dω̃0).

At distinct offset frequencies where the modes become
nearly degenerate, α ≈ 0 [cf. Fig. 7(a)] for α as a func-
tion of ω0/ω1, the critical velocity ν0,crit has pronounced
minima. When the variable external field reaches a value
corresponding to one of these minima, the spin dynamics
will likely become nonadiabatic, except when the ramp rate
becomes very small. Transitions between the CPMG and CP
modes then occur with the passage through these points, sim-
ilar to the Landau-Zener transition for traversing an avoided
level crossing. Following the theoretical consideration in [7],
the temporal interferences are also expected to occur when
multiple near-degenerate points are traversed. The direct ob-
servation of the interference between the CPMG and CP
modes in the resulting macroscopic signal requires that the
time-dependent magnetic field has a very high spatial unifor-
mity across the sample. In our setup, the applied field exhibits
some residual spatial inhomogeneity that leads to a spatial
averaging out of the net CP magnetization after the transition.
This prevents a direct observation of the interference effect
in our experiments. However, we can detect abrupt changes
in the occupation of the CPMG level. Such abrupt changes
are a clear sign of the occurrence of nonadiabatic transitions
that generate the interference effects on the microscopic level.
The refocusing of the CP mode at specific detuning in our
experiments (cf. Appendix C) demonstrates that the local CP
magnetization has a long intrinsic coherence time. This indi-
cates that the direct observation of interference effect becomes
possible if the spatial averaging effect can be avoided by either
improvement of the field homogeneity or the miniaturization
of the sample.
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III. EXPERIMENTAL SETUP

Experiments were performed on a cylindrically shaped wa-
ter sample (11 mm diameter, 10 mm length) that was inserted
in a solenoid rf coil and placed in a horizontal superconduct-
ing imaging magnet (Nalorac) with a 30-cm bore. The rf was
set to 85.1 MHz, the Larmor frequency of the magnet. The rf
power was adjusted so that the duration of the nominal 180◦
pulse resulted in t180 = 40 μs. This corresponds to a nutation
frequency ω1

2π
= 1

2t180
= 12.5 kHz.

We applied the standard CPMG sequence to the rf coil
consisting of an initial 90◦ pulse followed by a long train of
up to 8956 180◦ pulses. Standard two-step phase cycling was
used. The echo spacing tE was set at values between 6.4t180

and 24t180 as indicated. The complex echo amplitudes were
acquired at the nominal echo locations halfway between the
refocusing pulses.

During the measurements, the B0 field applied to the sam-
ple was varied by up to 1.29 mT, corresponding to a change
in Larmor frequency 
ω0 of 4.4ω1. This was accomplished
using a commercial gradient set (Bruker BGA12SL) that was
physically offset by 8 cm along its axis. At the site of the
sample, this arrangement generated an essentially uniform
bias field (rather than a gradient field in the center of the
gradient set). The strength and time dependence of this bias
field was controlled through the spectrometer by adjusting
the current through the gradient setup. The spatial uniformity
of the bias field across the sample can be approximated by
a Gaussian distribution with a relative width of 6.7 × 10−3.
The bias field was typically ramped up linearly from zero
to a maximum value with a constant ramp rate. Measure-
ments were also performed with a linear ramp-up immediately
followed by a linear ramp-down. We use the dimensionless
quantity dω̃0/dτ ≡ d ω0(t )

ω1
/d t

tE
to characterize the ramp rate.

This normalized ramp rate measures the change of the Lar-
mor frequency during one refocusing cycle relative to the rf
nutation frequency ω1 (which is proportional to the excitation
bandwidth). We present results for dω̃0/dτ between 5 × 10−4

and 8 × 10−3.
It is useful to relate these ramp rates to possible causes of

field fluctuations, in particular to magnet drifts and sample
displacements in a gradient B0 field. With the quoted experi-
mental parameters of rf power and echo spacings, the range of
dω̃0/dτ corresponds to relative magnet drift rates 1

ωr f

dω0(t )
dt =

ω2
1

πωr f

t180
tE

dω̃0
dτ

between 77 and 4590 ppm/s. Alternatively, when
the B0 fluctuations are caused by sample motion in a gradi-
ent g, the normalized ramp rate dω̃0/dτ is associated with

motion dx
dt = ω2

1
πγ g

t180
tE

dω̃0
dτ

. For a gradient g = 20 mT/m found
in a typical magnetic resonance imaging setup, the range of
our normalized ramp rates corresponds to a range of dx

dt of
8–460 mm/s.

