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We study the boundary charge QB of generic semi-infinite one-dimensional insulators with translational
invariance and show that nonlocal symmetries (i.e., including translations) lead to rational quantizations p/q
of QB. In particular, we find that (up to an unknown integer) the quantization of QB is given in integer units
of 1

2 ρ̄ and 1
2 (ρ̄ − 1), where ρ̄ is the average charge per site (which is a rational number for an insulator).

This is a direct generalization of the known half-integer quantization of QB for systems with local inversion
or local chiral symmetries to any rational value. Quite remarkably, this rational quantization remains valid
even in the presence of short-ranged electron-electron interactions as well as static random disorder (breaking
translational invariance). This striking stability can be traced back to the fact that local perturbations in insulators
induce only local charge redistributions. We establish this result with complementary methods including density
matrix renormalization group calculations, bosonization methods, and exact solutions for particular lattice
models. Furthermore, for the special case of half-filling ρ̄ = 1

2 , we present explicit results in single-channel
and nearest-neighbor hopping models and identify Weyl semimetal physics at gap closing points. Our general
framework also allows us to shed new light on the well-known rational quantization of soliton charges at domain
walls.
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I. INTRODUCTION

Charge fractionalization is a striking phenomenon which
emerges in a variety of condensed matter systems of high
interest, either occurring as fractionalized charge excitations
in the fractional quantum Hall effect [1–5] and in Luttinger
liquids [6–10], or as quantized charges in the ground state at
the edge of topological insulators [11–21]. For its emergence a
fundamental mechanism has been established via fractionally
charged domain walls separating two systems with the same
bulk spectrum but in different topological phases. This was
analysed for a one-dimensional (1D) spinless Fermi gas cou-
pled to a bosonic field with broken symmetry [22] and in poly-
acetylene chains due to electron-phonon coupling [23,24].
This mechanism was further analysed for more general setups
[25,26] and a simple physical picture was proposed [27] to
explain the fractional charge unit 1/Z via a Z-fold degenerate
ground state generated by a charge-density wave (CDW) of
wavelength λ = Za (a is the lattice constant) [28]. Within
continuum field theories [29–32] the fractional part of the
soliton (or interface) charge QI was shown to be given by

*schoeller@physik.rwth-aachen.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the Goldstone-Wilczek formula [31] QI = δα
2π

e mod(e), where
δα is the phase difference between the two CDWs right
and left to the interface. This interface charge is of purely
topological nature, i.e., independent of the precise parameter
values determining the domain wall. In addition, fluctuations
of the soliton charges were analysed in continuum and lattice
models showing that the fractional charge is a well-defined
quantity [33–39].

Besides quantized soliton charges, charge quantization has
also been studied at the boundary of topological insulators.
Previous works focused on the special case of local inversion
or local chiral symmetry as well as on noninteracting and
clean systems, where the boundary charge QB is quantized
in half-integer units. This was shown via the quantization of
the Zak-Berry phase γ in units of π [40,41], which is related
to the boundary charge by QB = −e γ

2π
mod(e) [42–50]. The

quantization of the Zak-Berry phase in the presence of local
inversion symmetry has led to the notion of topological crys-
talline insulators (TCI) [51–56], together with further exten-
sions based on the properties of Wannier functions [57–59],
extending the standard classification schemes of topological
insulators [41,52,60–67], which are based on chiral, time
reversal, and particle-hole symmetries only. In addition, com-
bining local symmetries with translations (so-called nonlocal
or nonsymmorphic symmetries) new possibilities for TCIs
have been predicted for 2D and 3D systems [68–73].

The central topic of the present work is the generalization
of the half-integer quantization of the boundary charge QB

to any rational value p/q in generic 1D insulators. We will
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relate the occurrence of a rational boundary charge (RBC)
to nonlocal symmetries, i.e., symmetries which can not be
defined within the space of a single unit cell (see Appendix A
for a summary of the precise definitions). Quite remarkably,
in the presence of these symmetries, we will show that RBC
can be easily understood in terms of the universal changes of
QB under translations and local inversion. Stability of RBC is
demonstrated since these transformation laws are not violated
in the presence of short-ranged electron-electron interaction
or static random disorder.

Our general and unified framework for the RBC is set
up for generic 1D tight-binding models with any size Za of
the unit cell and any number Nc of channels per site (like,
e.g., described by spin, several orbitals, etc.). Importantly,
our analytical study is not based on the representation of
QB in terms of the Zak-Berry phase. It relies exclusively
on the fundamental property of insulators, namely that local
perturbations by external fields lead only to local charge
redistributions, i.e., the corrections beyond a typical length
scale ξ are exponentially small. This does not affect the
fractional part of the boundary charge, since QB is defined
via a macroscopic average on scales much larger than ξ . In
addition, bound states (localized at the boundary) crossing the
chemical potential due to the local perturbation, can only lead
to a change of QB by an integer number. This local behavior,
also known as the nearsightedness principle [74,75] (NSP), is
responsible for the universal features of topological insulators
and is also connected to the bulk-boundary correspondence
[76–83]. Furthermore, the same principle is responsible for
charge pumping [84,85] and leads to exponential localization
of the excess density at boundaries and interfaces [86], such
that QB and QI are well-defined quantities for insulators. Since
the NSP is also valid for interacting and disordered systems,
we can expect high stability of our results against short-ranged
electron-electron interactions and static random disorder, as
long as the gap of the insulator in which the chemical potential
lies is not closed. Besides the general expectation of stability
we will also support the NSP by numerical calculations based
on density matrix renormalization group (DMRG) methods
in the presence of short-ranged electron-electron interactions,
by exact diagonalizations for static random disorder, and by
analytical results for the particular example of two coupled
noninteracting single-channel and nearest-neighbor hopping
models. In addition, we establish analytically the stability
against short-ranged interactions in continuum models by
using the bosonization method.

To sketch our derivation of RBC we have summarized
our main results in the two Tables I and II. Table I lists the
transformation of QB under basic operations, in particular
under translation Tn by n lattice sites towards the boundary
and under local inversion 	 within each unit cell. Together
with site-local transformations U leaving the boundary charge
invariant, we define the two central operations 	n = TnU	

and Sn = T−nU , which are nonlocal for n �= 0 since they
contain a translation. Table II states the change of QB when
the Hamiltonian has an explicit nonlocal symmetry by either
commuting with 	n or anticommuting with Sn (for the sym-
metry Sn one needs in addition half-filling). Comparing the
transformations of QB under 	n and Sn stated in the two tables
(marked in the same color) we arrive at the central result of

TABLE I. Transformations QB → Q̄B of the boundary charge
under the elementary transformations Tn (translation by n lattice
sites towards the boundary), 	 (local inversion within each unit cell,
where the unit cell is defined as the one starting at the boundary of
a semi-infinite system), U (unitary or antiunitary operations within
the channel space of a single site), and combinations of these
transformations defining the operations 	n = TnU	 and Sn = T−nU .
Except U all transformation rules are mod(e) due to the possible
occurrence of edge states. ρ̄ = e ν

Z is the average charge per site,
which is a rational number in the insulating regime. ν denotes the
number of filled bands and Z is the number of lattice sites of a unit
cell (with Nc channels per site). If U is unitary (antiunitary), 	n and
Sn are unitary (antiunitary) operations. Highlighted in color are the
transformation rules that need to be compared between Tables I and
II to obtain the rational boundary charge.

QB mod(e) Transformation

Tn QB + nρ̄ translation |m〉 → |m + n〉
	 −QB unit-cell-local inversion
U QB site-local (anti)unitary
	n = TnU	 QB + nρ̄ unitary/time-reversal
Sn = T−nU QB − nρ̄ chiral/particle-hole

RBC (throughout the manuscript the notion mod(x) ≡ px is
defined as an arbitrary integer p times the variable x)

QB = 1

2
nρ̄ mod

( e

2

)
. (1)

Here, ρ̄ = e ν
Z is the average charge per site which is a rational

multiple of e in the insulating regime, where ν is the number
of filled bands and Z is the number of sites of a unit cell. The
trivial case of a local symmetry is n = 0 leading to the well-
known 1

2 -integer quantization of QB. Taking all integers n �= 0
into account we find that QB can take all rational quantization
values. Due to the mod( e

2 )-part our quantization rule shows

TABLE II. Transformations QB → Q̄B of the boundary charge
if the Hamiltonian H fulfils a symmetry by either commuting with
	n or anticommuting with Sn. For the symmetry Sn, one needs in
addition half-filling ρ̄ = e Nc

2 . If U is a unitary (antiunitary) oper-
ation, 	n is a unitary (time-reversal) symmetry and Sn is a chiral
(particle-hole) symmetry. For n = 0, the operations 	0 and S0 are
local symmetries acting within the space of a single unit cell. For n �=
0 they are nonlocal symmetries, see Appendix A for our conventions
to distinguish between local and nonlocal symmetries. By identifying
the values for Q̄B from Tables I and II one obtains straightforwardly
the rational quantization values QB = 1

2 nρ̄ mod( e
2 ). Highlighted in

color are the transformation rules that need to be compared between
Tables I and II to obtain the rational boundary charge.

Symmetry QB Quantization

	n 	nH	†
n = H QB

Sn SnHS†
n = −H

⎫⎪⎬
⎪⎭ QB = 1

2 nρ̄ mod
(

e
2

)
−QB mod(e)

& 1
2 -filling
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that QB can always be written as a combination of multiples
of two elementary quantization units: 1

2 ρ̄ and 1
2 (ρ̄ − 1).

Besides the presence of a nonlocal symmetry of the Hamil-
tonian as stated in table II, the central part of the proof of RBC
is the transformation of QB under the two elementary opera-
tions Tn and 	 of translations and local inversion according to
Table I. They are the basic ingredients for the understanding
of all universal properties of QB and are given by

QB
Tn−→ Q̄B = QB + nρ̄ mod(e), (2)

QB
	−→ Q̄B = −QB mod(e). (3)

Both transformation laws will be shown in this work to
be ultimately related to the NSP which demonstrates their
stability under short-ranged electron-electron interaction and
static random disorder. Equation (2) is a straightforward
consequence of charge conservation since on average the
charge nρ̄ is moved into the boundary when the translation
is described via an adiabatic process (up to an integer charge
arising from edge states crossing the chemical potential during
the adiabatic process). It has been used in a variety of recent
works on single-channel and nearest-neighbor tight-binding
models to analyze the universal phase dependence QB(ϕ)
as a function of a phase ϕ describing a continuous shift of
the lattice towards the boundary [39,87–90]. Equation (3) is
a fundamental transformation which is based on the simple
observation that local inversion of a semi-infinite system with
a left boundary turns it to the same semi-infinite system with a
right boundary [39]. Simple arguments based on the NSP will
then show that the sum of these two boundary charges must
be zero up to an integer charge.

The fact that the two elementary transformations (2) and
(3) together with a nonlocal symmetry property of the Hamil-
tonian under 	n or Sn explain both the RBC and its stability
under interactions and disorder in a straightforward way is the
central result of this work. We note that the interaction and
the disorder have to fulfill the nonlocal symmetry property as
well for our proof to be valid. Whereas homogeneous density-
density interaction terms are obviously invariant under trans-
lations Tn, local inversion 	, and site-local transformations U ,
it might not be the case for some fixed disorder configuration.
However, for random disorder the symmetry will be fulfilled
on average and our numerical results confirm that the RBC
is stable in the presence of random disorder. In addition,
when the density-density interaction is not homogeneous, it
is expected that it follows precisely the symmetry constraints
imposed by the modulation of the on-site potentials and
hopping terms.

Interestingly, we will show that the two universal transfor-
mation laws (2) and (3) shed also new light on the quantization
of the interface charge. If the two lattices right and left to the
interface have the same bulk spectrum and are only shifted
relative to each other by δn sites, they are connected by
the transformation Tδn	. Therefore, if the two lattices are
not connected to each other, one finds from (2) and (3) that
the boundary charge QL

B of the left lattice is related to the
boundary charge QR

B of the right lattice by QL
B = −QR

B +
δnρ̄ mod(e). Using the NSP, turning on some local coupling
between the two lattices does not change the fractional part of

the interface charge such that QI follows generically from

QI = QL
B + QR

B mod(e) (4)

= δnρ̄ mod(e). (5)

As a result, we have extended the Goldstone-Wilczek formula
to a discrete lattice and, in addition, have shown that it is stable
in the presence of short-ranged electron-electron interactions
and static random disorder.

We expect our results of RBC to be observable in ex-
periments. Recent experiments in cold atom systems demon-
strated that it is possible to get direct access to the boundary
charge via the Zak-Berry phase [91] and to measure soli-
ton charges of the SSH model [92]. In addition, concrete
proposals for measuring topological solitons in solid state
systems have been made such as carbon nanotubes [93],
graphene nanoribbons [94], and Rashba nanowires [95,96].
Here, scanning single-electron transistor techniques allow for
the direct measurement of local charges [97–101]. Moreover,
the occurrence of interface states due to the quantization of
the Zak phase has been measured in phononic crystals [101].
Besides these materials promising candidates to measure the
boundary charge are quantum dot arrays as proposed in
Ref. [39]. Similiar to cold atom systems, quantum dot arrays
have the particular advantage of control over all parameters
to implement on demand the specific nonlocal symmetries
needed for RBC.

