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Chiral-anomaly-induced angular narrowing of the positive longitudinal
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By generalizing the Landau quantization Boltzmann equation to a finite-size system, we investigate the
magnetotransport in disordered Weyl semimetals (WSMs) for both the ballistic and diffusive regimes. It is
found that, in the diffusive limit, the chiral chemical potential would drive extra electrical current to flow
through the chiral channels in the n = 0 Landau levels, leading to emergence of the positive longitudinal
magnetoconductivity (LMC). The positive LMC will exhibit the angular narrowing phenomenon if h̄ωc �
EF

√
la/le, where ωc, EF, and la(e) denote, respectively, the cyclotron frequency, the Fermi energy, and the

intravalley (intervalley) relaxation length. The anomalous magnetic field dependence of the angular narrowing,
i.e., the width and height of the positive LMC peak could increase or decrease with increasing the magnetic
field, can be attributable to quantum oscillations of the chiral anomaly. In addition, the quantum oscillations are
sensitive to the temperature and impurity scattering, which may also cause some other anomalous properties for
the LMC. Our findings are helpful to understand the anomalous behaviors of the positive LMC in WSMs.
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I. INTRODUCTION

The recent theoretical and experimental discovery of Dirac
and Weyl semimetals (WSMs) provides the possibility for
realization of the physics of relativistic fermions in solid-state
physics [1–11]. The low-energy electronic excitations of a
WSM behave as massless Weyl quasiparticles, and their dis-
persions form a nondegenerate three-dimensional cone around
an isolated band-touching point, called the Weyl node. The
Weyl nodes are monopoles of the Berry curvature, which
always come in pairs with opposite chiralities in momentum
space [12,13], and a pair of Weyl nodes are connected by
the open Fermi-arc surface states. The ultrahigh mobility and
spectacular transport properties of the charged Weyl fermions
can find applications in high-speed electronic circuits and
computers [14–16]. Motivated both by the interesting physics
and potential applications, WSMs have recently spurred inten-
sive and innovative research in the field of condensed-matter
physics [17–24].
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The topologically protected Weyl nodes and Fermi-arc
surface states, which can be observed directly by the angle-
resolved photoelectron spectroscopy (ARPES), are regarded
as the most distinctive observable spectroscopic feature of
WSMs [1,8–10,25]. However, the ARPES observation is
sometimes limited by the spectroscopic resolutions, espe-
cially for disordered WSMs, whose spectrum and Weyl nodes
could be obscured by the impurity scattering [26]. Therefore,
it is urgent to find alternative physical characteristics as a
smoking gun for identifying WSMs. Of particular interest
is the very unusual positive longitudinal magnetoconductiv-
ity (LMC) or negative magnetoresistivity resulting from the
chiral anomaly of the Weyl fermions [27–30]. While the
positive LMC was observed experimentally in a variety of
WSM materials [31–38], some of its measured dependence on
the angle θ between the electric and magnetic fields [31,37]
appeared to be in contradiction with the theoretical expecta-
tions [27–29,39]. In most situations, it is predicted that the
chiral-anomaly-induced LMC will follow the cos2 θ depen-
dence, whose amplitude is linearly or quadratically dependent
on B, where B is the strength of the magnetic field. However,
some experiments, e.g., as indicated by Figs. 3(c)–3(e) of
Ref. [37], showed that the positive LMC could exhibit a quite
narrow angular dependence around θ = 0. Moreover, with
increasing the magnetic field, the LMC peak could reduce,
even by an order in magnitude, as compared in Figs. 3(d)
and 3(e) of Ref. [37]. In the diffusive and low magnetic field
limits, Burkov et al. presented a possible explanation for the
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angular narrowing phenomenon [40,41], but the anomalous
magnetic field dependence of the LMC peak deserves further
research. Furthermore, with increasing the magnetic field,
the LMC would experience a crossover from the classical
to ultraquantum limit, where the LMC will exhibit interest-
ing quantum oscillations [30,42,43]. It is highly desirable to
explore the interplay between the quantum oscillations and
angular dependence of the LMC.

