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Kosterlitz-Thouless-type caging-uncaging transition in a quasi-one-dimensional hard disk system
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The simplicity of a quasi-one-dimensional system of hard disks enables us to get a much deeper and more
quantitative insight into the solid-to-fluid transformation and identify it as caging-uncaging transition. Both
computer simulation data and theoretical results show that density decrease induces progressively larger number
of uncaged disk pairs which exchange their transverse positions through windows in the initial crystalline zigzag
array. At low densities windows dominate and disks are moving independently (pairs “dissociate”). Along with
the simulation data on the transversal excitation modes and pair correlation function this shows that the solid-to-
liquid transformation is a continuous Kosterlitz-Thouless-type transition.
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I. INTRODUCTION

The interest in a quasi-one-dimensional (q1D) hard-core
fluid has both basic [1–6] and applied [7–10] aspects.
The fundamental interest is because this system allows
for a more detailed [1] and more advanced analytical ap-
proach [11–14] which can facilitate studies in higher di-
mensions. The freezing-melting transition [15] and collective
dynamics [1,16] in 2D hard-core systems are related to the
caging phenomenon [17], which is a hindrance of particle mo-
tion by its nearest neighbors (NN) [18]. We resort to the q1D
hard disk (HD) system confined to a pore to get insight into
the role of caging-uncaging events. Recently [19] one of us
developed a quantitative analytical theory of the structural
transformations in this system. Here we combine these the-
oretical predictions with the molecular dynamic (MD) simu-
lation data [20].

The fundamental question related to the q1D HD system is
as follows. A solid-to-fluid transition is a global phenomenon
attributed to the entire body, but in a 2D crystals it starts from
local emergence of bounded defect pairs [21]. This might have
similarity to the melting in a q1D HD system. Its densely
packed state is the zigzag array where all disks are caged:
each disk touches just one wall and is prohibited from moving
across the pore by two NNs. As density decreases, to gain
entropy the system searches for uncaging. Though uncaging
cannot occur in the entire system, it can occur locally where
pair of disks tries to exchange their positions across the pore.
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Usually, however, the density of defects is determined by their
core energy via Boltzmann’s factor, which is irrelevant to
HD systems where possible defects have a purely entropic
origin. Can such entropy-driven local uncaging, resembling
thermal excitation of bounded pairs in the Kosterlitz-Thouless
scenario, be effective in the zigzag melting? Our findings
support the effectiveness. As density decreases, both simula-
tion and theory predict an emergence of progressively larger
number of uncaged disk pairs. They first must be strongly
correlated, and the pair correlations along the channel are
indeed found to weaken as a power law. But eventually the
uncaging dominates, transverse excitation modes signal that
HDs can fly between the confining walls, and the correlations
decay exponentially. This picture is in line with a continuous
Kosterlitz-Thouless-type transition.

II. QUASI-LONG-TO-SHORT-RANGE-ORDER
TRANSFORMATION

A q1D HD system is modeled by N HDs of diameter d
in a rectangular pore formed by two horizontal hard walls of
length L. The walls are separated in the y direction by the
width D < 2d such that disks cannot pass each other (Fig. 1).
We consider a q1D HD system of width D = 3/2d .

The disk-disk, u, and disk-wall, uw, interaction potentials
are of the standard form: u(r) = ∞ for r < d , u = 0 for
r � d; uw(y) = 0 for d/2 < y < d , uw = ∞ otherwise, where
r = |ri − r j | is the distance between disks i and j. The peri-
odic boundary conditions in the x direction are introduced. We
employed the event-driven MD simulation algorithm [22] in
the canonical NV T ensemble. Different densities ρ = Nd/L
correspond to different L for the same N . We studied 11 pore
lengths, so that ρ ranges from ρ = 0.5 to 1.14; the close
packing (cp) crystalline zigzag ρcp = 1.1547. Although the
main body of MD simulations is for N = 200 , to examine
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FIG. 1. The pore of width D = 3/2 d. (a) The x distance be-
tween NN disks, δx . (b) The x contact distance σ for disks in (a).
σ1 = σm, σ3 = d ; disk 4 can pass disk 3 in the y direction.

size effects simulation runs with N = 20 , 400, and 1000 were
performed as well.

