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Quench dynamics of a weakly interacting disordered Bose gas in momentum space
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We study theoretically the out-of-equilibrium dynamics in momentum space of a weakly interacting disordered
Bose gas launched with a finite velocity. In the absence of interactions, coherent multiple scattering gives rise to
a background of diffusive particles, on top of which a coherent backscattering interference emerges. We revisit
this scenario in the presence of interactions, using a diagrammatic quantum transport theory. We find that the
dynamics is governed by coupled kinetic equations describing the thermalization of the diffusive and coherent
components of the gas. This phenomenon leads to a destruction of coherent backscattering, well described by an
exponential relaxation whose rate is controlled by the particle collision time. These predictions are confirmed by
numerical simulations.
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I. INTRODUCTION

When perturbed from an equilibrium situation, isolated
many-body systems generally experience a thermalization
process and eventually return to equilibrium at sufficiently
long time [1]. This process arises because the interacting
system serves as a “bath” for all its subparts, the final state
being characterized by a Gibbs ensemble. A number of works
have explored the formation of this thermalized state, with
special attention dedicated to the dynamical emergence of
a Bose condensate [2–4]. The out-of-equilibrium dynamics
leading to thermalization can also follow a rich variety of
scenarios. Those have recently raised considerable interest
in the cold-atom community, where the conditions of truly
isolated quantum gases can be achieved at an unprecedented
level. Nonintegrable systems, for instance, usually display
an intermediate “prethermal” stage where the system evolves
rather slowly and looks approximately thermalized [5,6].
Prethermalization can be modeled by a generalized Gibbs
ensemble, characterized by a small set of parameters [7].
The many-body dynamics may also exhibit universal scaling
properties when the system is quenched through or in the
vicinity of a quantum phase transition [8,9], or when it is
initially prepared in a far off-equilibrium state [10–13].

Much less is known about the out-of-equilibrium dynamics
of interacting disordered systems. At the many-body level,
the competition between disorder and interactions may lead
to many-body localization (for recent reviews, see [14,15]),
initially addressed in the context of electron conduction [16].
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A consequence of many-body localization is the absence
of thermalization. When quenched out-of-equilibrium, many-
body disordered systems may or may not reach a universal
thermalized state, depending on the magnitude and properties
of the disorder and interactions. In weakly interacting Bose
gases, which can be described at a mean-field level with a
nonlinear Schrödinger equation, many-body localization does
not occur and thermalization is the rule. Notwithstanding
the relative simplicity of this limit, the combination of weak
interactions and disorder still gives rise to a number of puz-
zling phenomena, such as thermalization via weakly coupled
localized states [17,18] or subdiffusive spreading of wave
packets [19–24].

In this article, we study the interplay between disorder and
interactions in a dilute Bose gas, in the limit of weak disorder.
This regime has been under the focus of a number of cold-
atom experiments probing, e.g., one-dimensional Anderson
localization [25,26], coherent backscattering (CBS) [27–29],
as well as its control over external dephasing [29,30]. CBS of
cold atoms, in particular, was probed in an opticslike configu-
ration where an ultracold Bose gas was initially given a finite
mean velocity, and its subsequent dynamics in the presence of
disorder probed in momentum space. This configuration, orig-
inally introduced in [31], turned out also to be useful to ex-
plore other interference phenomena such as coherent forward
scattering [32], to achieve an echo spectroscopy of coherent
transport in disorder [30,33], or to monitor the thermalization
and dynamical formation of condensates in momentum space
[34]. In most of these works, disorder—albeit weak—was
the main ingredient driving the atomic dynamics, so that
interactions could be neglected in first approximation. As is
well known, however, particle interactions generally affect
significantly coherent transport and, in particular, coherent
backscattering. This question was previously addressed in the
context of nonlinear optics of continuous beams [35–38] or
of atom lasers [39]. A theoretical description of particle in-
teractions in an out-of-equilibrium regime where mesoscopic
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effects like CBS occur is, on the other hand, still absent. It is
the goal of the present work to fill this gap.

Following [27,28,30,31], we consider the out-of-
equilibrium dynamics of a two-dimensional, weakly
interacting Bose gas initially prepared in a plane-wave
state with finite velocity in a random potential. In this
configuration, the momentum distribution quickly acquires a
ring-shaped profile associated with classical particle diffusion,
with an interference, CBS peak emerging on the top. In the
presence of interactions, this picture slowly evolves in time as
the whole distribution thermalizes. Well before thermalization
fully develops, however, we observe a rather fast contrast loss
of the CBS peak. To explain this phenomenon, we develop a
microscopic, diagrammatic perturbation theory of coherent
particle transport including both disorder and interactions.
This allows us to derive coupled kinetic equations for
the diffusive and coherent components of the momentum
distribution. By solving the latter numerically at short time,
we achieve a precise description of the time evolution of CBS
in the presence of interactions. In particular, we find that
time-reversed paths responsible for CBS are quantitatively
more sensitive to particle collisions than diffusive paths. This
leads to a faster relaxation of the interference signal. This
relaxation is well captured by an exponential decay, whose
rate is controlled by the particle collision time.

The article is organized as follows. In Sec. II, we formulate
the problem and illustrate it through a numerical simulation.
In Sec. III, we recall the main elements of quantum transport
theory in disorder when interactions are neglected. This ap-
proach is extended to the interacting regime in Secs. IV and V,
and confronted with numerical simulations in Sec. VI. Main
results are summarized in Sec. VII, and technical details are
collected in two Appendixes.

II. MOMENTUM-SPACE DYNAMICS

We consider the out-of-equilibrium evolution of an N-
particle disordered interacting Bose gas. Interactions, as-
sumed weak, are treated at the mean-field level on the basis
of the Gross-Pitaevskii equation (GPE),

i∂t�(r, t ) =
[
−∇2

2m
+ V (r) + gN |�(r, t )|2

]
�(r, t ) (1)

for the Bose field �(r, t ). In Eq. (1) and in the following, we
set h̄ = 1. From now on we focus on the two-dimensional
geometry, although most results of the article are valid in
dimension 3 as well. V (r) is a random potential, assumed to
follow a Gaussian statistics with zero mean and no correlation:

V (r) = 0, V (r)V (r′) = γ δ(r − r′), (2)

where γ > 0 sets the disorder strength, and the overbar refers
to configuration averaging. The assumption of uncorrelated
disorder does not imply any loss of generality. The mean free
time (defined below) being the only relevant disorder param-
eter for the dynamics, the results of the paper hold as well
for a short-range correlated disorder. To illustrate the problem
in which we are interested, we first study the numerical
propagation of an initial plane wave φ(r) ≡ 〈r |�(t = 0)〉 =
1/

√
V exp(ik0 · r) in the random potential (V is the volume

of the system) by computing the wave function �(r, t ) at dif-

FIG. 1. Momentum distribution |�(kx, ky, t )|2 computed numer-
ically at three successive times using the GPE (1), starting from
a plane wave of initial momentum k0 = (π/5, 0) in a Gaussian,
uncorrelated random potential. The nonlinear term in the GPE leads
to an early-time decay of the CBS peak. Here gρ0 = 0.004 and γ =
0.038. Data are averaged over about 14 000 disorder realizations.