In this paper, by generalizing the Boltzmann equation
incorporating Landau quantization to a finite-size system,
we study the chiral anomaly of disordered WSMs in both
the ballistic and diffusive limits. We derive an analytical
formula for the chiral-anomaly-induced positive LMC, which
is applicable for the parameters ranging from the classical to
ultraquantum limit. It is found that in the diffusive regime,
the nonequilibrium chiral chemical potential due to chiral
anomaly will drive extra electrical current to flow through
the chiral channels in the n = 0 Landau levels (LLs). The
resulting positive LMC could exhibit the angular narrowing
effect, if h̄ωc � EF

√
la/le, where ωc denotes the cyclotron

frequency, EF stands for the Fermi energy, and la(e) represents
the intravalley (intervalley) relaxation length. As a result, the
properties of the angular narrowing, in addition to the relax-
ation lengths proposed in Ref. [41], are tunable by the relative
magnitudes of the Fermi energy and magnetic field. Moreover,
the angular narrowing of the LMC can display anomalous
behaviors associated with the quantum oscillations. For a
fixed magnetic field strength, the LMC can increase or de-
crease with increasing temperature or strength of the impurity
scattering, depending on whether the field strength is near
a valley or near a peak of the energy spectrum of the LLs,
while, for a fixed Fermi energy, if increasing the magnetic
field pushes a valley to the Fermi level, the height of the LMC
peak would decrease, drastically. Our findings are helpful to
understand the observed angular narrowing of the LMC in
WSMs. The rest of this paper is organized as follows. In
Sec. II, we introduce the model and theory and present the
results and discussions in Sec. III. The last section contains a
summary.

II. MODEL AND THEORY

Let us start by considering an experimental setup, in which
a WSM of length Lz is attached to current-carrying normal
metal (NM) electrodes at z = 0 and Lz, as shown in Fig. 1. For
simplicity, the widths of the system in the x and y directions
are assumed to be infinite, equivalent to the periodic boundary
condition, which would not influence the qualitative results.
The low-energy excitation of the WSM with two Weyl nodes
in a magnetic field can be described by an effective continuum
Hamiltonian

Hχ (k) = χ h̄υF� · σ, (1)

where υF is the Fermi velocity, σ = (σx, σy, σz ) is the vector
of Pauli matrices, and � = k + eA/h̄ is the wave vector mod-
ulated by the vector potential A. It is assumed that the Weyl
nodes with chiralities χ = ± are separated in the z direction.
For the magnetic field B = B(sin θ, 0, cos θ ) applied in the x-z
plane, by the relation B = ∇ × A, we take the Landau gauge
A = −By(cos θ êx − sin θ êz ). In this case, ky is no longer a

FIG. 1. Schematics of the setup, where two normal metal (NM)
electrodes (yellow) with voltages VL and VR are attached to a x-z plane
magnetic-field-driven WSM (cyan) at z = 0 and z = Lz.

good quantum number, and should be treated as a quantum
operator, i.e., ky = −i∂y. By projecting the Hamiltonian into
the Hilbert space expanded by the harmonic oscillator wave
functions, one can solve for the eigenenergies of the LLs

εχ
n (kr ) = snh̄ωc

√
2|n| + 	2

Bk2
r − χ h̄υFkrδn,0 (2)

with kr = kz cos θ + kx sin θ , where sn ≡ sgn(n) = {−1, 0, 1}
for n{<,=,>}0, ωc = υF/	B, and 	B = √