For each measurement of echo amplitudes M(t ) with a
time-dependent bias field, an auxiliary measurement Maux(t )
without a bias field but with otherwise identical parameters
was performed. The auxiliary measurement was used to phase
both sets of data. The phased echo amplitudes M(t ) were
then normalized with respect to the auxiliary measurements to
compensate for relaxation effects. We present results in terms
of the normalized signal S(t ) ≡ M(t )/Maux(t ).

FIG. 1. Normalized in-phase (red) and out-of-phase (blue) echo
amplitudes S(t ) versus the instantaneous offset in normalized Larmor
frequency, ω0/ω1, for a CPMG sequence with a linearly increasing
B0 field starting on resonance. The ramp rates dω̃0/dτ are (a) 5 ×
10−4, (b) 1 × 10−3, (c) 2 × 10−3, (d) 4 × 10−3, and (e) 8 × 10−3.
The echo spacing was fixed at tE = 6.4t180. The experimental mea-
surements are well described by the analytical results for adiabatic
dynamics given by Eqs. (B2), shown as black lines. The panels on
the right give a schematic indication of the experimental procedure.
Note that the actual pulse spacings are much smaller and the total
number of pulses is much larger than could be drawn.

IV. RESULTS

A. Moderate field variations: Adiabatic behavior

We first consider the case of a linear field ramp that
starts from resonance. We display the relaxation compensated
amplitudes for echoes forming at time t , S(t ), versus the nor-
malized offset of Larmor frequency ω̃0(t ) = ω0(t )/ω1 at that
time. In these graphs, the individual echoes are separated by
dω̃0/dτ along the abscissa. Since the normalized ramp rates
are always much smaller than 1, the graphs of the discrete
points of the individual echo amplitudes appear as solid lines.

In the experiments shown in Fig. 1, five different normal-
ized ramp rates dω̃0/dτ between 5 × 10−4 and 8 × 10−3 were
used to increase the offset frequency ω0 from zero (i.e., res-
onance) to 1.45ω1. The signals show systematic modulations
as a function of the offset frequency. The echo amplitudes are
predominantly in phase with the refocusing pulses and display
only a weak dependence on the ramp rate.

These results are consistent with the expected behavior
in the adiabatic regime. The 90◦ excitation pulse generates
transverse magnetization in phase with the refocusing pulses.
In the static on-resonance case, this initial magnetization is an
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eigenstate of the propagator with unity eigenvalue, i.e., the so-
called CPMG subspace. In time-dependent fields, it remains
approximately an eigenstate on resonance as long as δε ≡
t2
E
8

dω0
dt 	 1. In our experiments, δε lies between 1.3 × 10−3

and 2.0 × 10−2 and fulfills this condition well. (For larger
echo spacings, the initial magnetization has both CPMG and
CP components resulting in the well-known even-odd echo
modulation [8].)

As the applied field is increased, the initial magnetiza-
tion remains in the CPMG eigenspace and follows the field
variations adiabatically if the ramp rate is smaller than the
offset-dependent critical velocity. The minimum critical ve-
locity in the range of offset frequencies up to 1.45ω1 is
ν0,crit = 0.042, i.e., more than 5 times larger than the highest
ramp rate dω̃0/dτ used. Therefore, the adiabatic condition
A � 1 is fulfilled and the magnetization is effectively spin
locked to the CPMG eigenvector. The observed signal mod-
ulation reflects the variable direction of the eigenvector with
offset frequency ω0.

The CPMG eigenvector of the propagator has no out-of-
phase component in the stationary case and its transverse
component is given by Eq. (A1). For finite ramp rates, there
are slight modifications that can be expanded in terms of
1/A. The first-order results are given by Eqs. (B2) and show
some small out-of-phase components proportional to 1/A.
For a comparison with the experimental results in Fig. 1,
we have convoluted the theoretical expressions in Eqs. (B2)
with the known relative field inhomogeneity of 6.7 × 10−3

of the applied offset field ω0. The experimental results are in
excellent agreement with this prediction for full occupation of
the CPMG mode, i.e., aCPMG = 1. This demonstrates that the
modulation of the observed echo magnetization is controlled
by the changing direction of the CPMG eigenvector.