ferent times on a discretized regular grid of 200 × 200 sites
with step a for periodic boundary conditions. The tempo-
ral propagation is performed using a split-step algorithm of
time step 	t , alternating propagations of the linear part of
the GPE, exp{−i[−∇2/2m + V (r)]	t}, and of the nonlinear
part, exp[−igN |�(r, t )|2	t]. The linear part of the evolution
operator is expanded in a series of Chebyshev polynomials, as
described in [40–43]. From the wave function, we compute its
Fourier transform,

�(k, t ) ≡
∫

d2r e−ik·r�(r, t ), (3)

from which we infer the disorder-averaged momentum
distribution, |�(k, t )|2, normalized according to

∫
d2k/

(2π )2|�(k, t )|2 = 1. The computed momentum distribution is
shown in Fig. 1 at three different times. We choose as a unit
of length the discretization step a in our numerics. For the
discretization to be a good approximation to the continuous
equation (1), one must simply ensure that the de Broglie
wavelength is significantly larger than the grid spacing, i.e.,
2π/k0 � a. In the following we typically use k0a = π/5, so
that discretization effects are small. In Fig. 1 and in all other
simulations based on Eq. (1), we express momenta in units of
1/a, lengths in a, times in ma2, and energies in 1/(ma2). The
disorder amplitude, γ , is then in units of 1/(m2a2). In Fig. 1,
the three times shown are given in units of the mean free time
τ , i.e., the typical collision time on the scattering potential.
In the Born approximation, τ = 1/(mγ ) [see Eq. (11) below].
We choose τ � 26.3 so that the product of k0 with the mean
free path � ≡ k0τ is k0� � 10.4, i.e., much larger than 1. This
is the so-called limit of weak disorder, where, in the absence
of interactions, the momentum distribution is essentially the
sum of two contributions. The first is a background of dif-
fusive particles scattered elastically on the random potential.
In Fig. 1 this contribution manifests itself as a ring of radius
k0. The second is a narrow interference peak centered around
k = −k0, the coherent backscattering (CBS) effect. CBS in
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FIG. 2. Heights of the (a) diffusive ring and (b) CBS peak vs
time for increasing values of g from top to bottom. Data for the ring
height are obtained by computing the maximum value of |�(k, t )|2 at
(kx, ky ) = (0, ±k0), where no CBS peak is present. Data for the CBS
peak height are obtained by subtracting the momentum distribution
rotated by 90◦ from |�(k, t )|2. Here k0 = (π/5, 0), γ � 0.0182, and
data are averaged over about 16 000 disorder realizations. The solid
smooth black curves are Eqs. (18) and (19), respectively. They both
saturate at a value slightly above 100, which is close to the analytical
estimate τ/(πνε0 ) � 98.9 for a numerically computed mean free
time τ � 51.84 and on-shell density of state νε0 � 0.167.

this configuration was first described theoretically in [31], and
experimentally measured with cold atoms in [27,28,30].

In the presence of weak interactions, a main change com-
pared to this picture is a decay of the CBS peak amplitude
at short time. This decay appears as soon as interactions are
nonzero, as shown in the lower panel of Fig. 2 for even weaker
values of gρ0. Also shown in the upper panel is the height of
the diffusive ring, which decays as well, albeit more slowly
than the CBS peak. This results in a decay of the CBS contrast,
well visible in Fig. 1. In the simulations of Figs. 1 and 2, the
magnitude of interactions is chosen such that the mean free
path associated with the collisions on the nonlinear potential
gN |�|2 is larger than � (this condition will be clarified in
Sec. IV). In the rather small time-range of these figures, this
nonlinear potential thus plays the role of a perturbation for the
dynamics, which remains mainly governed by the disorder.

The observed decays of the diffusive background and CBS
peak constitute the early-time manifestations of a thermaliza-
tion process of the whole momentum distribution. The long-
time thermalization properties of the diffusive background

have been previously addressed in [34]. In the sequel of
the paper, we provide a theoretical basis for the formalism
used in [34], and we go one step further by constructing a
kinetic theory that encompasses both the incoherent diffusive
component and the CBS contribution (neglected in [34]).
Equipped with this theory, we then reproduce and explain the
temporal evolutions observed in Figs. 1 and 2, and in particu-
lar we confirm that the CBS peak is more sensitive to particle
collisions than the diffusive background. The relaxation of
its contrast is found to be exponential at short time, with a
relaxation rate controlled by the particle collision time.

III. LINEAR REGIME: THEORY

The theory of diffusion and CBS in momentum space has
been presented in [31]. Here we only recall the main elements
required to introduce the nonlinear diagrammatic theory in the
next sections. We also adopt a slightly different point of view
from that in [31], focusing more on the energy distribution of
the particles, which plays a major role in the thermalization
process at work when interactions are nonzero.

When g = 0, the momentum distribution can be expressed
as [31,44,45]

|�(k, t )|2 =
∫ ∞

−∞

dε

2π

∫ ∞

−∞

dω

2π
e−iωtIε,ω(k), (4)

where the density kernel is defined in terms of the energy-
dependent, retarded and advanced Green’s operators GR/A

ε and
of the initial state |φ〉 as

Iε,ω(k) ≡
∫

d2k′

(2π )2

d2k′′

(2π )2
〈k|GR

ε+ω/2|k′〉〈k′′|GA
ε−ω/2|k〉

× φ(k′)φ∗(k′′). (5)

In the following, we will also work with the disorder-averaged
occupation number fε (t ), defined as

fε (t ) ≡ 1

2πνε

∫
d2k

(2π )2

∫ ∞

−∞

dω

2π
e−iωtIε,ω(k), (6)

where νε is the density of states per unit volume at energy
ε. As a consequence of particle conservation, this quantity is
normalized according to∫ ∞

−∞
dε νε fε (t ) = 1. (7)

This condition identifies the product νε fε (t ) as the energy
distribution of the Bose gas [46].

A. Diffusive background at long time

From now on, we focus on the case in which the initial
state is a plane wave, |φ〉 = |k0〉. We also assume disorder to
be weak, k0� � 1, so that perturbation theory can be used.
The main contribution to Iε,ω(k) is then given by the series
of ladder diagrams (“Diffuson”), which we denote by ID

ε,ω(k).
The latter obeys the Bethe-Salpeter equation [31,44,45]

ID
ε,ω(k) = G

R
ε+ω/2(k)G

A
ε−ω/2(k) × (2π )2δ(k − k0)

+ γ G
R
ε+ω/2(k)G

A
ε−ω/2(k)

∫
d2k′

(2π )2
ID

ε,ω(k′), (8)
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FIG. 3. (a) Diagrammatic representation of the Bethe-Salpeter
equation for ladder diagrams, Eq. (8). Upper solid lines with arrows
refer to 〈k|GR

ε+ω/2|k0〉, and lower dashed lines refer to 〈k0|GA
ε−ω/2|k〉.