h̄/eB is the mag-
netic length. The energy spectrum of the LLs is plotted in
Figs. 2(a) and 2(b). We see that the n = 0 LLs are chiral,
and all the n �= 0 LLs are achiral. The slope of the LLs
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FIG. 2. The LLs in (a) χ = + and (b) χ = − Weyl valleys.
(c) The calculated conductivities (horizontal axis) as functions of
normalized energy EF/h̄ωc (vertical axis). The blue solid lines in
(a) and (b) are an enlarged illustration of the fact that the forward
(backward) moving Weyl fermions at the boundary with υχ

n (kr ) >

(<)0 can only feel the chemical potential gL(R) = −eVL(R) in the
left (right) lead, which corresponds to the boundary conditions in
Eqs. (11) and (12). The blue-dash lines sketch the different local
equilibrium chemical potentials in the two Weyl valleys, originat-
ing from the intervalley fermion pumping effect due to the chiral
anomaly, as indicated by the arrowed red-dashed curve. For con-
venience, in (c), we set B = 1 T, τinter/τintra = 10 and define σ0 =
(2e2/h){e[(B = 1T)υFτintra]/h} as the unit of conductivity.
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corresponds to the electron group velocity

υχ
n (kr ) = ∂εχ

n (kr )

h̄∂kr
=

{
−χυF, n = 0

h̄υ2
Fkr/ε

χ
n (kr ), n �= 0

(3)

along the magnetic field, and the α = x, z components of
the group velocity for the nth LL are given by υχ

α,n(kr ) =
υχ

n (kr )∂kr/∂kα .
Let us consider the steady-state Boltzmann equation for the

WSM

υχ
z,n

∂ f χ
n

∂z
= − f χ

n − fχ
τintra

− f χ
n − fg

τinter
, (4)

where f χ
n is the electron distribution function for the nth LL

in the χ valley, fχ and fg = ( fχ + f−χ )/2 denote, respec-
tively, the local and global equilibrium electron distribution
functions. In Eq. (4), we introduce the intervalley scattering
term to the Boltzman equation phenomenologically, which
is an analogy of the discussions of the weak localization
in Ref. [44] and weak antilocalization in Ref. [45]. This
approximation is widely adopted to investigate the magne-
totransports in WSMs [46,47]. There also have been many
works devoted to study of the impurity scattering mechanisms
in WSMs, such as in Ref. [46]. The Weyl fermions in the
two valleys are relaxed toward the local equilibrium distri-
bution fχ separately by the intravalley scattering, and toward
the global equilibrium fg by the intervalley scattering. The
scattering terms on the right-hand side of Eq. (4) account
for the fact that the system is relaxed, simultaneously, toward
local and global equilibrium by the intravalley and intervalley
scattering, which are characterized by the relaxation times
τintra and τinter, respectively. For a relative small bias voltage
between the electrodes, we can expand f χ

n (kr, z) = f0(εχ
n ) +

[−∂ε
χ
n

f0(εχ
n )]gχ

n (kr, z), where gχ
n (kr, z) describes the deviation

of f χ
n (kr, z) from the equilibrium electron distribution func-

tion f0(εχ
n ) = 1/[e(εχ

n −EF )/kBT + 1]. The intravalley scattering
is usually much stronger than the intervalley scattering, i.e.,
τintra � τinter, because of the momentum separation of the
two Weyl nodes in the reciprocal space, which is also a
necessary condition for the observation of the effect of the
chiral anomaly [16]. Large ratios between the intravalley and
intervalley scattering rates could come from the long-range
Coulomb disorder. As estimated in Refs. [16,24], the ratio of
the scattering timescales can be characterized by τinter/τintra ∼
(2k0/ksc)4, where 2k0 denotes momentum distance between
the Weyl nodes and ksc represents the screening wave vector.
In the low-energy regime, ksc � kF � 2k0 with kF being the
Fermi wave vector, and so large values of τinter/τintra are
possible. For example, if k0 � 2kF, τinter/τintra � 256. For
real WSM Na3Bi, the mean-free path la ≡ υFτintra is con-
servatively estimated as about 10 nm, while the intervalley
relaxation lengths le ≡ υFτinter can reach the order of tens
of microns. Under this condition, the local equilibrium will
be established every time before the intervalley scattering
happens. Accordingly, it will be reasonable to replace f χ

n with
fχ in the last term of Eq. (4), and obtain

υχ
z,n

∂gχ
n (kr, z)