As a further test, we have measured the response for differ-
ent echo spacings over the same range of offset frequencies.
Here we kept the normalized ramp rate fixed at 5 × 10−4. The
results are presented in Fig. 2.

The adiabaticity condition A � 1 is again fulfilled for this
range of experimental parameters, and we expect adiabatic
behavior. The experiments show a more pronounced signal
modulation for the measurements with longer echo spacings.
This is in quantitative agreement with the expectations for the
adiabatic regime for all echo spacings, based on Eqs. (A1) and
(B2).

B. Larger field variations: Observation of nonadiabatic events

When the field ramp extends over a larger range of offset
frequencies, deviations from the adiabatic behavior are ob-
served even for moderate ramp rates. This is apparent from the
results presented in Fig. 3, which shows the in-phase signal
for a linear field ramp starting from 0 up to an offset fre-
quency of 4.4ω1 at a ramp rate of 5 × 10−4 for three different
echo spacings. For small to moderate frequency offsets, the
experimental results follow the theoretical expectation for the
adiabatic regime as discussed above with aCPMG = 1.

However, beyond a distinct offset frequency, the exper-
imental results abruptly start to deviate from the adiabatic
predictions with aCPMG = 1. These abrupt changes occur

FIG. 2. Measured in-phase (red) and out-of-phase (blue) echo
amplitudes for a CPMG sequence with a linearly increasing B0 field,
starting on resonance for different echo spacings. The normalized
echo spacings tE/t180 are (a) 6.4, (b) 8.0, (c) 12.0, (d) 15.0, and
(e) 24.0. The normalized ramp rate dω̃0/dτ was fixed at 5 × 10−4.
The signal was normalized by a standard CPMG signal to account
for relaxation. The black lines show the analytical results for adia-
batic dynamics given by Eqs. (B2). The panels on the right give a
schematic indication of the experimental procedure.

precisely at offset frequencies where the adiabaticity param-
eter A drops towards 1 or lower, as indicated in Fig. 3 in
grayscale. At these offset frequencies, the critical velocity

FIG. 3. Measured in-phase (red) echo amplitudes for a CPMG
sequence with a linearly increasing B0 field, starting on resonance
for different echo spacings. The signal was normalized by a standard
CPMG signal to account for relaxation. The normalized ramp rate
dω̃0/dτ was fixed at 5 × 10−4. The normalized echo spacings tE/t180

are (a) 6.4, (b) 8.0, and (c) 12.0. The black lines show the lowest-
order analytical result, Eq. (B1) for aCPMG = 1. The calculated values
of A are displayed in grayscale. The panels on the right give a
schematic indication of the experimental procedure.
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ν0,crit (ω0) has pronounced minima and the adiabatic condition
A � 1 is not fulfilled anymore. This leads to nonadiabatic
transitions between the CPMG and the CP eigenspace.

During the crossing of these nonadiabatic regions, magne-
tization is exchanged between the CPMG and CP subspaces.
The dispersion of the eigenvalues of the CP mode leads to a
quick dephasing of the magnetization associated with the CP
subspace in the presence of the slight inhomogeneity in the
applied bias field (in analogy to the T ∗

2 process). The detected
signal is therefore dominated by the remaining magnetization
of the dispersionless CPMG mode. After a nonadiabatic re-
gion of field offset is passed, the spin dynamics enters again an
adiabatic region. The signal follows closely a rescaled version
of the adiabatic expression (B1), with a scaling factor aCPMG

less than 1 that indicates a reduced occupation of this mode.
As is evident from Fig. 3, the amplitudes aCPMG can be either
positive or negative.

As the external field is further increased, additional nonadi-
abatic regions are encountered that further modify the modal
amplitude aCPMG. The individual nonadiabatic regions are
well separated and narrow with respect to the normalized
offset frequency ω0/ω1. The results of Fig. 3 demonstrate that
the adiabaticity parameter A is an accurate indicator for the
location of the nonadiabatic regions.