Note that for solid (dashed) lines, arrows coincide with the (opposite
of the) direction of propagation. Dotted vertical lines symbolize
the correlation function in Eq. (2). (b) Series of diagrams describ-
ing the interference between time-reversed paths, responsible for
CBS (“crossed diagrams”). The second equality follows from time-
reversal invariance. (c) In the long-time limit t � τ where low
scattering orders have a negligible weight, the series of ladder and
crossed diagrams coincide.

which is shown diagrammatically in Fig. 3(a). The average
Green’s function is given by

G
R
ε (k) = 1

ε − k2/2m − �(ε, k)
. (9)

In the weak-disorder limit, the self-energy �(ε, k) can be
evaluated by perturbation theory. We restrict ourselves to the
leading-order contribution provided by the Born approxima-
tion, which coincides with the Fermi golden rule:

Im �(ε, k)=−π

∫
d2q

(2π )2
B(k − q)δ

(
ε − q2

2m

)
, (10)

where B(k) = γ is the Fourier transform of the disorder
correlation function (2). Equation (10) defines the mean free
time,

τ ≡ − 1

2 Im �(ε, k)
= 1

2πνεγ
, (11)

with, in the Born approximation, νε = m/(2π ). In the long-
time limit t � τ , the contribution to the momentum distribu-
tion (4) due to ID

ε,ω can be obtained in the following way. First
we integrate Eq. (8) over k, and we expand the second term
on the right-hand side for ωτ � 1 (hydrodynamic limit). This
yields ∫

d2k
(2π )2

ID
ε,ω(k) � −2 Im G

R
ε (k0)

−iω
, (12)

where we used that G
R
ε (k0)G

A
ε (k0) = −2τ Im G

R
ε (k0). We thus

find, according to Eq. (6),

fε (t ) = Aε (k0)

νε

≡ f (0)
ε (13)

for the occupation number, where the superscript (0) refers
to the noninteracting limit, and we introduced the spectral
function

Aε (k) ≡ − 1

π
Im

[
G

R
ε (k)

] = 1/(2πτ )

(ε − k2/2m)2 + 1/4τ 2
. (14)

Second, we integrate Eq. (8) over ε and take the Fourier
transform with respect to ω. Using the result (13), we infer

|�D(k, t )|2 =
∫ ∞

−∞
dε Aε (k) f (0)

ε . (15)

Equation (15) is an isotropic function of k, centered at |k| =
k0, which corresponds to the diffusive ring in Fig. 1 [31].
The radial profile of this ring is essentially that of the energy
distribution νε f (0)

ε = Aε (k0), which for g = 0 coincides with
the spectral function. In the absence of interactions, this
energy distribution does not change in time. This is of course
expected, as the only process at work is elastic multiple
scattering, which does not involve any energy redistribution.

B. Coherent backscattering at long time

The CBS contribution is deduced from the diffusive one
by making use of time-reversal invariance. The CBS peak
stems from the interference between time-reversed multiple
scattering paths, described by the diagrammatic series in
Fig. 3(b) (“crossed diagrams”). In the long-time limit t � τ

where low scattering orders have a negligible weight, the
ladder and crossed series exactly coincide at k = −k0 due to
time-reversal symmetry [see Figs. 3(b) and 3(c)]:

IC
ε,ω(k = −k0) = ID

ε,ω(k = −k0), (16)

such that

|�C (k = −k0, t )|2 =
∫ ∞

−∞
dε Aε (k0) f (0)

ε � τ

πνε0

, (17)

where ε0 ≡ k2
0/(2m). In the absence of interactions, the diffu-

sive and CBS amplitudes at −k0 thus coincide, see Eqs. (15)
and (17), and are independent of time. The full k dependence
of the CBS profile can be calculated as well, as was done in
[31]. In the rest of the article, however, we will essentially
focus on its amplitude, |�C (−k0, t )|2.

C. Full time evolution

Equations (15) and (17) have been obtained in the regime
of long times, t � τ , where low scattering orders can be
neglected. While an exact calculation of the diffusive and CBS
contributions at any time is a difficult task in general (see,
for instance, Ref. [47], where this problem was tackled for
a speckle potential), for the particular model of uncorrelated
disorder we have found that the Bethe-Salpeter equation can
be exactly solved, giving

|�D(−k0, t )|2 = ρmax

[
1 − e−t/τ

(
1 + t

τ

)]
(18)
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for the diffusive background, and

|�C (−k0, t )|2 = ρmax

[
1 − e−t/τ

(
1 + t

τ
+ t2

2τ 2

)]
(19)

for the amplitude of the CBS peak, with ρmax ≡∫
dε A2

ε (k0)/νε � τ/(πνε0 ). Note that, as expected, the
CBS and diffusive amplitudes coincide at long time, but not at
short time, t ∼ τ , where low scattering orders—described by
the terms within square brackets—come into play. Equations
(18) and (19) are shown in Fig. 2 (dashed curves) on top of
the results of numerical simulations for g = 0. The agreement
is very good at all times.

IV. INTERACTING DIFFUSIVE PARTICLES: THEORY

We now turn to the case g �= 0. While an exact theory
accounting for both interactions and disorder is a formidable
task, even at the level of the GPE (1), relatively simple results
can be obtained when interactions are “weak” compared with
the disorder. Indeed, in this regime the effect of interactions
can be treated as a perturbation of the series of crossed
and ladder diagrams. This approach was previously used in
[35–37,39] to describe the stationary coherent backscattering
effect of continuous waves in finite media, and in [48–50]
to model the dynamics of interacting wave packets in the
diffusive limit. The latter configuration was later extended to
the localization regime in [22,23], but by taking into account
first-order corrections in g only, see Sec. IV B, while neglect-
ing second-order corrections responsible for thermalization.

In this section and the next one, we develop a quantum
transport theory describing the effect of interactions on both
the diffusive and CBS signals in the dynamical scenario of
Fig. 1. We show that, because the average density of the Bose
gas is uniform, linear corrections in g reduce to an irrelevant
shift of the mean energy, so that the physics in momentum
space is governed by second-order corrections. The latter are
responsible for two coupled thermalization processes of the
diffusive and CBS components.

A. Weak interactions

A treatment of the nonlinear potential in Eq. (1) as a
perturbation of the ladder and crossed series requires that
scattering events on the nonlinear potential g|�(r, t )|2 are rare
compared to scattering events on the random potential V (r).
In terms of time scales, this condition reads τNL � τ , where
τNL is the particle collision time. To estimate this quantity, we
use the Fermi golden rule

1

2τNL
= π

∫
d2q

(2π )2
BNL(k − q)δ

(
ε − q2

2m

)
, (20)

where BNL(k) is the power spectrum of the nonlinear poten-
tial:

BNL(k) ≡
∫

d2(r−r′)g2N2|�(r, t )|2|�(r′, t )|2eik(r−r′ ). (21)

To leading approximation, the density-density correlator is not
modified by interactions, and reads [51] |�(r, t )|2|�(r′, t )|2 =

J0(k0|r − r′|)e−|r−r′|/�/V 2 in two dimensions. This gives

τNL ∼ ε0

(gρ0)2
, (22)

where we introduced the mean particle density,

ρ0 ≡ N/V . (23)

By defining the mean free path for particle collisions as �NL ≡
k0τNL/m, we then rewrite the criteria of rare particle collisions
and weak disorder as

k0�NL � k0� � 1. (24)

In the following, we will assume these conditions to be ful-
filled. They imply, in particular, that the initial kinetic energy
typically exceeds the interaction energy, ε0 � gρ0. Therefore,
as long as the energy distribution νε fε (t ) does not deviate too
much from its initial value Aε (k0), only states belonging to
the “particle” branch ε � gρ0 of the Bogoliubov spectrum are
populated [52]. In other words, the low-energy, phononlike
part of the spectrum does not play any role in the dynamics.
This will always be verified in the sequel of the paper, where
we focus on the short-time evolution of the Bose gas.