∂z
= −gχ

n (kr, z) − ḡχ (z)

τintra
− χ

ḡ(z)

τinter
, (5)

where ḡ(z) ≡ ḡ+(z)−ḡ−(z)
2 and ḡχ (z) ≡ 〈gχ

n (kr, z)〉χ . By defi-
nition, ḡχ (z) is essentially the local equilibrium chemical po-
tential in the χ valley, and can be calculated by the momentum
average at the local Fermi level [30]

〈. . . 〉χ ≡
1

2π	2
B

∑
n,kr

∫
dε[−∂ε f0(ε)]Aχ (ε, n, kr )(. . . )

1
2π	2

B

∑
n,kr

∫
dε[−∂ε f0(ε)]Aχ (ε, n, kr )

, (6)

where Aχ (ε, n, kr ) is the spectrum function with the impurity-
induced level broadening considered, given by

Aχ (ε, n, kr ) = − 1

π
Im

[
1

ε + i h̄
2τ

− ε
χ
n (kr )

]
, (7)

with 1/τ = 1/τintra + 1/τinter.
From Eq. (3), it is easy to find the identity υχ

z,n(kr ) =
−υ−χ

z,n (−kr ). By this symmetry, within the linear approxima-
tion [48,49], we can find that the solution for the electron
distribution function satisfies the condition

∂ ḡ+(z)

∂z
= ∂ ḡ−(z)

∂z
= ∂zḡ(z) (8)

with ḡ(z) ≡ ḡ+(z)+ḡ−(z)
2 , such that ∂z[ḡ(z)] = 0. Conse-

quently, ḡ(z) may be considered as a constant, which will
be denoted as ḡ(z) = μ, and then ḡχ (z) must take the
form ḡχ (z) = ḡ(z) + χμ, where μ is essentially the chiral
chemical potential due to the chiral anomaly, which only
can be relaxed by the intervalley scattering. In Figs. 2(a)
and 2(b), ḡ+(z) �= ḡ−(z) are illustrated by the blue dashed
lines. Averaging both sides of Eq. (5) results in

μ = 〈υ−
z,n〉− − 〈υ+

z,n〉+
2

τinter∂zḡ(z). (9)

We first carry out analytical calculation and discuss some
of the properties of the particular solution given by Eq. (9), by
considering the case for zero temperature and � ≡ h̄/(2τ ) →
0. The results for the more general cases of finite tempera-
tures and finite τ will be obtained by numerical calculations.
Without loss of generality, we set θ = 0, so that υχ

z,n = υχ
n . It

is easy to derive 〈υχ
n 〉χ = h−1Nχ

ch/νχ (EF), where νχ (EF) =
�/2π	2

BhυF ≡ ν(EF) is the density of states (DOS) in the χ

valley at the Fermi level, with

� = 2
nc∑

n=0

1√
1 − 2|n|(h̄ωc/EF)2

− 1. (10)

Here, nc = sgn(EF)�E2
F/2(h̄ωc)2 labels the highest (low-

est) LL crossed by the Fermi level for EF > 0 (EF < 0 ),
with �· representing the rounding down operation. Owing
to the factor �, the DOS oscillates strongly with varying
EF or B, exhibiting the van Hove singularities at EF =
sgn(n)