It is challenging to predict the change in amplitude of the
CPMG mode aCPMG after passing a nonadiabatic region. The
width of these regions is narrow with respect to ω0/ω1, but
generally much wider than the normalized ramp rate. There-
fore, the traversing of a particular nonadiabatic region occurs
over many refocusing cycles. The net change of the CPMG
modal amplitude is the result of the accumulated transition
rates between the CPMG and CP subspaces over all these
cycles. As was shown in [7], these net rates are sensitive
to the experimental parameters and they are affected by the
field inhomogeneities. While the location of this nonadiabatic
event can be accurately predicted, the associated changes in
amplitude are therefore more difficult to predict robustly.

C. Reversibility

Further insight can be gained from experiments performed
with bilinear field ramps shown in Fig. 4. The field was
linearly ramped up from on resonance to a maximum value
followed by a ramp-down back to on resonance. The magni-
tude of the ramp rates |dω̃0/dτ | during the field ramp-up and
-down was fixed at 10−3. The measurements were repeated
with systematically varied maximum field values 
B0 that
correspond to frequency offsets 
ω0 ≡ γ
B0.

The results show an interesting dependence on 
ω0. When

ω0 is smaller than the first nonadiabatic region [Figs. 4(a)
and 4(b)], the responses of normalized echo amplitudes ver-
sus instantaneous offset frequency during the ramp-up and
ramp-down are identical. When the field is returned to its
original value, the spin echoes are fully refocused (up to
unavoidable relaxation). This reversibility indicates a purely
adiabatic behavior with unity eigenvalue for the CPMG mode.
In this regime, the evolution caused by the field fluctuation is
fully reversible, including the dephasing caused by the inho-
mogeneities of the bias field. Note that this is even the case for

FIG. 4. Measured in-phase echo amplitudes versus instantaneous
normalized offset frequency ω0(t )/ω1 for a CPMG sequence with
a bilinear B0 ramp. As indicated schematically on the right panels,
the field was linearly ramped up from on resonance to a value that
corresponded to a maximum frequency offset of 
ω0 indicated by
the green dash-dotted lines. The up ramp was immediately followed
by a ramp down back to on resonance. The signals for the up ramp,
S↑, and the down ramp, S↓, are shown in red and in blue, respectively.
The magnitude of the normalized ramp rates dω̃0/dτ for both up and
down ramps was fixed at 1 × 10−3 and the echo spacing was set at
tE/t180 = 6.4. The light gray curve shows the expected signal for a
purely adiabatic behavior [Eq. (B1)] with aCPMG = 1. The vertical
dark lines show the nonadiabatic regions, based on the calculated
values of A displayed in grayscale. From (a) to (f), the value of

ω0 was systematically increased from around 1.4ω1 to 4.4ω1, as
indicated by the green dash-dotted lines.

field variations up to 
ω0 = 1.8ω1 shown in Fig. 4(b). Dur-
ing this field sweep, the transverse magnetization temporarily
vanishes and becomes negative, all in a fully reversible man-
ner.

However, as soon as 
ω0 exceeds the critical value of
1.83ω1 and the spin dynamics enters the nonadiabatic region,
the signal fails to fully refocus when the offset field returns to
zero. The response during the ramp-down S↓(ω0) is generally
rescaled from the response during the ramp-up S↑(ω0). The
scaling factor can be interpreted as the amplitude aCPMG of
the CPMG mode in Eq. (B1). It is a function of the number
of nonadiabatic regions encountered during the field sweep.
For frequency offsets between the last nonadiabatic region and

ω0, the response is again reversible.

In Fig. 5 we plot the signal that is acquired at the end of
the scan (when the field has returned to its original value)
SRT O versus the maximum frequency offset during the sweep

ω0. This can be interpreted as the amplitude aCPMG of the
CPMG mode at the end of the scan. The results shown in
Fig. 5 exhibit a simple steplike function. The locations of the
steps coincide exactly with the predicted nonadiabatic regions
where A approaches or becomes less than 1.
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FIG. 5. Measured in-phase signal at the end of the scan SRT O

versus the maximum frequency offset during the sweep 
ω0 for the
bilinear field ramps shown in Fig. 4. The duration of the refocusing
pulse tp was set to (a) π

ω1
, (b) 5π

6ω1
, and (c) 2π

3ω1
, corresponding to

nominal 180◦, 150◦, and 120◦ pulses, respectively. The vertical dark
lines show the nonadiabatic regions, based on the calculated values
of A displayed in grayscale.