B. Leading-order nonlinear corrections

When g �= 0, the notion of Green’s function can no longer
be utilized to express the momentum distribution, as we did
in Eq. (5). Nevertheless, Eq. (4) can still be written, with the
density kernel defined as

Iε,ω(k) ≡ �ε+ω/2(k)�∗
ε−ω/2(k), (25)

where

�ε (k) ≡
∫

d2r
∫ ∞

−∞
dt eiεt e−ik·r�(r, t ). (26)

Our diagrammatic quantum transport theory in the presence
of interactions is constructed from the Lippmann-Schwinger
equation associated with the GPE (1):

�ε (k) = φ(k) + G0
ε (k)

[∫
d2k′

(2π )2
V (k′)�ε (k − k′)

+ gN
∫

dε1

2π

dε2

2π

∫
d2k1

(2π )2

d2k2

(2π )2
�ε1 (k1)�∗

ε2
(k2)

× �ε−ε1+ε2 (k − k1 + k2)
]
, (27)

where G0
ε (k) = (ε − k2/2m + i0+)−1 is the free-space (re-

tarded) Green’s function. Iteration of Eq. (27) leads to an ex-
pansion of �ε in powers of V and g known as the Born series.
In addition to the usual scattering processes on the random
potential, this Born series also involves particle collisions.
These two elementary processes are diagrammatically shown
in Fig. 4, together with the conservation rules for energies and
momenta.

From the Born series for �ε , one can construct a Bethe-
Salpeter equation for the density kernel Iε,ω(k). Insofar as par-
ticle collisions are less frequent than collisions on the random
potential—remember condition (24)—two distinct iterative
equations for the diffusive and CBS contributions, ID

ε,ω and
IC

ε,ω, can still be identified. In this section, we first focus on
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FIG. 4. The Born series obtained by iterating the Lippmann-
Schwinger equation (27) generates terms built on scattering pro-
cesses on (a) the random potential V and on (b) the nonlinear
potential gN |�|2. Solid and dashed lines with arrows refer to the
free-space, retarded and advanced Green’s functions, respectively.
The cross refers to the random potential V and the wavy line to the
interaction parameter g. For each vertex, the lower-right line (ε, k)
is the outgoing field, and integrations over ε1, ε2, k′, k1, and k2 are
understood.

the Bethe-Salpeter equation for ID
ε,ω. The latter is obtained

by adding extra terms to the right-hand side of the iterative
equation in Fig. 3(a) for g = 0, in which the ladder sequence
can be interrupted by one or several particle collisions.

The leading-order, iterative correction to the Bethe-
Salpeter equation for ID

ε,ω is given by the diagram in Fig. 5(a)

FIG. 5. First-order diagrammatic corrections to the Bethe-
Salpeter equation, involving one particle collision (for each diagram,
one has to add the conjugate version). (a) Correction to the Bethe-
Salpeter equation for ID

ε,ω. Red boxes refer to an incoming, ladder-
type sequence ID

ε,ω, where, apart from particle collision processes,
the two paths propagate along the same sequence of scatterers in the
same direction. (b) and (c) Corrections to the Bethe-Salpeter equa-
tion for IC

ε,ω. Blue boxes refer to time-reversed scattering sequences.
Diagrams (a) and (b) boil down to an irrelevant energy shift, while
diagram (c) is compensated by its complex conjugate. The solid and
dashed lines symbolize G

R
ε and G

A
ε , respectively, the vertical lines

symbolize the correlation function in Eq. (2), and the wavy lines
symbolize a particle collision; see Fig. 4.

(plus its complex conjugate). It reads

Ia
ε,ω(k) = 2gρ0γ

∫
dε′

2π

dω′

2π

d2k′

(2π )2

d2k′′

(2π )2
G

R
ε+ω/2−ω′ (k)

× G
R
ε+ω/2(k)G

A
ε−ω/2(k)Iε′,ω′ (k′)Iε−ω′/2,ω−ω′ (k′′)

= 2gρ0γ
[
G

R
ε (k)

]2
G

A
ε (k)

∫
d2k′′

(2π )2
Iε,ω(k′′), (28)

where the factor 2 stems from the Wick decomposition of the
average �ε1�

∗
ε2
�ε−ε1+ε2�

∗
ε arising when Eq. (27) is multi-

plied by �∗
ε , and the second equality follows from particle

conservation, which imposes that∫ ∞

−∞

dε′

2π

∫
d2k′

(2π )2
Iε′,ω′ (k′) = 1

−iω′ + 0+ . (29)

From Eq. (28), it is easy to show that the contribution of
the diagram in Fig. 5(a) boils down to a constant energy shift
−2gρ0 of G

R
ε in the linear Bethe-Salpeter equation (8). Indeed,

if we perform the substitution ε → ε − 2gρ0 on the right-hand
side of Eq. (8) and expand for small g, using

G
R
ε−2gρ0

(k) � G
R
ε (k) + 2gρ0

[
G

R
ε (k)

]2
, (30)

we get that the right-hand side of Eq. (8) is modified by
an extra term that exactly coincides with Eq. (28). In other
words, first-order nonlinear corrections to the Bethe-Salpeter
equation do not quantitatively affect the diffusive dynamics.
Note that this result is in stark contrast with the scenario
in which one follows the spreading of a wave packet in
position space. In this case, diagrams of the type of Fig. 5(a)
were shown to significantly modify the wave-packet density
distribution [48–50]. The difference lies in the behavior of the
mean density |�(r, t )|2, which evolves in time for an initial
wave packet, whereas it always remains uniform for an initial
plane wave.

As explained in Appendix A, the energy shift obtained here
can in turn be described in terms of a modification of the real
part of the self-energy �(ε, k) appearing in average Green’s
functions, Eq. (9). In addition to this shift, there also exist
first-order nonlinear corrections shifting the imaginary part of
�(ε, k). These corrections stem from correlations between the
disorder and nonlinear potentials in the GPE equation (1), but
they turn out to be very small in the weak-disorder limit. From
now on, we will thus neglect these self-energy corrections, and
always evaluate average Green’s functions using Eq. (9), with
�(ε, k) = −i/2τ .