√
2|n|h̄ωc. This results in the periodic-in-1/B quan-

tum oscillations of the chiral chemical potential [30]. Here,
Nχ

ch = 1
2π	2

B

∑
{kr=kχ

r,n(i)} sgn(υχ
n ), where the summation is to

add up the signs of the group velocity υχ
n at all the inter-

section points between the Fermi level and LLs in the χ

valley. By definition, Nχ

ch is essentially the number differ-
ence between the forward and backward moving channels
at EF in the χ valley per unit cross section. For the achiral
n �= 0 LLs, the forward and backward moving channels are
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always in pairs, making zero contribution to Nχ

ch. Therefore,
Nχ

ch equals to the number of chiral channels in the n =
0 LL with its sign determined by the propagating direc-
tion of the chiral channels, namely, Nχ

ch = −χ/2π	2
B. Sub-

sequently, we obtain 〈υ+
n 〉+ = −〈υ−

n 〉− = −υF/� and then
μ = (υFτinter/�)∂zḡ(z).

To proceed, we consider the fact that at the boundaries,
the right- (left-) moving Weyl fermions with υχ

z,n(kr ) > (<)0
can only feel the chemical potential gL(R) = −eVL(R) in the left
(right) electrode, which are illustrated by the blue solid lines
in Figs. 2(a) and 2(b). As a result, we impose the following
boundary conditions to the inhomogeneous differential (5),
for the left interface (z = 0) and right interface (z = Lz)
between the sample and the electrodes:

gχ
n (kr, z = 0) = −eVL ≡ gL for υχ

z,n > 0, (11)

gχ
n (kr, z = Lz ) = −eVR ≡ gR for υχ

z,n < 0. (12)

Then, we can obtain for the general solution to differential (5)

gχ
n (kr, z) = θ

(
υχ

z,n

)
gLe−λ(0) + θ

(−υχ
z,n

)
gRe−λ(Lz )

+
∫ z

0
θ
(
υχ

z,n

)[ ḡχ (ξ ) − χ τintra
τinter

ḡ(ξ )

υ
χ
z,nτintra

]
e−λ(ξ )dξ

+
∫ z

Lz

θ
(−υχ

z,n

)[ ḡχ (ξ ) − χ τintra
τinter

ḡ(ξ )

υ
χ
z,nτintra

]
e−λ(ξ )dξ,

(13)

where λ(ξ ) ≡ (z − ξ )/υχ
z,nτintra and θ (x) is the Heaviside

function. We will make the linear approximation for ḡχ (ξ ),
which has been shown to be very close to the exact numerical
solution [48,49]. Replacing ḡχ (ξ ) = aχ + bξ and ḡ(ξ ) =
μ in Eq. (13) and performing the integral, we arrive at

gχ
n (kr, z) = ḡχ (z) − wχ + θ

(
υχ

z,n

)
e−λ(0)(gL − aχ + wχ )

+ θ
(−υχ

z,n

)
e−λ(Lz )(gR − aχ − bLz + wχ ) (14)

with aχ = a + χμ and wχ = (bυχ
z,n + χμ/τinter )τintra. By

averaging both sides of Eq. (14), we can obtain the self-
consistent equations for determining a and b. It should be
noted that the linear approximation is most accurate around
the middle of the system [48,49]. Once the electron distri-
bution function gχ

n (kr, z) is determined, the electrical current
density, in principle, can be calculated at any cross section.
Here, it is convenient to use the linear approximation, and
calculate the electrical current density at the z = Lz/2 cross
section [48,49]

jα = −e

2π	2
B

∑
χ,n

∫ ∞

−∞
υχ

α,n(kr )gχ
n

(
kr,

Lz

2

)[
−∂ f0(εχ

n )

∂ε
χ
n

]
dkr

2π
.