As an interesting application of our general framework
we will discuss the case of a single-channel (i.e., Nc = 1)
and nearest-neighbor hopping models. Of particular interest
is the case of half-filling, ρ̄ = e/2, where one obtains from
(1) the two universal quantization classes QB = e

2 mod( e
2 ) and

QB = e
4 mod( e

2 ). The first is the usual one present also for
local inversion or local chiral symmetries. In contrast, the
second was to the best of our knowledge not discussed before
and is only possible for a nonlocal symmetry. We present an
explicit realization of these classes in terms of a lattice model
with equal hopping amplitudes and a harmonic modulation of
the on-site potentials. Controlling the offset of the modulation
by a phase-variable ϕ this model is of relevance for the
integer quantum Hall effect (IQHE) (where ϕ corresponds to
the transverse quasimomentum in a 2D quantum Hall setup)
[87]. At half-filling (where Z must be even to open a gap),
the model has the nonlocal chiral symmetry SZ/2 = T−Z/2U
with U |m〉 = (−1)m|m〉 (|m〉 denotes the state at lattice site
m). According to (1) this leads to the quantization values
QB = Z

8 e mod( e
2 ), i.e., the two quantization classes in terms

of e/2 or e/4 are obtained for Z = 4, 8, 12, . . . and for
Z = 2, 6, 10, . . . , respectively. The model has the advantage
that the chiral symmetry SZ/2 holds for any phase ϕ of the
potential modulation. This pins QB(ϕ) to quantized plateaus
which change abruptly by ±e/2 at gap closing points. This
leads to Weyl semimetal physics since edge modes connecting
the gap closing points play the role of Dirac arcs, analog
to other recent realizations of Weyl semimetal physics in
two-dimensional systems [69,102–105]. Despite the fact that
in this case the Chern number vanishes (leading to zero
Hall current), we find a nontrivial quantization effect of the
boundary charge QB.
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For single-channel and nearest-neighbor hopping models
with very small gaps we will also set up a low-energy con-
tinuum theory via a Dirac model in 1 + 1 dimensions with a
complex gap parameter � = |�|eiα , in analogy to the study
of interface charges via the Goldstone-Wilczek formula. For a
semi-infinite system we obtain the following universal result
for the boundary charge:

QB = α

2π
e + e

4
mod(e). (6)

Interestingly, the boundary charge is insensitive to the gap size
and reveals a linear behavior as a function of the phase of the
gap parameter. If the original lattice model is at half-filling
and pure potential modulation is realized (as discussed above
for the Weyl case), we find the symmetry SZ/2 for any phase ϕ

of the CDW [106]. In the corresponding continuum model we
will show that the parameter α is obtained from the interfer-
ence of two paths connecting right and left movers at the two
Fermi points ±kF . For the two classes Z = 4, 8, 12, . . . and
Z = 2, 6, 10, . . . , we find a phase-locking effect pinning α to
odd or even multiples of π/2, respectively. These two cases
correspond to the two quantization classes of QB in terms of
e/2 or e/4, respectively, proving consistency of the continuum
theory with our general framework.

The paper is organized as follows. Section II is devoted to
the general framework to realize RBC in generic 1D insula-
tors. We describe the model and the definition of boundary
and interface charges in Sec. II A, and the RBC is analysed
in Sec. II B. The basic transformation laws (2) and (3) are
derived in Secs. II B 1 and II B 2. Combining the two trans-
formations we find the Goldstone-Wilczek formula (5) for the
interface charge. In Sec. II B 3, we combine the transforma-
tion laws with nonlocal symmetries of the Hamiltonian and
prove the central result (1). We proceed in Sec. III with an
application of our general framework to the case of single-
channel and nearest-neighbor hopping models. In Sec. III A,
we describe Weyl semimetal physics at half-filling and dis-
cuss the connection to the IQHE by analyzing the universal
phase-dependence of the boundary charge, the Diophantine
equation, and the Hall current in the presence of a gap closing.
The stability of the boundary charge quantization in presence
of disorder and electron-electron interaction is discussed in
Secs. III B and III C, respectively. An effective low-energy
description of boundary and interface charges in terms of a
continuum Dirac model in 1 + 1 dimensions is provided in
Sec. IV. The derivation of the model in the noninteracting and
interacting case is given in Secs. IV A and IV B, respectively.
The universal formula (6) for the boundary charge and the
Goldstone-Wilczek formula for the interface charge are pre-
sented in Sec. IV C. We close with a summary and outlook in
Sec. V.

Throughout this work we use units such that h̄ = e =
a = 1.

II. GENERAL FRAMEWORK

In this section, we describe the general framework to
derive the central transformations (2) and (3) of the boundary
charge QB under translations and local inversion, respectively.
We identify the nonlocal symmetries 	n and Sn leading to

n-2

HL,n

n-1 n

HR,n

n+1 n+2 n+3

HR,n

n+1 n+2 n+3

FIG. 1. Illustration of the semi-infinite Hamiltonians HR,n (right)
and HL,n (left). The Hamiltonian HR,n is obtained from the bulk
Hamiltonian Hbulk by starting it at site m = n + 1, whereas HL,n is
obtained by ending Hbulk at site m = n.

the rational quantization values (1) of the boundary charge.
In addition, we show that the Goldstone-Wilczek formula
(5) for interface charges follows straightforwardly from the
transformation laws.

A. Hamiltonian, boundary, and interface charges

We consider a generic translationally invariant tight-
binding model in 1D with arbitrary short-ranged hopping and
Nc channels per lattice site. The channel index can include
spin or orbital degrees of freedom but also the transverse
quasimomentum and band indizes of higher-dimensional sys-
tems. For the infinite (bulk) case, the single-particle Hamilto-
nian reads

Hbulk =
∞∑

m=−∞

δmax∑
δ=−δmax

c†
m+δ h

m
(δ) cm. (7)

Here, m denotes the lattice site index and δmax is the range
of the hopping. The components cmσ of the Nc-dimensional
vector cm annihilate an electron on site m in channel σ =
1, . . . , Nc. h

m
(δ) is a generic Nc × Nc matrix describing the

coupling between the channels of lattice site m and m + δ.
Translational invariance and hermiticity require the properties

h
m

(δ) = h
m+Z

(δ), (8)

h†
m

(δ) = h
m+δ

(−δ), (9)

where Z is the number of lattice sites of a unit cell. Semi-
infinite systems extending to the right or left side are de-
fined by the Hamiltonians HR/L,n by starting/ending the bulk
Hamiltonian Hbulk at site m = n + 1 and m = n, respectively,
see Fig. 1 for illustration. Since the numeration of the sites is
arbitrary one can alternatively label the sites by m = 1, 2, . . .

for the right lattice and by m = 0,−1,−2, . . . for the left
lattice, and formally define in compact notation

HR,n =
∞∑

m=1

∑
δ

m+δ>0,|δ|�δmax

c†
m+δ h

m+n
(δ) cm, (10)

HL,n =
0∑

m=−∞

∑
δ

m+δ�0,|δ|�δmax

c†
m+δ h

m+n
(δ) cm. (11)

If an interface is studied between the two semi-infinite
systems HR,n on the right side and HL,n′ on the left side, we
take any short-ranged coupling VI defined within the interface
region ML � m � MR (with |ML,R| ∼ O(Z ))

VI =
∑

ML�m,m′�MR

c†
m v

mm′ cm′ , (12)
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and define the total Hamiltonian by

HI,nn′ = HR,n + HL,n′ + VI . (13)

For the study of the stability against short-ranged electron-
electron interactions, we take a density-density interaction of
the form

Vee = 1

2

∑
m �=m′

u(m − m′)ρ̂(m)ρ̂(m′), (14)

where u(m) = u(−m) is only nonzero for |m| � mmax ∼ O(1)
and ρ̂(m) = c†

mcm. If a semi-infinite lattice is studied, the sum
over the sites is restricted to the corresponding regions. In
the presence of an interface the short-ranged electron-electron
interaction between the sites of the left and right lattices is
also a coupling term which can be included alternatively in VI

by adding these many-particle terms to the interface coupling.
We will also test stability with respect to static random

disorder. In this case, we include a quenched onsite disorder

Hdis =
∑

m

d (m)ρ̂(m), (15)

where d (m) is drawn from a uniform distribution
d (m) ∈ [−d/2, d/2). Of course, more complicated
(channel-dependent or hopping) forms of disorder can be
considered, which, however, will not change the main thrust
of the arguments presented here.

In the insulating regime, where the excess density falls
off exponentially on scale ξ into the bulk [86,89] starting
from a boundary or interface, the observables of interest
are the boundary charges QR

B,n and QL
B,n′ of the semi-infinite

systems described by HR,n and HL,n′ , respectively, and the
interface charge QI,nn′ of the Hamiltonian HI,nn′ , defined by
a macroscopic average on scales much larger than Z and ξ

QR
B,n =

∞∑
m=1

(ρ(m) − ρ̄) f (m), (16)

QL
B,n′ =

0∑
m=−∞

(ρ(m) − ρ̄ ) f (m), (17)

QI,nn′ =
∞∑

m=−∞
(ρ(m) − ρ̄ ) f (m). (18)

Here, ρ(m) = 〈ρ̂(m)〉 is the total charge at site m in a grand
canonical ensemble with respect to the corresponding Hamil-
tonians HR,n, HL,n′ , and HI,nn′ , respectively. We assume zero
temperature and the chemical potential μ to lie in some given
band gap of the insulator. Further, ρ̄ is the average charge
per site for the translationally invariant bulk Hamiltonian (7)
defined by

ρ̄ = 1

Z

Z∑
j=1

ρbulk( j) = ν

Z
, (19)

where ν is the filling factor defined as the number of occupied
bands. The function f (m) is the envelope function of a charge
measurement probe falling off smoothly from unity to zero,
see Fig. 2.

-N 0 N
m

0

1

f(
m

)

MM

FIG. 2. Sketch of the envelope function f (m) with N � M �
Z, ξ .

To simplify notations, if no index n is displayed, we assume
implicitly n = 0, i.e.,

HR/L ≡ HR/L,0, HI ≡ HI,00, (20)

QR/L
B ≡ QR/L

B,0 , QI ≡ QI,00. (21)

We note that we have not used this convention in the intro-
ductory part (to avoid too many subindices at the beginning)
where we denoted by QR/L

B and QI the boundary and interface
charges for the systems HR/L,n or HI,nn′ under consideration.
Furthermore, we used implicitly the convention QB ≡ QR

B in
the introductory part.

Due to the NSP, it is expected that QI,nn′ is independent of
the coupling VI (up to an integer). For particular examples, we
demonstrate this in Appendix B via exact diagonalization and
DMRG calculations in the presence of static random disorder
or short-ranged electron-electron interaction. Moreover, we
show in Appendix C analytically that QI,nn′ is independent
of the size of a single link between two noninteracting and
one-channel nearest-neighbor hopping models. As a result we
find [see Eq. (4)] that the interface charge is the independent
sum of the boundary charges of the left and right lattices

QI,nn′ = QR
B,n + QL

B,n′ mod(1). (22)

In addition, we conclude that also the boundary charge does
not change, when a local perturbation is added close to the
boundary. In Sec. II B, we will furthermore show that the
interface charge depends only on the relative difference δn =
n′ − n, i.e.,

QI,nn′ = QI,δn, δn = n − n′, (23)

see the Goldstone-Wilczek formula Eq. (5) or Eq. (33) below.

B. Rational quantization of boundary charge

In this section, we show how the boundary charge trans-
forms under translations and local inversion according to
Eqs. (2) and (3). Together with certain symmetry requirements
of the Hamiltonian we will determine the rational quantization
values for the boundary charge given by Eq. (1). In addition,
we show that the Goldstone-Wilczek formula (5) for the inter-
face charge is based only on the fundamental transformation
laws of the boundary charge. For the special case of nonin-
teracting and clean systems, we show in Appendix D that the
same results can also be obtained from the transformation of
the Zak-Berry phase under translations and local inversion.
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n-2

HL,n HR,n

n-1 n n+1 n+2 n+3-2 2 1-1 0 3

HL HR Tn

FIG. 3. Illustration of the translation by n lattice sites for the left
and right semi-infinite lattice. In both cases the lattice is moved to the
left. This means that for HR → HR,n the lattice is moved by n sites
towards the boundary whereas, for HL → HL,n, the lattice is moved
by n sites away from the boundary. As a consequence, the boundary
charge increases or decreases by nρ̄, respectively.

1. Translations

A translation Tn = T †
−n of the lattice by n sites to the left is

defined by the operation

h
m

(δ)
Tn−→ h

m+n
(δ). (24)

Applying this to Eqs. (10) and (11), we evidently get

HR
Tn−→ HR,n, HL

Tn−→ HL,n, (25)

as illustrated in Fig. 3. Performing the transformation (24) via
an adiabatic process, the lattice is shifted as a whole by n sites
to the left, i.e., due to charge conservation, the average charge
nρ̄ will move into the left boundary of the right lattice and will
move out of the right boundary of the left lattice. Since the
boundary charges QR/L

B,n are defined as a macroscopic average
via Eqs. (16) and (17), we get

QR/L
B,n = QR/L

B ± nρ̄ mod(1). (26)

Together with Eq. (25) this provides the following transfor-
mation of the boundary charges under translation:

QR/L
B

Tn−→ Q̄R/L
B = QR/L

B ± nρ̄ mod(1), (27)

which proves Eq. (2). These relations are exact and do not
depend on the presence or absence of short-ranged electron-
electron interaction or random disorder, see Appendix B and
bosonization studies in Sec. IV C. They are based on the
same arguments as charge pumping [84,85] and have been
extensively used recently for noncyclic adiabatic processes to
analyze the universal average slope of the phase-dependence
of the boundary charge [39,87–89]. The unknown integer
arises since bound states (at the boundaries) can cross the
chemical potential during the adiabatic process leading to
discrete integer jumps of the boundary charge.

Alternatively, Eq. (26) can also be derived directly from
the NSP. Since local perturbations at the boundary do not
change QR

B (up to an integer) we can add to HR an infinitely
high potential on the first n sites such that ρ(m) = 0 for
m = 1, 2, . . . , n. This leaves for the boundary charge from
Eq. (16) only the contribution −nρ̄ for the first n sites and
QR

B,n for the rest. Using the invariance due to the NSP this
gives QR

B = QR
B,n − nρ̄ leading to Eq. (26). In an analogous

way, one can prove Eq. (26) for QL
B by starting from HL

B,n and
putting an infinite potential on the last n sites.

1 2 Z

Π
Z Z-1 1Z Z-1 11 2 Z

HR

180
1 2 Z 1 2 Z

HL

FIG. 4. Illustration of local inversion by indicating the lattice
sites of the unit cells. Inverting the lattice sites within a unit cell via
the interchange m ↔ Z − m + 1 and turning the system by 180◦ one
finds that HR is transformed to HL .