C. Second-order corrections: Thermalization

We now examine interaction corrections to the ladder
Bethe-Salpeter equation (8) that are of second order in g. Since
each vertex g is connected to four field amplitudes (see Fig. 4),
these corrections involve six incoming field amplitudes, i.e.,
they are proportional to the third power of the density. Due
to the condition (24), we also know that at least one disorder
scattering event occurs before every particle collision event.
Since the disorder scattering events are described by ladder
diagrams (for weak disorder), we group the six incoming
arrows into three incoming ladder sequences ID

εi,ωi
, each of

them originating from different disorder scattering events.
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FIG. 6. Diagrammatic representation of the Bethe-Salpeter equation for the diffusive contribution to the momentum distribution, ID
ε,ω(k),

taking into account second-order interaction corrections (first-order interaction diagrams are discarded, as explained in Sec. IV B). Symbols
have the same meaning as in Fig. 5. The numerical prefactors account for the possible combinations of propagation lines connecting to the
vertex g.

Analyzing all possible nontrivial ways (i.e., those which do
not reduce to a mere energy shift) of connecting the incoming

arrows to the g vertices, we arrive at the diagrams shown in
Fig. 6. The corresponding Bethe-Salpeter equation reads

Iε,ω(k) = G
R
ε+ω/2(k)G

A
ε−ω/2(k)

[
(2π )2δ(k − k0) + γ

∫
d2k′

(2π )2
Iε,ω(k′)

+ (gρ0γ )2

( ∏
i=1,2

∫
dεidωi

(2π )4

d2kid2k′
i

(2π )8
Iεi,ωi (k

′
i )G

R
εi+ωi/2(ki )G

A
εi−ωi/2(ki )

){
2γ G

R
ε3+�1/2(k3)G

A
ε3−�1/2(k3)

∫
d2k′

3

(2π )2
Iε3,�1 (k′

3)

+ γ
(
4G

R
ε4+�1/2(k4) + 2G

A
ε3−�1/2(k3)

)
G

R
ε+�2

(k)
∫

d2k′

(2π )2
Iε5,�1 (k′)

+ γ
(
4G

A
ε4−�1/2(k4) + 2G

R
ε3+�1/2(k3)

)
G

A
ε−�2

(k)
∫

d2k′

(2π )2
Iε6,�1 (k′)

}]
, (31)

where we defined ε3 = ε1 + ε2 − ε, ε4 = ε + ε1 − ε2, ε5 =
ε − (ω1 + ω2)/2, ε6 = ε + (ω1 + ω2)/2, �1 = ω − ω1 − ω2,
�2 = ω/2 − ω1 − ω2 for energies, and k3 = k1 + k2 − k,
k4 = k + k1 − k2 for momenta.

A closed equation for the distribution fε (t )—remember the
definition (6)—can be obtained by integrating Eq. (31) over
k and taking the Fourier transform with respect to ω, in the
hydrodynamic limit ωτ, ωiτ � 1 (i = 1, 2). The details of the
calculation are presented in Appendix B for clarity. They lead
to the kinetic equation

∂t fε =
∫

ε1,ε2,ε3�0
dε1dε2 W (ε, ε1, ε2)

× [(
fε + fε1+ε2−ε

)
fε1 fε2 − fε fε1+ε2−ε

(
fε1 + fε2

)]
,

(32)

where we recall that ε3 ≡ ε1 + ε2 − ε. The interaction kernel
is given, in two dimensions, by

W (ε; ε1, ε2) = m3(gρ0)2

2π4νε

K
( 2 4√εε1ε2ε3√

ε1ε2+√
εε3

)
√

ε1ε2 + √
εε3

, (33)

where K is the complete elliptic integral of the first kind.
The kinetic equation should be complemented by an initial
condition, which is provided here by the “coherent mode,”
i.e., the first term on the right-hand side of Eq. (31). The latter
gives (see Appendix B)

fε (t = 0) = Aε (k0)

νε

≡ f (0)
ε , (34)

which is merely the occupation number for g = 0, Eq. (13).
The fact that the noninteracting value of fε plays the role
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of the initial condition for the interacting problem is due to
our assumption that particle collisions are less frequent than
scattering events on the disorder, Eq. (24). Indeed, in this
regime the diffusive ring is first established, and only then do
interactions come into play.

Once fε (t ) is known for g �= 0, the diffusive contribution
to the momentum distribution follows by integrating Eq. (31)
over ε and taking the Fourier transform with respect to ω. As
the effect of interactions is already included in the second term
of the right-hand side via Iε,ω(k), the third term is typically of
order g4 and can be neglected. In the hydrodynamic regime
ωτ � 1, this finally gives

|�D(k, t )|2 =
∫ ∞

−∞
dε Aε (k) fε (t ). (35)

This formula differs from its noninteracting counterpart,
Eq. (15), in that the distribution fε (t ) is no longer constant
in time, leading to an evolution of the diffusive background.
Equations (32) and (35) have been used, in particular, in [34]
to qualitatively discuss the emergence of a Bose condensate
at very long time, but without microscopic justification. We
note that the kinetic equation (32) has also been derived in
[53] by means of a nonequilibrium classical field theory in the
presence of disorder.

By multiplying the kinetic equation (32) by νε and inte-
grating over ε, we readily obtain ∂t

∫
dε νε fε (t ) = 0. This

implies that
∫

dε νε fε (t ) = ∫
dε νε f (0)

ε = 1, which is merely
the normalization condition (7). It follows that the diffusive
contribution (35) is normalized,

∫
d2k/(2π )2|�D(k, t )|2 = 1,

very much like in the noninteracting limit [51].
The attentive reader will notice that Eq. (32) in fact coin-

cides with the free-space Boltzmann kinetic equation for Bose
gases in the limit of large occupation numbers [54]. Indeed,
the kernel (33) is independent of any disorder parameter (in
particular, the diffusion coefficient or even the mean free path
does not appear). This result is different from the case of
electrons in low-temperature disordered conductors, where
the diffusive motion strengthens the effect of interactions
[55]. This difference stems from the mechanism of dynamical
screening of electron-electron interactions, which is absent for
low-temperature bosons [56]. For weakly interacting diffusive
bosons, disorder thus only manifests itself through the spectral
function, involved both in the initial condition fε (0) and in
Eq. (35). The situation would of course change at stronger
disorder or in the localization regime [18].