(15)

III. RESULTS AND DISCUSSIONS

If we rotate the z axis to align with the magnetic field, the
resistivity tensor can be expressed as [50](

E⊥
E‖

)
=

(
ρ⊥ 0
0 ρ‖

)(
j⊥
j‖

)
(16)

with ρ‖(⊥) = 1/σ‖(⊥) corresponding to the current flow
parallel (vertical) to the direction of the magnetic field.
By the transforms ( j⊥, j‖)T = R̂( jx, jz )T and (E⊥, E‖)T =
R̂(Ex, Ez )T , where

R̂ =
(

cos θ − sin θ

sin θ cos θ

)
(17)

is the rotation matrix about the y axis, it is easy to obtain the
general relation (Ex, Ez )T = ρ( jx, jz )T , in which

ρ =
(

ρ‖ + ρ cos2 θ −ρ sin θ cos θ

−ρ sin θ cos θ ρ⊥ − ρ cos2 θ

)
(18)

is the resistivity tensor in the original coordinate system
and ρ = ρ⊥ − ρ‖ is the magnetic-field-induced resistivity
anisotropy. For most metals, as the magnetic field increases,
the vertical conductivity σ⊥ ∼ σD/(1 + μ2B2) will decrease
gradually, where μ denotes the mobility [33,37] and σD =
nee2υFτintra/(h̄kF) is the zero-field Drude conductivity [30]
with kF and ne, being, respectively, the Fermi wave vector
and carrier density. The parallel conductivity σ‖, usually,
responses differently from σ⊥ to the magnetic field. In this
sense, the planar Hall conductivity can be easily understood.
It can be expected that, for a normal metal, with increasing the
magnetic field, the amplitude of the planar Hall conductivity
σ = σ‖ − σ⊥ would first increase and finally tend to a satu-
ration value. However, as we will show, in WSMs, due to the
chiral anomaly, the amplitude of the planar Hall conductivity
will be unsaturated and sharply peak around θ = 0.

The parallel conductivity σ‖, which includes contribution
of the chiral anomaly, can be obtained through jz by setting
θ = 0. In the following, we would discuss some representative
limiting cases.

(i) The ballistic limit, i.e., Lz � υFτ intra. It is easy to see that
the first and second terms in Eq. (13) are of the zeroth order
of Lz/υFτintra, and the third and fourth terms are of the linear
order of Lz/υFτintra and so can be omitted. Therefore, the elec-
tron distribution function reduces to gχ

n (kr, z) = θ (υχ
n )gL +

θ (−υχ
n )gR, which takes a simple transmission form. The

parallel conductivity is derived to be

σ‖ ≡ jzLz

VL − VR
= e2

h
NchLz (19)

with Nch ≡ 1
2π	2

B

∑
χ,n θ (υχ

n ) = 1
2π	2

B

∑
χ,n θ (−υχ

n ), where the
summation runs over all the intersection points, denoted
by {kr = kχ

r,n(i)}, between the Fermi level EF and LLs
in the two valleys. Equation (19) is just the well-known
Landauer-Büttiker formula and Nch is the total number
of forward-moving (υχ

n > 0) or backward-moving (υχ
n < 0)

open channels per unit cross section at the Fermi level. The
total numbers of open channels moving in the two directions
are apparently equal. In the ballistic limit, the electrical con-
ductivity displays stepwise behavior with changing the Fermi
energy due to the Landau quantization, as in an ordinary
electron system, without showing the chiral anomaly.

(ii) The diffusive limit, i.e., Lz � υFτ intra. Setting χ = +
and −, Eq. (14) gives two coupled equations. Adding up the
two equations and setting z = Lz/2, we derive

0 = (gL + gR) − 2a − bLz. (20)
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The first-order derivative of Eq. (14) with respect to z at z =
Lz/2 gives another equation

0 = (gL − gR) + bLz + 2μ. (21)

Combining Eqs. (9) and (20) and (21), we can arrive at

μ = eE‖le
1

� + 2le/Lz
, (22)

where E‖ ≡ (VL − VR)/Lz. The parameter a is a gauge-
dependent parameter and will not affect the conductivity since
a different choice of the zero point of the electric potential
only shifts both ḡ+(z) and ḡ−(z) by a same constant. To the
leading order in τintra/τinter � 1, we can derive σ‖ = σD +
σD + σch, where

σch = e

h
(N−

ch − N+
ch )

μ

E‖
(23)

and σD = σ̃D − σD, with σ̃D being the magnetic field renor-
malized Drude conductivity. This formula illuminates the fact
that the anomalous LMC comes from the chiral chemical
potential μ driving extra electrical current to flow through
the totally (N−

ch − N+
ch ) chiral channels in the n = 0 LLs.