2. Local inversion

Local inversion 	 is defined as a symmetry operation
performing an inversion in each unit cell separately, where
the unit cell is defined such that it starts at the boundary.
Since the unit cell defined in this way depends on the index
n of the Hamiltonians HR/L,n we discuss the case n = 0 in
the following (see the discussion at the end of Sec. II B 3 for
transformations defined with respect to other choices of the
unit cell). In this case, the unit cell starting at the boundary
consists of the sites m = 1, . . . , Z and is identical to the
one for the bulk Hamiltonian Hbulk. In this subspace the
transformation 	 is formally defined by

h
m

(δ)
	−→ h

Z−m+1
(−δ) = [h

Z−m+1−δ
(δ)]†, (28)

where we have used the hermiticity condition (9) in the last
equality. Using the periodicity condition (8), this defines 	

for all m. Applying an inversion turns the semi-infinite system
HR with a left boundary obviously to the semi-infinite system
HL with a right boundary

HR
	−→ HL, (29)

as illustrated in Fig. 4. Taking the Hamiltonian (13) without
any coupling VI = 0 between the left and right lattice, the
interface charge is obviously given by QI = QL

B + QR
B. On the

other hand, taking for VI exactly the coupling corresponding to
the bulk Hamiltonian (7) we get a translational invariant lattice
everywhere with a periodic bulk density ρbulk(m) = ρbulk(m +
Z ). The corresponding interface charge QI,bulk vanishes since

QI,bulk =
∑

m

(ρbulk(m) − ρ̄) f (m)

=
∑

n

Z∑
j=1

(ρbulk( j) − ρ̄ ) f (Zn + j)

=
∑

n

f (Zn)
Z∑

j=1

(ρbulk( j) − ρ̄ )

+
∑

n

f ′(Zn)
Z∑

j=1

(ρbulk( j) − ρ̄ ) j = 0, (30)
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where we have used f (Zn + j) ≈ f (Zn) + f ′(Zn) j in the
second step and

∑
n f ′(Zn) ≈ ∫ dx f ′(Zx) = 0 together with

the definition (19) of ρ̄ in the third step. The approximations
become exact in the limit of infinite parameters N and M
defining the smoothness of the envelope function via Fig. 2.
Finally, due to the NSP, the interface charge can only change
mod(1) when switching on VI , leading to

QL
B + QR

B = 0 mod(1). (31)

Together with (29) this provides the following transformation
of the boundary charges under inversion

QR/L
B

	−→ Q̄R/L
B = −QR/L

B mod(1), (32)

which proves Eq. (3). The universal relation (31) has also
been found recently in Ref. [89] for the special case of a
noninteracting single-channel and nearest-neighbor hopping
model, where the unknown integer has been specified for
a single band. Again, we emphasize that it is also valid in
the presence of short-ranged electron-electron interaction and
random disorder since we only used the NSP to derive it, see
also Appendix B and bosonization studies in Sec. IV C.

We note that, by inserting the relations (26) and (31) into
the formula (22) for the interface charge, we obtain straight-
forwardly the Goldstone-Wilczek formula (5) for a discrete
lattice

QI,nn′ = (n − n′) ρ̄ mod(1), (33)

with δn ≡ n − n′. We conclude that the charge quantization
at interfaces separating regions in different topological phases
with the same bulk spectrum is fundamentally related to the
NSP and the transformation laws of the boundary charge
under translation and local inversion. This provides a very
elegant proof of the Goldstone-Wilczek formula and shows
at the same time that it is stable under short-ranged electron-
electron interaction and static random disorder.

3. Nonlocal symmetries

If the transformations (27) and (32) of the boundary
charges QR/L

B under translations and local inversion are com-
bined with explicit symmetries of the Hamiltonian, one
can straightforwardly prove the rational quantization of the
boundary charge. We note that symmetries are always defined
with respect to the bulk Hamiltonian Hbulk and we discuss the
consequences for the boundary charges QR/L

B , where the unit
cell starting/ending at the boundary is the same as the one cho-
sen for Hbulk. We define local symmetries by transformations
acting only in the space of a single unit cell as they are used
in the usual tenfold classification schemes of TIs [41,52,60–
67] in terms of local chiral, time-reversal, and particle-hole
symmetries. The case when the local symmetry is defined with
respect to another choice of the unit cell is always discussed
separately if relevant, see also the detailed discussion at the
end of this section. For a summary of the precise definitions
and our conventions to distinguish between local and nonlocal
symmetries, we refer to Appendix A.

First, we note that all (anti)unitary transformations Um =
Um+Z acting only in the channel space of lattice site m
commute with the operator c†

mcm and, therefore, leave the
boundary charge invariant. This are transformations defined

by

h
m

(δ)
U−→ U †

m+δ h
m

(δ)Um. (34)

Secondly, we define two fundamental operations 	n and Sn

by combining U with local inversion and translations

	n = TnU	, Sn = T−nU . (35)

	n and Sn are defined in such a way that the boundary charge
transforms according to

QR/L
B

	n−→ Q̄R/L
B = −QR/L

B ± nρ̄ mod(1), (36)

QR/L
B

Sn−→ Q̄R/L
B = QR/L

B ∓ nρ̄ mod(1), (37)

where we have used (27) and (32).
Finally, we assume that the Hamiltonian either commutes

with 	n or anticommutes with Sn

h
m

(δ)
	n−→ h

m
(δ) or h

m
(δ)

Sn−→ −h
m

(δ). (38)

Using Eqs. (24), (28), and (34) this requires one of the
following symmetry conditions

	n : h
m

(δ) = U †
Z−m−n+1−δ ·

·[h
Z−m−n+1−δ

(δ)]† UZ−m−n+1, Sn : h
m

(δ)

(39)

= −U †
m−n+δ h

m−n
(δ)Um−n. (40)

In contrast to all previous relations, this defines a certain
nonlocal symmetry which the Hamiltonian has to fulfill. As
we will show below the symmetry implies rational quanti-
zation values of the boundary charge. When U is a unitary
transformation, (39) denotes a unitary symmetry 	n and (40)
a chiral symmetry Sn. Similarly, when U is an antiunitary
transformation, (39) denotes a time-reversal symmetry 	n

and (40) a particle-hole symmetry Sn. Both symmetries are
nonlocal for n �= 0 since they involve translations. A special
case is 	n which, except for Z even and n odd, can be turned
into a local symmetry but with respect to another choice of
the unit cell. This follows since 	n is an inversion symmetry
around the axis m = 1

2 (Z − n + 1) (for n even) or m = Z −
1
2 (n − 1) (for n odd). This leads to a local site-inversion
symmetry for Z odd, and to a local bond-inversion symmetry
for both Z and n even. However, for Z even and n odd,
we obtain a site-inversion symmetry but the corresponding
unit cell contains only half of the sites at the boundaries
which is not possible for tight-binding models, see Fig. 5 for
illustration. The two ways of defining an inversion symmetry
in Fig. 5 is related to the general principle that for any inver-
sion symmetric chain there must exist two maximal Wyckoff
position with site symmetry group containing the inversion,
see the discussion in the supplemental material of Ref. [57]
and examples discussed in Ref. [50]. Using the terminology
of symmorphic and nonsymmorphic symmetries, one should
call 	n a symmorphic symmetry depending on the quasi-
momentum k (for Z even and n odd, sometimes also called
unconventional nonsymmorphic symmetry) since it returns to
the same lattice site when applied twice [107–110], whereas
Sn is a nonsymmorphic symmetry [111].
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FIG. 5. Visualization of the nonlocal inversion symmetry 	n

for n = 1 and Z = 4 for a nearest-neighbor hopping model with
one channel per site. v j denote the on-site potentials and −t j are
the hoppings. The red dashed vertical lines indicate the boundaries
between the unit cells and the blue solid vertical line is the symmetry
axis of inversion symmetry. In the lower figure, the unit cell is
redefined such that the symmetry becomes a local one. However, this
is not possible for a tight-binding model since the unit cell contains
only one half of a site at the boundaries.

For the (anti)unitary symmetry 	n, the boundary charge
can obviously not change since the Hamiltonian is invariant.
For the particle-hole or chiral symmetry Sn, each eigenstate
|ψ〉 of the Hamiltonian with energy ε has a corresponding
eigenstate Sn|ψ〉 with negative energy −ε. Therefore the
operation Sn transforms the boundary charge Q−

B (with QB ≡
QR/L

B ) from all states with negative energy to the boundary
charge Q+

B from all states with positive energy. When all states
are filled we get ρ(m) = ρ̄ = Nc giving zero boundary charge,
i.e., Q+

B + Q−
B = 0. At half-filling ρ̄ = Nc/2, the chemical

potential is located somewhere in the gap near zero energy. In
this case the boundary charge is given by QB = Q−

B mod(1),
where the integer arises from edge states contributing an
integer number to the boundary charge. As a consequence,
up to an integer, we find that the boundary charge changes
sign under Sn at half-filling. Therefore we get the following
relations:

QR/L
B

	n−→ Q̄R/L
B = QR/L

B , (41)

QR/L
B

Sn−→ Q̄R/L
B = −QR/L

B mod(1) for ρ̄ = Nc

2
. (42)

Taking these equations together with (36) and (37), we arrive
for both symmetries at the following rational quantization
values of the boundary charge

QR/L
B = ± 1

2 nρ̄ mod
(

1
2

)
, (43)

which proves our central result (1).
Equation (43) shows that the quantization of QR/L

B can
always be written as

QR/L
B = n1

1
2 ρ̄ + n2

1
2 (ρ̄ − 1), (44)

with some integers n1 and n2. As a consequence, the quan-
tization units of the boundary charge are given by 1

2 ρ̄ and
1
2 (ρ̄ − 1) in contrast to the quantization unit ρ̄ of interface

charges, see Eq. (33). Furthermore, the quantization of QR/L
B

requires certain symmetries of the bulk Hamiltonian, whereas
the quantization of QI is only related to a symmetry relation
between the lattices left and right to the interface, which are
connected by Tδn	. For the special case n = 0, one recovers
from (43) the known quantization of the boundary charge in
half-integer units [40,41] in the presence of local symmetries.

One can ask the delicate question what happens if a local
symmetry is not defined with respect to the unit cell starting
at the boundary but with respect to any choice of the unit
cell. This is equivalent to the question how the boundary
charge changes when the semi-infinite system is cut off at a
different site such that it starts with site n′ + 1 (for HR) or
ends with site n′ (for HL). According to the transformation
(27) of QR/L

B under translations this leads to a shift of QR/L
B by

±n′ρ̄ mod(1). Therefore, for systems with local symmetries
with respect to any definition of the unit cell, one can realize
all quantization values

QR/L
B = ±n′ρ̄ mod

(
1
2

)
, (45)

where the mod( 1
2 ) contribution stems from local symmetries

defined with respect to the unit cell starting at the boundary.
This provides the quantization units ρ̄ and 1

2 . In contrast,
the presence of symmetries which are nonlocal with respect
to any choice of the unit cell provides the interesting new
possibility of a realization of the quantization unit 1

2 ρ̄.
For given Z but arbitrary filling factor ν = 1, . . . , NcZ − 1,

one can also analyze the conditions if n 1
2 ρ̄ mod( 1

2 ) can lead
to new rational quantization values compared to n′ρ̄ mod( 1

2 ).
This is the case if the equation

1
2 nρ̄ = n′ρ̄ − m′ 1

2 (46)

can not be solved for any integers n′ and m′. To analyze this,
we insert ρ̄ = ν/Z and find that (46) is equivalent to

nν = 2n′ν − m′Z. (47)

For n even, this equation is solved by n′ = n
2 and m′ = 0. For

n odd and Z odd, it is solved by n′ = 1
2 (Z + n) and m′ = ν.

However, for n odd and Z even, (47) can not be solved for
ν odd. Since the equation does not change when Z and ν

are multiplied with the same integer l , we conclude that new
quantization classes occur for nonlocal symmetries if

Z = 2ql, ν = (2p − 1)l, (48)

with two integers q and p. Since 1
2 ρ̄ changes by 1

2 if ν changes
by Z , we conclude that the new quantization values of the
boundary charge due to nonlocal symmetries are given by

QB → n
2p − 1

4q
, (49)

with n odd, q = 1, 2, . . . , and p = 1, 2, . . . , q.
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III. APPLICATION TO SINGLE-CHANNEL AND
NEAREST-NEIGHBOR HOPPING MODELS

In this section, we discuss a concrete realization of the
rational quantization values of the boundary charge in the
special case of single-channel and nearest-neighbor hopping
models. We present the discussion of discrete lattice models
in Sec. III A, where we consider Weyl semimetal physics
occurring at half-filling and discuss its relevance for the
IQHE. In particular, we concentrate on the boundary charge
QR

B (denoting it in the following by QB) and study its uni-
versal properties. In Secs. III B and III C, we study their
stability against disorder and electron-electron interaction,
respectively.

A. Weyl semimetal physics at half-filling

In Refs. [88,89], the case of single-channel and nearest-
neighbor tight-binding models has been studied analytically
for any value of Z and for generic modulations of the on-
site potentials vm = hm(0) and the hoppings tm = −hm(1)
(which can all be chosen real and positive tm > 0, see Ap-
pendix A of Ref. [89]). In these references, the universal
phase-dependence of the boundary charge QB(ϕ) has been
studied for arbitrary 2π -periodic functions vm(ϕ) and tm(ϕ).
The special case

vm(ϕ) = −2V cos

(
2π

Z
m + ϕ

)
, tm(ϕ) = t (50)

has been considered in Refs. [39,87], in particular due to
the relevance for the IQHE, see the detailed discussion in
Ref. [87]. In this case, ϕ can be interpreted as the transverse
quasimomentum in a 2D quantum Hall setup [87] and Z
corresponds to the magnetic length. Whereas Ref. [87] has
discussed small filling factors ν with finite Chern number, the
particular interest in this work is the case of half-filling, ν = Z

2
and ρ̄ = 1

2 , where Z is even to open a gap. Due to (43), the
following two universal quantization classes are possible for
QB ≡ QR

B at half-filling in case certain symmetries are fulfilled

QB = 1
2 mod

(
1
2

)
or QB = 1

4 mod
(

1
2

)
. (51)

The first 1
2 class is the usual known one which occurs also

in the presence of local inversion or local chiral symmetries.
The second 1

4 class is a novel one which requires essentially
nonlocal symmetries. For half-filling, we will explain in the
following that it is possible that the quantization of QB(ϕ)
persists for all phases ϕ and Weyl semimetal physics occurs
with QB jumping by ± 1

2 at gap closing points. This is of
relevance for the IQHE. Whereas the Chern number and,
therefore, the Hall current vanishes, the boundary charge
shows an interesting quantization feature.