Figure 2 presents MD simulation data for the longitudinal
static structure factor S(kx ) and pair distribution function
(pdf) g(x). For the highest shown density ρ = 1.1111, S(kx )
exhibits the first and few neighboring peaks like a sheared-out
δ function, pointing to a quasi-long-range order typical of
a distorted crystal. As pore lengthens, the shape of S(kx )
becomes typical of the short-range order in HD fluid. This
is in accord with the reciprocal 2π/kmax of the position
of the first peak of S(kx ) versus per disk length l = 1/ρ

[inset in Fig. 2(a)]. We see a notable drift of kmax towards
smaller values as ρ decreases. In disordered systems, where
the structural transition takes place, kmax(ρ) has different
slopes on two sides of the transition [23]. The plot 2π/kmax

versus l is of this kind. For ρ > 1 ( l < d ) where caging is
essential, 2π/kmax ∝ l , which indicates that kmax can be just
the vector of reciprocal lattice of the crystalline zigzag. At the
same time, for densities ρ < 1 , 2π/kmax(l ) deviates from
the linear law as expected for disordered HD fluid.

The caging-dominated configuration at ρ = 1.1111 is fur-
ther confirmed in Fig. 2(b). Positions of the first and second
peaks of g(x) give information on the most probable distances
between a chosen disk, its NN, and the next NN disks. For
ρ = 1.1111, the first and second peaks of g(x) are located at
x/d ≈ 0.880 and 1.780, respectively. This has to be compared
with the case of the crystalline zigzag ordering when disks
are fully caged (configuration snapshot for ρ = 1.111; Fig. 2).
Then the first peak should be at x/d = √

3/2 ≈ 0.866, which
is the minimum possible horizontal NN distance [minimum
contact distance σm; Fig. 1 (see below)], and the second peak
at x/d = 2σm. We see that for ρ = 1.1111 the NN distance is
nearly the same as that between two disks in the crystalline
zigzag when they touch opposite walls (disks 1 and 2; Fig. 1).
Moreover, that caging dominates in q1D HD system at ρ =
1.1111 directly follows from the fact that the most probable
next NN distance, ∼1.78 d , is less than twice disk diameter,
the gap for a disk is below d , and hence on average each disk
is caged (see configuration snapshot for ρ = 1.1111).
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FIG. 2. (a) Structure factor S(kx ) for 10 densities from ρ =
0.1111 to 0.5 (in descending). Inset: Dependence 2π/kmax (l ) for the
first peak of S(kx ) . (b) Two peaks of g(x) for ρ = 1.1111, 1.0526,
1.0101, and 0.9091 (from left to right) and configuration snapshots
(inset). Filled circles indicate caged disks.

As density further decreases from ρ = 1.1111, g(x) shows
developing two distinctive patterns. First, the peaks widen and
their maxima positions shift to larger x, which is consistent
with the increase of the per disk length l and a more loose
disk confinement. In addition, a sharp and narrow subpeak on
the first peak is developing exactly at x = d . Below we show
that this subpeak is related to and reflects an emergence of
uncaging events in the zigzag array.