Equation (23) can be further derived into

σch = 2e2

h

eB

h

υFτinter

� + 2le/Lz
(24)

and the renormalized Drude conductivity reads as

σ̃D = 2e2

h

eB

h

ϑ

1 + 2�−1le/Lz
υFτintra, (25)

where, for low temperatures,

ϑ = 2
nc∑

n=0

√
1 − 2|n|(h̄ωc/EF)2 − 1. (26)

According to Eq. (18), we obtain for the LMC [40,41]

σzz ≡ ρ−1
zz (B) − ρ−1

zz (0) = σ cos2 θ

1 + (σ/σ⊥) sin2 θ
, (27)

where, for low energies, |σ⊥ − σD| < σD = 2e2

h

[EF/(
√

3π h̄υF)]2υFτintra was neglected. As can be seen,
if σ � σ⊥, the LMC σzz � σ cos2 θ follows the regular
angular dependence, whose amplitude increases with the
increment on B, while if the prefactor of sin2θ is large, as θ

increases from 0, σzz will, gradually, deviate from the cos2 θ

dependence and tend to the cot2 θ dependence, and then leads
to an angular narrowing behavior of the LMC around θ = 0.

In the chiral diffusive limit le � Lz, Eq. (24) reproduces
the quantum formula given by Ref. [30], which predicts the
1/B-quantum oscillations for the positive LMC. In the chiral
ballistic limit, i.e., le/Lz � �/2, the chiral chemical potential
is determined by the actual relaxation length of the chirality,
i.e., the length of the sample, which is in accord with our
intuition. As seen from Fig. 2(c), both σ̃D and σch display a
plateau for |EF| <

√
2h̄ωc, which is contributed only from the

chiral n = 0 LL. If |EF| <
√

3/2h̄ωc, σ̃D > σD always, which
contributes a normal B-linearly term σD to the positive
LMC. This implies that the chiral n = 0 LL can contribute to
the positive LMC through two different ways: one is directly

by increasing the topological transport channels since the
n = 0 LLs with degeneracy B-linearly dependent are always
crossed by the Fermi level, and the other is indirectly by
the chiral anomaly. The former will be greatly weakened by
the achiral n �= 0 LLs, as shown by the dark solid curve in
Fig. 2(c), where, because of EF-dependent group velocities of
the n �= 0 LLs, σ̃D displays a wavy stepwise behavior along
σD with increasing the Fermi level. In contrast, σch exhibits
drastic quantum oscillations with respect to EF, whose ampli-
tude decays with a rate ∝1/E2

F . In WSMs, due to separation
of the Weyl nodes, le � la and so σch � σD. As a
consequence, σch will dominate the positive LMC.

For |EF| � h̄ωc, being equivalent to the low magnetic field
limit, � � 2(EF/h̄ωc)2 and σ̃D � σD. In this classical limit,
σzz can be reduced to be

σzz = e2

4π2h̄

(eB)2υ2
F

E2
F

υFτinter
cos2 θ

1 + 3
4 (le/la )(h̄ωc/EF)4 sin2 θ

.