The experimental results of Fig. 5 show a striking sim-
plicity. The degree of refocusing at the end of the scan SRT O

depends only on the number of adiabatic regions that were
crossed during the scan. It does not depend on the exact value
of 
ω0 within a particular adiabatic region. These measure-
ments therefore allow a direct identification of the adiabatic
and nonadiabatic regions.

Based on numerical simulations with uniform fields re-
ported in [7], this simplicity was not anticipated. As the
applied field ramps through a nonadiabatic region, some mag-
netization is converted from the CPMG to the CP modes.
In the following adiabatic regime, the CP magnetization
propagates with nonunity eigenvalues and acquires nonzero
dynamical and possibly geometric phases that are sensitive to

ω0. After the field is reversed and crosses again the nonadia-
batic region, part of the remaining CPMG magnetization will
again be converted to the CP mode. In addition, some of the
CP magnetization is converted back to the CPMG mode and
is added to the CPMG mode. We expect that the contribution
of the CPMG mode converted from the CP mode depends
sensitively on 
ω0 due to the variation of the accumulated
phase. The absence of a dependence of SRT O on 
ω0 within an
adiabatic region in the experimental results of Fig. 5 indicates
that the converted CP magnetization does not make any net
contribution to the detected signal SRT O.

The absence of sensitivity of SRT O on 
ω0 can be under-
stood in our experiments as follows. As hinted in previous
discussions, the process of driving the magnetization (spin)
through a nonadiabatic region can be partitioned into three
stages within the adiabatic impulse approximation [19]: (1)
the adiabatic evolution before the transition, (2) the nona-
diabatic (impulse) transition, and (3) the adiabatic evolution
after the transition. Similar to the Landau-Zener transition, the
transition in the nonadiabatic region can be organized into a
unitary matrix describing the transition rates between different
states. With the small relative field inhomogeneity 6.7 × 10−3,
spins subjected to different field strengths essentially follow
the same transition matrix in our experiments [1]. In particu-
lar, because the nonadiabatic transition occurs in a small range
of ω0/ω1, no strong phase variations are expected due to the
field inhomogeneity in this region. In contrast, the adiabatic
evolution of the magnetization for the CP mode is strongly
affected by the inhomogeneity of the applied bias field (cf.
Appendix C), which in general induces a phase spreading
of the CP components for spins subjected to different field
strengths and hence leads to the dephasing, i.e., shorter T ∗

2 ,
for the CP components. As shown in Appendix C, except at
some specific offset frequency ω0 where the phase spreading
of CP modes reverts due to the dispersion of the CP mode
phase spectrum, the magnetization of CP modes is effectively
diminished due to this phase spreading even for the small
relative field inhomogeneity in our experimental setup. In
addition to the field inhomogeneity effect, the CP components
are also preferentially attenuated by diffusion effects.

Now, when an ensemble of CP modes with random-
ized phases is driven through the nonadiabatic region, the
CP modes converted back to CPMG modes will still retain
these randomized phases. As a result, the ensemble-averaged
CPMG signals converted from these CP modes become neg-
ligible, which leads to the 
ω0-independent SRT O signal.
This occurs as long as the accumulated phases of these CP
modes are well randomized before entering the nonadiabatic
region. On the other hand, some of the CPMG modes will
still be converted to CP modes, which will quickly dephase
due to the field inhomogeneity. This implies that the magni-
tude of SRT O(
ω0) should decrease monotonically with every
additional nonadiabatic event, as is indeed observed in our
experiments.

D. Measurements with modified refocusing cycles

The response in time-dependent fields can be modified by
replacing the standard 180◦ refocusing pulses with composite
or phase-modulated pulses [20,21]. It is possible to make
the system less or more sensitive towards field fluctuations.
Such optimization can be considered a form of Hamiltonian
engineering. The present analysis shows that the key quantity
to optimize is the critical velocity ν0,crit (ω0), which in turn
is determined by the modal properties of a single refocusing
cycle.