In Appendix E, the symmetry conditions (39) and (40) are
explicitly evaluated for the special case of single-channel and
nearest-neighbor hopping models. For the symmetry 	n =
TnU	, one obtains Um = 1 and the condition

vm = vZ−m−n+1, tm = tZ−m−n, (52)

whereas for Sn = T−nU , one finds Um = (−1)m together with

vm = −vm−n, tm = tm−n. (53)

The nonlocal chiral symmetry Sn has the advantage that it can
be fulfilled for all phases ϕ, whereas 	n leads to a rational
quantization of the boundary charge only at certain values of
ϕ. Therefore we concentrate in the following on Sn, where an
interesting application relevant for the IQHE at half-filling can
be formulated.

Applying the symmetry condition (53) twice one finds
vm = vm−2n implying that Z = 2n defines the wavelength of
the modulation which is identical to the number of sites of the
unit cell (the hopping has the wavelength Z/2). Therefore the
translation T−n = TZ/2 shifts the lattice by half of the unit cell
length, typical for nonsymmorphic symmetries. For n = Z

2
and ρ̄ = 1

2 , we get from (43) the quantization values

QB = Z

8
mod

(
1

2

)
, (54)

leading to the 1
2 class for Z = 4, 8, 12, . . . and to the novel 1

4
class for Z = 2, 6, 10, . . . .

For n = Z
2 , a concrete realization of (53) for all phases

is given by the pure potential modulation model (50) with
constant hopping. Other more complicated realizations are
also possible but do not lead to qualitative differences. This
model has the advantage that a phase shift of ϕ by 2π

Z shifts
the lattice by one site towards the boundary, i.e., QB changes
by ρ̄ mod(1) according to (26). This must be a half-integer for
ρ̄ = 1

2 . Furthermore, since QB(ϕ) is quantized for all ϕ and
since edge states crossing the chemical potential during the
shift can change QB only by an integer value, we conclude
that there must be necessarily a gap closing point in any phase
interval of size 2π

Z . Between the gap closing points QB is
quantized due to the symmetry and edge modes connecting the
gap closing points play the role of Dirac arcs, see Figs. 6(a1)
and 6(a2). Therefore we call this the Weyl case. At a gap
closing point QB jumps by ± 1

2 such that (26) is fulfilled, see
Figs. 6(b1) and 6(b2). This is also demonstrated in Figs. 6(c1)
and 6(c2), where we show the integer invariant I (ϕ), defined
by

I (ϕ) = �QB(ϕ) − ν

Z
∈ {−1, 0}, (55)

�QB(ϕ) = QB

(
ϕ + 2π

Z

)
− QB(ϕ). (56)

According to Refs. [88,89] this invariant fulfils the topological
constraint I ∈ {−1, 0} due to charge conservation of particles
and holes. We note that this property is not changed when
a gap closing point appears during the shift of the lattice by
one site. The phase dependence of the model parameters can
always be chosen such that no gap closing appears during
the shift without changing the parameters before and after the
shift, see Ref. [89].

One can also generalize the universal form of QB(ϕ),
derived in Refs. [39,87–89], to the case of gap closings. When
the gap is nonzero for all phases, the form is given by

QB(ϕ) = f (ϕ) + M− − M+
2π

ϕ + F (ϕ), (57)
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(a1)

(b1)

(c1)

(c2)

(b2)

(a2)

FIG. 6. Phase dependence of (a) band structure, (b) boundary
charge QB, and (c) invariant I (ϕ) = QB(ϕ + 2π

Z ) − QB(ϕ) − ρ̄ for
the model (50) with V = 0.5 and t = 1 at half-filling ρ̄ = 1

2 , and
Z = 4, 6 (left/right panel), calculated for a semi-infinite system. In
(a), the bands α = Z

2 , Z
2 + 1 are shown together with edge modes

connecting the gap closing points, where QB jumps by ± 1
2 . The

invariant is quantized to I ∈ {−1, 0}. Due to the nonlocal chiral
symmetry vm(ϕ) = −vm± Z

2
(ϕ), quantization of QB occurs in units

of 1
2 for Z = 4, whereas for Z = 6 we get QB = 1

4 mod(1/2). The
black symbols (mainly overlaying the lines) in (b) show the case
with random disorder for a finite system for additional staggered
onsite-disorder drawn from a uniform distribution (−0.025, 0.025]
for a finite system of Z × 105 lattice sites.

where f (ϕ) is a nonuniversal smooth 2π
Z -periodic function,

and

F (ϕ) =
∑
σ=±

Mσ∑
i=1

σ�
(
ϕ − ϕσ

i

)
(58)

describes the discrete jumps of QB by ±1 when edge states
cross the chemical potential at ϕ±

i from above or below, re-
spectively. M± denotes the total number of edge states moving
below/above the chemical potential when the phase changes
by 2π . The average slope from the linear term determines
the Chern number Cν = M− − M+ [89,112–115]. Moreover,
Eqs. (55) and (57) imply the relation

Cν = ν − sνZ, (59)

where sν = �F (ϕ) − I (ϕ) is a phase-independent integer
characteristic for each gap. This relation is equivalent to the
Diophantine equation [113–115], a central relation for the
bulk-boundary correspondence of the IQHE.

The universal form (57) remains valid in the presence of
gap closing points for the Weyl case, with the only difference
that the jumps of QB have size ± 1

2 at a gap closing since the
charge of the edge state is distributed symmetrically among
the two bands [89]. Thus Eq. (57) remains the same, we only
have to add a factor 1

2 in Eq. (58) for the terms in the sum cor-
responding to the jumps at gap closings and, correspondingly,
count only the contribution ± 1

2 to M±. As a consequence, the

Diophantine equation (59) remains also valid in the Weyl case,
but sν becomes half-integer. For example, for Fig. 6, we have
sν = 1

2 which gives with ν = Z
2 a vanishing Chern number

Cν = 0.
As shown in Ref. [87] the Hall current Ix for a 2D quantum

Hall system (with periodic boundary conditions in y direction,
described by the azimuthal direction of a cylinder topology)
along the direction x of the effective 1D system in response to
a perpendicularly applied voltage bias Vy is related to QB(ϕ)
by

Ix = − d

dt
Q(2D)

edge (t ) = − d

dt

M∑
n=1

QB

(
2π

M

(
n + �(t )

�0

))
, (60)

where Q(2D)
edge is the charge along the edge of the physical

2D system, �0 = h/e denotes the flux quantum, and Vy =
− d

dt �(t ) is generated by a time-dependent magnetic flux
�(t ) applied through the cylinder. The discrete values ky =
2π
M n describe the perpendicular quasimomentum along the
azimuthal direction of the cylinder (with M lattice sites around
the cylinder). Inserting (57) one finds that the 2π

Z -periodic
and smooth part f (ϕ) and the piecewise constant function
F (ϕ) provide a �-independent contribution to the sum [up to
discrete jumps at particular values of � from F (ϕ)]. Therefore
the Hall current probes only the linear term of (57), leading
to a quantized Hall conductance σxy in terms of the Chern
number

Ix = σxyVy, σxy = e

h
Cν . (61)

Therefore, for the Weyl case discussed above, the Hall con-
ductance vanishes.

B. Stability against disorder

A delicate question concerns the unknown function f (ϕ)
in (57). When QB(ϕ) is quantized for all ϕ we get M+ = M−
and f (ϕ) is a constant determining the quantization value.
However, when a small symmetry-breaking term in the form
of periodic disorder is added to the on-site potentials, the gap
will open at the Weyl points, and one obtains a discontinuous
jump to a finite Chern number Cν = M− − M+, see Figs. 7(a)
and 7(b) for Z = 6. The gap opens slightly and Z

2 edge states
move either from the valence to the conduction band or
vice versa, giving rise to two different Chern numbers ± Z

2 ,
with a corresponding jump of the Hall current. In addition
to the linear term Cν

2π
ϕ, also the functions f (ϕ) and F (ϕ)

jump discontinuously such that all three terms on the right
hand side of Eq. (57) are unstable against small symmetry-
breaking terms for all phases. However, the boundary charge
determined by the sum of all three terms remains a stable
quantity between the jumps as shown in Fig. 7(c). This shows
that the quantization values of QB(ϕ) at fixed ϕ between
the gap closing points are well-defined and stable quantities
accessible by experiments for 1D systems.

In Fig. 6, we add an analysis of the effects of nonperi-
odic disorder in the panels showing QB(ϕ). We overlay the
results obtained without disorder (lines) with those calculated
in the presence of a quenched onsite disorder (symbols) of
quite moderate strength d/t = 0.05. The two results mainly
overlap, besides of at values of ϕ close to gap closings where
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(a) (b) (c)

FIG. 7. (a) and (b) show the phase-dependence of the band structure and the edge states for Z = 6 and the same parameters as in Fig. 6
but with additional periodic disorder for the on-site potentials on the scale 0.2 (which is chosen rather strong to visualize the gap openings),
calculated for a semi-infinite system. As a result, three edge states run either from the valence to the conduction band or vice versa. In (c), the
phase-dependence of the boundary charge QB(ϕ) is shown for the two disordered configurations and compared to the clean case, demonstrating
stability of the quantization of QB between the jumps.

small energy shifts and gap openings induced by the disorder
might change the value of quantization mod(1), similar to the
effects of weak periodic disorder as shown in Fig. 7(c) [where
the disorder strength is chosen much stronger to visualize the
effects on the spectrum in Figs. 7(a) and 7(b)]. Therefore
the overall quantization of 1/2 and 1/4 for Z = 4 and 6,
respectively, remains perfectly intact mod(1).

C. Robustness of quantization in presence
of electron-electron interaction

Finally, we study the robustness of the quantization with
respect to adding short-ranged electron-electron interaction
at half-filling (μ = 0 in the noninteracting case above). We
add the particle-hole symmetric version of Eq. (14) as the
interaction

Vee = u
∑

m

(
ρ̂m − 1

2

)(
ρ̂m+1 − 1

2

)
(62)

to the Hamiltonian and study the resulting interacting quan-
tum many-body system using DMRG. This particle-hole sym-
metric formulation is chosen for convenience of implemen-
tation only. The results for ϕ being at the maximal single
particle gap are summarized in Fig. 8 for Z = 4 and 6 and the
other parameters as in Fig. 6. As shown the quantization of QB

FIG. 8. Stability of the rational quantization of the boundary
charge upon inclusion of nearest neighbor interaction. The figure
shows the boundary charge QB for the same parameters (but finite
size N = 1000) as used in Fig. 6 at two values of ϕ = π/4 and 0,
where the gap is maximal, for Z = 4 and 6, respectively.

remains perfectly intact upon including this local interaction
up to rather large values of the interaction strength u.

IV. LOW-ENERGY THEORY

In this section, we discuss the low-energy theory in terms
of a Dirac model in 1 + 1 dimensions, following closely
the treatment in Refs. [39,87,116], where low-energy models
have been derived from lattice models for the special case
of potential modulation with constant hopping. Here, we
discuss the general derivation of Dirac models and present
an exact formula for the complex gap parameter entering the
low-energy model. We discuss in detail the restrictions for
the phase of the gap parameter in the presence of nonlocal
symmetries or for the special case of half-filling. We present
exact formulas for the boundary and interface charge for the
noninteracting Dirac model and prove the consistency with
our general framework. Furthermore, we discuss the stabil-
ity under short-ranged electron-electron interaction by using
the bosonization method. Whereas the gap is significantly
renormalized by interactions [116–119], it turns out that the
boundary charge is insensitive to the gap size but depends only
the phase of the gap parameter in a linear fashion which is
not influenced by interactions. Since the low-energy model is
most conveniently written in continuum space, we explicitly
write the lattice spacing a at the appropriate places and do not
set it to one in this section.

A. Noninteracting Dirac model

We first split the noninteracting single-channel nearest-
neighbor hopping model with on-site potentials vm and hop-
pings −tm into two parts by writing tm = t + δtm

Hbulk = H0 + H ′, (63)

H0 = −t
∑

m

c†
m+1cm + H.c., (64)

H ′ =
∑

m

vmc†
mcm −

∑
m

δtm(c†
m+1cm + H.c.). (65)
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H ′ describes the external modulation which, just for illustra-
tion (other cases can be treated analogously), we take to be
harmonic with wavelength λex = Za

vm = −2δv cos(kexma + ϕv ), (66)

δtm = −δt cos(kexma + ϕt ), (67)

where kex = 2π
λex

is the wave vector of the external modulation.
H0 can be easily diagonalized in terms of plane waves |k〉 =√ a

2π

∑
m eikma|m〉, leading to

H0 =
∫ π/a

−π/a
dk ε

(0)
k c̃†

k c̃k, (68)

with

ε
(0)
k = −2t cos(ka), −π

a
< k <

π

a
, (69)

c̃†
k =

√
a

2π

∑
m

eikmac†
m. (70)

In the representation |k〉 of the exact single-particle eigen-
states of H0, the matrix elements of H ′ can be straightfor-
wardly calculated and one obtains

〈k|H ′|k′〉

= δ(k − k′ − kex)

{
−δveiϕv + δt

2
(e−ika + eik′a)eiϕt

}

= δ(k − k′ + kex)

{
−δve−iϕv + δt

2
(e−ika + eik′a)e−iϕt

}
.

(71)

These matrix elements lead to Z − 1 gap openings labeled by
ν = 1, 2, . . . , Z − 1 at wave vectors ±k(ν)

F with 2k(ν)
F = νkex.

The gaps are generated in ν ′th order perturbation theory in H ′
with ν ′ = min{ν, Z − ν} [120] and are of the order

|�ν | ∼ t

(
max{|δv|, |δt |}

t

)ν ′

. (72)

In the following, we will concentrate on a certain gap with
index ν and write kF ≡ k(ν)

F and � ≡ �ν for brevity. Our
aim is to develop an effective low-energy model for energies
close to the Fermi energy εF = ε

(0)
kF

= −2t cos(kF a). Using
Brillouin-Wigner perturbation theory, the coupling between
the states close to the two Fermi points ±kF can be described
by an effective Hamiltonian

H ′
eff = P

(
H ′ + H ′Q

1

εF − QHbulkQ
QH ′

)
P, (73)

where P projects on the low-energy sector and Q = 1 − P.
It is then straightforward to see that for |k|, |k′| � kF one
obtains a coupling between the two Fermi points via ν ′ − 1
virtual intermediate states described by the matrix element

〈kF + k|H ′
eff| − kF + k′〉 = �δ(k − k′), (74)

where

� = |�|eiα (75)

is a complex gap parameter with negligible k dependence.
Using Eq. (71), one finds after a straightforward calculation

� ≡ �ν =

⎧⎪⎨
⎪⎩

�−
ν for ν < Z

2

�+
ν for ν > Z

2

�−
ν + �+

ν for ν = Z
2

, (76)

with

�+
ν = −(−1)Z−ν�−

Z−ν | ϕv→−ϕv
ϕt →−ϕt +kex+π

(77)

and

�−
ν =

ν−1∏
s=1

1∣∣εF − ε
(0)
−kF +skex

∣∣
ν∏

l=1

{
−δveiϕv

+ δt

2
[ei(kF −lkex )a + e−i(kF −lkex )ae−ikexa]eiϕt

}
. (78)

Most importantly, the gap parameter �Z/2 at half-filling (only
possible for Z even) is determined by an interference of two
processes. This will become important for the quantization
values of the boundary charge (see below).