The MD data (Fig. 3) show that zigzag order is very
different above and below some crossover density ρc from
the interval between 1.056 < ρ < 1.1111. Namely, we found
that for ρ = 1.1111, positional order decays as a power
law ∼x−2/3, whereas for ρ = 0.9091 the decay is exponen-
tial, ∼ exp[−(x/d )/4]. In spite of the linear dependence of
2π/kmax on l for densities down to ∼0.95 [inset in Fig. 2(a)],
which apparently indicates a solidlike zigzag arrangement,
the positional order for densities ρ = 1.0526 and lower is
already exponential. Thus, the above simulations data suggest
that the quasi-long range at ρ � 1.1111 somehow transforms
into short-range order already for ρ ∼ 1.052. The theory [19]
shows that this is more a continuous crossover than a jumplike
transition.
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FIG. 3. Log-log plot of positional correlations g(x) − 1 for sys-
tem with N = 400 at ρ = 1.1111, 1.0526, 1.0101, and 0.9091 (from
top to bottom). The solid straight and curved lines show a power
∼x−2/3 and an exponential ∼ exp[−(x/d )/4] laws, respectively.

III. SUBPEAK AND UNCAGING

The key idea in the overall description of the structural
transformation in a q1D HD system lies in the physics behind
the narrow subpeak of g(x) at x = d developing below ρ =
1.1111 [Fig. 2(b)]. Both theory [19] and simulations suggest
that this subpeak is related to defects emerging in the zigzag
array through which a pair of disks can exchange their vertical
positions and get uncaged for some instants.

We introduce an important quantity σ which is the x pro-
jection of the contact distance between NN disks [11,13,19].
This σ is the minimum possible horizontal separation of
NNs for their coordinates y1 and y2 fixed [Fig. 1(b)]: σ =√

d2 − (y2 − y1)2.
It is clear that for ρ � 1, when per disk length l < 1,

an exchange of disks’ vertical coordinates can happen only
locally, where the instant actual NN distance δx = x2 − x1 �
d . Both σ and δx depend on the difference δy = y2 − y1

of their vertical coordinates (Fig. 1). As for ρ � 1, σ ≈ δx,
distribution of σ can give an accurate estimate for the number
of windows with δx ≈ σ = d . Hence δx ≈ σm = 0.866d is a
zigzag pattern as then δy = D − d = 0.5d and the NN disks
are mutually caged, staying at the opposite walls. In contrast,
δx � σ = d is a window pattern as then δy ≈ 0 and the disks
are uncaged and can traverse the pore. Pairs of contacting HDs
with δy ≈ 0 were earlier associated with defects in the study
of glassy behavior of q1D HD system [1,5].

The distribution function fσ (σ ) was obtained analyti-
cally [19] and for pore D = 3/2 d is shown in Fig. 4(a). As
expected, for ρ = 1.14 near the ρcp density, the zigzag pattern
with σ = σm fully dominates. This pattern remains nearly
the same until at ρ = 1.1111 a very small maximum at the
window pattern σ = d appears and becomes very visible at
ρ = 1.0526. As ρ further decreases, the fraction of σ = σm

diminishes and that of σ = d grows until it finally prevails at
ρ = 0.5. We conclude that a zigzag array, which is perfect
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FIG. 4. (a) Prediction of theory [19]: distribution of σ for the
densities ρ = 0.5, 0.909, 1.01, 1.056, 1.111, and 1.14 (from top
to bottom when approaching x/d = 1). (b) Semilog plot of MD
distribution of δx for N = 200 and 1000 (indistinguishable, thick
solid and thin dashed lines) and N = 20 (thin solid lines) for the
densities ρ = 1.14, 1.1111, 1.0526, 1.0101, 0.9091, and 0.5 (from
top to bottom when approaching x/d = 0.866).

at ρcp, acquires windowlike defects whose number become
substantial already for ρ = 1.0526, continues to grow, and
finally exceeds the zigzag pattern at fluid densities. Such an
emergence of windows with σ = d manifests itself as the
subpeak on g(x) at x = d (Fig. 2). Note that this result is
generic as the σ distributions in the whole range of widths
of a q1D HD single-file system are quite similar [19].