To find sequences more robust towards field fluctuations,
optimal control based algorithms [21–23] can be used to sys-
tematically search for refocusing cycles with modal structures
that have no near degeneracies and associated low critical
velocities for the range of offset frequencies of interest. This
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FIG. 6. Measured in-phase (red) echo amplitudes for a CPMG
sequence with a linearly increasing B0 field, starting on resonance
for different refocusing pulses. The duration of the refocusing pulse
tp was set to (a) π

ω1
, (b) 5π

6ω1
, and (c) 2π

3ω1
, corresponding to nominal

180◦, 150◦, and 120◦ pulses, respectively. The normalized ramp rate
dω̃0/dτ was fixed at 1 × 10−3 and the echo spacing at tE/t180 = 6.4.
The signal was normalized by a standard CPMG signal to account
for relaxation. The black lines show the theoretical expectation for
the fully adiabatic case based on Eq. (B1). The vertical dark lines
show the nonadiabatic regions, based on the calculated values of
A displayed in grayscale. The panels on the right give a schematic
indication of the experimental procedure.

will eliminate nonadiabatic regions and result in a fully adia-
batic spin dynamics. It could also be desirable to minimize the
signal modulation with variable offset frequency. This could
be accomplished by searching for refocusing cycles that max-
imize the critical velocities while simultaneously minimizing
the variability in the direction of the eigenvector of the CPMG
mode versus ω0.

As a simple illustration of this general approach of mod-
ified CPMG sequences, we present in Fig. 6 measurements
with shortened refocusing pulses. The pulse durations were
reduced from the default value of t180 = π/ω1 by 16% or
33% without increasing the pulse amplitude. The pulses now
correspond to nominal 150◦ or 120◦ pulses, respectively. The
analytical expressions of the modal properties of the prop-
agator in Appendix A show that a reduction of the pulse
durations moves the location of the nonadiabatic regions to
higher offset frequencies, thus increasing the range of the first
adiabatic region. This prediction is confirmed by the experi-
mental measurements of Fig. 6: The echo amplitudes with the
shortened refocusing pulses follow the adiabatic result to a
significantly larger offset frequency. The modified sequences
have an improved robustness towards the amplitude of field
fluctuations that can be fully refocused. As shown in Fig. 5,
with 120◦ refocusing pulses field fluctuations up to about
2.8B1 can be fully recovered without loss of signal, while with
standard 180◦ refocusing pulses this can only be achieved with
fluctuations up to about 1.8B1. However, this increased adia-
batic range is associated with a more pronounced modulation
of the echo amplitudes at small offset frequencies. It might
be possible to find more complex refocusing pulses that can
eliminate this drawback of enhanced signal modulation but
retain the increased adiabatic range.

V. CONCLUSION

We have applied and tested a framework to characterize the
response of CPMG-like sequences to time-dependent mag-
netic fields. It is based on an effective Hamiltonian approach
that allows the decomposition of the magnetization in terms
of the eigenmodes of the propagator. We have shown that the
response can be generally classified into adiabatic behavior
that is occasionally interrupted by nonadiabatic events.

In the adiabatic regime, the simple analytical expressions
have been experimentally confirmed. This can be viewed
as a test of the structure of the effective Hamiltonian. In
the presence of moderate field inhomogeneities, the magne-
tization associated with the CP modes generally dephases
quickly. The detected magnetization is then dominated by
the magnetization of the CPMG eigenmode that is effectively
spin locked to its eigenvector and robust towards field inho-
mogeneities. Changes in the occupation of the eigenmodes
require a nonadiabatic event. They occur in narrow ranges
of offset frequencies where the adiabaticity condition A � 1
is not fulfilled. The adiabaticity parameter A is the ratio of
an intrinsic offset-dependent critical velocity that is derivable
from modal properties of the propagator to the instantaneous
ramp rate of the applied field.

In this study we have tested the theory using piecewise lin-
ear field variations. We expect the treatment to hold for more
general field fluctuations, including random field variations.
As long as the instantaneous adiabaticity parameter A(t ) [de-
termined by the instantaneous values of normalized Larmor
frequency offset ω̃0(t ) and its rate of change dω̃0(t )/dτ ] is
much larger than 1, the spin dynamics is adiabatic and the
simple adiabatic expressions describe the response.