V. CBS OF INTERACTING PARTICLES: THEORY

A. Leading-order nonlinear corrections

We now come to the central part of our work and examine
the effect of interactions on the series of time-reversed paths,
responsible for coherent backscattering. As for the diffusive
background, we first address the first-order nonlinear cor-
rections to the Bethe-Salpeter equation of Fig. 3(b). These
corrections are displayed in Figs. 5(b) and 5(c). The diagram
5(b) has the very same property as its incoherent counterpart
5(a): it can be recast as an energy shift −2gρ0 of the linear
Green’s function, and thus does not play any role in the
dynamics. The building block 5(c), on the other hand, turns
out to cancel with its conjugate counterpart. At this stage,

FIG. 7. (a) Example of interference sequence generated by the
diagram in Fig. 5(c) (for a better visualization we momentarily
change the definition of arrows, which here always indicate the di-
rection of propagation). The direct path, starting at t = 0, undergoes
a particle collision at tcol, and the time-reversed path at t − tcoll. Since
the collision is local in time, we must have tcoll = t/2. (b) Example
of interference sequence between time-reversed paths involving two
collisions. As for diagram (a), the collision processes involve both
the direct and the reversed paths. This imposes them to occur almost
simultaneously, at tcoll � t/2, which is very unlikely. This diagram is
therefore negligible.

an important comment is in order. In the stationary scenario
considered in [35,36,39], it was shown that specific con-
catenations of the diagram 5(c) were leading to a dephasing
between the reversed amplitudes, which could even change
the sign of the coherent backscattering cone. It turns out,
however, that in the present dynamical setup these com-
binations have a negligible weight. To see this, we show
in a more visual fashion in Fig. 7(a) one example of an
interference sequence between time-reversed paths built from
diagram 5(c). The peculiarity of this sequence is that both the
direct (solid) path and its time-reversed (dashed) partner are
involved in the particle collision process. If the direct path
undergoes the collision at a certain time tcoll, and thus the
time-reversed path at time t − tcoll, the temporal locality of
the collision imposes that tcoll = t − tcoll, i.e., that tcoll = t/2.
In other words, the collision must occur at a very specific time
(more precisely, within a time window of width τ , centered
around t/2). Within such a short time window, and given
the condition (24), it is highly unlikely that two (or more)
collisions occur. Any concatenation of diagrams 5(c) can thus
be safely neglected here, and an examination of second-order
corrections is again required.

B. Second-order corrections

All non-negligible second-order corrections to the Bethe-
Salpeter equation for time-reversed sequences are depicted in
Fig. 8. Note that, as compared to the diffusive corrections
in Fig. 6, there are only four different topologies, and not
five. These topologies are the same as those of the four last
diffusive diagrams in Fig. 6. It turns out, indeed, that the
interference counterpart of the upper-right diagram in Fig. 6
is negligible in the long-time limit. This can be understood
from Fig. 7(b), which shows the interference sequence that
would correspond to the upper-right diagram in Fig. 6 in
which an amplitude is time-reversed. Because the two colli-
sion processes involve both the direct and the reversed paths,
they must occur almost simultaneously, at tcoll � t/2, which
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FIG. 8. Second-order corrections to the Bethe-Salpeter equation
for the CBS contribution to the momentum distribution, IC

ε,ω(k).
Symbols have the same meaning as in Fig. 5. Recall that the two wave
paths involved in the blue boxes propagate in opposite directions (the
incoming and outgoing momenta k0 and k are explicitly indicated for
clarity). The numerical prefactors account for the possible combina-
tions of propagation lines connecting to the vertex g.

is extremely unlikely given the rarity of particle collisions
assumed here. This type of diagram is thus negligible.

The Bethe-Salpeter equation for IC
ε,ω is similar to Eq. (31)

except for the missing diagram. The latter is responsible for
the term ∝ fε1+ε2−ε fε1 fε2 in Eq. (32). Since this term is now
absent, the fε (t ) present in each of the other terms can be
factored out. We thus obtain, for the “coherent” occupation
number

f C
ε (t ) ≡ 1

2πνε

∫
d2k

(2π )2

∫ ∞

−∞

dω

2π
e−iωtIC

ε,ω(k), (36)

the kinetic equation

∂t f C
ε = f C

ε

∫
ε1,ε2,ε3�0

dε1dε2 W (ε, ε1, ε2)

× [
fε1 fε2 − fε1+ε2−ε ( fε1 + fε2 )

]
, (37)

where the kernel is still given by Eq. (33), and the ini-
tial condition is again set by the noninteracting limit,
f C
ε (t = 0) = f (0)

ε . The amplitude of the coherent backscatter-
ing peak then follows from

|�C (−k0, t )|2 =
∫ ∞

−∞
dε Aε (k0) f C

ε (t ). (38)

The asymmetry between the kinetic equations for f C
ε and fε

explains the different dynamic evolution of the CBS peak
and diffusive background observed in numerical simulations,
Fig. [57]. This asymmetry is a major difference with the non-
interacting regime. We show in Fig. 9 the evolution of fε (t )
and f C

ε (t ) at short time, obtained by solving the kinetic equa-
tions (32) and (37) with the initial condition (34) evaluated
numerically for g = 0. To find the latter, we have computed
the spectral function and the density of states numerically as

FIG. 9. Distributions (a) fε (t ) and (b) f C
ε (t ) at increasing times

from top to bottom, obtained by solving the kinetic equations (32)
and (37) for k0 = (π/5, 0), gρ0 = 0.002, and γ = 0.0182, with the
initial condition (34) evaluated numerically for g = 0. The different
evolutions reflect the asymmetry of the kinetic equations: as time
grows, the distributions fε broaden, whereas the f C

ε flatten out. This
is emphasized by the inset, which shows that the norm of the energy
distribution

∫ ∞
−∞ dε νε f C

ε (t ) decays in time [whereas
∫ ∞

−∞ dε νε fε (t )
is unity at all times].

explained in [58,59]. The thermalization mechanism is well
visible in the upper graph: the distribution fε (t ) broadens as
time grows. A different behavior is observed for f C

ε (t ), which
does not broaden but rather flattens out. This phenomenon
is already visible at the level of Eq. (37), in which f C

ε (t )
factorizes out of the collision integral. It is also emphasized
by the inset of Fig. 9, which shows that the norm

∫
dε νε f C

ε (t )
decays in time. This is in contrast with

∫
dε νε fε (t ), which is

unity at all times; see the discussion following Eq. (35). This
difference implies that time-reversed paths are more sensitive
to particle collisions than diffusive paths, as we will show
more quantitatively in the next section. Note, in passing, that
the energy corresponding to the maximum of the distributions
in Fig. 9 lies always slightly below ε = ε0. This effect, also
seen in experiments [60], is mainly due to the real part of the
self-energy (see Appendix A).

VI. COMPARISON WITH NUMERICAL SIMULATIONS

To test our theoretical approach, we now confront the pre-
dictions of the preceding section with numerical simulations
of plane-wave propagation based on the GPE (1). For this
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FIG. 10. Heights of the (a) diffusive ring and (b) CBS peak vs
time for increasing values of gρ0 from top to bottom (these are
the same simulation data as in Fig. 2). Solid smooth black curves
are fits to the theory, Eqs. (35) and (38), and dotted curves are
the approximate laws (42) and (43). The same value gfit � 1.1g
(gfit � 1.3g) was used for all the diffusive (CBS) curves. Solid curves
at g = 0 are obtained from Eqs. (18) and (19).

purpose, we integrate numerically the collision integrals in the
kinetic equations (32) and (37).