Splitting the field operator ψ (ma) ≡ 1√
a
cm in slowly vary-

ing right and left moving fields R(x) and L(x) via

ψ (x) = R(x)eikF x + L(x)e−ikF x, (79)

and inserting this decomposition in the effective Hamiltonian
Heff = H0 + H ′

eff, one finds after neglecting strongly oscillat-
ing terms the final result for the low-energy Hamiltonian in
the form of a Dirac Hamiltonian in 1 + 1 dimensions

Heff =
∫

dkψ†
k
{vF kσz + |�| cos ασx − |�| sin ασy}ψk

,

(80)

where vF = 2ta sin(kF a) and

ψ
k

= 1√
2π

∫
dx e−ikxψ (x) , ψ (x) =

(
R(x)
L(x)

)
. (81)

For equal phases ϕv = ϕt = ϕ, we can directly see from
(77) and (78), that the phase α of the gap parameter is a linear
function of ϕ for ν �= Z

2

α =
{

νϕ + const for ν < Z
2

(ν − Z )ϕ + const for ν > Z
2

, (82)

where the constant term is nonuniversal but independent of ϕ.
As we will see in Sec. IV C, this leads to a universal linear
behavior of the boundary charge as a function of ϕ.

For the case of half-filling ν = Z
2 (only possible for Z even)

it is more complicated due to the interference effect from two
paths. If we take potential modulation only, i.e., δt = 0, as
considered in Sec. III A, we get from (77) and (78)

�−
Z/2 = |�−

Z/2|(−1)Z/2ei Z
2 ϕ, (83)

�+
Z/2 = −|�−

Z/2|e−i Z
2 ϕ, (84)

which gives for the sum

�Z/2 = |�−
Z/2|
{

2i sin
(

Z
2 ϕ
)

for Z
2 even

−2 cos
(

Z
2 ϕ
)

for Z
2 odd

. (85)
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Therefore, due to the interference of the two paths, one obtains
for the phase α at half-filling an interesting phase-locking
effect

α =
{

π
2 + π�[− sin( Z

2 ϕ)] for Z
2 even

π�
[

cos
(

Z
2 ϕ
)]

for Z
2 odd

, (86)

which, as we will see in Sec. IV C, explains the pinning of the
boundary charge to certain quantization values.

Finally, we analyze the restrictions for the values of α in
the presence of the nonlocal symmetries 	n or Sn discussed
in Sec. II B 3. This can be done directly by using the general
definition of � via (74) without using some special form for
vm and tm. As shown in Appendix E, the two symmetries act
on the lattice sites as

	n|m〉 = |Z − m − n + 1〉, (87)

Sn|m〉 = (−1)m|m − n〉, (88)

which implies the following transformation in quasimomen-
tum space:

	n|k〉 = eik(Z−n+1)a|−k〉, (89)

Sn|k〉 = eik(n+π )a|k + π〉. (90)

Together with (74) this implies for the unitary symmetry 	n

and the chiral symmetry Sn the following condition for the gap
parameter:

	n : � = e−2ikF (Z−n+1)a�∗, (91)

Sn : � = −e−2ikF na�∗. (92)

Using 2kF a = νkexa = 2πρ̄ and, for the symmetry Sn (which
requires half-filling), kF a = π

2 , we get for both symmetries
the following pinning of α:

α = (n − 1)πρ̄ mod(π ). (93)

As shown in Sec. IV C, this will prove consistency of the low-
energy approach with the quantization of the boundary charge
according to our general framework.

B. Interacting Dirac model

Let us now proceed to include electron-electron interaction
effects within the short-ranged density-density interaction
form (14). Using standard bosonization techniques [121–123],
we find within the low-energy model

H = Heff + Vee

= v

2

∫
dx

{
K[	̂(x)]2 + 1

K
[∂xϕ̂(x)]2

}

+ (−1)p |�|
2πa

∫
dx cos(

√
4πϕ̂(x) − α − π/2), (94)

where the Luttinger liquid parameter K and the renormalized
Fermi velocity v are defined by

K =
(

1 + 2u1 − u2

πvF

)−1/2

, v = vF /K, (95)

with u1 = a
∑

m u(m) and u2 = a
∑

m u(m)e2ikF ma corre-
sponding to forward and backward scattering processes,
respectively. Here, u(m − m′) describes the short-ranged

Coulomb interaction between the densities at site m and m′,
see Eq. (14). 	̂(x) = ∂x[ϕ̂+(x) − ϕ̂−(x)] and ϕ̂(x) = ϕ̂+(x) +
ϕ̂−(x) are canonically conjugate momentum and field vari-
ables. The chiral boson fields ϕ̂±(x) are related to the right
and left movers ψ̂+(x) ≡ R(x) and ψ̂−(x) ≡ L(x) via

ψ̂p(x) = 1√
4πa

eip
√

4πϕ̂p(x), (96)

where 1
a is used for the momentum cutoff (or v/a for the

high-energy cutoff). A subtlety is the phase shift by π
2 in the

cosine term of (94) and the undetermined prefactor (−1)p.
This is related to the commutator [ϕ̂+(x), ϕ̂−(x′)] = i

4 (2p +
1) which arises from the zero mode phases to ensure the
anticommutation relation of left and right movers. Here, the
value p is an arbitrary integer which will be finally determined
by comparing the boundary charge with the exact solution for
the noninteracting Dirac model.

In order to get an insight into the physics of the interacting
system, it is instructive to perform a perturbative renormal-
ization group analysis [116] using standard operator product
expansion techniques [122]. Reducing the high-energy cutoff
� (with intial value �0 = v/a), we obtain the following flow
equations for the gap |�| and the Luttinger parameter K :

d|�|
d�

= (1 − K )|�|, d� = −d�

�
, (97)

dK

d�
= −c

a2
�K2|�|2
2πv2

, (98)

with a� = v/� and some unimportant constant c ∼ O(1),
which depends on the RG procedure. As one can see, for
repulsive interactions (K < 1), the cosine term in (94) is a
relevant perturbation and the system flows into the gapped
phase while the interaction grows under the RG. This fact
allows one to conclude that the fluctuations of the cosine term
are getting effectively frozen in the renormalized theory and
is of crucial importance in the determination of the boundary
charge in the interacting theory in the following. Although it
seems that the gap grows to infinity under the RG flow (with
K shrinking to zero), we note that the flow equations can only
be trusted until the cutoff � reaches a critical scale �c ∼ |�|c
(or ac ∼ v/|�|c), with |�|c = |�|�=�c , at which the flow has
to be truncated.

At half-filling kF a = π
2 , in principle, one also has to con-

sider the umklapp scattering process in the bosonized Hamil-
tonian. However, the umklapp term is RG relevant only for
strong two-particle interactions with K < 1/2 [123]. Bearing
this in mind, we are not going to focus on the umklapp
process in the following by confining ourselves to moderate
electron-electron interactions.

C. Boundary and interface charge

Let us turn to the discussion on the boundary and in-
terface charge quantization in the low-energy description.
We start with the boundary charge QB of the noninteracting
Dirac model on the half-line x > 0 with vanishing boundary
condition ψ (0) = R(0) + L(0) = 0, given by

Heff =
∫ ∞

0
dx ψ†(x){vF (−i∂x )σz

+ |�| cos ασx − |�| sin ασy}ψ (x). (99)
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In order to study the quantization of QB, one has to construct
the single-particle eigenstates of the Hamiltonian. As shown
in Appendix F, there are two distinct types of admissible
eigenstates. First of all, there are two scattering states (labeled
by the nonnegative momentum k) living at energies εk,± =
±

√
v2

F k2 + |�|2, corresponding to conduction and valence
bands, respectively. In addition, under the condition sin α >

0, inside the gap, there exists a single edge state sitting
at an energy −|�| cos α [116]. Assuming that the chemical
potential of the system lies at the bottom of the conduction
band, we show in Appendix F that the respective contributions
of the edge and scattering states are

Qedge
B (α) = �0<α<π ≡

{
1 for 0 < α < π

0 otherwise , (100)

Qscatt
B (α) = ln(−eiα )

2π i
− 1

4
. (101)

Combining both contributions, one immediately arrives at the
following universal result:

QB(α) = α

2π
+ 1

4
(102)

for −π < α < π , and periodic continuation to the other inter-
vals. For arbitrary position of the chemical potential in the gap
one has to use the result Qedge

B (α) = θ (μ + |�| cos α)�0<α<π

for the edge state charge, i.e., one has to add the integer term
−θ (−μ − |�| cos α)�0<α<π to (102). This proves Eq. (6)
stated in the introduction.

Let us emphasize that the low energy result accurately
reproduces the conclusions based on the microscopic theory.
For instance, consider the case ν ≷ Z

2 , ϕv = ϕt = ϕ, so that
according to (82), α = ±νϕ + const, leading to the universal
linear behavior of QB as a function of ϕ [39,87–89]. At half-
filling ν = Z

2 , where α is pinned to the values given by (86),
one arrives at the following quantization of QB

QB(ϕ) =
{

1
2 + 1

2�
(− sin

(
Z
2 ϕ
))

, for Z
2 even

1
4 + 1

2�
(

cos
(

Z
2 ϕ
))

, for Z
2 odd

, (103)

again showing complete agreement with the microscopic pre-
diction (54). Finally, in the presence of the symmetries 	n or
Sn, where α is pinned to α = (n − 1)πρ̄ mod(π ) according to
(93), one finds

QB = n 1
2 ρ̄ − 1

2 ρ̄ + 1
4 mod

(
1
2

)
. (104)

Comparing with the exact solution (43) there is a differ-
ence given by the constant − 1

2 ρ̄ + 1
4 which vanishes only

at half-filling. This difference can be traced back to the fact
that the Dirac model contains an infinite set of high-energy
states which are unphysical. Interestingly, this constant can
be shown to be given by the negative boundary charge of
the original lattice model H0 on a half line at zero gap, see
Eq. (G4) in Appendix G. Thus we get the following relation
between the boundary charge of the Dirac model and the exact
one

QDirac
B = Qexact

B − Qexact
B |�=0. (105)

Next we study the interface charge quantization for the
noninteracting Dirac model. Now the diagonalization problem

is formulated on the entire real line, however, α is now allowed
to be a function of position α = α(x) with Hamiltonian

Heff =
∫

dx ψ†(x){vF (−i∂x )σz

+ |�| cos[α(x)]σx − |�| sin[α(x)]σy}ψ (x). (106)

In particular, we make the following choice α(x) = �(x)αR +
�(−x)αL and define δα = αR − αL. As shown in Ap-
pendix H, one concludes that there are two different types of
states to consider, the scattering states, as well as the in-gap
states localized at the interface. The bound state is present for
sin(δα/2) > 0 with energy −|�| cos(δα/2) and contributes
unity to the total interface charge (if occupied). As opposed to
the semi-infinite problem, the valence and conduction (εk,± =
±

√
v2

F k2 + |�|2) band states are now twofold degenerate. In-
deed, for a given energy, one always has two distinct scattering
channels, the one where particles scatter from left to right,
and the opposite one, where particles scatter from right to
left, and hence the degeneracy. Assuming that the chemical
potential is located at the bottom of the conduction band, we
show in Appendix H that the interface charge follows the
Goldstone-Wilczek formula

QI = δα

2π
(107)

for δα ∈ (0, 2π ). Values of QI on other intervals are to be
found from its periodic dependence on δα. Similiar to the
boundary charge one has to add the integer term −θ (−μ −
|�| cos(δα/2))�0<δα/2<π for a chemical potential with arbi-
trary position in the gap.

Let us now proceed by studying the effects of the electron-
electron interaction on the quantization of the boundary
charge. We take the bosonized Hamiltonian (94) on the semi-
infinite part x > 0, together with the boundary condition

0 = ψ (0) = 1√
4πa

(ei
√

4πϕ̂+(0) + e−i
√

4πϕ̂−(0) ). (108)

This requires i
√

4πϕ̂−(0) = iπ (2q − 1) − i
√

4πϕ̂+(0) with
some integer q, leading to the following boundary condition
for ϕ̂(0) = ϕ̂+(0) + ϕ̂−(0) (see also Refs. [116,124])

ϕ̂(0) = 1

2
√

π
(2q − 1)π. (109)

As we have seen in Sec. IV B, the gap |�| increases under
the RG flow, effectively freezing the quantum fluctuations of
ϕ̂ such that the cosine term in (94) is minimized in the bulk.
This leads to the following asymptotic value

ϕ̂(∞) = 1

2
√

π

(
α + π

2
− pπ + (2s − 1)π

)
, (110)

with another integer s. With the help of bosonization identi-
ties, we deduce that the boundary charge may be related to the
difference of the values of ϕ̂(x) at x = ∞ and 0:

QB = 1√
π

∫ ∞

0
dx〈∂xϕ̂(x)〉 = 1√

π
[ϕ̂(∞) − ϕ̂(0)]. (111)

Inserting (109) and (110), we thus conclude

QB = α

2π
+ 1

4
− 1

2
p mod(1). (112)
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Comparing this result with the exact solution (102) with-
out interaction we find that we have to choose p = 0. This
proves the stability of the boundary charge under short-ranged
electron-electron interaction within the low-energy model.

A similar calculation may be done in the case of an
interface charge quantization by using an arbitrary function
α(x) describing the interface. In this case, we get

QI = 1√
π

∫
dx〈∂xϕ̂〉 = 1√

π
[ϕ̂(∞) − ϕ̂(−∞)]. (113)

By using the same procedure as above, we arrive at the
following result:

QI = α(∞) − α(−∞)

2π
mod(1). (114)

which in the case of α(x) = αR�(x) + αL�(−x), reduces to
the noninteracting result, and thus again shows the robustness
of the interface charge quantization. A similiar expression has
been found in Ref. [31].