This effective Hamiltonian approach applies more gener-
ally to any CPMG-like sequence that consists of an initial
excitation pulse followed by identical refocusing cycles. The
refocusing cycle not only can consist of a single rf pulse,
but can contain any composite pulse, a combination of rf
pulses, or frequency sweeps. Thus, it is possible to optimize
the response to time-dependent magnetic fields by finding
refocusing cycles with the desired properties of the critical
velocity and other modal properties. Sequences that are more
robust towards temporal field variations are associated with
high critical velocities without any pronounced minima in the
relevant range of offset frequencies. Alternatively, it might be
desirable to find sequences that show an enhanced sensitivity
to field fluctuations. In that case, the goal is to use an operating
point with a low critical velocity, near a singular point where
the different modes become degenerate and modal transitions
occur even with small field fluctuations.

From the reversibility test with the bilinear field ramps
to a maximum offset frequency 
ω0 we observe a rather
simple steplike structure of the returning CPMG signals with
respect to the number of nonadiabatic events encountered. We
argue that this is due to the absence of CP mode contribu-
tions in an inhomogeneous applied field environment. This
surprisingly simple response indicates the robustness for the
measured CPMG magnetization. On the other hand, it also
hinders the observation of the interference effects between
two or more nonadiabatic transition events [7]. By carefully
inspecting the in- and out-of phase signals during the ramping
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process, we observe the refocusing of the CP mode signals
at specific detuning frequencies (cf. Appendix C) with the
mechanism similar to that for the gradient echo. Hence, with
the reduction of the field inhomogeneity, we are hopeful that
the interference effects can be observed. Coupled with Hamil-
tonian engineering through the composite pulse sequence, our
system thus has the potential to become a simulator to probe
dynamical responses and interference phenomena similar to
certain quantum systems [1–3].

APPENDIX A: PROPERTIES OF EIGENMODES OF THE
REFOCUSING CYCLE WITH A RECTANGULAR RF PULSE

We consider a refocusing cycle of duration tE that contains
a single rf pulse of duration tp centered in the middle of
the cycle. The rf pulse is linearly polarized with a carrier
frequency of ωr f and an amplitude B1,⊥, resulting in a nominal
nutation frequency of ω1 ≡ γ B1,⊥/2. The static field is B0, re-
sulting in an offset between the Larmor frequency and applied
rf of ω0(t ) ≡ γ B0(t ) − ωr f . For independent spins 1/2, the
echo-to-echo evolution can then be described using average
Hamiltonian theory by an effective magnetic field γ �Beff =
α/tE n̂, where γ is the gyromagnetic ratio. For a rectangular
rf pulse, the direction n̂ and amplitude α of this resulting
effective magnetic field can be obtained from the expressions

n⊥ = 1




ω1

�
sin β2, (A1)

nz = 1




(
sin β1 cos β2 + ω0

�
cos β1 sin β2

)
, (A2)

cos
(α

2

)
= cos β1 cos β2 − ω0

�
sin β1 sin β2, (A3)

where

� =
√

ω2
0 + ω2

1, (A4)

β1 = ω0(tE − tp)/2, (A5)

β2 = �tp/2, (A6)


2 =
(ω1

�
sin β2

)2
+

(
sin β1 cos β2 + ω0

�
cos β1 sin β2

)2
.

(A7)

APPENDIX B: ANALYTICAL RESULTS FOR THE
ADIABATIC REGIME

In the presence of field inhomogeneities, the detected sig-
nal is dominated by the contribution of the CPMG mode.
In the fully adiabatic limit of vanishing small ramp rates
dω̃0/dτ , the magnetization of the CPMG mode is spin locked
to the eigenvector n̂ derived from the static case. To lowest
order in the ramp rate, the signal is given by

S(t ) = aCPMGn⊥(t ). (B1)

Here aCPMG is the amplitude or occupation of the CPMG
mode and n⊥(t ) is the transverse component of n̂ [Eq. (A1)]
at the instantaneous offset frequency ω0(t ). In this limit, the
signal is purely in phase with the refocusing pulses.