A. Diffusive ring and CBS peak amplitudes

In Fig. 10, we reproduce the simulation results of Fig. 2 for
the heights of the diffusive ring and CBS peak. For g �= 0, we
fit them with Eqs. (35) and (38), with fε and f C

ε computed
from the kinetic equations (32) and (37), using gρ0 as a
fit parameter. To describe the times t � τ , we multiply the
right-hand side of Eqs. (35) and (38) by the same short-time
corrections as in the linear case [terms within the square
brackets in Eqs. (18) and (19)]. This is a very good approx-
imation in the regime τNL � τ considered here. As seen in
Fig. 10, the agreement between theory and simulations is
excellent at all times. We note, however, that for the ring
height the fitted values of gρ0 differ by ∼10% compared
to those chosen in numerical simulations, and for the CBS
height by ∼30%. One possible reason for this difference
might come from the numerical uncertainties in the resolu-
tion of the collision integrals. Evaluating the latter indeed
becomes particularly challenging in two dimensions, where
the kernel W exhibits a number of logarithmic singularities
over the integration domain. This discrepancy could also stem

from higher-order interaction contributions that renormalize
the interaction strength g and are not taken into account in
the present work. Further investigation would, however, be
required to clarify this point.

B. Decay rates

An important piece of information one may extract from
the time-dependent evolutions in Fig. 10 are the characteristic
time scales τD,C

NL governing the decay of the diffusive ring
and of the CBS amplitude. Theoretically, these characteristic
times can be obtained from a short-time expansion of the so-
lution of the kinetic equations (32) and (37), f D,C

ε (t ) � fε (t =
0) − αD,C (ε)t + O(t2), from which we obtain, using Eq. (35)
and (38),

|�D,C (−k0, t )|2 � τ

πνε0

[
1 − t

τD,C
NL

+ O(t2)

]
, (39)

where (
τD,C

NL

)−1 ≡ πνε0

τ

∫
dε Aε (k0)αD,C (ε). (40)

Here we used—see Eq. (17)—that
∫

dε Aε (k0) fε (t = 0) =
τ/(πνε0 ). By inserting the Taylor expansions for fε and f C

ε

in the kinetic equations, we find the functions αD,C (ε) numer-
ically and, from Eq. (40), infer the sought out time scales by
numerical integration over ε. This leads to

(
τD,C

NL

)−1 = (gρ0)2

ε0
βD,C, (41)

where βD � 2.27 and βC � 7.17 are numerical prefactors,
which include the adjustment of the interaction strength used
for the fits in Fig. 10. The characteristic times governing the
decay of the diffusive background and CBS peak are therefore
both proportional to the particle collision time, which we
previously introduced in Eq. (20). This is quite a natural
result, but it should be noted that the decay time for CBS is
approximately three times smaller than the decay time for the
diffusive background. In other words, the CBS peak is much
more sensitive to interactions, as clearly seen in Fig. 10.

To confirm these results, we also compare the theoretical
prediction (41) to the decay rates extracted from numerical
simulations based on the GPE. For this purpose, we compute
numerically the CBS and diffusive signals versus time for
several values of the disorder amplitude γ . We then extract the
slope of these curves within a narrow time window following
the curve maxima (located near t = 15τ in Fig. 10). The
results are shown in Fig. 11 as a function of the disorder
parameter k0� (lower points are obtained from the decay of
the diffusive ring and upper points from the decay of the
CBS peak). The theoretical predictions (41) are shown on the
same graph, and they match very well the simulations. These
results confirm, in particular, the independence of the collision
time on the disorder. By computing numerically the slopes for
several values of g, we have also verified the g2 dependence of
(τD,C

NL )−1.
While we have not been able to find an exact analytical

prediction for the whole time decay of the CBS peak, a
simple, approximate expression can be inferred from the
kinetic equation for f C

ε , Eq. (37). Indeed, since the time
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FIG. 11. Decay rates (τD,C
NL )−1 for the diffusive background

(lower orange dots) and CBS (upper blue dots) amplitudes, at fixed
gρ0 = 0.001. Dots are obtained from numerical simulations of the
Gross-Pitaevskii equation by computing the slope of the simulation
curves in Fig. 10 for several values of γ (error bars originate
from the fitting of the slopes by a straight line). From right to
left: γ = 0.0036, 0.0056, 0.0081, 0.0121, 0.0182, 0.0256, 0.0324,
and 0.0506. Data are displayed as a function of the dimensionless
disorder parameter k0�. They confirm the theoretical predictions (41),
shown as solid lines, and in particular the independence of the decay
rates on the disorder strength.

dependence of the diffusive background—encoded in the fεi

functions on the right-hand side of Eq. (37)—is rather slow,
in first approximation the occupation number f C

ε (t ) decays
exponentially. This suggests the simple form

|�C (−k0, t )|2 � τ

πνε0

exp
( − t/τC

NL

)
× [1 − exp(−t/τ )(1 + t/τ + t2/2τ 2)]

(42)

for the CBS peak amplitude (the second line is the short-time
evolution, which, we recall, is not modified by interactions).
Equation (42) is shown in Fig. 10 (dashed curves of the lower
plot) on top of the exact solutions of the kinetic equation, and
turns out to be a rather good approximation. We also noticed
that a similar formula describes well the decay of the diffusive
ring, provided τD

NL is substituted for τC
NL and the short-time

terms are modified according to Eq. (18):

|�D(−k0, t )|2 � τ

πνε0

exp
(−t/τD

NL

)
× [1 − exp(−t/τ )(1 + t/τ )]. (43)

Equation (43) is also shown in Fig. 10 (dashed curves of
the upper plot) on top of the exact solutions of the kinetic
equation. As a consequence of Eqs. (42) and (43), the contrast
of the CBS peak decays exponentially at long time as

|�C (−k0, t )|2
|�D(−k0, t )|2

� exp(−t/τφ ), (44)

with a relaxation rate τ−1
φ ≡ (τC

NL)−1 − (τD
NL)−1 � 5(gρ0)2/ε2

0
controlled by the particle collision time.

FIG. 12. Leading-order contributions to an expansion of the self-
energy when g �= 0. Symbols have the same meaning as in Fig. 5.

VII. CONCLUSION

In this article, we have constructed a microscopic dia-
grammatic theory describing the out-of-equilibrium evolution
of a weakly interacting disordered Bose gas in momentum
space. Assuming weak disorder and rare particle collisions,
we have derived coupled kinetic equations for the two main
physical processes at work in this regime: particle diffusion
and coherent backscattering. Our approach has revealed a
noticeable asymmetry in the kinetic equations for these two
contributions, implying a faster decay of the CBS peak at short
time and thus a loss of CBS contrast. We have shown that this
contrast loss is very well described by an exponential relax-
ation, whose rate is governed by the particle-particle collision
time. This phenomenon resembles the smoothing of the weak
localization correction to the conductivity due to the finite
electronic coherence time associated with electron-electron
interactions in disordered conductors, but it occurs here in a
nonequilibrium context. Natural extensions of our work con-
cern the role of interactions in the localization regime, where
the phenomenon of coherent forward scattering shows up in
momentum space [32], or the properties of the Kosterlitz-
Thouless transition expected in the equilibrium state reached
at long time [61]. Related open questions also include the
exploration of the opposite regime of a disorder weaker than
interactions—where the phononic part of the boson spectrum
is expected to come into play—the possible existence of
nonthermal fixed points in the presence of disorder, or the
out-of-equilibrium dynamics in the many-body regime.
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APPENDIX A: SELF-ENERGY