V. SUMMARY AND OUTLOOK

For generic 1D insulators, we have provided in this work a
complete analysis of symmetry conditions to realize rational
quantizations of the boundary charge. We obtained two inter-
esting results: (a) any rational quantization p

q can be realized
if nonlocal symmetries involving translations are taken into
account. (b) Besides the quantization unit 1

2 known from local
symmetries we identified a new quantization unit 1

2 ρ̄, where
ρ̄ is the average charge per site. This has to be contrasted to
the known quantization unit ρ̄ for interface charges.

Both the quantization of the boundary and the interface
charge were shown to follow straightforwardly from the trans-
formation laws of the boundary charge under translations and
local inversion. These fundamental principles are physically
very intuitive and were rigorously related to the intriguing
property of insulators that local perturbations lead only to
local charge redistributions. Therefore all our results were
proven to be stable against static random disorder and short-
ranged electron-electron interaction. We demonstrated this
explicitly by using exact diagonalization, DMRG methods,
and bosonization calculations. In addition, the stability of the
quantization of the boundary charge was recently analysed
via functional renormalization group (fRG) studies for the
interacting Rice-Mele model and the same conclusions were
found [125]. Besides the boundary charge also other quantities
were studied with fRG for this model like the full density
profile and the precise form of edge states, where interaction
effects have a more subtle effect. In the future, it will be of
interest to study also other quantities like density-density cor-
relation functions in the presence of a boundary. In addition,
fluctuations of the boundary charge are of relevance. While
the overall size of fluctuations is expected to be small [33–39]
when the gap is finite, it will be of interest to reveal universal
properties of the fluctuations and to study their topological
nature [126].

In addition to the general framework we have provided
in this work an interesting application to identify a novel
quantization class e/4 in the special case of single-channel
and nearest-neighbor hopping models at half-filling. As a

function of the phase variable controlling the offset of the po-
tential modulation we found Weyl physics close to gap closing
points and demonstrated the stability of the quantization of the
boundary charge in contrast to the Hall current. We suggest
such systems to be realizable in cold atom systems [91,92],
in carbon based materials [93,94] or phononic crystals [101].
Other promising candidates could be quantum dot arrays as
outlined in Ref. [39], where control over all model parameters
is possible. As shown in Appendix I, the quantization of the
boundary charge is already visible for an array size of ∼20–30
dots, which is within experimental reach.

As shown in Refs. [39,87–89] the transformation law of
the boundary charge under translations is also responsible for
the quantization of the average linear slope of the boundary
charge which is of fundamental importance for the under-
standing of the integer quantum Hall effect [87]. For a finite
system of size commensurable with the unit cell size, it was
found in Ref. [39] that the sum of the boundary charges at
the left and right end of the system is zero (up to an integer).
This is equivalent to the result proven rigorously in this work
that the boundary charge changes sign under local inversion.
The fact that the transformation laws are also responsible for
rational quantization values of the boundary charge demon-
strates the topological nature of the boundary charge and its
usefulness for the characterization of topological insulators.
This is of particular advantage compared to other topological
indices, since the transformation laws are perfectly valid in
the presence of disorder and interactions, as demonstrated in
the present work.

Of further interest is the specification of the unknown in-
tegers in the transformation laws. They are related in a subtle
way to bound states occurring at boundaries and interfaces.
Therefore their knowledge is of importance to establish a
link between the boundary charge and the appearance of
bound states. This question has been analysed recently in
Refs. [88,89] for the special case of noninteracting single-
channel and nearest-neighbor hopping models. If only one
band is occupied (i.e., ρ̄ = 1

Z ) it was shown that the difference
(n − n′) 1

Z − (QR
B,n − QR

B,n′ ) is a quantized topological index
related to the winding number of the gauge-invariant phase
difference of the Bloch wave function between site m = n and
m = n′. The same index describes the quantity (n − n′) 1

Z +
(QL

B,n−1 − QL
B,n′−1). In addition, it was found that the sum of

the boundary charges left and right to a common boundary is
given by the winding number of the phase difference of the
Bloch wave function between the first and last site of the unit
cell starting at the boundary [127]. As a result, the topological
index defined via the winding number of the phase difference
of the Bloch wave function between different sites has a direct
physical meaning and controls the transformation laws of the
boundary charge in a unique way. Therefore it will be of high
interest in the future to find analogous rules for multichannel
systems via non-Abelian versions of these winding numbers
[128].

The framework developed in the present work can be
straightforwardly generalized to other systems with a con-
served quantity like, e.g., the boundary spin occurring in
superconducting systems [129] or spin systems [130]. The
underlying foundation for the transformation laws of the
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boundary charge is charge conservation and the presence of a
gap. Therefore, if the spin in a certain direction is a conserved
quantity analogous quantizations of the boundary spin are ex-
pected for insulating materials in the presence of symmetries.
The same applies for the quantization at interfaces. Moreover,
via dimensional reduction, we expect our results to be also of
relevance for higher-dimensional systems.

Finally, looking toward an application of the developed
framework to realistic materials, it would be interesting to
study in future how the symmetry constraints affect spin and
orbital degrees of freedom, to include long-range hoppings,
and to introduce self-consistency into the treatment of the
charge distribution near the boundary by including a spatial
modulation of the tight-binding parameters in its vicinity.
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APPENDIX A: LOCAL VERSUS NONLOCAL
SYMMETRIES

In this Appendix, we provide a summary of our conven-
tions to distinguish between local and nonlocal symmetries.
Although this being standard (see, e.g., Ref. [60]), conven-
tions sometimes differ in the literature and the material might
be helpful for readers not so familiar with the precise defini-
tions of the various symmetries.

For a given Hamiltonian H , there are four kinds of sym-
metries, depending on whether the symmetry operation com-
mutes/anticommutes with H and whether it is unitary or
antiunitary

UHU † = H, SHS† = −H, (A1)

T HT † = H, CHC† = −H. (A2)

Here, U and S are unitary operators, whereas T and C
are antiunitary operators. S is called a chiral symmetry, T
a time-reversal symmetry, and C a particle-hole (or charge
conjugation) symmetry. The antiunitary symmetries T and
C consist of a combination of unitary operations UT and
UC with complex conjugation K : T = UT K and C = UCK .
The operation K of complex conjugation requires a basis
in which it is defined. Here, we take always the real-space
representation in terms of |mσ 〉, where m is the lattice site
index and σ the channel index.

To distinguish local from nonlocal symmetries one needs
to specify the unit cell and write the total Hilbert space as a
direct product of the space within the unit cell (labeled by the
site index j = 1, . . . , Z and the channel index σ = 1, . . . , Nc

for each site) and the space of all unit cells labeled by the
integer n. In the 1-particle subspace, the tight-binding model
(7) can then be alternatively written as

H =
∑
n,τ

h(τ ) ⊗ |n + τ 〉〈n|, (A3)

where h(τ ) are ZNc × ZNc matrices describing the coupling
of unit cell n with unit cell n + τ (the lattice site index m used
in (7) is related to n and j by m = Z (n − 1) + j; note that τ

has a different meaning compared to δ used in (7), the same
applies for the symbol h). A local symmetry is then defined by
a symmetry with respect to the Hamiltonian h(τ ) (i.e., it acts
only within the space of a single unit cell) and, in addition, is
independent of τ

Uh(τ )U † = h(τ ), Sh(τ )S† = −h(τ ), (A4)

T h(τ )T † = h(τ ), Ch(τ )C† = −h(τ ). (A5)

Using the Fourier transform h̃(k) =∑τ h(τ )e−ikτ , with real
quasimomentum −π < k < π , this can also be written as

Uh̃(k)U † = h̃(k), Sh̃(k)S† = −h̃(k), (A6)

T h̃(−k)T † = h̃(k), Ch̃(−k)C† = −h̃(k). (A7)

Within our convention, a nonlocal symmetry can not be
written in this form. There are three possibilities. (1) The
nonlocal symmetry can be written as a local one by taking
another choice of the unit cell. (2) The nonlocal symmetry
acts within the space of a single unit cell but depends on τ

(or, equivalently, on the quasimomentum k). (3) The nonlocal
symmetry does not act within the space of a single unit cell
whatever choice one takes for the unit cell, i.e., can only be
written with respect to the total Hamiltonian H . For n �= 0,
the symmetries 	n and Sn defined in Eq. (35) are nonlocal
symmetries within our definition. Examples for cases (1) and
(2) are discussed in the paragraph following Eq. (40) via
special cases for the symmetry 	n. The case (1) is discussed
extensively at the end of Sec. II B 3 when the local symmetries
	0 or S0 are present but not with respect to the unit cell
starting at the boundary of the semi-infinite system. For n �= 0,
the symmetry Sn is an example for case (3).

APPENDIX B: STABILITY OF NSP: DMRG ANALYSIS

In this Appendix, we analyze the influence of static random
disorder and short-ranged electron-electron interaction on the
boundary and interface charge by using exact diagonalization
and DMRG. For particular examples we demonstrate that the
interface charge (22) is independent of the interface coupling
VI (up to an integer), and we show that Eqs. (26) and (31) for
the boundary charge are generically valid.

We start with the interface charge and demonstrate in
Figs. 9 and 10 that Eq. (22) holds even in the presence of
random disorder as well as short-ranged electron-electron
interaction, respectively. We consider an interface of the fol-
lowing form: Take initially two decoupled chains of the form
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(a) (b)

FIG. 9. Stability of Eq. (22) with respect to random disorder. The
figure shows QI,s0 − QL

B,0 − QR
B,s for the same parameters as used

in the left column (Z = 4) of Fig. 6 at ϕ = π/4, where the gap
is maximal (but at finite size N = 1000). The relative shift of the
chains left and right to the interface are (a) s = 0 and (b) 1. We take
half-filling instead of μ = 0 here. Random disorder drawn from a
uniform distribution [−d/2, d/2) is added to the onsite potentials
and p describes changes to the interface properties (see main text
for details). As the properties of the interface are swept through
QI,s0 − QL

B,0 − QR
B,s only changes mod(1).

as defined by Eq. (50). We want to include changes where the
potential form of the right chain is shifted in the variable ϕ

with respect to the left one by an integer multiple of 2π
Z . This

means ϕ → ϕ + s 2π
Z , which effectively shifts the right lattice

by s sites compared to the left one. In Eq. (22), this means that
n = s and n′ = 0.

To define a single parameter p, which changes the inter-
face’s properties continuously, we consider the link between
the rightmost site of the left lattice to the leftmost site of the
right lattice to be tlink = |p|/2 and add an onsite potential of
size p to both of these sites. Therefore p = 0 is the decoupled
case of two chains without an additional onsite potential at
the edge and for negative p charges tend to get trapped at the
interface, while for positive p they are pushed out. We add a
quenched disorder following Eq. (15) for the results in Fig. 9

(a) (b)

FIG. 10. Stability of Eq. (22) with respect to interactions. The
figure shows QI,s0 − QL

B,0 − QR
B,s for the same parameters as used

in the left column (Z = 4) of Fig. 6 at ϕ = π/4, where the gap is
maximal (but at finite size N = 200 and with larger V/t = 1.2). The
relative shift of the chains left and right to the interface are (a) s = 0,
and (b) s = 1. We take half-filling instead of μ = 0 here. p describes
changes to the interface properties (see main text for details). As the
properties of the interface are swept through QI,s0 − QL

B,0 − QR
B,s only

changes mod(1).

(a) (b)

FIG. 11. Stability of Eqs. (26) and (31) with respect to (a) ran-
dom disorder and (b) interaction. We work at half filling such that
ρ̄ = 1/2. QR

B,1 − QR
B,0 = ρ̄ mod(1) is shown to demonstrate Eq. (26),

while QL
B,0 + QR

B,0 = 0 mod(1) illustrates Eq. (31). The parameters
are the same as in Fig. 9.

and a electron-electron interaction following Eq. (62) for the
results in Fig. 10. Since we concentrate on nearest-neighbor
interaction we additionally scale the interaction over the inter-
face bond by p, such that p = 0 is the limit of two decoupled
chains. Clearly Eq. (22) remains valid in both cases.

Next we study the influence of static random disorder
and short-ranged electron-electron interaction on the trans-
formation laws (26) and (31) of the boundary charge under
translations and local inversion, see Figs. 11(a) and 11(b). Up
to rather large values of the disorder and the electron-electron
interaction both transformations laws remain perfectly valid,
as expected from the NSP.

APPENDIX C: STABILITY OF NSP:
ONE-CHANNEL SYSTEMS

In this Appendix, we demonstrate the validity of Eq. (22)
(with n = n′ = 0) for a model of two noninteracting single-
channel nearest-neighbor chains coupled with each other via
a tunable hopping amplitude. It is explicitly shown that (22)
holds for any strength of the link.

Let us consider the Hamiltonian of the infinite chain H =
HR + HL + VI consisting of the three parts

HR =
∞∑

n=1

{|n〉〈n| ⊗ h(0) + |n + 1〉〈n| ⊗ h(1)

+ |n〉〈n + 1| ⊗ h(−1)}, (C1)

HL =
0∑

n=−∞
{|n〉〈n| ⊗ h(0) + |n〉〈n − 1| ⊗ h(1)

+ |n − 1〉〈n| ⊗ h(−1)}, (C2)

VI = λ[|n = 1〉〈n = 0| ⊗ h(1) + |n = 0〉〈n = 1| ⊗ h(−1)],

(C3)

which describe the right semi-infinite chain, the left semi-
infinite chain, and the tunneling between them, respectively.
Here, in contrast to the lattice site index m, the index n
enumerates unit cells. Both HR and HL describe the lattices
with the same structure of a unit cell, which is encoded
in h(0) =∑Z

j=1 v j | j〉〈 j| −∑Z−1
j=1 t j (| j〉〈 j + 1| + | j + 1〉〈 j|),

h(1) = −tZ | j = 1〉〈 j = Z|, and h(−1) = h†(1), i.e. charac-
terized by Z sites j = 1, . . . , Z per unit cell, a single orbital
(channel) per site, and by the same values for hoppings t j
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and onsite potentials v j . The tunneling amplitude λtZ between
the two subsystems is quantified by the real-valued parameter
λ � 0. Its special values λ = 0 and 1 correspond to the cases
of the two decoupled semi-infinite chains and the transla-
tionally invariant infinite chain, respectively. A restoration of
the translational symmetry in the latter case is guaranteed by
the perfect matching of the unit cells touching each other at
the interface.