FIG. 7. Experimental demonstration of gradient-echo-like sig-
nals generated by the CP contributions. (a) Oscillatory nature of the
instantaneous values of α versus the normalized offset frequency
ω̃0(t ) = ω0(t )/ω1, calculated from Eq. (A3). (b) The red and blue
lines show, respectively, the experimental in-phase and out-of-phase
signals detected during a linear ramp versus ω̃0(t ) with dω̃0/dτ =
4 × 10−3 and tE/t180 = 6.4. The grayscale shows the simple predic-
tion of exp{−σ 2

φCP
/2}. This can be interpreted as the visibility of

gradient echoes, as discussed in the text.

For finite ramp rates, the eigenvector for the CPMG
eigenmode acquires a small out-of-phase component. A per-
turbation calculation to first order in 1/A yields

S(1)
x (t ) = aCPMG√

1 + 1/A(t )2
[cos(δε)n⊥(t ) − 1/A(t ) sin(δε)],

∣∣S(1)
y (t )

∣∣ = aCPMG√
1 + 1/A(t )2

[sin(δε)n⊥(t ) + 1/A(t ) cos(δε)].

(B2)

Here δε ≡ t2
E
8

dω0
dt .

APPENDIX C: EFFECT OF FIELD INHOMOGENEITIES
ON THE SIGNAL GENERATED BY THE CP MODES

In the continuous limit, the dynamic phase of the CP mode
in the adiabatic regime for a linear field ramp is given by

φCP(ω̃0) =
(

dω̃0

dτ

)−1 ∫ ω̃0

ω̃0,start

α(ω̃′
0)dω̃′

0. (C1)

Here ω̃0,start is the normalized offset frequency where the
CP mode has been initialized. When the applied field ω0 is
nonuniform across the sample, the phase of the CP compo-
nent is also nonuniform. This leads to a T ∗

2 -like decay of
the detected signal of the CP component SCP. Assuming that
the inhomogeneities of the applied field is characterized by
a Gaussian distribution with a standard deviation σω0 , the
resulting distribution of the phases has a standard deviation
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that is to first order given by

σ 2
φCP

= σ 2
ω0

(
dω̃0

dτ

)−2(∫ ω̃0

ω̃0,start

ω̃′
0

dα(ω̃′
0)

dω̃′
0

dω̃′
0

)2

. (C2)

The field inhomogeneity reduces the detected CP signal by
exp{−σ 2

φCP
/2} compared to the case of uniform ω0. In the ex-

perimental results presented above, the condition σ 2
φCP

(ω̃0) �
1 is generally well fulfilled in the adiabatic regime except in
the near vicinity of the nonadiabatic regimes. Consequently,
the detected signals are dominated by the CPMG modes and
the CP modes make no significant contributions.

However, there are conditions when σ 2
φCP

becomes small or
even vanishes, even in the presence of field inhomogeneities.
In such cases, signals from the CP modes are detected. This
is made possible by the oscillatory nature of dα/dω̃0 with
ω̃0. At particular offset frequencies, the integral in Eq. (C2)
becomes zero. At these special points, the overall phase of the

CP contribution is to first order independent of the field inho-
mogeneity (but in general nonzero) and the CP modes form
gradient-echo-like signals. Given the ( dω̃0

dτ
)−2 dependence of

σ 2
φCP

, such gradient echoes are more pronounced at higher
ramp rates.

An example of such CP gradient echoes are shown in the
experimental results of Fig. 7. These data were acquired at
a ramp rate dω̃0/dτ = 4 × 10−3 and tE/t180 = 6.4. At dis-
tinct offset frequencies, oscillating out-of-phase signals show
the formation of CP gradient echoes. The position of these
echoes corresponds well to the locations where exp{−σ 2

φCP
/2}

approaches 1. Here σφCP was calculated from Eq. (C2) using
ω̃0,start as the end of the first nonadiabatic regime encountered.
This calculation is a simplification. It implicitly assumes that
only the first nonadiabatic event generates CP contributions
and that the phase shifts induced by the subsequent nonadi-
abatic regions can be ignored. Despite this approximation, it
gives a good qualitative indication where CP gradient echoes
can form.
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