As discussed in Sec. IV B, leading-order nonlinear correc-
tions to the Bethe-Salpeter equation boil down to an irrelevant
energy shift. This shift can thus be alternatively described
in terms of a self-energy correction, linear in g. The corre-
sponding expansion of �(ε, k) is displayed in Fig. 12. The
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first diagram is the usual Born approximation for the disorder
potential,

�(0)(ε, k) =
∫

d2q
(2π )2

B(k − q)G(0)(q), (A1)

with G0
ε (k) = (ε − k2/2m + i0+)−1 the free-space Green’s

function. The imaginary part of Eq. (A1) defines the scattering
mean free time (11). As visible in Fig. 9, the average energy
of bosons in the disorder potential is also shifted, which is due
to the real part of the self-energy. In two dimensions, the latter
is divergent within the Born approximation (A1), but it can
be regularized via more refined approximations, which will
not be discussed here. The second self-energy diagram is the
nonlinear correction corresponding to the density diagram in
Fig. 5(a). It is purely real, simply given by

�(1)(ε, k) = 2gρ0, (A2)

and indeed describes a shift of the energy by −2gρ0 in the
Green’s function (9). At first order in g, however, another type
of self-energy diagram comes into play. The latter follows
from the observation that the two random potentials V (r) and
g|�(r, t )|2 in the GPE (1) may be correlated. This defines an
analogous version of Eq. (A1),

�(2)(ε, k) =
∫

d2q
(2π )2

B(2)
NL(k − q)G(0)

ε (q), (A3)

with the power spectrum

B(2)
NL(k) ≡

∫
d2(r−r′)4gN |�(r, t )|2V (r′)eik(r−r′ ). (A4)

In the factor 4 added, one factor 2 stems from the two
possibilities to pair the incoming fields into ladder intensities
[same factor as in Eq. (A2)], and another factor 2 counts the
other combination |�(r′, t )|2V (r). The self-energy diagrams
corresponding to Eq. (A3) are shown in the lower-right part of
Fig. 12.

The self-energy �(2) corresponds to a screening effect
where fluctuations of the random potential are smoothed by
the nonlinearity, and it is well known in the Thomas-Fermi
regime of strong interactions [62]. The hybrid correlator is
conveniently expressed in position space as follows:

|�(r, t )|2V (r′)

= γ 2
∫

d2r′′
∫

dε′

2π

dω′

2π
e−iω′tIε′,ω′ (r′′)

× [
G(0)∗

ε′ (r′′−r)G(0)
ε′ (r′′−r′)G(0)

ε′ (r′−r) + c.c.
]
. (A5)

This simplifies to

|�(r, t )|2V (r′) = iγ

2πνε0V

[
G(0)

ε0
(r − r′)2 − G(0)∗

ε0
(r − r′)2

]
,

(A6)

where we invoked particle conservation and used that the
energy remains peaked around ε � ε0 ≡ k2

0/2m at short time.
The self-energy (A3) can then be rewritten as

�(2)(ε, k) � 4gρ0γ i

2πνε0

∫
d2r e−ik·rG(0)

ε (r)

× [
G(0)

ε0
(r)2 − G(0)∗

ε0
(r)2]. (A7)

Evaluating the integral on-shell, i.e., for ε = ε0 and k = k0,
we obtain the following estimate for the imaginary part of
�(2):

Im �(2)(ε0, k0) ∼ gρ0

k0�
� gρ0. (A8)

In the weak-disorder regime considered throughout the paper,
this contribution to the self-energy is thus negligible. A similar
decay with k0� is also expected for the real part of �(2), though
its precise form requires a regularization beyond the Born
approximation, as for �(0).

APPENDIX B: DERIVATION OF THE KINETIC EQUATION

To obtain the kinetic equation (32), we proceed as follows.
First, we integrate the Bethe-Salpeter equation (31) over k.
This leads to a closed equation for the quantity

Iε,ω ≡
∫

d2k
(2π )2

Iε,ω(k). (B1)

In the hydrodynamic regime ωτ � 1 (long times), we also
simplify the second term on the right-hand side of Eq. (31),
using that

γ

∫
d2k

(2π )2
G

R
ε+ω/2(k)G

A
ε−ω/2(k) � 1 + iωτ. (B2)

Within the same limit, we also set all ω, ω1, and ω2 to
zero in the frequency arguments of the Green’s functions in
the interaction term on the right-hand side. To perform the
remaining integrals over k, k1, and k2, finally, we use several
times the identity

G
R
ε (k)G

A
ε (k)= i

2πνεγ

∫
d2r e−ik·r[GR

ε (r)−G
A
ε (r)

]
(B3)

and systematically neglect products of the type G
R
ε (r)G

R
ε (r)

and G
A
ε (r)G

A
ε (r), which give contributions smaller by a factor

1/(k0�) � 1. Equation (31) becomes

−iωIε,ω = i
[
G

R
ε (k0) − G

A
ε (k0)

] + (gρ0)2

(2π )3

∏
i=1,2

∫
dεidωi

(2π )2

Iεi,ωi

νεi

∫
d2r

[
G

R
ε1

(r) − G
A
ε1

(r)
][

G
R
ε2

(r) − G
A
ε2

(r)
][

G
R
ε (r) − G

A
ε (r)

]

×
{

2
Iε1+ε2−ε,ω−ω1−ω2

νε1+ε2−ε

[
G

R
ε1+ε2−ε (r) − G

A
ε1+ε2−ε (r)

] + 2
Iε,ω−ω1−ω2

νε

[
G

R
ε1+ε2−ε (r) − G

A
ε1+ε2−ε (r)

]

− 4
Iε,ω−ω1−ω2

νε

[
G

R
ε+ε1−ε2

(r) − G
A
ε+ε1−ε2

(r)
]}

. (B4)
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We then Fourier-transform with respect to ω and use that

1

2πνε

∫
dω

2π
e−iωtIε,ω ≡ fε (t ). (B5)

This finally yields

∂t fε = δ(t )
Aε (k0)

νε

+
∫

dε1dε2 W (ε, ε1, ε2)

× [(
fε + fε1+ε2−ε

)
fε1 fε2 − fε fε1+ε2−ε

(
fε1 + fε2

)]
,

(B6)

which is the kinetic equation (32). The Dirac δ term originates
from the first term on the right-hand side of Eq. (B4) (coherent
mode), and it sets the initial condition, fε (t = 0) = Aε (k0)/νε .
The integration range of ε1 and ε2 covers all energies allowed

by the densities of states νε1 , νε2 , and νε1+ε2−ε contained in
the definition of the occupation numbers. At weak disorder,
the density of states coincides, at leading order, with the free-
space one, which imposes ε1, ε2, ε3 � 0. The kernel derived
from Eq. (B4) is given by

W (ε, ε1, ε2) = (gρ0)2

4π3νε

∫
d2r

[
G

R
ε (r) − G

A
ε (r)

]
× [

G
R
ε1

(r) − G
A
ε1

(r)
][

G
R
ε2

(r) − G
A
ε2

(r)
]

× [
G

R
ε1+ε2−ε (r) − G

A
ε1+ε2−ε (r)

]
. (B7)

The expression (33) follows by computing the integral over r,
keeping only the leading-order contribution in k0� � 1 [63].
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