Due to the same structure, the Hamiltonians HR and HL

appear to be isospectral, and their extended eigenstates can be
therefore labeled by the same band index α and quasimomen-
tum k on the both sides from the interface. Moreover, these
quantum numbers can be also used for a construction of scat-
tering eigenstates of the coupled system, since eigenenergies
ε

(α)
k of the extended states remain independent of λ, and they

can be ultimately evaluated from the bulk Hamiltonian, i.e., at
λ = 1. On the basis of this observation, we make the following
ansatz for the two distinct scattering eigenstates additionally
labeled by either r or l:

ψ
(α,r)
k (n, j) = �n�0√

2π

[
χ

(α)
k ( j)eikn + r (α)

k χ
(α)
−k ( j)e−ikn

]
+ �n�1√

2π
t (α)
k χ

(α)
k ( j)eikn, (C4)

ψ
(α,l )
k (n, j) = �n�1√

2π

[
χ

(α)
−k ( j)e−ikn + r′

k
(α)χ

(α)
k ( j)eikn

]
+ �n�0√

2π
t ′
k

(α)χ
(α)
−k ( j)e−ikn, (C5)

with k ∈ [0, π ]. Both ψ
(α,r)
k and ψ

(α,l )
k as well as the bulk

Bloch states χ
(α)
±k correspond to the eigenenergy ε

(α)
k . In the

following, we focus on the band α and omit the band index
for brevity.

Inserting the ansatz (C4) and (C5) into the eigenvalue
problem, we establish the scattering matrix

Sk =
(

tk r′
k

rk t ′
k

)
. (C6)

Its components read

tk = t ′
k = λ

e2iφk − 1

e2iφk − λ2
, (C7)

rk = λ2 − 1

e2iφk − λ2
e2iϕk (Z ), (C8)

r′
k = λ2 − 1

e2iφk − λ2
e2iφk e−2iϕk (Z ), (C9)

where φk = ϕk (Z ) − ϕk (1) − k is a gauge-invariant phase dif-
ference expressed in terms of the gauge-dependent phases
ϕk ( j) of the complex-valued components χk ( j). By a direct
calculation one can confirm the unitarity property S†

k Sk = 1,
which implies both the orthogonality of ψ

(α,r)
k and ψ

(α,l )
k as

well as their proper normalization.
The interface charge Q(α)

I associated with the band α

consists of the Friedel part Q(α)
F and the polarization part Q(α)

P

by using the following splitting based on Eq. (18):

Q(α)
I = Q(α)

F + Q(α)
P , (C10)

Q(α)
F =

∞∑
m=−∞

[
ρ (α)(m) − ρ

(α)
bulk(m)

]
f (m), (C11)

Q(α)
P =

∞∑
m=−∞

[
ρ

(α)
bulk(m) − 1

Z

]
f (m), (C12)

with m = Z (n − 1) + j. Here, ρ
(α)
bulk(m) = 1

2π∫ π

−π
dk|χ (α)

k ( j)|2 is the contribution from band α to the
charge at site m from the bulk Hamiltonian. As shown in
Eq. (30), the polarization part to the interface charge vanishes
Q(α)

P = 0. In turn, the Friedel part Q(α)
F ≡ QF amounts to

QF =
0∑

n=−∞

∫ π

−π

dk

2π
r∗

k

Z∑
j=1

χ2
k ( j)e2i(k−iη)n (C13)

+
∞∑

n=1

∫ π

−π

dk

2π
r′

k

Z∑
j=1

χ2
k ( j)e2i(k+iη)n (C14)

= −1 +
∫ π

−π

dk

2π
(r′

k − r∗
k )

Z∑
j=1

χ2
k ( j)

ieik

2 sin k
, (C15)

where η → 0+ is a convergence factor. The last equality is
only valid for λ2 �= 1, since the limits λ → 1 and η → 0+ do
not commute. In the translationally invariant case λ = 1, there
is no reflection at the interface, and one simply gets QF = 0.

In the following, we prove that in general QF takes only
integer values for arbitrary λ.

Let us introduce the two gauges: (I) χ I
k with e2iϕk (Z ) = 1,

i.e., the last component is real; and (II) χ II
k with e2iϕk (1) = 1,

i.e., the first component is real. Apparently, χ II
k = eiφk+ikχ I

k .
Next, we express the quantity QF + 1 in the mixed form

∫ π

−π

dk

2π

⎧⎨
⎩− λ2 − 1

λ2 − e2iφk
e2iφk

Z∑
j=1

[
χ I

k ( j)
]2 ieik

2 sin k

+ λ2 − 1

λ2 − e−2iφk
e−2iφk

Z∑
j=1

[
χ II

k ( j)
]2 ie−ik

2 sin k

⎫⎬
⎭. (C16)

In Ref. [89], we established that the components of the
Bloch state in the gauge I have the form

χ I
k ( j) = f I

j e−ik + gI
j√

NI
k

, 1 � j � Z − 1, (C17)

χ I
k (Z ) = s√

NI
k

, (C18)

where f I
j , gI

j , and s are real-valued polynomial functions of

εk , and NI
k = s2 +∑Z−1

j=1 | f I
j e−ik + gI

j |2. In that paper, we also
noted the following relations:

−Im

[
χ

I †
k

d

dk
χ I

k

]
=

Z−1∑
j=1

(
f I

j

)2 + f I
j gI

j cos k

NI
k

, (C19)
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Z∑
j=1

[
χ I

k ( j)
]2 ieik

2 sin k

= ieik

2 sin k
+

Z−1∑
j=1

(
f I

j

)2 + f I
j gI

je
ik

NI
k

= −Im

[
χ

I †
k

d

dk
χ I

k

]
+ ieik

2 sin k
+ i sin k

NI
k

Z−1∑
j=1

f I
j gI

j . (C20)

In addition, it is also possible to derive the relation

sin k

NI
k

Z−1∑
j=1

f I
j gI

j = − 1

2s

ds

dk
. (C21)

Hence,

Z∑
j=1

[
χ I

k ( j)
]2 ieik

2 sin k

= −Im

[
χ

I †
k

d

dk
χ I

k

]
− 1

2
+ i cos k

2 sin k
− i

2s

ds

dk
. (C22)

Let us now establish similar relations for χ II
k . We note that

the Bloch state

χ̄ II
k =

(
0 e−ik1(Z−1)×(Z−1)

1 0

)
χ II

k (C23)

is the eigenstate corresponding to the redefined unit cell,
which begins with the site 2, has the prelast site Z , and ends
with the site 1. Moreover, the component χ̄ II

k (Z ) is real, and
then by analogy with (C22), it holds

Z∑
j=1

[
χ̄ II

k ( j)
]2 ieik

2 sin k

= −Im

[
χ̄

II †
k

d

dk
χ̄ II

k

]
− 1

2
+ i cos k

2 sin k
− i

2s̄

d s̄

dk
, (C24)

where s̄ is a part of the representation for χ̄ II
k , which is

analogous to (C17) and (C18).
From (C23), it follows that

Im

[
χ̄

II †
k

d

dk
χ̄ II

k

]
= Im

[
χ

II †
k

d

dk
χ II

k

]
+ ∣∣χ̄ II

k (Z )
∣∣2 − 1,

(C25)

and thus we find that

Z∑
j=1

[
χ II

k ( j)
]2 ie−ik

2 sin k

=
Z∑

j=1

[
χ̄ II

k ( j)
]2 ieik

2 sin k
+ ∣∣χ̄ II

k (Z )
∣∣2

= −Im

[
χ

II †
k

d

dk
χ II

k

]
+ 1

2
+ i cos k

2 sin k
− i

2s̄

d s̄

dk
. (C26)

Inserting (C22) and (C26) into (C16) and accounting the
symmetry properties of integrands under the reflection k →

−k, we obtain

QF + 1 =
∫ π

−π

dk

2π

{
Re

[
λ2 − 1

λ2 − e2iφk
e2iφk

]

×
(

Im

[
χ

I †
k

d

dk
χ I

k

]
− Im

[
χ

II †
k

d

dk
χ II

k

]
+ 1

)

+ Im

[
λ2 − 1

λ2 − e2iφk
e2iφk

](
cot k − 1

2

d ln(ss̄)

dk

)}
.

(C27)

From the transformation between the two gauges, we ob-
tain the relation

Im

[
χ

I †
k

d

dk
χ I

k

]
− Im

[
χ

II †
k

d

dk
χ II

k

]
= −1 − dφk

dk
. (C28)

A less obvious identity

ss̄ sin2 φk = gI
1 f̄ II

Z−1 sin2 k ≡
⎛
⎝Z−1∏

j=1

t2
j

⎞
⎠ sin2 k (C29)

follows from the identifications

s̄√
N̄II

k

e−iφk = f I
1 + gI

1eik√
NI

k

, (C30)

s√
NI

k

eiφk = f̄ II
Z−1e−ik + ḡII

Z−1√
N̄II

k

, (C31)

and the observation gI
1 = f̄ II

Z−1 =∏Z−1
j=1 t j which can be made

on the basis of expressions quoted in Ref. [89]. Differentiating
(C29) with respect to k yields

cot k − 1

2

d ln(ss̄)

dk
= cot φk

dφk

dk
. (C32)

With help of (C28) and (C32), we cast (C27) to

QF + 1 =
∫ π

−π

dk

2π

{
−Re

[
λ2 − 1

λ2 − e2iφk
e2iφk

]
dφk

dk

+ Im

[
λ2 − 1

λ2 − e2iφk
e2iφk

]
cot φk

dφk

dk

}
. (C33)

Making the change of the integration variable k → φk and
accounting possible multiple windings of the phase φk , which
are quantified by the integer winding number wn[φk] =∫ π

−π
dk
2π i e

−iφk d
dk eiφk , we express

QF + 1 = wn[φk]
∫ π

−π

dφ

2π

{
−Re

[
λ2 − 1

λ2 − e2iφ
e2iφ

]

+ Im

[
λ2 − 1

λ2 − e2iφ
e2iφ

]
cot φ

}

= wn[φk] sign(λ2 − 1). (C34)

For the two decoupled chains (λ = 0), we obtain

Q(α)
F = −1 − wn

[
φ

(α)
k

] = wn
[
ϕ

(α)
k (1) − ϕ

(α)
k (Z )

]
, (C35)

i.e. an integer number. This result persists in the whole range
0 � λ < 1.
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We conclude that the total interface charge QI (λ), which
might also include integer edge state contributions, is a sum
of integers for any λ, and therefore QI (λ) = 0 mod(1). On
the other hand, since QR

B + QL
B = QI (λ = 0) by definition, we

find QR
B + QL

B = QI (λ) mod(1), in agreement with (4) for the
model discussed in this Appendix.

APPENDIX D: BOUNDARY CHARGE
AND ZAK-BERRY PHASE

This Appendix provides the analysis of the fundamental
transformation laws of the boundary charge under translations
and local inversion via the relation to the Zak-Berry phase
(which is only possible for the special case of noninteracting
and clean systems).

For the special case of noninteracting and clean systems,
the boundary charge QR

B ≡ QR
B,0 can be related to the Zak-

Berry phase γR ≡ γR,0 according to [42–44]

QR
B = − γR

2π
mod(1). (D1)

The Zak-Berry phase is defined with respect to the Bloch
eigenstates of the bulk Hamiltonian which can be written as

ψ (α)
k

(m) = 1√
2π

u(α)
k (m)eikm, (D2)

where −π
Z < k < π

Z defines the first Brioullin zone, α =
1, . . . , NcZ is the band index, and u(α)

k (m) = u(α)
k (m + Z ) are

periodic vector-functions forming a complete, orthogonalized
and normalized set of states within the unit cell space for each
given quasimomentum k (note the difference up to the factor
1/Z in its definition as compared to the previous Appendix)

〈u(α)
k |u(α′ )

k 〉 = δαα′ ,
∑

α

∣∣u(α)
k

〉〈
u(α)

k

∣∣ = 1, (D3)

with 〈u|u′〉 ≡∑Z
m=1 u†(m)u′(m). Conventionally, one chooses

the periodic gauge ψ (α)
k

= ψ
(α)
k+ 2π

Z

such that only a phase factor

eiϕ(α)
k with

ϕ
(α)
k = ϕ

(α)
k+ 2π

Z

mod(2π ) (D4)

leaves a gauge freedom to the Bloch states. As a consequence,
the Zak-Berry phase γ

(α)
R ≡ γ

(α)
R,0 for a single band, defined by

γ
(α)

R = i
∫ π/Z

−π/Z
dk
〈
u(α)

k

∣∣∂ku(α)
k

〉+ 2πPion, (D5)

is undetermined up to multiples of 2π . The last term is the
contribution from the polarization of the ions per band and
per unit cell defined by

Pion = − 1

Z

Z∑
m=1

m

Z
= −1 + Z

2Z
, (D6)

which is again undetermined up to O(1) when the point of
reference is shifted by multiples of a lattice vector Z . The total
Zak-Berry phase γR is defined by the sum over the occupied
bands

γR =
ν∑

α=1

γ
(α)

R . (D7)

The Zak-Berry phase depends in a subtle way on the defini-
tion of the unit cell. This is the point where the precise position
of the boundary enters. For a given boundary of the system,
the convention is to start the unit cell with the first site at the
boundary. If we take the semi-infinite Hamiltonian HR ≡ HR,0

this gives the same unit cell as for the bulk Hamiltonian Hbulk.
For HR,n and HL,n different definitions and inversions of the
unit cell have to be taken leading to corresponding changes of
the Zak-Berry phase denoted by γ

(α)
R,n and γ

(α)
L,n for each band

α. Equation (D1) then reads

QR
B,n = −γR,n

2π
mod(1), (D8)

QL
B,n = γL,n

2π
mod(1), (D9)

where γR,n and γL,n are the Zak-Berry phases summed over
the number of occupied bands

γR/L,n =
ν∑

α=1

γ
(α)

R/L,n. (D10)

We note that the relative minus sign between the Zak phases
for a semi-infinite system with a left or right boundary is a
consequence of the convention that the quasimomentum is
defined positive when pointing away or towards the boundary,
respectively.