This picture is further confirmed by the distribution fδx of
the actual distances δx between NN disks obtained from sim-
ulations [Fig. 4(b)]. Similar to Fig. 4(a), for high ρ = 0.14
and 0.1111, these are distributed around δx ∼ 0.89 d close to
σm. However, at ρ = 1.0526, in addition to a wide maximum
at δx ∼ 0.92d , we see a sharp peak at δx = d . In contrast to
the wide maximum drifting towards larger δx, the subpeak
always remains at δx = d although its shape is changing: it
becomes more and more pronounced and finally exceeds the
main peak signaling approaching to a liquidlike state. It points
to the exclusive role that NN disk separation at δx = d plays.
Namely, creation of windows of the width of disk diameter d
in the zigzag array, neither wider nor narrower, is the most
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effective way to gain entropy by uncaging two disks and
making them extend their wondering to the whole pore width;
wider windows require a denser parent zigzag residue with
lower entropy while narrower ones provide no uncaging.

IV. CAGING-UNCAGING AND TRANSVERSE
EXCITATIONS

In a 1D HD system, the vertical motion is absent. In a
densely packed q1D HD system it is also prevented by the full
caging, but it eventually appears as the confinement weakens.
As for sufficiently low ρ the vertical disks’ motion from one
wall to another is possible, here one expects a nearly ballistic
transverse (T) oscillation. As it comes from the maximum
vertical path D − d, its frequency ωt1 must be lowest possible.
At high ρ, the σ = d windows are rare and disks can bounce
at most between one wall and the midplane, hence the lowest
T frequency is ωt2 ∼ 2ωt1. This ωt2 is related to the maximal
σ at window nuclei which require local compression and must
result in high-frequency longitudinal (L) and T jitters. One can
thus expect that the lowest T frequency ωt2 and the highest L
and T frequencies appear near the same k. In addition, the
group velocity at this k range has to be zero as windows are
not transferred by the waves. The dispersion ω(k) of the L and
T excitations in a q1D HD system obtained from MD is in line
with this picture (Fig. 5). For ρ = 1.0101, when the order is
of a short range, ωt1 can be identified with the practically k
independent T frequency ∼10 [Fig. 5(a)]. At the same time,
for ρ = 1.1111 when there are almost no σ = d windows,
the T spectrum splits into the lowest ωt2 ∼ 20 ≈ 2ωt1 and
highest frequency ωt3 ∼ 100 at those k where L frequency
is maximum [Fig. 5(b)]. The curves ωt1(k) and ωt2(k) are
plateaus which indicate zero group velocities. The continuous
L and T modes for ρ = 1.1111 are related to the short free
path oscillation of mutually caged disks near the walls. Thus,
the main properties of ωt (k), which is directly related to the
vertical motion, confirm the role of the number of σ = d
windows in the zigzag arrangement.

V. CONCLUSION

In this paper we studied structural transformations in q1D
HD array and found a strong similarity to a continuous
temperature-driven Kosterlitz-Thouless-type transition from a
solidlike to liquidlike state in 2D crystals. At ρcp the disks
form perfect zigzag. As confinement weakens, the tendency to
the entropy increase results in an emergence of progressively
larger number of windowlike defects through which pairs of
NN disks uncage and exchange their vertical positions. In
doing so the disks’ motion within pairs is strongly correlated.
The positional order in such a zigzag array with rare defects is
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FIG. 5. Dispersion ω(k) of transverse (T) and longitudinal (L)
excitations. (a) ρ = 1.0101, (b) ρ = 1.1111. Dashed line shows
hydrodynamic dispersion.

quasi-long-range and decays as a power law. For even weaker
confinement, the windows interconnect, disks can traverse the
pore independently, and the pairs dissociate. Then the posi-
tional order is of short range, correlations decay exponentially,
and the state is fluid. The cause for described path to the
entropy increase in a q1D HD system is particularly strong
and obvious: the dense caged system can gain entropy only
via localized uncaging events, which results in the Kosterlitz-
Thouless-type scenario. The element specific for q1D HD
system is that the windowlike defects in the zigzag array
emerge via uncaging events.
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