(28)
As can be seen, if h̄ωc � EF( 4la

3le
)1/4, σzz ∝ cos2 θ returns

to the regular angular dependence and, moreover, for θ =
0, σzz recovers the classical positive LMC formula in
Refs. [27,29,30]. For |EF| <

√
2h̄ωc, equivalent to the strong

magnetic field limit, � = 1 and

σzz = 2e2

h

eB

h
υFτinter

cos2 θ

1 + 3
2 (le/la )(h̄ωc/EF)2 sin2 θ

(29)

crosses over to the ultraquantum limit. In the limiting case
h̄ωc � EF

√
la/le, σzz will exhibit the angular narrowing
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FIG. 3. (a) σzz as a function of θ for varied B. (b)–(d) σzz(θ =
0) as a function of B, respectively, for � = kBT = 10−5 h̄ω0, varied �

with kBT = 10−5 h̄ω0, and varied kBT with � = 10−3 h̄ω0. The inset
of (b) is the data in the low magnetic region replotted to show the
quantum oscillations of the LMC. Here, for convenience, we set
h̄ω0 = υF

√
eh̄[B = 1T] as the unit of energy. Other parameters are

the same as Fig. 2(c). The results for finite temperatures and finite
level broadening are obtained from numerical calculations.
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FIG. 4. Magnetic field dependence of the angular narrowing
behavior in contrast to that in Fig. 3(a). Here, we chose le/la = 100
and other parameters are the same as Fig. 3.

phenomenon, with the amplitude tunable by the magnetic
field. Also, for θ = 0, the LMC returns to the quantum for-
mula derived in Ref. [30]. The above analyses are confirmed
by the numerical results plotted in Figs. 3(a) and 4.

As shown by Figs. 3(b)–3(d), the quantum oscillations
of the LMC are quite sensitive to the impurity scattering
scaled by � = h̄/(2τ ) and the temperature, due to broadening
of the LLs and smearing of the Fermi level. The quantum
oscillations are resolvable only when the spacing of the LLs
is much greater than the impurity-induced broadening [24]
� or thermal fluctuation energy kBT . Therefore, the LMC
may exhibit other anomalous behaviors, especially for a rel-
atively weak magnetic field. For instance, for a fixed mag-
netic field strength, the LMC can increase or decrease with
increasing temperature or strength of the impurity scattering,
depending on whether the field strength is near a valley or
near a peak, while, for a fixed Fermi energy, if increasing
the magnetic field pushes a valley to the Fermi level, the
height of the LMC would decrease, drastically, as shown by
Fig. 4. This could explain the anomalous magnetic field de-
pendence of the angular narrowing phenomenon observed in
Ref. [37]. For relatively strong magnetic fields, the effects of
the impurity scattering and thermal fluctuations would be less
important.

As discussed in Ref. [28], because the momentum space
in the condensed-matter context being confined to the first
Brillouin zone is compact, a real microscopic model of WSM
does not actually possess exact chiral symmetry. However, the
n = 0 LLs in WSMs, protected by the topological nature of
the system, always come in pairs with opposite group velocity
directions corresponding to monopole charges of the Weyl
nodes, which breaks the symmetry of the number of forward-
and backward-moving channels. In equilibrium, the positive
LMC is expected to be vanishing since no chemical potential
difference can exist among the Weyl valleys. However, upon
application of an additional electric field, a nonzero chemical
potential difference, due to violation of the channel symmetry,
can be established among the Weyl valleys by nonequilibrium
processes, which leads to the emergence of the positive LMC.
While the chiral anomaly in condensed-matter context might
be less well defined than that in the context of relativistic field
theory, the positive LMC in WSMs could be understood as a
consequence of violation of the channel symmetry.

IV. SUMMARY

We studied the chiral anomaly in a finite-size WSM for
both the ballistic and diffusive limits, and derived an analytical
formula for the chiral-anomaly-induced positive LMC. It is
found that the positive LMC comes from the chiral channels
in the n = 0 LLs and will exhibit the angular narrowing
if h̄ωc � EF

√
la/le. This suggests that the behavior of the

angular narrowing, in addition to the relaxation lengths, can
be modulated by the relative magnitudes of the Fermi energy
and magnetic field. The anomalous magnetic field dependence
of the angular narrowing can be associated with quantum
oscillations of the chiral anomaly. Our findings are helpful
to understand the angular narrowing behaviors of the positive
LMC in WSMs.
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