To get the relation between γR,n and γR we consider a
translation m → m + n and get the following change of the
Bloch wave (D2)

ψ̄k (m) = 1√
2π

ū(α)
k (m)eikm, (D11)

ū(α)
k (m) = u(α)

k (m + n)eikn. (D12)

Obviously, the transformed Zak-Berry phase γ
(α)

R,n for HR,n

defined via (D5) with respect to ū(α)
k is then given by

γ
(α)

R,n = γ
(α)

R − n
2π

Z
, (D13)

which, via (D1), (D8), and (D10), leads to the transformation
law of the boundary charge under translations

QR
B,n = QR

B + nρ̄ mod(1). (D14)

The Zak-Berry phases γR and γL are the same since they
are defined with respect to the same lattice and the same unit
cell. Using (D8) and (D9) for n = 0, this leads directly to
the transformation law of the boundary charge under local
inversion

QR
B + QL

B = mod(1). (D15)

Although this might look very straightforward and com-
parable to the effort needed for the proofs based on the NSP
presented in the main part of the paper, this is only possible
for noninteracting and clean systems and even in this case, the
real work is hidden in the proof of the surface charge theorem
(D1). This involves the detailed consideration of Wannier
function representations as in Ref. [43] or using charge
pumping arguments for noncyclic processes as in Ref. [48].
Whatever proof is used for the relation of the Zak-Berry phase
to the boundary charge, the underlying principle is always the
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NSP. Therefore, instead of using the surface charge theorem,
we have preferred in this work to prove the central relations
(D14) and (D15) directly from the NSP to show the deep
connection to this principle and to include also the case of
short-ranged electron-electron interactions and static random
disorder.

APPENDIX E: SYMMETRIES FOR SINGLE-CHANNEL
AND NEAREST-NEIGHBOR HOPPING MODELS

In this Appendix, we prove the symmetry conditions (52)
and (53) for the special case of a tight-binding model with
one channel Nc = 1 and nearest-neighbor hopping δ = 0,±1.
In this case, the model is parametrized by Z on-site poten-
tials vm = vm+Z and Z nearest-neighbor hoppings tm = tm+Z

defined by

vm = hm(0) = v∗
m, tm = −hm(1) = −hm+1(−1)∗. (E1)

Without loss of generality one can choose all tm > 0 real
and positive since possible phases can be gauged away by a
unitary transformation (see, e.g., Appendix A in Ref. [89] for
a proof). The unitary transformation Um must be a phase factor

Um = eiϕm , ϕm = ϕm+Z . (E2)

Inserting these equations in the symmetry condition (39) for
	n, we find

vm = vZ−m−n+1, (E3)

tm = e−i(ϕZ−m−n−ϕZ−m−n+1 )tZ−m−n. (E4)

Since tm and tZ−m−n are both positive this can only be fulfilled
for Um = Um+1 which is just a homogeneous and trivial phase
factor. Therefore we can set Um = 1 and find the condition
(52).

Considering the other symmetry condition (40) for Sn, we
find

vm = −vm−n, (E5)

tm = −e−i(ϕm−n+1−ϕm−n )tZ−m−n. (E6)

Since tm and tZ−m−n are both positive this requires Um =
−Um+1 which, up to an unimportant common phase factor, is
only realized for Um = (−1)m. This proves the condition (53).

APPENDIX F: BOUNDARY CHARGE FOR DIRAC MODEL

In this Appendix, we determine all eigenstates of the semi-
infinite Dirac model (99) and prove Eqs. (100) and (101). We
start with solving the eigenvalue equation

[−ivF σ3∂x + |�|(σ+eiα + σ−e−iα )]ψ (x) = εψ (x), (F1)

with σ± = 1
2 (σx ± iσy), ψ (x) = (R(x), L(x))T , and the

boundary condition R(0) + L(0) = 0. There are two distinct
spectral regions: (I) |ε| < |�|, and II) |ε| > |�|. In the region
I, we find a single bound state solution for sin α > 0 at energy
ε = −|�| cos α, whose wave function is given by

ψ I(x) = √
κ

(
1

−1

)
e−κx, (F2)

with κ = |�| | sin α|
vF

. In the second (II) spectral region, we find
a continuum of scattering states labeled by the momentum

k ∈ [0,∞) and corresponding to the two bands with energies
εk,± = ±

√
v2

F k2 + |�|2 ≡ ±εk . The eigenstates of the lower
(valence) band have the following form

ψ
k
(x) = 1√

2πNk

[(−|�|eiα

vF k + εk

)
eikx − sk

( −|�|eiα

−vF k + εk

)
e−ikx

]
,

(F3)

with the normalization factor

Nk = |�|2 + (vF k + εk )2 = 2εk (εk + vF k) (F4)

and

sk = |�|eiα − vF k − εk

|�|eiα + vF k − εk
. (F5)

We note the helpful properties

|sk|2 = εk + vF k

εk − vF k
, sks−k = 1. (F6)

Assuming that the chemical potential is located at the
bottom of the conduction band, the bound state is occupied
for 0 < α < π , and all valence band states ψ

k
are filled.

Neglecting the strongly oscillating parts [providing unimpor-
tant corrections of O( �

vF kF
) � 1], the contribution of each

eigenstate to the density is given by

ρψ (x) = ψ†(x)ψ (x) = |R(x)|2 + |L(x)|2. (F7)

We denote the contributions of the eigenstates ψ I and ψ
k

to
the physical density by ρI(x) and ρk (x), respectively. This
gives for the total density relative to the average bulk density
ρ̄

ρ(x) − ρ̄ = ρI(x) + δρII(x), (F8)

δρII(x) =
∫ ∞

0
dk

[
ρk (x) − 1

π

]
, (F9)

and, according to the definition (16), the boundary charge
follows from

QB =
∫ ∞

0
dx [ρ(x) − ρ̄] f (x) = QI

B + QII
B, (F10)

QI
B =

∫ ∞

0
dx ρI(x) f (x), (F11)

QII
B =

∫ ∞

0
dx δρII(x) f (x). (F12)

For the envelope function f (x), we choose the form f (x) =
e−ηx with infinitesimally small η → 0+.

The bound state is occupied for 0 < α < π and gives an
integer contribution to the boundary charge

QI
B =

∫ ∞

0
dx|ψ I(x)|2 = �0<α<π . (F13)

This proves Eq. (100).
To calculate the scattering part QII

B to the boundary charge
we use (F3), (F4), (F5), and (F6) and find after a straightfor-
ward calculation

δρII(x) = −|�|
2π

∫ ∞

−∞
dk

e2ikx

εk

|�| − εk cos α − ivF k sin α

εk − |�| cos α
.

(F14)
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Inserting this result in (F12) and performing the integration
over x, we obtain

QII
B = −1

4
− |�|

4π

∫ ∞

−∞
dk

vF sin α

εk (εk − |�| cos α)

= −1

4
+ ln(−eiα )

2π i
. (F15)

This proves Eq. (101).

APPENDIX G: BOUNDARY CHARGE AT ZERO GAP

For the tight-binding model H0, given by (64), restricted to
the semi-infinite system m > 0, the eigenfunctions are given
by (we set a = 1)

ψk (m) = 1√
2π

(eikm − e−ikm), (G1)

with 0 < k < π . For filling ρ̄ = kF /π , this leads to the fol-
lowing charge ρ(m) at site m:

ρ(m) =
∫ kF

0
dk |ψk (m)|2 = − 1

2π

∫ kF

−kF

dk e2ikm + ρ̄. (G2)

Inserting this result in the formula (16) for the boundary
charge QB ≡ QR

B, we get

QB = − 1

4π

∫ kF

−kF

dk
∞∑

m=−∞
e2ikm f (m) + kF

2π
. (G3)

Choosing f (m) = e−η|m|, we find
∑∞

m=−∞ e2ikm f (m) =
πδ(k) and obtain for the boundary charge of H0 at zero gap

QB = − 1
4 + 1

2 ρ̄. (G4)

This single-band model can be differently represented in
terms of uniform unit cells with Z sites. This is especially
useful, if we have in mind to add a Z-periodic perturbation
on top of H0 (64). In the new representation, the single cosine
band folds into Z bands with the reduced Brillouin zone
(RBZ) [−π

Z , π
Z ), the adjacent bands touching each other either

in the center or at the edges of the RBZ. Choosing kF /π of the
original model to be rational, kF

π
= ν

Z , we occupy ν bands in
the folded representation, and (G4) then reads

QB = −1

4
+ ν

2Z
. (G5)

Adding a Z-periodic perturbation generically opens Z − 1
gaps between all Z bands. Having the chemical potential in
the νth gap, we can evaluate the correction to (G5) due to the
perturbation by means of the low-energy theory developed in
Appendix F.

This consideration clarifies the physical meaning of
Eq. (105).

APPENDIX H: INTERFACE CHARGE FOR DIRAC MODEL

In this Appendix, we consider an interface between two
Dirac models according to the Hamiltonian (106), where the
phase α(x) of the gap parameter depends on x. We will prove
the Goldstone-Wilczek formula (107) for the interface charge
for the particular choice α(x) = αR�(x) + αL�(−x). We de-
fine the parameter δα = αR − αL. The eigenstates follow from

the equation

[−ivF σ3∂x + |�|(σ+eiα(x) + σ−e−iα(x) )]ψ (x) = εψ (x),
(H1)

with σ± = 1
2 (σx ± iσy) and ψ (x)T = (R(x), L(x))T . Like

in the case of the semi-infinite Dirac model discussed in
Appendix F, we separate the spectrum of the Hamiltonian into
two regions: (I) |ε| < |�| and (II) |ε| > |�|.

The bound state solution appears for sin(δα/2) > 0 with
energy ε = −|�| cos(δα/2), and is given by

ψ I(x) =
√

κ

2

(
1

−e−i αR+αL
2

)
e−κ|x|, (H2)

with κ = |�|
vF

sin(δα/2). If it is occupied it gives an integer
contribution to the interface charge.

For each energy |εk| > |�|, the extended eigenstates can
be chosen as scattering states within two scattering channels.
The first one (denoted by the index r)

ψ (r)
k

(x) = �(−x)√
2π

[χ
L,k

eikx + rk χ
L,−k

e−ikx]

+ �(x)√
2π

tk χ
R,k

eikx (H3)

represents the scattering of a wave incident on the interface
from the left. The second scattering eigenstate (denoted by
the index l)

ψ (l )
k

(x) = �(x)√
2π

[χ
R,−k

e−ikx + r′
k χ

R,k
eikx]

+ �(−x)√
2π

t ′
k χ

L,−k
e−ikx (H4)

represents the scattering of a wave incident on the interface
from the right. In above expressions, k ∈ [0,∞) stands for
the momentum quantum number, and

χ
R/L,k

= 1√
2ε(ε − vF k)

(−|�|eiαR/L

vF k − ε

)
(H5)

are the normalized Bloch eigenstates of the right-sided (x >

0) and left-sided (x < 0) bulk Hamiltonians with eigenener-
gies ε = ±εk .

The scattering amplitudes rk, tk and r′
k, t ′

k can be deter-
mined from the continuity condition at the interface

ψ (r/l )
k

(0+) = ψ (r/l )
k

(0−). (H6)

This results in the expressions

rk = r′
k = |�|(eiαR − eiαL )

(ε − vF k)eiαL − (ε + vF k)eiαR
, (H7)

tk = 2vF keiαL

(ε + vF k)eiαR − (ε − vF k)eiαL
, (H8)

t ′
k = 2vF keiαR

(ε + vF k)eiαR − (ε − vF k)eiαL
. (H9)

By an explicit calculation, one can readily verify the fulfill-
ment of the unitarity conditions

|tk|2 + |rk|2 = |t ′
k|2 + |r′

k|2 = 1, (H10)

t∗r′
k + r∗

k t ′
k = 0. (H11)
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For a filled valence band, we choose ε = −εk and identify
the extended states’ contribution to the interface charge

QII
I =

∫ ∞

−∞
dx f (x)

∫ ∞

0
dk

(
|ψ (r)

k (x)|2 + |ψ (l )
k (x)|2 − 2

π

)

= |�|
π

∫ ∞

0
dx f (x)

∫ ∞

−∞
dk

e2ikx

εk
r′

k . (H12)

As one can conclude from (H7), this quantity periodically
depends on δα = αR − αL. Evaluating (H12) for δα ∈ (0, 2π )
with f (x) = e−η|x|, η → 0+, we obtain

QII
I = δα

2π
− 1. (H13)

Putting the chemical potential at the bottom of the conduction
band, we receive an additional contribution QI

I = 1 from the
edge state (H2), which is present for every value of δα, and
obtain the resulting expression (107) for the total interface
charge.

APPENDIX I: FINITE SMALLER SYSTEMS

In this Appendix, we show that the quantization of the
boundary charge according to Fig. 6 is already visible for a
tight-binding chain of ∼20 sites. As demonstrated in Fig. 12
for N = 24 lattice sites the quantization can be demonstrated
robustly as long as larger V can be accessed such that the
localization length becomes small compared to the lattice size.

The results shown in Figs. 6 and 12 can be easily under-
stood in the atomic limit V � t : The dominant contribution
to QB comes from the polarization charge QP (C12), while an

(a) (b)

FIG. 12. The same as the center row of Fig. 6, but for small N =
24 and two values of the V .

eventual integer-valued Friedel charge contribution (C11) is
exactly canceled by edge state contributions. To compute QP,
we use the elaborated expression (see Ref. [89] for details)

QP = − 1

Z

Z/2∑
α=1

Z∑
j=1

j

(
|χ (α)( j)|2 − 1

Z

)
, (I1)

where the occupied bands ε (α) are approximately given by the
potential components v j̃ < 0 (one can even associate j̃ with
the band index α sorting v j̃’s in the ascending order for each
value of ϕ). The corresponding eigenstate χ (α)( j) possesses
the only unity component χ (α)( j̃) = 1, while χ (α)( j �= j̃) =
0. The plateau values in the discussed figures then immedi-
ately follow from (I1). [It can so happen that two eigenstates
v j̃1 (ϕ) and v j̃2 (ϕ) become degenerate at some value of ϕ, and
then it is necessary to consider 1√

2
{χ (α1 )( j) ± χ (α2 )( j)} for the

eigenstates. This, however, does not alter the plateau value
of QB.]
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